UCEs in termites

Using ultraconserved elements to reconstruct the termite tree of life

Running title: UCEs in termites

Simon Hellemans¹,*, Menglin Wang¹, Nonno Hasegawa¹, Jan Šobotník², Rudolf H. Scheffrahn³, Thomas Bourguignon¹,²,*

1Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.

2Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcka 129, 16521 Prague, Czech Republic.

3Fort Lauderdale Research and Education Center, Institute for Food and Agricultural Sciences, 3205 College Avenue, Davie, Florida 33314 USA.

*Corresponding authors: simon.hellemans@gmail.com (SH); Thomas.Bourguignon@oist.jp (TB)
UCEs in termites

17 **ORCID references of authors**

18 Simon Hellemans: 0000-0003-1266-9134

19 Menglin Wang: 0000-0003-2206-9503

20 Nonno Hasegawa: 0000-0001-5149-9129

21 Jan Šobotník: 0000-0002-8581-637X

22 Rudolf H. Scheffrahn: 0000-0002-6191-5963

23 Thomas Bourguignon: 0000-0002-4035-8977

24

Author contributions

25 SH and TB conceptualized the experiments. JS and RS collected the samples. MW performed lab experiments and generated data. SH, MW and NH analyzed the data. SH and TB wrote the manuscript.

29

Competing interests

30 We declare we have no competing interests.

31

Funding

33 This work was supported by Czech Science Foundation (project No. 15-07015Y), by the Internal Grant Agency of the Faculty of Tropical AgriSciences, CULS (20213112), by the Japan Society for the Promotion of Science JSPS through a postdoctoral fellowship for foreign
UCEs in termites

researchers awarded to SH (19F19819), and by the Okinawa Institute of Science and
Technology through core unit funding.

Acknowledgments

We thank Yves Roisin, Saran Traoré and Guy Josens for providing specimens as well as Crystal
Clitheroe for helping with DNA extraction and library preparation. We also thank the Scientific
Computation and Data Analysis Section (SCDA) of the Okinawa Institute of Science and
Technology Graduate University, Okinawa, Japan, for providing access to the OIST computing
cluster.

Electronic Supplementary Materials

Additional information is available for this manuscript.

Data Archiving

The data that support the findings of this study will be deposited in GenBank (see
Supplementary Table S1 for details). Bait sequences, as well as the extracted UCE sequences,
will be deposited on Dryad (Supplementary Data 1-7).
UCEs in termites

Abstract

The phylogenetic history of termites has been investigated using mitochondrial genomes and transcriptomes. However, both sets of markers have specific limitations. Mitochondrial genomes represent a single genetic marker likely to yield phylogenetic trees presenting incongruences with species trees, and transcriptomes can only be obtained from well-preserved samples. In contrast, ultraconserved elements (UCEs) include a great many independent markers that can be retrieved from poorly preserved samples. Here, we designed termite-specific baits targeting 50,616 UCE loci. We tested our UCE bait set on 42 samples of termites and three samples of Cryptocercus, for which we generated low-coverage highly-fragmented genome assemblies and successfully extracted in silico between 3,426 to 42,860 non-duplicated UCEs per sample. Our maximum likelihood phylogenetic tree, reconstructed using the 5,934 UCE loci retrieved from upward of 75% of samples, was congruent with transcriptome-based phylogenies, demonstrating that our UCE bait set is reliable and phylogenetically informative. Combined with non-destructive DNA extraction protocols, our UCE bait set provides the tool needed to carry out a global taxonomic revision of termites based on poorly preserved specimens such as old museum samples. The Termite UCE database is maintained at: https://github.com/oist/TER-UCE-DB/.

Key words: Data Mining; Isoptera; Phylogenomics; Mitochondrial genome; Nuclear genome; Taxonomy.
UCEs in termites

1. Introduction

Termites are the most ancient lineage of social insects, with a fossil record dating back to the Early Cretaceous, ~135 million years ago (Mya) (Thorne et al., 2000; Grimaldi & Engel, 2005; Engel et al., 2009). All modern termites share a common ancestor estimated at 140-150 Mya by time-calibrated phylogenetic trees (Bourguignon et al., 2015; Bucek et al., 2019). However, the bulk of the modern termite species diversity belongs to the Termitidae, a lineage that originated during the early Eocene, ~50 Mya, as indicated by time-calibrated phylogenetic trees (Bourguignon et al., 2015, 2017; Bucek et al., 2019) and by the fossil record (Engel et al., 2011). While the backbone of the phylogenetic tree of termites is now largely resolved, most termite species are still awaiting to be placed on the tree of life.

