
Original Article 

Title: Expressional Diversity and Cancer-prone Phenotypes in Cigarette-smoking 

Lungs at Single Cell Resolution. 

Short Title: Expressional diversity in cigarette smoking lungs 

 

Jun Nakayama* and Yusuke Yamamoto* 

 

Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, 

Japan. 

 

*Correspondence to: 

Yusuke Yamamoto (E-mail: yuyamamo@ncc.go.jp) and Jun Nakayama (E-mail: 

junakaya@ncc.go.jp or jnakayama.re@gmail.com), National Cancer Center, 5-1-1 

Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan, Phone: 81-3-3542-2511 (Ext. 3664), Fax: 

(+81)3-3543-9305. 

Lead contact: Yusuke Yamamoto (yuyamamo@ncc.go.jp) 

 

ORCID ID: 0000-0001-8844-4295 (Jun Nakayama), 0000-0002-5262-8479 (Yusuke 

Yamamoto) 

 

Keywords: single-cell meta-analysis, cigarette smoking, cellular diversity, VARIED 

analysis, AGED analysis 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 14, 2023. ; https://doi.org/10.1101/2021.12.09.472029doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.472029


Abstract 

Single-cell RNA-seq (scRNA-seq) technologies have been broadly utilized to reveal 

molecular mechanisms of respiratory pathology and physiology at single-cell resolution. 

Here, we established single-cell meta-analysis (scMeta-analysis) by integrating data 

from 8 public datasets, including 104 lung scRNA-seq samples with clinicopathological 

information and designated a cigarette smoking lung atlas. The atlas revealed early 

carcinogenesis events and defined the alterations of single-cell transcriptomics, cell 

population, and fundamental properties of biological pathways induced by smoking. In 

addition, we developed two novel scMeta-analysis methods: VARIED (Visualized 

Algorithms of Relationships In Expressional Diversity) and AGED (Aging-related Gene 

Expressional Differences). VARIED analysis revealed expressional diversity associated 

with smoking carcinogenesis. AGED analysis revealed differences in gene expression 

related to both aging and smoking states. The scMeta-analysis pave the way to utilize 

publicly -available scRNA-seq data and provide new insights into the effects of smoking 

and into cellular diversity in human lungs, at single-cell resolution. 
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Introduction 

Smoking is the leading risk factor for early death, and its negative effects present 

individual and public health hazards [1, 2]. Cigarette smoke is a mixture of thousands of 

chemical compounds generated from tobacco burning [3] that causes chronic airway 

inflammation, reactive oxygen species (ROS) production, and DNA damage. Specifically, 

it has been discovered that smoking injures the respiratory organs and cardiovascular 

system and causes carcinogenesis, chronic obstructive pulmonary disease (COPD), 

and atherosclerosis [4]. In particular, the incidence of lung squamous carcinoma is 

significantly increased by cigarette smoking [5, 6]. 

 Single-cell RNA-seq (scRNA-seq) technologies have been broadly utilized to 

reveal the molecular mechanisms of respiratory diseases and physiology at single-cell 

resolution. scRNA-seq in human lungs identified novel cell populations and cellular 

diversity [7-13]. However, there are several concerns regarding scRNA-seq analysis. 

One of these concerns is sample size, that is, that clinical scRNA-seq analyses could be 

biased due to insufficient sample sizes. A possible solution is meta-analysis of 

scRNA-seq data. The recently developed single-cell meta-analysis (scMeta-analysis) 

method has been considered a powerful tool for large-scale analysis of integrated 

single-cell cohorts. The scMeta-analysis shows robust statistical significance and the 

capacity to compare the results among different studies at the single-cell level. In fact, 

integrated scMeta-analysis of a number of cohorts has revealed a previously 

unappreciated diversity of cell types and gene expression; for example, scMeta-analysis 

of lung endothelial cells, including human and mouse datasets, revealed novel 

endothelial cell populations [14-17]. In addition, comparative analysis of scRNA-seq 

cohorts revealed pan-cancer tumor-specific myeloid lineages [18]. 
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 In this study, we integrated 8 publicly available datasets comprising 104 lung 

scRNA-seq samples and analyzed a total of 230,890 single cells to construct a cigarette 

smoking lung atlas. The scMeta-analysis of the cigarette smoking lung atlas defined 

single-cell gene expression according to smoking, age, and gender. In addition, we 

developed novel scMeta-analysis methods: VARIED (Visualized Algorithms of 

Relationships In Expressional Diversity) analysis and AGED (Aging-related Gene 

Expressional Differences) analysis with clinical metadata. VARIED analysis revealed 

the diversity of gene expression associated with cancer-related events in each cell 

population, and AGED analysis revealed the expressional differences in relation to both 

aging and smoking states. 
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Materials and Methods 

scRNA-seq data collection from public databases 

The scRNA-seq cohorts were downloaded from the public Gene Expression Omnibus 

(GEO) and European Genome-Phenome Archive (EGA) databases (Supplementary 

Table S1). We collected scRNA-seq samples of human lungs for which smoking states 

information was available. From physiological studies of the lung airway [19], all 10 

never-smoker samples were extracted from the EGA00001004082 dataset [20], and 1 

never-smoker and 3 smoker samples were extracted from the GSE130148 dataset [13]. 

