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Abstract 
It is often claimed that tools are embodied by the user, but whether the brain actually repur-

poses its body-based computations to perform similar tasks with tools is not known. A funda-
mental computation for localizing touch on the body is trilateration. Here, the location of touch 

on a limb is computed by integrating estimates of the distance between sensory input and its 
boundaries (e.g., elbow and wrist of the forearm). As evidence of this computational mecha-

nism, tactile localization on a limb is most precise near its boundaries and lowest in the middle. 
We show that the brain repurposes trilateration to localize touch on a tool. In a large sample 

of participants, we found that localizing touch on a tool produced the signature of trilateration, 
with highest precision close to the base and tip of the tool. A computational model of trilatera-

tion provided a good fit to the observed localization behavior. To further demonstrate the com-

putational plausibility of repurposing trilateration, we implemented it in a three-layer neural 
network that was based on principles of probabilistic population coding. This network deter-

mined hit location in tool-centered coordinates by using a tool’s unique pattern of vibrations 
when contacting an object. Simulations demonstrated the expected signature of trilateration, 

in line with the behavioral patterns. Our results have important implications for how trilateration 
may be implemented by somatosensory neural populations. We conclude that trilateration is 

a fundamental spatial computation that unifies limbs and tools. 
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Introduction 
The proposal that the brain treats a tool as if it were an extended limb (tool embodiment) was 

first made over a century ago (Head and Holmes, 1911). From the point of view of modern 
neuroscience, embodiment would entail that the brain reuses its sensorimotor computations 

when performing the same task with a tool as with a limb. There is indirect evidence that this 
is the case (for reviews, see Maravita and Iriki, 2004; Martel et al., 2016), such as the ability 

of tool-users to accurately localize where a tool has been touched (Miller et al., 2018) just as 
they would on their own body. Several studies have highlighted important similarities between 

tool-based and body-based tactile spatial processing (Yamamoto and Kitazawa, 2001; Kilteni 
and Ehrsson, 2017; Miller et al., 2018), including at the neural level in the activity of fronto-

parietal regions (Miller et al., 2019; Pazen et al., 2020; Fabio et al., 2021). Tool use also mod-

ulates somatosensory perception and action processes (Cardinali et al., 2009; Cardinali et al., 
2011; Cardinali et al., 2012; Sposito et al., 2012; Canzoneri et al., 2013; Miller et al., 2014; 

Garbarini et al., 2015; Cardinali et al., 2016; Miller et al., 2017; Martel et al., 2019; Romano et 
al., 2019; Miller et al., 2019b). While these findings suggest functional similarities between 

tools and limbs, direct evidence that body-based computational mechanisms are repurposed 
to sense and act with tools is lacking. The present study uses tool-based sensing as a case 

study to provide the first neurocomputational test of embodiment. 
Tactile localization on the body is often characterized by greater precision near body-

part boundaries (e.g., joints or borders), a phenomenon called perceptual anchoring 
(Cholewiak and Collins, 2003; de Vignemont et al., 2009). We recently found converging evi-

dence that perceptual anchors are the signature of trilateration (Miller et al., 2022), a compu-

tation used by surveyors to localize an object within a map. To do so, a surveyor estimates 
the object’s distance from multiple landmarks of known positions. When applied to body maps 

(Figure 1A, bottom), a ‘neural surveyor’ localizes touch on a body part by estimating the dis-
tance between sensory input and body-part boundaries (e.g., the wrist and elbow for the fore-

arm). To estimate the touch location in limb-centered coordinates, these two distance esti-
mates can be integrated to produce a Bayes-optimal location percept (Ernst and Banks, 2002; 

Kording and Wolpert, 2004; Clemens et al., 2011). Consistent with Weber’s Law (Petzschner 
et al., 2015), we found that the noise in each distance estimate increased linearly as a function 

of distance (Figure 1B). Integrating them resulted in an inverted U-shaped noise profile across 
the surface, with the lowest noise near the boundaries and highest noise in the middle (i.e., 

perceptual anchoring). 
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In the present study, we investigated whether trilateration is repurposed to localize 

touch a tool (Figure 1A). If this is indeed the case, localizing touch on a tool would be charac-
terized by an inverted U-shaped pattern of variable errors across its surface (Figure 1B). We 

first provide a theoretical formulation of trilateration, arguing that the brain uses the tool’s vi-
brational properties to stand-in for a representation for the physical space of a tool (Miller et 

al., 2018); the brain could therefore repurpose trilateration by computing over a vibratory fea-
ture space (Figure 2). In this formulation (see Methods for more details), its boundaries stand 

in for the boundaries of tool-centered space and distance estimates (Figure 1A) are computed 
within a neural representation of the feature space. We then characterize the ability of partic-

ipants to localize touch on a tool (Figure 1C) and use computational modelling to verify the 
expected computational signature of trilateration. Finally, we use neural network modelling to 

implement the vibration-to-location transformation, further solidifying the plausibility of trilater-

ating touch location on a tool. 