Our understanding of the phylogenetic history of termites was mostly based on mitochondrial markers and fossils to calibrate estimated times of divergence until Bucek et al. (2019) published a phylogenetic tree of termites based on transcriptome data. The first phylogenetic trees of termites were based on a couple of PCR-amplified mitochondrial markers, sometimes combined with nuclear 18S or 28S sequences and/or morphological characters, which hardly contributed to any phylogenetic signal (e.g., Lo et al., 2004; Inward et al., 2007; Legendre et al., 2008). These phylogenies provided a good overview of the relationships among the main termite lineages but lacked the robustness of phylogenetic trees inferred from full mitochondrial genomes (e.g., Cameron et al., 2012; Bourguignon et al., 2015, 2017). Full mitochondrial genomes, which became easy to sequence with the rise of second-generation sequencing technologies, resolve both shallow and deep divergences in the evolutionary history of termites and other insect lineages (Cameron, 2014), making them a marker of choice for phylogenetic reconstructions. However, mitochondrial genomes form a single marker, as all mitochondrial genes are linked and maternally inherited as a single package. Consequently, mitochondrial phylogenies are sometimes discordant with species phylogenies, especially for
UCEs in termites closely related species and short internal branches that diverged in periods of time too brief for alleles to coalesce (Whitfield & Lockhart, 2007; Degnan & Rosenberg, 2009). One example of such discordance is provided by Sphaerotermitinae, the unambiguous sister group of Macrotermitinae according to transcriptomic data; but supported as sister to non-macrotermitine non-foraminitermitine Termitidae by mitochondrial genome phylogenies (Figure 1; Bucek et al., 2019). Phylogenies based on multiple independent nuclear markers are needed to resolve the evolutionary history of organisms accurately.

Transcriptomes, the snapshot of genes expressed by an organism during tissue sampling, include many independent nuclear markers that can be used to build robust phylogenetic trees. Transcriptome-based phylogenies, reconstructed using up to ~4,000 single-copy orthologous nuclear genes spanning over 7.7 million nucleotide positions, have provided a robust picture of the ancient evolutionary history of termites (Bucek et al., 2019). The sequencing of transcriptomes is now affordable, but, unfortunately, RNA is unstable and can only be extracted from samples that have been adequately preserved and stored, preventing the use of most samples collected before the genomic era began and making the approach impractical for large-scale studies. One alternative is to mine the conserved genetic markers present in whole-genome shotgun sequencing datasets, such as some datasets generated to sequence mitochondrial genomes.

Ultraconserved Elements (UCEs) are highly conserved nuclear regions whose functions remain largely unknown (Bejerano et al., 2004; Faircloth et al., 2012). UCEs are found across all regions of animal genomes, including the exonic, intronic, and intergenic regions. Phylogenetic trees inferred from UCEs have contributed to our understanding of the evolutionary history of various animal lineages spanning across the animal tree of life (e.g., Faircloth et al., 2012; Ryu et al., 2012; Smith et al., 2014; White & Braun, 2019; Zhang et al., 2019). Unlike transcriptomes, UCEs can readily be obtained from museum samples through
UCEs in termites

baiting conserved elements and their phylogenetically-informative flanking regions from fragmented genome assemblies (Blaimer et al., 2016; Faircloth, 2017; Derkarabetian et al., 2019). No UCE bait set has been designed for termites so far. We filled this gap as follows: (i) we designed in silico baits to capture UCEs; (ii) we compared phylogenetic trees reconstructed using all possible combinations of mitochondrial genomes, nuclear ribosomal RNA genes, and UCEs; and (iii) we showed that UCEs obtained from low-coverage shotgun genome assemblies are an alternative to transcriptome-based phylogenies for the reconstruction of multi-gene phylogenies. Finally, we set up a Termite UCE Database, thereby ensuring a long-term re-usability of published data.