From idiopathic pulmonary fibrosis (IPF) studies, 5 never-smoker and 3 smoker 

samples were extracted from a total of 17 samples in the GSE122960 dataset [21], 1 

never-smoker and 7 smoker samples were extracted from a total of 34 samples in the 

GSE135893 dataset [12], and 22 never-smoker and 23 smoker samples were extracted 

from a total of 78 samples in the GSE136831 dataset [11]. From studies of lung disease 

in smokers, 3 never-smoker and 3 smoker samples were extracted from the 

GSE123405 dataset [22], and 3 never-smoker and 9 smoker samples were extracted 

from the GSE173896 dataset [23]. From lung cancer studies, 4 never-smoker and 7 

smoker samples were extracted from a total of 58 samples in the GSE131907 dataset 

[24]. A total of 104 samples (never-smoker: 49, smoker: 56) were collected, and the 

details of the extracted samples are shown in Supplementary Table S2. These datasets 

were imported into R software version 4.2.0. and transformed into Seurat objects with 

the package Seurat version 4.3.0 [25]. The Seurat objects from the different datasets 

were then integrated in R. 

 

Integration of datasets, data quality control and removal of batch effects 
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The integrated dataset was subjected to normalization, scaling, and principal 

component analysis (PCA) with Seurat functions. Removal of low-quality cells was 

performed against the merged dataset before batch effect removal according to the 

following criteria (nFeature_RNA > 1000 and percent.mt < 20). The expression counts 

of each sample were normalized by SCTranscform method version 0.3.5. [26]. Doublet 

cells in the integrated dataset were removed by DoubletFinder method version 2.0.3. 

[19, 27]. To remove the batch effect between cohort studies, Harmony version 0.1.1. 

algorithms were applied to the integrated datasets [28, 29] following the instructions in 

the Quick start vignettes 

(https://portals.broadinstitute.org/harmony/articles/quickstart.html). 

 

Cell type annotation and cell cycle scoring 

Clustering of neighboring cells was performed by the functions ‘FindNeighbors’ and 

‘FindClusters’ from Seurat using Harmony reduction. First, the clusters were grouped 

based on the expression of tissue compartment markers (for example, EPCAM for 

epithelia, CLDN5 for endothelia, COL1A2 for fibroblasts, and PTPRC for immune cells) 

(Figure 1C and Supplementary Figure S3) and then annotated in detail according to “A 

molecular cell atlas of the human lung” [7]. Cell cycle analysis was performed with the 

‘CellCycleScoring’ function of Seurat. 

 

VARIED (Visualized Algorithms of Relationships In Expressional Diversity) 

analysis 

To evaluate the expressional heterogeneity in the cell populations, we calculated the 

correlation coefficients for each cell population between smokers and never-smokers. In 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 14, 2023. ; https://doi.org/10.1101/2021.12.09.472029doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.472029


each cluster, normalized closeness centrality was calculated in R using ggraph version 

2.1.0. and igraph version 1.3.5. packages, as previously described [23, 30]. 

where r is the absolute value of Pearson’s correlational coefficient and n is the number 

of cells in the cluster. 
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GSVA scoring and survival analysis 

GSVA analysis was performed using RNA-seq dataset of TCGA LUSC cohorts by 

‘GSVA’ package version 1.44.5. in R [31]. RNA-seq dataset and clinical information of 

the lung squamous carcinoma patients were downloaded from TCGA Data Portal [32]. 

The signature genes of basal-d smoker clusters showed in Supplementary Table S5. 

Scoring method by ‘gsva’ algorithms was utilized for calculation of enrichment score in 

the lung squamous cancer patients. We subjected clinical status and gene expression 

data to survival analysis using ‘survminer’ version 0.4.9. and ‘survival’ packages version 

3.4-0 in R. The dataset is available at https://portal.gdc.cancer.gov/. 