Material and Methods 

Theoretical formulation of trilateration 

In the present section, we provide a theoretical formulation of trilateration and how it can be 
applied to localizing touch within a somatosensory-derived coordinate system, be it centered 

on a body part or the surface of a tool (Figure 1A). The general computational goal of trilater-
ation is to estimate the location of an object by calculating its distance from vantage points of 

known position, which we will refer to as landmarks. Applied to tactile localization, this amounts 
to estimating the location of touch by averaging over distance estimates taken from the bound-

aries of the sensory surface (Figure 1A), which serve as the landmarks and are assumed to 

be known to the nervous system via either learning or sensory feedback (Longo et al., 2010). 
For a body part (e.g., forearm), the landmarks are often its joints (e.g., wrist and elbow) and 

lateral sides. For simple tools such as rods, the landmarks correspond to their handle and 
tip—previous research has shown that users can sense their positions from somatosensory 

feedback during wielding (Debats et al., 2012). 
 We will first consider the general case of localizing touch within an unspecified soma-

tosensory coordinate system. For simplicity, we will consider only a single dimension of the 
coordinate system, with localization between its two boundaries. We propose that the soma-

tosensory system only needs three spatial variables, {𝑥!, 𝑥", 𝑥#}, to derive an estimate 𝐿& of the 
actual location of touch 𝐿 in surface-centered coordinates. The variables 𝑥! and 𝑥" correspond 
to the proximal and distal boundaries, respectively. The variable 𝑥# corresponds to the sensory 
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input. Due to noise (Faisal et al., 2008), the nervous system does not represent variables as 

point estimates but as probability densities over some range of values (Pouget et al., 2013). 
Assuming normally-distributed noise, each variable 𝑥$ can be thus thought of as a Gaussian 

likelihood 

 𝑝(𝑥$|𝑋$) 	= 𝑁/𝑋$ , 	𝜎$"1 (1) 

where the mean 𝑋$ corresponds to its true spatial position and the variance 𝜎$" corresponds to 

the uncertainty in its internal estimate. Here,	𝑋! and 𝑋" are the true positions of the landmarks 

(i.e., boundaries) and 𝑋# is the position of the sensory input. It is important to note here that 
these positions can be specified within any shared coordinate system. For example, touch on 

the body is thought to initially be represented in skin-based coordinates (Medina and Coslett, 
2010), not coordinates centered on a limb. The relationship between 𝑋# and 𝐿 therefore re-

mains ambiguous without the proper computation to transform it into the actual surface-cen-
tered coordinates (Longo et al., 2010). 

Trilateration performs the necessary computation to transform 𝑥# into surface-centered 

coordinates (Miller et al., 2022). It does so by calculating its distance from the proximal and 
distal boundaries of the coordinate system (𝑥! and 𝑥", respectively), producing two additional 

estimates: 

 𝑝(𝑑!|𝑥!, 𝑥#) 	= 𝑁(𝑋# − 𝑋!, 	𝜎!"(𝑑!)) 

𝑝(𝑑"|𝑥", 𝑥#) 	= 𝑁(𝑋" − 𝑋#, 	𝜎""(𝑑")) 
(2) 

where each distance estimate 𝑑$ corresponds to a Gaussian likelihood with a mean equal to 

the distance between 𝑋# and the respective boundary and a variance that scales with distance. 
That is, localization estimates are more precise when the touch is physically closer to a bound-

ary than when it is farther away (Figure 1B). This distance-dependent noise is consistent with 
the Weber-Fechner law (Petzschner et al., 2015) and is a consequence of how distance com-

putation is implemented by a neural decoder (see below).  
Given the above distance estimates (Eq. 2), we can derive two estimates of touch lo-

cation 𝐿&$ that are aligned within a common coordinate system: 

 𝑝/𝐿&!4𝐿1 = 𝑝(𝑥!|𝑋!) + 𝑝(𝑑!|𝑥!, 𝑥#) 

𝑝/𝐿&"4𝐿1 = 𝑝(𝑥"|𝑋") − 𝑝(𝑑"|𝑥", 𝑥#) 
(3) 

These two location estimates can be used to derive a final estimate. However, given the pres-
ence of distance-dependent noise, the precision of each estimate will vary across the sensory 
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surface (Figure 1B). Assuming a flat prior for touch location, the statistically optimal solution 

(i.e., maximum likelihood) is to integrate both estimates:  

 𝑝/𝐿4𝐿&!, 𝐿&"1 ∝ 𝑝/𝐿&!4𝐿1𝑝/𝐿&"4𝐿1 (4) 

Here, the mean (𝜇%&')	and variance (𝜎%&'" ) of the integrated surface-centered posterior distri-

bution depend on the means (𝜇! and 𝜇") variances (𝜎!" and 𝜎"") of the individual estimates:  

 
𝜇%&' = 8

𝜇!
𝜎!"

+
𝜇"
𝜎""
	9 𝜎%&'" 							,							𝜎%&'" =

𝜎!"𝜎""

𝜎!" +	𝜎""
 (5) 

The integrated posterior 𝑝/𝐿4𝐿&!, 𝐿&"1 thus reflects the maximum-likelihood estimate of touch 

location 𝐿. Given that the noise in each individual estimate scales linearly with distance, inte-
gration has the consequence of producing an inverted U-shaped pattern of variance (Fig-

ure 1B). This pattern of variability serves as a computational signature of trilateration, which 
we have observed for tactile localization on the arm and fingers (Miller et al., 2022). The pre-

sent study investigates whether this is the case for localizing touch on a hand-held rod. Our 
computational analyses implement this probabilistic model of trilateration (see below). 

Figure 1. Model of trilateration and tool-sensing paradigm 

(A) The trilateral computation applied to the space of the arm (bottom) a hand-held rod (top). Distance 
estimates from sensory input (black) and each boundary (D1 and D2) are integrated (purple) to form a 
location estimate. (B) In our model, the noise in each distance estimate (D1, D2) increases linearly with 
distance. The integrated estimate forms an inverted U-shaped pattern. (C) Two tool-sensing tasks used 
to characterize tactile localization on a hand-held rod. The purple arrow corresponds to the location of 

touch in tool-centered space. The red square corresponds to the judgment of location within the com-
puter screen. 

