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between 1 and 40; X!  between -30 and 30; and X"  between 70 and 130 (units: % of rod sur-

face). These ranges—particularly for X!  and X" —are quite unrealistic, but were chosen to max-
imize a good fit with the variable errors. Fitting procedures for this model were the same as 

the trilateration model. 

Model comparisons 
We used the Bayesian Information Criterion (BIC) to compare the boundary and trilateration 

models. The difference in the BIC (DBIC) was used to determine a significant difference in fit. 

Consistent with convention, the chosen cutoff for moderate evidence was a DBIC of 2 and the 

cutoff for strong evidence was a DBIC of 6. 

Results 

Accurate localization of touch on a tool 

In the current experiment (n=38), we investigated whether tactile localization on a 60-cm hand-

held rod is characterized by the U-shaped pattern of variability (Figure 1B) that is characteristic 
of trilateration when localizing touch on the body. In two tasks, we measured participants’ 

ability to localize an object that was actively contacted with a hand-held tool. In the image-
based task, participants indicated the point of touch on a downsized drawing of the tool. In the 

space-based task, participants indicated the point of touch in external space. The latter task 
ensured that localization was not truncated by boundaries in the range of possible responses. 

Figure 4. Localization and variable error for both tasks 
(A) Regressions fit to the localization judgments for both the image-based (blue) and space-based (or-
ange) tasks. Error bars correspond to the group-level 95% confidence interval. (B) Group-level variable 
errors for both tasks. Error bars correspond to the group-level 95% confidence interval. 

Consistent with prior results (Miller et al., 2018), we found that participants were gen-

erally quite accurate at localizing touch on the tool. Linear regressions (Figure 4A) comparing 
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perceived and actual hit location found slopes near unity both the image-based task (mean 

slope: 0.93, 95% CI [0.88, 0.99]) and the space-based task (mean slope: 0.89, 95% CI [0.82, 
0.95]). Analysis of the variable errors (2x6 repeated measures ANOVA) found a significant 

main effect of hit location (F(5,185)=36.1, p<.001) but no main effect of task (F(1,37)=0.39, 
p=.54) or an interaction (F(5,185)=0.21, p=.96). Crucially, the pattern of variable errors (Fig-

ure 4B) in both tasks displayed the hypothesized inverted U-shape, which was of similar mag-
nitude to what we observed for touch on the arm (Cholewiak and Collins, 2003; Miller et al., 

2022). 

Computational modelling of behavior 

We next used computational modelling to confirm that the observed pattern of variable errors 
was indeed due to trilateration. We fit each participant’s variable errors with a probabilistic 

model of optimal trilateration (Figure 1A-B) that was derived from its theoretical formulation 
(see Methods). We compared the trilateration model to an alternative hypothesis: The inverted 

U-shaped pattern is due to truncation at the boundaries of localization (Petzschner et al., 
2015), which cuts off the range of possible responses and thus produces lower variability at 

these boundaries. We fit a boundary truncation model to directly compare to our trilateration 
model. Given the lack of a main effect of task and to increase statistical power, we collapsed 

across both tasks in this analysis. 

Figure 5. Trilateration model provides a good fit to localization behavior 
(A) Fit of the trilateration model to the group-level variable error (black dots). The purple line corre-
sponds to the model fit. The light gray line and squares correspond to variable errors for localization on 
the arm observed in Miller et al (2022); note that this data is size adjusted to account for differences in 
arm and rod size. (B) Fit of the trilateration model to the variable errors of six randomly chosen partici-
pants. 
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Our computational model of trilateration provided a good fit to the variable errors ob-

served during tactile localization on a tool. This was evident at the group-level, where the 
magnitude of variable errors was similar to what has been found when localizing touch on the 

arm (Figure 5A). We further observed a high coefficient of determination at the level of indi-
vidual participants (mean R2: 0.71; range: 0.29–0.95); indeed, 30 out of 38 participants had 

an R2>0.6. The fits of the trilateration model to the data of 6 randomly chosen participants can 
be seen in Figure 5B. In contrast, the R2 of the boundary truncation model was substantially 

lower than the trilateration model (mean: 0.29; range: -0.19–0.71), never showing a better fit 
to the data in any participant. 