 

Module analysis 

Module analysis was performed by the ‘AddModuleScore’ function in Seurat using the 

gene lists from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/). The EMT module 

(HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION), heme metabolism 

module (HALLMARK_HEME_METABOLISM), ROS module (HOUSTIS_ROS), 

autophagy module (REACTOME_AUTOPHAGY), IFN signaling module 

(REACTOME_INTERFERON_SIGNALING), senescence module 

(REACTOME_CELLULAR_SENESCENCE), circadian module 
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(REACTOME_CIRCADIAN_CLOCK), mitophagy module (REACTOME_MITOPHAGY), 

pyroptosis module (REACTOME_PYROPTOSIS), and ferroptosis module 

(WP_FERROPTOSIS) were subjected to module analysis in each cell population. 

 

Pathway enrichment analyses and IPA 

We performed enrichment analysis against the marker gene list in each cluster between 

male and female smokers by the ‘ClusterProfiler’ version 4.4.4. [33] and ‘ReactomePA’ 

version 1.40.10. [34] packages in R. Gene symbols were converted to ENTREZ IDs 

using the ‘org.Hs.eg.db’ package version 3.10.0. Pathway datasets were downloaded 

from the Reactome database. Pathway enrichment analysis using the ‘enrichPathway’ 

function was performed by the BH method. Marker genes of the basal-px cluster in 

smokers and never-smokers were calculated by ‘FindMarkers’ with the MAST method 

[35]. Enrichment analysis of basal-px was performed using QIAGEN Ingenuity Pathway 

Analysis software. 

 

AGED (Aging-related Gene Expressional Differences) analysis 

We calculated the average expression of all genes in each cluster in both smokers and 

never-smokers and performed regression analysis in correlation with gene expression 

and patient age by R. Next, we calculated the differences in slopes (delta) in smokers 

and never-smokers via regression analysis and extracted the genes with the highest 

delta to be shown in a heatmap. 

 

Code and data availability 

The datasets GSE122960, GSE123405, GSE130148, GSE131907, GSE135893, 
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GSE136831, and GSE173896 are available in the NCBI GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). The EGAS00001004082 dataset is available in the 

EGA database (https://ega-archive.org/). The source code of scMeta-analysis and 

integrated datasets is available on GitHub 

(https://github.com/JunNakayama/scMeta-analysis-of-cigarette-smoking). 

 

Data visualization 

The dimensionality-reduced cell clustering is shown as a UMAP plot by the function 

‘runUMAP’. Heatmaps were drawn by Morpheus from the Broad Institute. A ridge plot 

was drawn using the ‘ggridges’ version 0.5.4. package in R. Violin plots were drawn 

using the ‘ggplot2’ version 3.4.0. package in R.  

 

Statistical Analysis 

Correlation coefficients were calculated by Spearman correlation in R. Welch’s t test or 

Tukey's or Dunnett's multiple comparison test was used for comparison of the datasets. 

Log-rank test was used for survival analysis in R. Significance was defined as P < 0.05. 
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Results 

Establishment of Integrated single-cell lung dataset with cigarette smoking 

According to scRNA-seq collection criteria (see methods), we chose 8 publicly available 

datasets of lung scRNA-seq data to construct a cigarette smoking lung atlas (Figure 1A). 

To this end, we collected data from 374,658 single cells from 104 scRNA-seq samples 

(smoker: 55 samples, never-smoker: 49 samples, Figure 1A). In the process of quality 

control with Seurat in R, 143,768 low-quality single cells (nFeatures < 103 & mt.percent 

> 20%) were removed. Doublet cells were removed identified by DoubletFinder 

algorithm [27]. The single cells were normalized by SCTransform method in Seurat [26]. 

Integration of the 8 datasets was performed by the Harmony algorithm with the smoking 

states of scRNA-seq samples [28] (Figure 1B). Integrated single-cell transcriptome data 

were linked with clinical metadata such as smoking states, age, gender, and race 

(Supplementary Table S1, S2, and Supplementary Figure S1A). The normalized dataset 

was integrated for removal of batch effect by Harmony algorisms (Supplementary 

Figure S1B). The cigarette smoking lung atlas is composed of a total of 230,890 single 

cells. The density plot showed that the majority of single cells in the atlas were immune 

cells and epithelial cells (Supplementary Figure S1C). UMAP plots with cell type-specific 

markers (PTPRC as an immune marker, EPCAM as an epithelial marker, CLDN5 as an 

endothelial marker, and COL1A2 as a fibroblast marker) showed an obvious 

segregation of immune, epithelial, endothelial, and fibroblastic lineages (Figure 1C). 