Computing a tool-centered spatial code with trilateration 

Let us now consider the more specific case of performing trilateration for touch on a tool (Fig-
ure 1A, top). Because the tool surface is not innervated, spatial information does not arise 

from a distribution of receptors but must instead be inferred from sensory information during 
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tool-object contact. However, as we will see, this information forms a feature space that can 

computationally stand in for the real physical space of the tool (Figure 2). Trilateration can be 
performed on this feature space, leading to a tool-centered code. 

As with the body, the somatosensory system needs three variables, {𝑥!, 𝑥", 𝑥#}, to de-

rive an estimate 𝐿& of the actual location of touch 𝐿 in tool-centered coordinates. The represen-
tational nature of these variables depends on the type of sensory information that encodes 

where a tool was touched. We have previously argued that touch location is encoded in rod’s 
resonant frequencies (Miller et al., 2018). The frequencies of these modes are determined by 

physical properties of the rod, such as its length and material. However, the relative ampli-
tudes of each mode is determined by touch location (Figure 2A), a pattern that is invariant 

across rods. The link between location and amplitude is captured by the shape of the modes.  

Figure 2. Vibration modes and feature space 

(A) The shape of the first five modes 𝜔 for contact on a cantilever rod. The weight of each mode varies 
as a function of hit location. Each hit location is characterized by a unique combination of mode weights. 
(B) The vibration-location feature space (purple) from handle (X1) to tip (X2). This feature space is iso-
morphic with the actual physical space of the rod. 𝜔 corresponds to a resonant frequency, the black dot 
corresponds to the hit location (as in Figure 1A) within the feature space, and the arrows are the gradi-
ents of distance estimation during trilateration.  

Touch location can therefore be encoded in a unique combination of modal amplitudes, 
called vibratory motifs. These motifs form a multidimensional feature space that forms a vibra-

tion-to-location isomorphism (Figure 2B). Theoretically, this isomorphic mapping between the 
feature space of the vibrations and tool-centered space can computationally stand in for the 

physical space of the rod. We can therefore re-conceptualize the three initial spatial variables, 
{𝑥!, 𝑥", 𝑥#}, in relation to the isomorphism. The estimates 𝑥! and 𝑥" encode the location of the 
proximal and distal boundaries within the feature space, respectively. The estimate 𝑥# en-

codes the sensory input, which in our case is the vibration amplitude in each mode. Once the 
nervous system has learned the isomorphic mapping, the trilateral computation (Equations 2-
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5) can be used to derive an estimate of the tool-centered location of touch (Figure 2B). To 

concretely demonstrate this possibility, we implemented this isomorphic mapping in a simple 
neural network. 

Neural network implementation for trilateration on a tool 

Somatosensory regions are characterized by spatial maps of the surface of individual body 
parts (Penfield and Boldrey, 1937). Based on this notion, we previously applied the above 

formulation of trilateration to tactile localization on the body surface, and implemented it in a 
biologically inspired two-layer feedforward neural network (Miller et al., 2022). The first layer 

consisted of units that were broadly tuned to touch location in skin-based coordinates, as is 
thought to be encoded by primary somatosensory cortex. The second layer consisted of units 

whose tuning was characterized distance-dependent gradients (either in peak firing rate 
and/or tuning width) that were anchored to one of the joints. They therefore embodied the 

distance computation as specified in Equations 2–3. A Bayesian decoder demonstrated that 
the behavior of this network matched what would be expected by optimal trilateration (Equa-

tions 2–5), displaying distance-dependent noise and an inverted U-shaped variability following 

integration.  
While this network relies on the observation that individual primary somatosensory 

neurons are typically tuned to individual regions of the skin (Delhaye et al., 2018), can it also 
be re-used for performing trilateration in vibration space? The vibratory motifs are unlikely to 

be spatially organized across the cortical surface. Instead, the nervous system must internal-
ize the isomorphic mapping between the motifs and the physical space of the tool (Figure 2). 

We have previously found that disrupting the expected vibrations disrupts localization (Miller 
et al., 2018), suggesting that the user has internal models of rod dynamics (Imamizu et al., 

2000). We assume that this internal model is implemented in units that are tuned to the sta-
tistics of the vibratory motifs. 

We implemented the trilateral computation (Equations 2–5) in a three-layer neural net-

work with four processing stages (Figure 3): First, the amplitudes of each mode are extracted 
by a population of units with subpopulations tuned to each resonant mode (Layer 1). Second, 

activation in each subpopulation is integrated by units tuned to the multidimensional statistics 
of the motifs (Layer 2). This layer effectively forms the internal model of the feature space that 

is isomorphic to the rod’s physical space. Next, this activation pattern is transformed into tool-
centered coordinates (Equations. 2–3) via two decoding subpopulations whose units are 

tuned to distance from the boundaries of the feature space (Eq. 3; Layer 3). The population 
activity of each decoding subpopulations reflects the likelihoods in Equation 4 (Jazayeri and 
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Movshon, 2006). Lastly, the final tool-centered location estimate is derived by a Bayesian 

decoder (Ma et al., 2006) that integrates the activity of both subpopulations (Eq. 5). 

Figure 3. Neural network implementation of trilateration 
(A) Neural network implementation of trilateration: (lower panel) the Mode layer is composed of sub-
populations (two shown here) sensitive to the weight of individual modes (see Figure 2A), which are 
location-dependent; (middle panel) the Feature layer takes input from the model layer and encodes the 
feature space (see Figure 2B), which forms the isomorphism with the physical space of the tool; (upper 
panel) the Distance layer is composed of two subpopulations of neurons with distance-dependent gra-
dients in tuning properties (shown: firing rate and tuning width). The distance of a tuning curve from its 
“anchor” is coded by the luminance, with darker colors corresponding to neurons that are closer to the 
spatial boundary. (B) Activations for each layer of the network averaged over 5000 simulations when 
touch was at 0.75 (space between 0 and 1). Each dot corresponds to a unit of the neural network. 
(lower panel) mode layer, with three of five subpopulations shown; (middle panel) feature layer; (upper 
panel) distance layer of localization for each decoding subpopulation. 