2. Material and Methods

Biological samples and sequencing

We used sequence data from 42 samples of termites and three samples of Cryptocercus, the wood-feeding subsocial cockroach genus forming the sister group of termites. The sequencing data of 14 species were retrieved from previous studies (for details, see Table S1). The sequencing data from the remaining 31 species were obtained from samples preserved in 80% ethanol stored at room temperature or from samples preserved in RNA-later® and stored at temperatures ranging between -20°C and -80°C until DNA extraction. DNA was extracted using the DNeasy Blood & Tissue extraction kit (Qiagen). Libraries were prepared using the NEBNext® Ultra™ II FS DNA Library Preparation Kit (New England Biolabs) and the Unique Dual Indexing Kit (New England Biolabs), with reagent volumes reduced to one-fifteenth of recommended volumes. For samples preserved in 80% ethanol, libraries were prepared without the enzymatic fragmentation step as the DNA of these samples is typically highly fragmented.
UCEs in termites

Libraries were pooled in equimolar concentration and paired-end sequenced using the Illumina HiSeq X or Novaseq platforms at a read length of 150 bp.

UCE loci identification and in silico bait design

The identification of UCE loci was carried out using PHYLUCE v1.6.6 (Faircloth, 2016) following the recommendations of the tutorial (https://phyluce.readthedocs.io/en/stable/) and outlined workflow (Faircloth, 2017). Four publicly available genomes belonging to distantly related termite species were used to design baits: *Zootermopsis nevadensis* (Archotermopsidae), *Cryptotermes secundus* (Kalotermitidae), *Coptotermes formosanus* (Rhinotermitidae), and *Macrotermes natalensis* (Termitidae). Genome completeness was assessed using BUSCO v4.1.2 (Simão et al., 2015) and QUAST v5.0.2 (Gurevich et al., 2013). The genome of *M. natalensis* was chosen as the base genome for bait design due to its comparatively higher quality (for details, see Table S1).

Repetitive elements, retroelements, transposons, and small RNAs were masked from genome assemblies using RepeatMasker v4.1.1 (Smit et al., 2015) with the command line “-species eukaryota -div 50”. Assemblies were converted in the 2-bit format using the faToTwoBit tool of the BLAT suite of programs (Kent, 2002). We simulated 100 bp error-free paired-end sequencing reads from the three genome assemblies other than that of *M. natalensis* using art_illumina Q v2.5.8 (Huang et al., 2012) with the command line “--fcov 2 --mflen 200 --sdev 150”. In order to identify orthologous loci representing putative UCEs, the reads simulated from the three termite genome assemblies were mapped independently on the genome assembly of *M. natalensis* with a 0.05 substitution rate onto the base genome using the permissive raw-read aligner Stampy v1.0.32 (Lunter & Goodson, 2011). The three alignment maps were handled with SAMtools v1.9 (Li et al., 2009) and converted into BED files with
UCEs in termites

bedtools v2.29.2 (Quinlan & Hall, 2010). In each BED file, putative conserved regions overlapping by at least one nucleotide were merged using bedtools. Conserved sequences shorter than 80 bp or containing over 25% of masked nucleotides were discarded using the phyluce program phyluce_probe_strip_masked_loci_from_set. The putative orthologous loci found across the four termite genomes were combined into a database using phyluce_probe_get_multi_merge_table (Supplementary Data 1). A total of 175,535 loci shared by the four termite genomes were identified and extracted using phyluce_probe_query_multi_merge_table and phyluce_probe_get_genome_sequences_from_bed, respectively. Extracted UCE sequences shorter than 180 bp were buffered to 180 bp by including 5’ and 3’ flanking regions in equal amounts with phyluce_probe_get_genome_sequences_from_bed (Supplementary Data 2).