There were 118,364 single cells in the smoker group and 112,526 single cells in the 

never-smoker group (Supplementary Figure S2A). Comparison of the atlases by 

smoking states revealed that most of the cell populations in the UMAP plot overlapped; 

however, parts of epithelial clusters were specific to the never-smoker group 
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(Supplementary Figure S2A). To confirm that the integration of the 8 datasets reduced 

bias, we showed the atlas marked with the datasets (Figure 1D). All major clusters 

seemed to overlap among the 8 datasets (Supplementary Figure S2B), although the 

populations of cells were different in each dataset (Figure 1E). This difference in cell 

populations could be caused by differences in tissue collection and cell isolation 

processes. 

 In the atlas with all cell types (Figure 1D), we first identified the cell types 

present within the atlas according to the lung cell markers in the human lung scRNA-seq 

atlas [7] (Supplementary Figure S3). To investigate the cell types in further detail, we 

extracted subsets of “epithelia” (Figure 2A), “fibroblasts” (Figure 2B), “endothelia” 

(Figure 2C), “lymphoids” (Figure 2D), and “myeloids” (Figure 2E) repeated the UMAP 

procedure with each subset, which comprised 39 subpopulations in total. There were 13 

epithelial cell types (smoker: 24,084 cells, never-smoker: 53,754 cells; Supplementary 

Figure S4), 7 fibroblastic cell types (smoker: 3,081 cells, never-smoker: 1,592 cells; 

Supplementary Figure S5), 5 endothelial cell types (smoker: 7,600 cells, never-smoker: 

3,783 cells; Supplementary Figure S6), 6 lymphoid cell types (smoker: 25,331 cells, 

never-smoker: 10,929 cells; Supplementary Figure S7), and 8 myeloid cell types 

(smoker: 55,398 cells, never-smoker: 40,824 cells; Supplementary Figure S8). 

 Cigarette smoking is known to induce alterations in cell populations in the lungs. 

For example, the number of basal linage cells decreased [36], and the number of 

basophils increased [37] in smoking lungs. The atlas showed differences in the numbers 

of 39 cell subpopulations by smoking states (Figure 2F). Evidently, the cell numbers of 

basal, basal-differentiated (d), ionocyte, and proliferating epithelia clusters significantly 

decreased. Previous bulk studies have reported that the number of bronchial epithelial 
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cells is altered by smoking [9, 36, 38]. Consistent with these reports, our data confirmed 

that smoking had a devastating effect on epithelial cells in the bronchus and bronchiole. 

The integrated dataset confirmed the increase in basophil cell number with smoking. 

We also examined the cell cycle in each cell cluster. The cell cycle indices in each 

subpopulation were not obviously changed between the smoking and never-smoking 

groups (Supplementary Figure S9A and B). 

 

VARIED analysis visualized variations in epithelial populations and basophils by 

smoking states 

Cigarette smoking is the highest risk factor for carcinogenesis of squamous carcinoma 

in the bronchia and trachea of the lung [2, 5]. To comprehensively understand the 

effects of smoking in the lung, we developed VARIED (Visualized Algorithms of 

Relationships In Expressional Diversity) analysis to quantify the alteration in gene 

expressional diversity. VARIED analysis is based on the network centrality of a 

correlational network with graph theory in each single cell [39, 40]. When the random 

sampling number of the cells is over 100 cells, the medians of VARIED converged to a 

certain value (Supplementary Figure S10). Therefore, VARIED analysis needed over 

100 cells to calculate the robust centralities. In this study, since all clusters have over 

100 cells, we subjected VARIED analysis into the clusters of smoker and never-smoker. 

The differences in the centrality between smokers and never-smokers represent the 

alteration of gene expressional diversity in each cell cluster (Figure 3A). VARIED 

analysis revealed greater diversity in epithelial clusters, suggesting that cigarette 

smoking primarily perturbed epithelial populations, particularly in the bronchia and 

trachea (Figure 3B and 3C). These data are consistent with the fact that epithelial cells, 
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located at the bronchia, are considered to be the origin of lung squamous carcinoma 

[41]. Interestingly, the diversity in basophils was also remarkably altered by cigarette 

smoking. Basophils are known to be activated as a protective immunity against 

helminths and ticks by expression of cytokines and Immunoglobins [42]. Basophils in 

the smokers expressed JUND, FOSB, IGHA1, IGHG1, IGHG3, FCGR3A, and S100A8 

(Figure 3D), suggesting their activation and IgG production in smoker lungs. 