The feature space of vibrations is multidimensional, being composed of a theoretically 
infinite number of modes. However, only the first five modes (Figure 2A) are typically within 

the bandwidth of mechanoreceptors (i.e., ~10-1000 Hz; Johansson and Flanagan, 2009). The 
first layer of our network was therefore composed of units tuned to the amplitudes of the 
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modes (Figure 3A, bottom). This layer was composed of five subpopulations, one for each 

mode. These units were broadly-tuned with Gaussian (bell-shaped) tuning curves 𝑓( of the 
following form: 

 
𝑓((𝜃) = 𝜅 8exp @

−(𝜃 − 𝜇)"

2𝜎"
B9 

(6) 

where 𝜅 is the peak firing rate (i.e., gain), 𝜇 is the tuning center related to the amplitude of the 

specific mode, 𝜃 is the mode amplitude of the stimulus, and 𝜎" is the variance of the tuning 
curve. We modelled the response properties of these units for a given contact location on the 

rod with likelihood functions 𝑝/𝑟$(4𝜃1	denoting the probability that mode amplitude 𝜃 caused 

𝑟$) spikes in encoding unit 𝑖. The likelihood function 𝑝/𝑟$(4𝜃1 was modeled as a Poisson prob-

ability distribution with a Fano factor of one according to the following equation: 

 
𝑝/𝑟$(4𝜃1 	= 	

𝑒*+!
"(-)𝑓$((𝜃)/!

"

𝑟$(!
 (7) 

where 𝑓$( is the tuning curve of unit 𝑖. The population response of the encoding units is de-

noted by a vector 𝒓𝑴 ≡ {𝑟!( , …,	𝑟&(}, where 𝑟$( is the spike count of unit 𝑖. 

 The amplitude 𝜃 of each mode is tied directly to the stimulus location 𝐿 (Miller et al., 

2018). The function of the next layer is to integrate the amplitudes of each mode, encoded in 

𝒓𝑴,	into a representation of the feature space that can be directly linked to 𝐿. It does so via 

units with bell-shaped tuning curves 𝑓1 over the feature space (Figure 3A, middle). The pop-

ulation activity 𝒓𝑺 of this layer is a combination of (1) the synaptic input 𝑊1 ∙ 𝒓𝑴, where ‘∙’ is 

the dot product and 𝑊1 is the matrix of all synaptic weights; and (2) the uninherited Poisson 
noise in the decoding unit’s spiking behavior (Eq. 7). Each unit 𝑖 in the second layer was fully 

connected to each unit in the first layer via a vector synaptic weights 𝒘𝒊
𝑺, which was set to be 

proportional to 𝒓𝑴 for each touch location 𝐿. For simplicity, the input into the second layer 

(𝒇𝑺(𝑗)) corresponded to the winner-take-all of the synaptic input (𝑗 = argmax
4

	(𝑊1 ∙ 𝒓𝑴). 

The function of the third layer was to estimate the location of 𝐿 in tool-centered coor-

dinates given the population response 𝒓𝑺 in the feature space layer. We implemented this 
computation in two independent decoding subpopulations, each of which was “anchored” to 

one of the boundaries of the feature space (Figure 3A, top). The population activity 𝒓𝑫 of each 

subpopulation corresponded to: 𝑟$6 =	𝒘𝒊
𝑫 ∙ 𝒓𝒔 + 𝜖$, where 𝒘𝒊

𝑫 is the vector of synaptic weights 

connecting unit 𝑖 to the second layer and 𝜖$ is the uninherited Poisson noise in the unit’s spik-

ing behavior (Eq. 7). Each unit in the decoding layer was fully connected to each unit in the 
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encoding layer via 𝒘𝑫. We used the Matlab function fmincon to find the positive-valued weight 
vector that produced the decoding unit’s pre-specified tuning curve (see below). 

As in our previous neural network for body-centered tactile localization (Miller et al., 

2022), the distance computation (Equations 2–3) was embodied by distance-dependent gra-

dients in the tuning of units 𝑓6 in each decoding subpopulation. The gain 𝜅 of these units 
formed a distance-dependent gradient (close-to-far: high-to-low gain) across the length of the 

feature space. 

𝜅(𝑑) =
𝜅8

(1 + 𝛽𝑑)"
 (8) 

where 𝜅8 corresponds to the gain of the tuning curve centered on the landmark’s location (i.e., 
distance zero), 𝑑 is the distance from the center of the tuning curve (𝑑 ≥ 0) and the landmark, 

and 𝛽 is a scaling factor. The width 𝜎 of each tuning curve can be uniform in either linear or 
log space. In the latter case, tuning width also forms a distance-dependent gradient (close-to-

far: narrow-to-wide tuning) in linear space (Nieder and Miller, 2003), consistent with the We-
ber-Fechner law. 