A preliminary set of 120 bp baits was designed from the base genome of M. natalensis using phyluce_probe_get_tiled_probes. Baits targeted a region of 180 bp and overlapped in its center by 60 bp (at 2X tiling density). UCEs with ambiguous base calls and GC-content above 70% or below 30% were discarded from the bait set. Duplicates, defined as sequences having 50% identity over half of their length, were also removed from the bait set using LASTZ (Harris, 2007) implemented in the programs phyluce_probe_easy_lastz and phyluce_probe_remove_duplicate_hits_from_probes_using_lastz. In order to further identify and remove non-specific baits, we aligned the bait set (Supplementary Data 3) to the four genomes with phyluce_probe_run_multiple_lastzs_sqlite using a minimum identity threshold of 80% and minimum coverage of 83%. Sequences shorter than 180 bp were buffered to 180 bp by including 5’ and 3’ flanking regions in equal amounts and extracted from the alignments using phyluce_probe_slice_sequence_from_genomes. The loci shared by the four termite genomes were identified using phyluce_probe_get_multi_fasta_table and phyluce_probe_query_multi_fasta_table (Supplementary Data 4). The final UCE bait set was
UCEs in termites

designed with phyluce_probe_get_tiled_probe_from_multiple_inputs, and duplicates were
removed using LASTZ as described above (397,910 baits targeting 50,616 loci; Supplementary
Data 5).

Genome assembling and mining of phylogenetic markers

Adapters and low-quality bases were trimmed from raw reads using fastp v0.20.1 (Chen et al.,
2018). Trimmed reads were assembled using metaSPAdes v3.13 (Nurk et al., 2017). The quality
and completeness of assemblies were assessed with QUAST and BUSCO (for details, see Table
S1). Mitochondrial genome scaffolds were identified in metaSPAdes assemblies and annotated
using MitoFinder v1.4 (Allio et al., 2020). Nuclear ribosomal RNA genes (5S, 5.8S, 18S, and
28S) were extracted from metaSPAdes assemblies using barrnap v0.9
(https://github.com/tseemann/barrnap). UCE loci were extracted from metaSPAdes assemblies
using the final set of termite baits we designed and the PHYLUCE suite of programs with
parameter values set as recommended in the tutorial and previously published studies (Faircloth
et al., 2015; Faircloth, 2017; Quattrini et al., 2018). Briefly, baits were aligned to the
metaSPAdes assemblies at a minimum similarity threshold of 50% with
phyluce_probe_run_multiple_lastzs_sqlite. Sequences of the metaSPAdes assemblies
matching baits were extracted with the flanking 200 bp situated at both the 5’ and 3’ ends using
phyluce_probe_slice_sequence_from_genomes. Extracted sequences were mapped back to the
baits using phyluce_assembly_match_contigs_to_probes with a minimum identity of 80% over
67% of bait length to remove duplicates and sequences matching multiple UCE loci
(Supplementary Data 6; Contribution #1 to the Termite UCE Database available at:
https://github.com/oist/TER-UCE-DB/).
UCEs in termites

Sequence alignment

The 13 mitochondrial protein-coding genes, two mitochondrial rRNAs genes, 22 mitochondrial tRNA genes, four nuclear rRNA genes, and UCEs were aligned using MAFFT v7.305 (Katoh & Standley, 2013). For mitochondrial protein-coding genes, we translated DNA sequences into the corresponding amino acid sequences using the transeq function from EMBOSS v6.6.0 (Rice et al., 2000) and aligned protein sequences with MAFFT. Protein alignments were back-translated into codon alignments using PAL2NAL v14 (Suyama et al., 2006). The other four types of genes, the mitochondrial rRNAs and tRNA genes, nuclear rRNA genes, and UCEs, were aligned as DNA sequences. UCE loci were aligned using MAFFT implemented in phyluce_align_seqcap_align, and internal trimming was performed under default parameters with Gblocks (Castresana, 2000; Talavera & Castresana, 2007) implemented in phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed. Loci absent in more than 25% of taxa were filtered out with phyluce_align_get_only_loci_with_min_taxa. The final UCE supermatrix was exported using phyluce_align_format_nexus_files_for_raxml (Supplementary Data 7). Mitochondrial and nuclear gene alignments were concatenated using FASconCAT-G_v1.04.pl (Kück & Longo, 2014).