 To examine the molecular basis for diversity in gene expression, we extracted 

differentially expressed genes (DEGs) in the basal-d cluster between smokers and 

never-smokers, focusing on basal-d because this cluster was the most influenced by 

cigarette smoking (Figure 4, Supplementary Table S3). Enrichment analysis of the 

DEGs revealed that protein production-related signal, mitochondrial dysfunction 

pathways were significantly enriched in the smoker basal-px cluster (Figure 4A and B, 

Supplementary Table S4). Our data indicate that smoking adversely affects bronchial 

epithelial cells and alters gene expressional diversity in carcinogenesis. The Basal-d 

cluster in smoker significantly highly expressed ATF3, FOS, and JUN. The VARIED 

analysis confirmed the early oncogenic events in bronchial and tracheal epithelial cells. 

In addition, the gene set variation analysis (GSVA) score using the signature genes of 

smoker basal-d cluster correlated to poor prognosis in lung squamous carcinoma 

(LUSC) cohorts in the cancer genome atlas (TCGA) (Figure 4D, Supplementary Table 

S5). 

 

Cigarette smoking affected GWAS-related genes in lung squamous carcinoma 

As the cigarette smoking lung atlas provided high-resolution expression data in 39 cell 

types, we explored gene expression profiles from a genome-wide association study 
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(GWAS) of lung squamous carcinoma with smoking [43]. To identify the expressional 

patterns and the broad contributions of different lung cell types to squamous carcinoma 

susceptibility, the expression levels of an average of 92 GWAS genes were examined in 

all lung cell types (Supplementary Figure S11A). High expression of squamous 

carcinoma GWAS genes was observed in the specific clusters, and cigarette smoking 

affected the expression of GWAS-related genes in some clusters. In particular, the 

expression of MUC1 was increased in the smoker epithelial clusters (Supplementary 

Figure S11B), and the expression of HLA-A was increased in the smoker myeloid 

clusters (Supplementary Figure S11C). Mutated MUC1 has oncogenic roles in 

carcinogenesis in the human lung [44, 45]. Truncating mutations in HLA-A carry a risk of 

dysregulation of cancer-related pathways [46]. 

 

Cancer-associated alterations induced by smoking 

Next, we performed module analysis with cancer-related gene sets, such as 

senescence, ROS production, IFN signaling, heme metabolism, and epithelial to 

mesenchymal transition (EMT) genes. The module analysis depicted the alteration of 

cancer-related events by smoking in each cluster (Figure 5A). Several modules were 

drastically altered between the smoker and never-smoker groups, such as IFN signaling 

in endothelial and myeloid clusters; EMT in epithelial, fibroblastic, and endothelial 

clusters; and mitophagy in lymphoid and myeloid clusters. Because increased 

expression of EMT module genes in endothelial clusters was observed, we examined 

the expression of endothelial to mesenchymal transition (EndMT) marker genes (FN1, 

POSTN, VIM) [17, 47]. These EndMT markers were significantly upregulated, 

suggesting that smoking induced EndMT in some endothelial clusters (Figure 5B).  
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 The module scores of reactive oxygen species (ROS) signaling significantly 

increased in the endothelial clusters. ROS signaling in endothelia induced inflammatory 

response and endothelial dysfunction [48, 49]. In addition, Myeloid cells enhanced IFN 

signaling in smoking lungs (Figure 5B bottom left). Autophagy in immune cells is 

important for cellular immunity, differentiation, and survival [50]. Autophagy modules 

increased in immune cells and fibroblastic cells. Finally, increased senescence module 

scores were broadly observed across most cell types (Supplementary Figure S12), 

suggesting that smoking induced aging in the lung. The module analysis of the cigarette 

smoking lung atlas evidently indicated what cell types were influenced by smoking and 

how smoking affected these cells in the lung. 

 

Aging-related gene expression in the integrated dataset with cigarette smoking  

As the majority of the samples in the atlas had patient age information, we aimed to 

identify aging-related genes associated with cigarette smoking (Figure 6A). We 

developed AGED (Aging-related Gene Expression Differences) analysis based on 

regression analysis with single-cell transcriptome data (see methods). Briefly, by using 

regression analysis with age and gene expression in the smoker and never-smoker 

groups, we calculated the differences in slopes (Δ) for all genes in 39 cell clusters 

(Figure 6B). For selected genes that were obviously changed with advancing age 

between the smoker and never-smoker groups, the Δ values were plotted as AGED 

results in a heatmap (Figure 6C). These data showed that the lung surfactant proteins 

SFTPC and SFTPB decreased in several epithelial clusters with advancing age in the 

smoker (Figure 6C and 6D left). These lung surfactant proteins maintain the activation 

of alveolar macrophages and promote recovery from injuries induced by smoking [51]. 

Additionally, secretoglobins (SCGB3A1, SCGB3A2, and SCGB1A1) were also 
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decreased in secretory goblet cells and serous cells with advancing age in the smokers. 