𝜎(𝑑) = (𝛾 log(𝑑 + 1) + 1) 𝜎8 (9) 

where 𝜎8 corresponds to the width of the tuning curve centered on the landmark’s location, 𝑑 

is the distance from the center of the tuning curve and the landmark (𝑑 ≥ 0), and 𝛾 is a scaling 

factor. It is important to note that these units 𝑓6 are tuned to the feature space, not the vibra-
tions themselves (as in the encoding layer). Given the isomorphism, we can therefore link their 

response properties directly to the location of touch 𝐿. 
When neuronal noise is Poisson-like (as in Eq. 7), the gain of a neural population re-

sponse reflects the precision (i.e., inverse variance) of its estimate (Ma et al., 2006). There-
fore, given the aforementioned distance-dependent gradient in gain, noise in each subpopu-

lation’s location estimate (that is, its uncertainty) will increase as a function of distance from a 
landmark (i.e., the handle or tip). Consistent with several studies (Jazayeri and Movshon, 

2006; Ma et al., 2006), we assume that the population responses encode log probabilities. We 
can therefore decode a maximum likelihood estimates of each subpopulation as follows: 

 𝑝/𝐿&!4𝐿, 𝒓𝑫𝟏1 = exp/𝒉𝑫𝟏(𝐿) ∙ 𝒓𝑫𝟏1 

𝑝/𝐿&"4𝐿, 𝒓𝑫𝟐1 = exp	/𝒉𝑫𝟐(𝐿) ∙ 𝒓𝑫𝟐1 
(10) 

where 𝒉𝑫 is a kernel and 𝒓𝑫is the subpopulation response. When neural responses are char-

acterized by independent Poisson noise (Eq. 7), 𝒉𝑫 is equivalent to the log of each subpopu-

lation’s tuning curve 𝒇𝑫 at value 𝐿 (Jazayeri and Movshon, 2006; Ma et al., 2006). Assuming 
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that the population response reflects log probabilities, optimally integrating both estimates 

(Eq. 5) amounts to simply summing the activity of each subpopulation. 

 𝑝/𝐿&%&'4𝐿, 𝒓𝑫𝟏, 𝒓𝑫𝟐1 = exp/𝒉𝑫𝟏(𝐿) ∙ 𝒓𝑫𝟏 + 𝒉𝑫𝟐(𝐿) ∙ 𝒓𝑫𝟐1 (11) 

where the optimal estimate 𝐿&%&' on a given trial 𝑛 can be written as the location for which the 
log-likelihood of the summed population responses is maximal. 

 𝐿&%&'
(;) = argmax

4
(𝒉𝑫𝟏(𝐿) ∙ 𝒓𝑫𝟏 + 𝒉𝑫𝟐(𝐿) ∙ 𝒓𝑫𝟐) (12) 

We previously demonstrated that the above neural network, with a different encoding 

layer, implements trilateration for localizing touch in body-centered coordinates. Our present 
neural network (Equations 6–12) generalizes the Bayesian formulation of trilateration (Equa-

tions 2–5) to localizing touch on a tool, using a vibratory feature space as a proxy for tool-
centered space. The flow of activity in this network can be visualized at Figure 3B, where the 

touch occurs at 75% the surface of the tool. To systematically investigate the behavior of this 
network, we simulated 5000 instances of touch at wide range of locations (10% to 90% of the 

space) on the tool surface using the above network. The values for the above parameters in 
all layers can be seen in Table 1. All units of each layer shared the same parameter values. 

We used a maximum log-likelihood decoder to localize touch from the overall response of 

each subpopulation separately or integrated. 

 𝒇𝑴 𝒇𝑺 𝒇𝑫𝟏 𝒇𝑫𝟐 

𝝁 -1.5:.02:1.5 -40:1:140 0:1:140 -40:1:100 
𝜿 or 𝜿𝟎 25 25 25 25 
𝝈 or 𝝈𝟎 0.08 3.40 3.40 3.40 
𝜷 — — 0.01 0.01 
𝜸 — — 0.5 0.5 

 
Table 1. Initial neural network parameter values 

Behavioral Experiment 
Participants 

Forty right-handed participants (24 females, 23.65 ± 2.48 years of age) in total completed our 
behavioral experiments. Two participants were removed due to inability to follow task instruc-

tions, leaving thirty-eight in total to be analyzed. All participants had normal or corrected-to-
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normal vision and no history of neurological impairment. Every participant gave informed con-

sent before the experiment. The study was approved by the ethics committee (CPP SUD EST 
IV, Lyon, France). 

Experimental procedure 

During the task, participants were seated comfortably in a cushioned chair with their torso 
aligned with the edge of a table and their right elbow placed in a padded arm rest. The entire 

arm was hidden from view with a long occluding board. A 60 cm-long rod (handle length: 12-
cm; cross-sectional radius: 0.75 cm) was placed in their right hand. This rod was either 

wooden (twenty-five participants) or PVC (thirteen participants). The arm was placed at a 

height necessary for a 1 cm separation between the object (see below) and the rod at a pos-
ture parallel with the table. On the surface of the table, an LCD screen (70 x 30 cm) lay back-

side down in the length-wise orientation; the edge of the LCD screen was 5 cm from the table’s 
edge. The center of the screen was aligned with the participant’s midline. 

The task of participants was to localize touches resulting from active contact between 
the rod and an object (foam-padded wooden block). In an experimental session, participants 

completed two tasks with distinct reporting methods (order counterbalanced across partici-
pants). In the image-based task, participants used a cursor to indicate the corresponding lo-

cation of touch on a downsized drawing of a rod (20 cm in length; handle to tip); the purpose 

of using a downsized drawing was to dissociate it from the external space occupied by the 
real rod. The drawing began 15 cm from the edge of the table, was raised 5 cm above the 

table surface, and was oriented in parallel with the real rod. The red cursor (circle, 0.2 cm 
radius) was constrained to move in the center of the screen occupied by the drawing. In the 

space-based task, participants used a cursor to indicate the corresponding location of touch 
within in an empty LCD screen (white background). The cursor was constrained to move along 

the vertical bisection of the screen and could be moved across the entire length of the screen. 
It is critical to note that in this task, participants were forced to rely on somatosensory infor-

mation about tool length and position as no other sensory cues were available to do so. 
The trial structure for each task was as follows: In the ‘Pre-contact phase’, participants 

sat facing the computer screen with their left hand on a trackball. A red cursor was placed at 

a random location within the vertical bisection of the screen. A ‘go’ cue (brief tap on the right 
shoulder) indicated that they should actively strike the object with the rod. In the ‘Localization 

phase’, participants made their task-relevant judgment with the cursor, controlled by the track-
ball. Participants never received feedback about their performance. To minimize auditory cues 

during the task, pink noise was played continuously over noise-cancelling headphones. 
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The object was placed at one of six locations, ranging from 10 cm from the handle to 

the tip (10–60 cm from the hand; steps of 10 cm). The number of object locations was un-
known to participants. In each task, there were ten trials per touch location, making 60 trials 

per task and 120 trials in total. The specific location for each trial was chosen pseudo-ran-
domly. The entire experimental session took approximately 45 minutes.  