Phylogenetic analyses

We ran one separate phylogenetic analysis for the mitochondrial genome alignment, the nuclear rRNA alignment, and the UCE alignment. We also ran one phylogenetic analysis for the combined UCE and mitochondrial genome alignments. The mitochondrial genome alignment was separated into five distinct partitions: combined rRNAs, combined tRNAs, and combined first, second, and third codon positions of protein-coding genes. Nuclear rRNA gene and UCE alignments were given a single partition each. Phylogenetic trees were reconstructed in a
UCEs in termites

maximum likelihood (ML) framework using IQ-TREE v1.6.12 with 1,000 ultrafast bootstrap replicates (UFB) to assess branch supports (Nguyen et al., 2015; Chernomor et al., 2016; Hoang et al., 2018). The best-fit nucleotide substitution model was selected for each partition with the Bayesian Information Criterion using ModelFinder implemented in IQ-TREE (Kalyaanamoorthy et al., 2017). We calculated a global bootstrap support (GBS) value for each tree by averaging bootstrap values of all nodes. To assess concordance among UCEs, we carried out a multi-gene coalescence analysis with ASTRAL-III v5.7.7 (Zhang et al., 2018) using individual gene trees obtained with IQ-TREE as described above. We allowed polytomies to reduce gene tree biases. Branch supports calculated with ASTRAL represent local posterior probabilities (LPP), which are based on gene tree quartet frequencies (Sayyari & Mirarab, 2016).

Topological conflicts between individual gene trees and the ASTRAL species tree were assessed with PhyParts (Smith et al., 2015) and visualized with PhyPartsPieCharts (https://github.com/mossmatters/phyloscripts/tree/master/phypartspiecharts).

3. Results

In silico data mining

The mitochondrial genomes were retrieved from all 42 termite metaSPAdes assemblies. We also retrieved the four nuclear rRNA genes from 84% of the samples (see Table S1).

Our termite UCE bait set targeted a total of 50,616 loci. We extracted between 3,426 and 42,860 non-duplicated UCE loci from 42 termite metaSPAdes assemblies (Table S1). The number of non-duplicated UCE loci extracted from the assemblies of Cryptocercus roaches varied between 13,480 and 16,331. The final supermatrix, complete at 75% and containing loci present in at least 33 of the 45 taxa, was composed of 5,934 loci (Table S1) spanning over
UCEs in termites

1,677,394 nucleotide positions, 591,343 of which were parsimony-informative. The 45 taxa were represented by 939 to 5,928 loci.

Phylogenetic reconstructions

Many deep and shallow relationships within termites were poorly resolved by the nuclear rRNA phylogenetic tree (GBS = 72.12) (Figure S1). Because of its poor performance, we excluded the rRNA alignment from the analysis on combined marker classes. The phylogenetic reconstruction based on mitochondrial genomes resolved most relationships (GBS = 87), except for several nodes within the Serritermitidae, the Rhinotermitidae, and the Termitinae (Figure S2), as previously reported (Bourguignon et al., 2015). The phylogenetic analysis performed exclusively on UCEs provided the most robust phylogenetic tree among the analyses performed on separate marker classes (Figure S3; GBS = 98.59). Combining UCEs and mitochondrial genomes marginally improved the resolution of the phylogenetic reconstruction (Figure 1; Figure S4; GBS = 99.02). The combined phylogenetic reconstruction resolved all nodes with high supports, except for the position of the rhinotermitid *Termitogeton planus* (UFB = 52 and 65, respectively). The phylogenetic analysis with ASTRAL revealed minimal discordance among the 5,934 UCE markers (Figure S5; final normalized quartet score of 0.89) (LPP = 1), except for five of the 42 nodes that presented conflicts among UCE markers. Within the Rhinotermitidae, the nodes corresponding to the split of *T. planus* and *Prorhinotermes simplex* displayed moderate concordance among UCE markers (LPP of 0.89 and 0.83, respectively). Within the Termitidae, the nodes corresponding to the split of *Neocapritermes utiariti*, *Pericapritermes* sp. 4, and of *Nitiditermes + Cavitermes* showed moderate to high levels of discordance (LPP of 0.66, 0.98, and 0.39, respectively). PhyParts analyses on a subset of 1,000 gene trees revealed some levels of topological discordances (Figure S6). Nodes with
UCEs in termites
discordance were mostly dominated by a plethora of topologies rather than by a single alternative and uninformative gene trees.