MALAT1 is a well-known lncRNA in lung cancer, and its expression contributes to 

malignancy [52, 53]. AGED analysis showed that MALAT1 expression increased in most 

cell types with advancing age in smokers (Figure 6C and 6E), suggesting that the 

oncogenic risk associated with MALAT1 increased with age. From the module analysis, 

heme metabolism was dysregulated in the myeloid cells of smoker lung (Figure 5A). 

High expression of TMSB4X is contributed to poor prognosis and predicts the 

metastasis in lung carcinoma [53]. TMSB4X increased in most cell types of immune 

clusters in the smoker lung (Figure 6D right). Finally, the expression level of FTL was 

significantly altered with advancing age in the smokers (Figure 6C). In the cMonocyte 

clusters, FTL significantly decreased with smoking and aging. Collectively, the AGED 

analysis revealed changes in aging-related gene expression with smoking in each cell 

cluster. 
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Discussion 

In this study, we presented a human cigarette smoking lung atlas, generated via the 

meta-analysis of 104 samples from 8 public scRNA-seq datasets. Our integrated 

smoking atlas confirmed the alteration of gene expression in the lung at single-cell 

resolution and identified the early oncogenic events induced by cigarette smoking. 

Additionally, the novel VARIED and AGED analyses revealed cell type and gene 

expressional diversity with smoking and age. 

 One of the significant contributions of this study is that the scMeta-analysis of 

integrated datasets identified expressional diversity in the early phase of lung 

squamous carcinoma at the single-cell level. In fact, expression analysis following 

VARIED revealed early oncogenic signaling in epithelial cells, expression changes in 

GWAS-related genes, and gender-dependent alterations in the smoking lung. In 

previous studies of the effects of smoking, genetic mutations in oncogenes and tumor 

suppressor genes were discovered [54-56]. Bronchial epithelial cells from smokers have 

mutations in TP53, NOTCH1, FAT1, CHEK2, PTEN, ARID1A and other genes [54]. Our 

atlas showed that survival AKT-mTOR signaling, mitochondrial dysregulation, and 

sirtuin signaling pathways were altered in bronchial basal cells by smoking 

(Supplementary Table S4). Mutations in PTEN contribute to the activation of AKT-mTOR 

signaling [57]. FAT1 controls mitochondrial functions [58], and its mutations induce the 

dysregulation of mitochondria. Additionally, cigarette smoking promotes lung 

carcinogenesis by IKKβ- and JNK-dependent inflammation [59]. DEGs analysis of 

basal-d clusters indicated that ATF3, JUN and FOS expression levels were increased in 

the smoker basal-d cluster (Supplementary Table S3). High expression of ATF3 

expression contributes to tumor malignancy in lung cancer [60]. Our module analysis 
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showed enhancement of inflammatory signaling in the myeloid, fibroblastic, endothelia, 

and epithelial clusters. The integrated dataset confirmed the signaling related to genetic 

mutations induced by smoking. 

 The first scMeta-analysis was performed to investigate severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2)-related genes by The Human Cell 

Atlas Lung Biological Network [14]. Further scMeta-analyses were reported for 

endothelial cells in the human and mouse lung [15] and liver-specific immune cells [16], 

which revealed the alteration of cell populations and expressional heterogeneity with 

single-cell resolution. Additionally, the study of pan-cancer scRNA-seq cohorts revealed 

heterogeneity in tumor-infiltrating myeloid cell composition and the functions of 

cancer-specific myeloid cells [18]. scMeta-analysis is a powerful tool and strategy to 

overcome the problem of sample bias in small clinical cohorts. Additionally, our 

integrated dataset enabled us to perform single-cell analysis linked with clinical 

information in meta-cohorts such as AGED analysis, which identified aging-related gene 

expression with single-cell resolution. Furthermore, it revealed correlations in the 

alterations of gene expression associated with smoking and aging. Further 

scMeta-analyses incorporating additional clinical information will be helpful for 

understanding homeostasis and diseases. 

 Our study has limitations. First, differences in the tissue sampling and 

single-cell isolation methods generated bias in the cell populations used in this study. 

This bias could not be completely removed by computational normalization. In fact, our 

integrated datasets showed the differences in cell subpopulations in each dataset 

(Supplementary Figure S2B). Next, clinical information such as smoking states, gender, 

and age depended on the collection in the primary studies. The atlas has only a simple 
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classification: smoker or never-smoker; we could not consider detailed smoking 

information such as the amount of smoking, years of smoking, and Brinkman index 

(Supplementary Tables S1 and S2). Additionally, patient age was significantly different 

between the smoker and never-smoker populations (Figure 6A). Moreover, clinical 

information such as age and gender was not available for all datasets. In the future, it 

will be necessary to expand the integrated dataset following the publication of new 

appropriate datasets for a more robust analysis. 