The experiment started with a five-minute sensorimotor familiarization session. Partic-
ipants were told to explore, at their own pace, how the tool felt to contact the object at different 

locations. They were instructed to pay attention to how the vibrations varied with impact loca-
tion. Visual and auditory feedback of the tool and tool-object contact was prevented with a 

blindfold and pink noise, respectively. Participants were, however, allowed to hold the object 
in place with their left hand while contacting it with the tool but were not allowed to haptically 

explore the rod. 

At the end of the space-based task, participants used the cursor to report where they 
felt the tip of the rod (aligned in-parallel to the screen). The judged location of the tip (mean: 

56.5 cm; SEM: 1.62 cm) was very similar to the rod’s actual length (i.e., 60 cm). It is critical to 
reiterate here that participants had never seen the rod prior up to this point of the experiment, 

and likely relied on somatosensory feedback about its dimensions. 

Data Analysis 
Regression analysis 

Prior to analysis, all judgments in the image-based task were converted from pixels of drawing 
space to percentage of tool space. All judgments in the space-based task were normalized 

such that their estimated tip location corresponded to 100% of tool space. We then used least-
squares linear regression to analyze the localization accuracy. The mean localization judg-

ment for each touch location was modelled as a function of actual object location. Accuracy 
was assessed by comparing the group-level confidence intervals around the slope and inter-

cept. 

Trilateration model 

Our model of trilateration in the somatosensory system assumes that the perceived location 
of touch is a consequence of the optimal integration of two independent location estimates,  

𝐿&! and 𝐿&". This is exemplified in our formulation of trilateration (Equations 1-5). Trilateration 
predicts that noise in each estimate varies linearly as a function of the distance of touch from 
two landmarks (Equation 2; Figure 1B), corresponding to the handle and tip. For any location 

of touch 𝐿 along a tactile surface, the variance in each landmark-specific location estimate 𝐿& 
can therefore be written as follows: 
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 𝜎!" = (𝜀!̂ + 𝑑!𝜎d)" 

𝜎"" = (𝜀"̂ + 𝑑"𝜎d)" 
(13) 

in which 𝜀 ̂ is a landmark-specific intercept term that likely corresponds to uncertainty in the 
location of each landmark, 𝑑 is the distance of touch location 𝐿 from the landmark (Equa-

tions 2–3), and 𝜎d is the magnitude of noise per unit of distance. We assume that the noise 
term 𝜎d corresponds to a general property of the underlying neural network and therefore model 

it as the same value for each landmark. The distance-dependent noise for the integrated es-
timate is therefore: 

 
𝜎%&' = e

𝜎!"𝜎""

𝜎!" +	𝜎""
 (14) 

The three parameters in the model (𝜎d,	𝜀!̂, and 𝜀"̂) are properties of the underlying neural pro-
cesses that implement trilateration and are therefore not directly observable. They must there-

fore be inferred using a reverse engineering approach, where they serve as free parameters 
that are fit to each participant’s variable errors. We simultaneously fit the three free parameters 

to the data using non-linear least squares regression. Optimal parameter values were ob-

tained through maximum likelihood estimation using the Matlab routine fmincon. All modelling 
was done with the combined data from both localization tasks. R2 values for each participant 

in each experiment were taken as a measure of the goodness-of-fit between the observed 
and predicted pattern of location-dependent noise. 

Boundary truncation model 

Boundary truncation provides one alternative model to trilateration This model assumes that 

the estimate of location 𝐿& corresponds to a Gaussian likelihood whose variance is identical at 
all points on the rod. The inverted U-shaped variability arises because these likelihoods are 

truncated by a boundary, either by the range of possible responses or by a categorical bound-

ary (e.g., between handle and tip). As in Equation 1, we can model each likelihood 𝑝/𝐿&4𝐿1 as 

a normal distribution 𝛮(𝜇4 , σ4) where 𝜇4 is the location of touch 𝐿 and σ4 is the standard devi-

ation. The posterior estimate 𝑝/𝐿4𝐿&1 then corresponds to a likelihood truncated at 𝛾! and 𝛾", 

where 𝛾" > 𝛾!. Doing so will distort the mean and variance of the posterior estimate. 

We fit this truncation model to the participant-level variable errors in each of our ex-
periments. The standard deviation for each location,	σ'(𝐿), was determined by truncating a 

normal distribution at 𝛾! and 𝛾" using the makedist and truncate functions in MATLAB. The 
model therefore had three free parameters, σ', 𝛾! and 𝛾". The value of σ' was constrained 
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between 1 and 40; 𝛾! between -30 and 30; and 𝛾" between 70 and 130 (units: % of rod sur-

face). These ranges—particularly for 𝛾! and 𝛾"—are quite unrealistic, but were chosen to max-
imize a good fit with the variable errors. Fitting procedures for this model were the same as 

the trilateration model. 

Model comparisons 
We used the Bayesian Information Criterion (BIC) to compare the boundary and trilateration 

models. The difference in the BIC (DBIC) was used to determine a significant difference in fit. 