We next compared each model directly using the Bayesian Information Criteria (BIC). 
The BIC score for the trilateration model was lower in all 38 participants (mean±sd; Trilatera-

tion: 11.88±5.88; Truncation: 18.74±4.70). Statistically, 32 participants showed moderate evi-

dence (DBIC>2) and 20 participants showed strong evidence (DBIC>6) in favor of trilateration. 
In total, our results strongly suggest that, as with the body, touch on a tool is localized via 

trilateration. 

Neural network simulations 

Finally, we simulated trilateration on a tool using a biologically inspired neural network with a 
similar architecture as we have done previously. The goal of these simulations was to con-

cretely demonstrate that the feature space of vibratory motifs could stand in for the physical 
space of the rod. Our neural network thus took the mode amplitudes as input and trilaterated 

the resulting touch location in tool-centered coordinates (5000 simulations per location). 
Both subpopulations in the distance-computing layer (Layer 3; Figure 3, top) were able 

to localize touch with minimal constant error (Figure 6A, upper panel), demonstrating that each 
could produce unbiased estimates of location from the sensory input. However, as predicted 

given the gradient in tuning parameters, the noise in their estimates rapidly increased as a 
function of distance from each landmark (Figure 6B upper panel), forming an X-shaped pattern 

across the surface of the tool. 

We next examined the output of the Bayesian decoder from Equations 11–12 (Fig-
ure 6, lower panel). As expected, we observed the computational signature of trilateration. 

Integrating both estimates resulted in an inverted U-shaped pattern of decoding noise across 
the surface of the tool (Figure 6B, lower panel), with the lowest decoding noise near the land-

marks and the highest decoding variance in the middle. Crucially, this is the exact pattern of 
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variability we observed in our behavioral experiments (see above) and have previously ob-

served for tactile localization on the body. These simulations establish the plausibility of trilat-
eration as a computation that can turn a vibratory code into a spatial representation. 

Figure 6. Neural network simulations 
(A) Localization accuracy for the estimates of each decoding subpopulation (upper panel; L1, blue; L2, 
red) and after integration by the Bayesian decoder (lower panel; LINT, purple). (B) Decoding noise for 
each decoding subpopulation (upper panel) increased as a function of distance from each landmark. 
Note that distance estimates are made from the 10% and 90% locations for the first (blue) and second 
(red) decoding subpopulations, respectively. Integration via the Bayesian decoder (lower panel) led to 
an inverted U-shaped pattern across the surface. Note the differences in the y-axis range for both pan-
els. 

Discussion 
If tools are embodied by the sensorimotor system, we would expect that the brain repurposes 

its body-based sensorimotor computations to perform similar tasks with tools. Using tactile 
localization as our case study, we uncovered multiple pieces of evidence that are consistent 

with this embodied view. First, as is the case for body parts, we observed that localizing touch 
on the surface of a tool is characterized by perceptual anchors at the handle and tip (de 

Vignemont et al., 2009). Second, computational modeling of behavioral responses suggests 
that they are the result of the probabilistic computation involving trilateration. Indeed, percep-

tual anchors are a computational signature of trilateration. Finally, using a simple three-layer 
population-based neural network, we demonstrated the possibility of trilateration in the vibra-

tory feature space evoked by touches on tools. This neural network transformed a vibration-
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based input into a spatial code, reproducing perceptual anchors on the tool surface. These 

findings go well-beyond prior research on embodiment (Martel et al., 2016) by identifying a 
computation that functionally unifies tools and limbs. Indeed, they demonstrate that trilatera-

tion is the spatial computation employed by the somatosensory system to localize touch on 
body parts and tools alike (Miller et al., 2022). They further have important implications for 

how trilateration would be repurposed at a neural level for tool-extended sensing. 
If trilateration is a fundamental spatial computation used by the somatosensory system 