4. Discussion

We reconstructed phylogenetic trees for 42 species of termites and three species of Cryptocercus using three classes of markers: nuclear rRNA genes, mitochondrial genomes, and UCEs. The performance of the three types of phylogenetic markers decreased along the sequence: UCEs, mitochondrial genomes, and nuclear rRNA genes. The phylogenetic tree inferred from the latter class of markers, the nuclear rRNA genes, was poorly resolved and did not recover well-established relationships, such as the sister position of Mastotermes in respect to all other termites. The phylogenetic tree inferred from mitochondrial genomes was robust but failed to retrieve Sphaerotermitinae as sister to Macrotermitinae, as previously reported (Bourguignon et al., 2015; Bucek et al., 2019). The best phylogenetic tree was that reconstructed using UCEs (Figure 1). This phylogenetic tree was almost fully resolved and largely congruent with the phylogenetic trees inferred from transcriptomic data (Bucek et al., 2019). Therefore, our results indicate that the termite UCE bait set we designed performs very well when reconstructing phylogenetic relationships among termite species. The addition of mitochondrial genome data, which, as UCEs, can be recovered from shotgun genome assemblies, slightly improved the global bootstrap support of the termite phylogenetic tree.

The analysis with ASTRAL revealed a few cases of discordance among UCE markers for lineages of Rhinotermitidae and Termitidae whose phylogenetic position was also unresolved with transcriptomic data (Bucek et al., 2019). We used 5,934 UCE loci, a large number of markers that inevitably led to topological discordances between individual UCE trees and the species tree. These discordances are possibly caused by the lack of phylogenetic signal present in a single UCE marker and by population-level processes, such as incomplete
UCEs in termites

lineage sorting and introgression, which frequently occurs during the emergence of new lineages (Degnan & Rosenberg, 2009; Blom et al., 2017; Parins-Fukuchi et al., 2021). The actual relationships among termite lineages with unresolved positions remain unclear, possibly reflecting intricate evolutionary history that cannot be satisfactorily resolved by molecular phylogenetic techniques.

We ran our analyses on samples for which we generated low coverage genome assemblies. Notably, we retrieved numerous UCE sequences for all samples, including many that produced highly fragmented assemblies with low BUSCO scores (for details, see Table S1). All samples were accurately placed on the phylogenetic tree. Therefore, our UCE bait set has the potential to be used for mining phylogenetically informative genetic data from assemblies obtained from shotgun sequencing experiments. Used in combination with non-destructive DNA extraction protocols, our UCE baits could also be used to obtain sequence data from material that cannot be damaged, such as specimens from type series. This approach was successfully applied to centuries-old museum specimens such as Opiliones, carpenter bees, and weevils (Blaimer et al., 2016; Van Dam et al., 2017; Derkarabetian et al., 2019). We recently sequenced the mitochondrial genome of a Syntype of the termite *Archotermopsis wroughtoni* collected at the end of the 19th century (Wang et al., 2021). Termite UCEs could be extracted using the same procedures. Termite taxonomy, which is led by a shrinking pool of experts and is largely based on soldier and worker gut morphology, could benefit from the use of the many UCE markers designed in this study (Eggleton, 1999; Korb et al., 2019). UCE baiting from whole-genome shotgun sequencing is the perfect tool to carry out a global taxonomic revision of termites.
UCEs in termites

References

UCEs in termites

UCEs in termites

Cambay amber, with the earliest record of the Termitidae (Isoptera). *ZooKeys* **148**: 105–123.

Harris, R.S. 2007. Improved pairwise alignment of genomic DNA. The Pennsylvania State University.

Huang, W., Li, L., Myers, J.R., Marth, G.T. 2012. ART: a next-generation sequencing read
UCEs in termites

UCEs in termites

UCEs in termites

UCEs in termites

UCEs in termites

Figure captions

Figure 1: (A) Maximum likelihood phylogenetic tree of termites reconstructed with IQ-TREE using 5,934 UCE loci and complete mitochondrial genomes. Only UCE loci present in more than 75% of species were used. Support values are indicated for non-fully resolved nodes: ultrafast bootstrap (UFB; summarized from the phylogenetic trees reconstructed using UCE only and UCE + mitochondrial DNA displayed in Figures S3 and S4, respectively) and ASTRAL-III local posterior probabilities (LPP; phylogenetic tree displayed in Figure S5) values. (B) Family-level summary topology of termites supported by both UCEs (this study) and transcriptomic data (Bucek *et al.*, 2019), with the indication of alternative topologies inferred from mitochondrial genome data alone (Bourguignon *et al.*, 2015, 2017). Unsupported splits were summarized as polytomies (branches in red).