 The integrated dataset presented herein contributed to the characterization of 

the alterations caused by cigarette smoking that are related to carcinogenesis of lung 

squamous carcinoma. However, lung cancer also develops in never-smokers, in whom 

lung adenocarcinoma is predominant [5, 6]. scMeta-analysis focused on lung 

adenocarcinoma in different clinical states has the potential to reveal the nature of 

genetic carcinogenesis. As a future study, the integration of scRNA-seq data from 

normal lungs (never-smokers) and lung adenocarcinoma could be a feasible approach 

to discover the mechanism of carcinogenesis and elucidate the cellular diversity in lung 

adenocarcinoma. In addition, clinical scRNA-seq and scMeta-analysis will be powerful 

tools in combination with data from pan-cancer multiomics analyses, such as those in 

TCGA [32, 61, 62]. Therefore, the integration of scMeta-analysis data with clinical and 

omics data paves the way for an in-depth understanding of the nature of cancer. 
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Figure legends 

Figure 1. Establishment of the integrated lung dataset with cigarette smoking 

states from 8 scRNA-seq cohorts 

A. Overview of the establishment of the integrated lung dataset with cigarette smoking 

states. The control lung scRNA-seq data from 8 publicly available datasets were 

obtained and integrated with smoking states information. B. Flow diagram of the 

establishment of the integrated scRNA-seq lung dataset with cigarette smoking. Eight 

publicly available scRNA-seq datasets were downloaded and combined in Seurat. 

Doublet cells were removed by DoubletFinder. The datasets were normalized by 

SCTramsform, integrated by Harmony to adjust for batch effects. C. Representative 

marker expression patterns for the cell type clusters shown in the UMAP plot. D. A 

UMAP plot displaying 230,890 single human lung cells of 55 smokers and 49 

never-smokers. Each dot represents a single cell, and cell clusters are classified as 

immune cells, epithelial cells, endothelial cells, and fibroblasts. E. Cell populations of 

immune cell, epithelial cell, endothelial cell, and fibroblast clusters across the 104 

samples. Smokers, 55 cases; never-smokers, 49 cases. 

 

Figure 2. Cell type classification of the integrated lung dataset  

UMAP plots for each cell type cluster. The UMAP plot of the cigarette smoking lung atlas 

was divided into 5 UMAP plots based on the cell type clusters. Heatmaps of selected 

marker genes in each cell type cluster. Each cluster was defined according to marker 

expression profiles.  A. epithelia: 13 clusters, B. fibroblasts: 7 clusters. C. endothelial 

cells: 5 clusters. D. lymphoid cells: 6 clusters. E. myeloid cells: 9 clusters. F. Relative 

cell number plots between smokers and never-smokers in 39 cell types. Welch’s t test, * 
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p < 0.05. Blue line: epithelial cell types, pink line: fibroblastic cell types, light blue line: 

endothelial cell types, light green line: lymphoid cell types, and green line: myeloid cell 

types. 

 

Figure 3. VARIED analysis for cellular variations by smoking states 

A. Schematic of VARIED (Visualized Algorithms of Relationships In Expressional 

Diversity) analysis for quantifying the alterations in gene expressional diversity between 

smokers and never-smokers. In each single cell from scRNA-seq, the closeness 

centrality was calculated in the cell types between smokers and never-smokers. B. Plot 

of absolute values of difference in centrality in each cell type cluster. Blue: epithelia, 

purple: immune cells, red: endothelia, and green: fibroblasts. C. Representative ridge 

plots for the closeness centrality between smokers and never-smokers. Welch’s t test. 

D. Expression profiles of activation marker gene in the basophil clusters. Box plots of 

JUND, FOSB, IGHA1, IGHG1, IGHG3, FCGR3A, S100A8, and TPSB2 between 

smokers and never-smokers in the basophil cluster. Welch’s t test. 

 

Figure 4. Cancer-related alteration in the Basale-d cluster 

Expression profiles of differentially expressional genes (DEGs) in the basal-d clusters 

between smokers and never-smokers. A. Gene and pathway networks of marker genes 

for the basal-px cluster. The network plot was generated by IPA. B. Enrichment analysis 

of marker genes for the basal-px cluster. Significantly enriched pathways are shown 

based on IPA data. C. Marker expression patterns in the smoker basal-d clusters. Violin 

plots of KRT5, ATF3, FOS, and JUN between smokers and never-smokers. Welch’s t 

test D. Survival analysis of lung squamous carcinoma (LUSC) cohorts in the Cancer 
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Genome Atlas (TCGA) with basal-d smoker signature genes. GSVA scores using 

smoking basal-d signature genes were calculated by GAVA algorithm. Log-rank test. 