it should be employed to solve the same problem (i.e., localization) regardless of whether the 
sensory surface is the body or a tool. Previous tactile localization studies have reported in-

creased perceptual precision near the boundaries of the hands (Elithorn et al., 1953; Miller et 
al., 2022), arm (Cholewiak and Collins, 2003; de Vignemont et al., 2009; Miller et al., 2022), 

feet (Halnan and Wright, 1960), and abdomen (Cholewiak et al., 2004). These perceptual 

anchors are a signature of a trilateration computation (Miller et al., 2022). The results of the 
present study are consistent with the use of trilateration to localize touch on tools as well.  

Our findings provide computational evidence that tools are embodied in the sensorimo-
tor system (Martel et al., 2016), an idea that was proposed over a century ago (Head and 

Holmes, 1911). The close functional link between tools and limbs is not just a superficial re-
semblance but rather a reflection of the repurposing of neurocomputational resources dedi-

cated to sensing and acting with a limb to that with a tool (Makin et al., 2017). This repurposing 
may be one reason that tool use leads to measurable changes in body perception and action 

processes (Canzoneri et al., 2013; Cardinali et al., 2009; Miller et al., 2014; Miller et al., 
2019a). 

There are, of course, important differences between limbs and tools. While the skin is 

innervated with sensory receptors, the somatosensory system must ‘tune into’ a tool’s me-
chanical response in order to extract meaningful information from it. We have previously pro-

posed that where a rod is touched is encoded by the amplitudes of its resonant responses 
when contacting an object (Miller et al., 2018; Miller et al., 2019b). These resonant modes 

form a feature space that is isomorphic with the physical space of the tool. At a peripheral 
level, these resonances are re-encoded by the spiking patterns of tactile mechanoreceptors 

(Johnson, 2001). Therefore, unlike for touch on the body, localizing touch on a tool requires 
the somatosensory system to perform a temporal-to-spatial transformation. 

We used neural network simulations to embody the necessary transformations to im-

plement trilateration on a tool. Our neural network assumes that the human brain contains 
neural populations that encode for the full feature space of rod vibration. While very little is 

known about how these types of naturalistic vibrations are represented by the somatosensory 
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system, our modeling results and prior research (Miller et al., 2018; Miller et al., 2019) suggest 

that there are neural populations that encode their properties. Previous work demonstrated 
that individual neurons in primary somatosensory cortex multiplex both amplitude and fre-

quency in their firing properties (Harvey et al., 2013). Recent evidence further suggests that 
human S1 is tuned to individual vibration frequencies (Wang and Yau, 2021). Our neural net-

work modelling assumes that there are also neurons tuned to the amplitude of specific fre-
quencies, though direct empirical evidence for this tuning is currently lacking. The existence 

of this coding would be consistent with the finding that S1 performs the initial stages of locali-
zation on a rod (Miller et al., 2019). Furthermore, resonant amplitudes are crucial pieces of 

information in the natural statistics of vibrations, making it plausible that they are encoded at 
some stage of processing. Our results therefore open up a new avenues for neurophysiolog-

ical investigations into how naturalistic vibrations are encoded by the somatosensory system. 

The present study demonstrates the biological possibility that the resonant feature 
space can stand in for the physical space of the tool, allowing for trilateration to be performed 

to localize touch in tool-centered coordinates. It is interesting to note that the present neural 
network had a similar structure to one we previously demonstrated could perform trilateration 

on the body surface. The biggest difference is the input layer, which must first encode the 
vibration information. However, once this is transformed into the representation of the feature 

space, the computation proceeds as it would for the body. Note that this does not necessitate 
that the same neural populations localize touch on limbs and tools (Schone et al., 2021), but 

only that the same computation is performed when localizing touch on both surfaces. Our 
network therefore provides a concrete demonstration of what it means to repurpose a body-

based computation to localize touch on a tool. The repurposing of the neural network archi-

tecture for trilateration explains tool embodiment and the emergence of a shared spatial code 
between tools and skin. 
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