Consistent with convention, the chosen cutoff for moderate evidence was a DBIC of 2 and the 

cutoff for strong evidence was a DBIC of 6. 

Results 

Accurate localization of touch on a tool 

In the current experiment (n=38), we investigated whether tactile localization on a 60-cm hand-

held rod is characterized by the U-shaped pattern of variability (Figure 1B) that is characteristic 
of trilateration when localizing touch on the body. In two tasks, we measured participants’ 

ability to localize an object that was actively contacted with a hand-held tool. In the image-
based task, participants indicated the point of touch on a downsized drawing of the tool. In the 

space-based task, participants indicated the point of touch in external space. The latter task 
ensured that localization was not truncated by boundaries in the range of possible responses. 

Figure 4. Localization and variable error for both tasks 
(A) Regressions fit to the localization judgments for both the image-based (blue) and space-based (or-
ange) tasks. Error bars correspond to the group-level 95% confidence interval. (B) Group-level variable 
errors for both tasks. Error bars correspond to the group-level 95% confidence interval. 

Consistent with prior results (Miller et al., 2018), we found that participants were gen-

erally quite accurate at localizing touch on the tool. Linear regressions (Figure 4A) comparing 
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perceived and actual hit location found slopes near unity both the image-based task (mean 

slope: 0.93, 95% CI [0.88, 0.99]) and the space-based task (mean slope: 0.89, 95% CI [0.82, 
0.95]). Analysis of the variable errors (2x6 repeated measures ANOVA) found a significant 

main effect of hit location (F(5,185)=36.1, p<.001) but no main effect of task (F(1,37)=0.39, 
p=.54) or an interaction (F(5,185)=0.21, p=.96). Crucially, the pattern of variable errors (Fig-

ure 4B) in both tasks displayed the hypothesized inverted U-shape, which was of similar mag-
nitude to what we observed for touch on the arm (Cholewiak and Collins, 2003; Miller et al., 

2022). 

Computational modelling of behavior 

We next used computational modelling to confirm that the observed pattern of variable errors 
was indeed due to trilateration. We fit each participant’s variable errors with a probabilistic 

model of optimal trilateration (Figure 1A-B) that was derived from its theoretical formulation 
(see Methods). We compared the trilateration model to an alternative hypothesis: The inverted 

U-shaped pattern is due to truncation at the boundaries of localization (Petzschner et al., 
2015), which cuts off the range of possible responses and thus produces lower variability at 

these boundaries. We fit a boundary truncation model to directly compare to our trilateration 
model. Given the lack of a main effect of task and to increase statistical power, we collapsed 

across both tasks in this analysis. 

Figure 5. Trilateration model provides a good fit to localization behavior 
(A) Fit of the trilateration model to the group-level variable error (black dots). The purple line corre-
sponds to the model fit. The light gray line and squares correspond to variable errors for localization on 
the arm observed in Miller et al (2022); note that this data is size adjusted to account for differences in 
arm and rod size. (B) Fit of the trilateration model to the variable errors of six randomly chosen partici-
pants. 
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Our computational model of trilateration provided a good fit to the variable errors ob-

served during tactile localization on a tool. This was evident at the group-level, where the 
magnitude of variable errors was similar to what has been found when localizing touch on the 

arm (Figure 5A). We further observed a high coefficient of determination at the level of indi-
vidual participants (mean R2: 0.71; range: 0.29–0.95); indeed, 30 out of 38 participants had 

an R2>0.6. The fits of the trilateration model to the data of 6 randomly chosen participants can 
be seen in Figure 5B. In contrast, the R2 of the boundary truncation model was substantially 

lower than the trilateration model (mean: 0.29; range: -0.19–0.71), never showing a better fit 
to the data in any participant. 

We next compared each model directly using the Bayesian Information Criteria (BIC). 
The BIC score for the trilateration model was lower in all 38 participants (mean±sd; Trilatera-

tion: 11.88±5.88; Truncation: 18.74±4.70). Statistically, 32 participants showed moderate evi-

dence (DBIC>2) and 20 participants showed strong evidence (DBIC>6) in favor of trilateration. 
In total, our results strongly suggest that, as with the body, touch on a tool is localized via 

trilateration. 

Neural network simulations 

Finally, we simulated trilateration on a tool using a biologically inspired neural network with a 
similar architecture as we have done previously. The goal of these simulations was to con-

cretely demonstrate that the feature space of vibratory motifs could stand in for the physical 
space of the rod. Our neural network thus took the mode amplitudes as input and trilaterated 

the resulting touch location in tool-centered coordinates (5000 simulations per location). 
Both subpopulations in the distance-computing layer (Layer 3; Figure 3, top) were able 

to localize touch with minimal constant error (Figure 6A, upper panel), demonstrating that each 
could produce unbiased estimates of location from the sensory input. However, as predicted 

given the gradient in tuning parameters, the noise in their estimates rapidly increased as a 
function of distance from each landmark (Figure 6B upper panel), forming an X-shaped pattern 

across the surface of the tool. 

We next examined the output of the Bayesian decoder from Equations 11–12 (Fig-
ure 6, lower panel). As expected, we observed the computational signature of trilateration. 

Integrating both estimates resulted in an inverted U-shaped pattern of decoding noise across 
the surface of the tool (Figure 6B, lower panel), with the lowest decoding noise near the land-

marks and the highest decoding variance in the middle. Crucially, this is the exact pattern of 
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variability we observed in our behavioral experiments (see above) and have previously ob-

served for tactile localization on the body. These simulations establish the plausibility of trilat-
eration as a computation that can turn a vibratory code into a spatial representation. 

Figure 6. Neural network simulations 
(A) Localization accuracy for the estimates of each decoding subpopulation (upper panel; L1, blue; L2, 
red) and after integration by the Bayesian decoder (lower panel; LINT, purple). (B) Decoding noise for 
each decoding subpopulation (upper panel) increased as a function of distance from each landmark. 
Note that distance estimates are made from the 10% and 90% locations for the first (blue) and second 
(red) decoding subpopulations, respectively. Integration via the Bayesian decoder (lower panel) led to 
an inverted U-shaped pattern across the surface. Note the differences in the y-axis range for both pan-
els. 

Discussion 
If tools are embodied by the sensorimotor system, we would expect that the brain repurposes 

its body-based sensorimotor computations to perform similar tasks with tools. Using tactile 
localization as our case study, we uncovered multiple pieces of evidence that are consistent 

with this embodied view. First, as is the case for body parts, we observed that localizing touch 
on the surface of a tool is characterized by perceptual anchors at the handle and tip (de 

Vignemont et al., 2009). Second, computational modeling of behavioral responses suggests 
that they are the result of the probabilistic computation involving trilateration. Indeed, percep-

tual anchors are a computational signature of trilateration. Finally, using a simple three-layer 
population-based neural network, we demonstrated the possibility of trilateration in the vibra-

tory feature space evoked by touches on tools. This neural network transformed a vibration-
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based input into a spatial code, reproducing perceptual anchors on the tool surface. These 

findings go well-beyond prior research on embodiment (Martel et al., 2016) by identifying a 
computation that functionally unifies tools and limbs. Indeed, they demonstrate that trilatera-

tion is the spatial computation employed by the somatosensory system to localize touch on 
body parts and tools alike (Miller et al., 2022). They further have important implications for 

how trilateration would be repurposed at a neural level for tool-extended sensing. 
If trilateration is a fundamental spatial computation used by the somatosensory system 

it should be employed to solve the same problem (i.e., localization) regardless of whether the 
sensory surface is the body or a tool. Previous tactile localization studies have reported in-

creased perceptual precision near the boundaries of the hands (Elithorn et al., 1953; Miller et 
al., 2022), arm (Cholewiak and Collins, 2003; de Vignemont et al., 2009; Miller et al., 2022), 

feet (Halnan and Wright, 1960), and abdomen (Cholewiak et al., 2004). These perceptual 

anchors are a signature of a trilateration computation (Miller et al., 2022). The results of the 
present study are consistent with the use of trilateration to localize touch on tools as well.  

Our findings provide computational evidence that tools are embodied in the sensorimo-
tor system (Martel et al., 2016), an idea that was proposed over a century ago (Head and 

Holmes, 1911). The close functional link between tools and limbs is not just a superficial re-
semblance but rather a reflection of the repurposing of neurocomputational resources dedi-

cated to sensing and acting with a limb to that with a tool (Makin et al., 2017). This repurposing 
may be one reason that tool use leads to measurable changes in body perception and action 

processes (Canzoneri et al., 2013; Cardinali et al., 2009; Miller et al., 2014; Miller et al., 
2019a). 

There are, of course, important differences between limbs and tools. While the skin is 

innervated with sensory receptors, the somatosensory system must ‘tune into’ a tool’s me-
chanical response in order to extract meaningful information from it. We have previously pro-

posed that where a rod is touched is encoded by the amplitudes of its resonant responses 
when contacting an object (Miller et al., 2018; Miller et al., 2019b). These resonant modes 

form a feature space that is isomorphic with the physical space of the tool. At a peripheral 
level, these resonances are re-encoded by the spiking patterns of tactile mechanoreceptors 

(Johnson, 2001). Therefore, unlike for touch on the body, localizing touch on a tool requires 
the somatosensory system to perform a temporal-to-spatial transformation. 

We used neural network simulations to embody the necessary transformations to im-

plement trilateration on a tool. Our neural network assumes that the human brain contains 
neural populations that encode for the full feature space of rod vibration. While very little is 

known about how these types of naturalistic vibrations are represented by the somatosensory 
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system, our modeling results and prior research (Miller et al., 2018; Miller et al., 2019) suggest 

that there are neural populations that encode their properties. Previous work demonstrated 
that individual neurons in primary somatosensory cortex multiplex both amplitude and fre-

quency in their firing properties (Harvey et al., 2013). Recent evidence further suggests that 
human S1 is tuned to individual vibration frequencies (Wang and Yau, 2021). Our neural net-

work modelling assumes that there are also neurons tuned to the amplitude of specific fre-
quencies, though direct empirical evidence for this tuning is currently lacking. The existence 

of this coding would be consistent with the finding that S1 performs the initial stages of locali-
zation on a rod (Miller et al., 2019). Furthermore, resonant amplitudes are crucial pieces of 

information in the natural statistics of vibrations, making it plausible that they are encoded at 
some stage of processing. Our results therefore open up a new avenues for neurophysiolog-

ical investigations into how naturalistic vibrations are encoded by the somatosensory system. 

The present study demonstrates the biological possibility that the resonant feature 
space can stand in for the physical space of the tool, allowing for trilateration to be performed 

to localize touch in tool-centered coordinates. It is interesting to note that the present neural 
network had a similar structure to one we previously demonstrated could perform trilateration 

on the body surface. The biggest difference is the input layer, which must first encode the 
vibration information. However, once this is transformed into the representation of the feature 

space, the computation proceeds as it would for the body. Note that this does not necessitate 
that the same neural populations localize touch on limbs and tools (Schone et al., 2021), but 

only that the same computation is performed when localizing touch on both surfaces. Our 
network therefore provides a concrete demonstration of what it means to repurpose a body-

based computation to localize touch on a tool. The repurposing of the neural network archi-

tecture for trilateration explains tool embodiment and the emergence of a shared spatial code 
between tools and skin. 
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