 

Figure 5. Module analysis of cancer-related pathways in all cell types between 

smokers and never-smokers 

A. A heatmap of module analysis between smokers and never-smokers across the cell 

types. The median module score was calculated for each cell type. The senescence, 

ROS, pyroptosis, mitophagy, INF signaling, heme metabolism, ferroptosis, EMT 

circadian clock, and autophagy modules are shown in the heatmap. B. Violin plots for 

analysis of selected modules: EMT, IFN signaling, and heme metabolism. Module 

analysis for selected cell types is shown. “n” represents the cell number in each cluster. 

Welch’s t test, p < 0.001. 

 

Figure 6. AGED analysis to identify genes related to advancing age and smoking 

A. Age distributions of the smoker and never-smoker groups. B. Schematic of AGED 

(Aging-related Gene Expressional Differences) analysis for determining gene 

alterations with advancing age in smokers. Based on regression analysis of single-cell 

transcriptome data with age, the differences in slopes (Δ) between the smoker and 

never-smoker groups in 39 cell clusters were calculated for all genes. The Δ values for 

selected genes were plotted in a heatmap. C. Heatmap of AGED analysis results. p 

value < 0.05: * significant in smokers and never-smokers, † significant in smokers, ‘・’ 

significant in never-smokers. D. Representative correlation plots of SFTPB in basal-d 

cluster, SFTPC in AT2 cluster, FTL in cMonocyte cluster, and TMSB4X in 

CD68+Macrophage cluster. E. Representative plots of MALAT1 expression in AT2 and 
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basal-d clusters.  
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Supplemental Figure legends 

Supplementary Figure S1. Establishment of the integrated lung scRNA-seq 

dataset with cigarette smoking states 

A. The racial distributions of the smoker and never-smoker groups. B. A UMAP plots of 

before harmony integration and after harmony integration of 8 publicly datasets.  C. A 

density UMAP plot of the integrated lung dataset. 

 

Supplementary Figure S2. Detailed information of the integrated lung scRNA-seq 

dataset  

A. UMAP plot of the integrated lung dataset with smoker/never-smoker information. B. 

Individual UMAP plots for each of 8 publicly available datasets. Blue: epithelia, purple: 

immune cells, red: endothelia, green: fibroblasts, pink: proliferating immune cells, and 

light blue: proliferating epithelia. 

 

Supplementary Figure S3. UMAP plots for selected marker genes 

 

Supplementary Figure S4. Epithelial cell analysis of smoker and never-smoker 

lungs 

A. UMAP plot of 77,838 epithelial cells and proliferating epithelial cells from the UMAP 

shown in Figure 1D. The dots are labeled by cell type as identified by marker expression 

profiles. Twelve distinct clusters were identified. B. UMAP plot with sample states. 

Smoker: k = 24,084; never-smoker: k = 53,754. C. Density UMAP plot of epithelial cell 

clusters. D. UMAP plot of epithelial cell clusters marked by dataset. 
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Supplementary Figure S5. Fibroblast analysis of smoker and never-smoker lungs 

A. UMAP plot of 4,673 fibroblasts from the UMAP shown in Figure 1B. The dots are 

labeled by cell type as identified by marker expression profiles. Seven distinct clusters 

were identified. B. UMAP plot with sample states. Smoker: k = 3,081; never-smoker: k = 

1,592. C. Density UMAP plot of fibroblastic cell clusters. D. UMAP plot of fibroblastic cell 

clusters marked by dataset. 

 

Supplementary Figure S6. Endothelial cell analysis of smoker and never-smoker 

lungs 

A. UMAP plot of 11,383 endothelial cells from the UMAP shown in Figure 1B. The dots 

are labeled by cell type as identified by marker expression profiles. Seven distinct 

clusters were identified. B. UMAP plot with sample states. Smoker: k = 7,600; 

never-smoker: k = 3,783. C. Density UMAP plot of endothelial cell clusters. D. UMAP 

plot of endothelial cell clusters marked by dataset. 

 

Supplementary Figure S7. Lymphoid cell analysis of smoker and never-smoker 

lungs 

A. UMAP plot of 36,260 lymphoid cells. The dots are labeled by cell type as identified by 

marker expression profiles. Eight distinct clusters were identified. B. UMAP plot with 

sample states. Smoker: k = 25,331; never-smoker: k = 10,929. C. Density UMAP plot of 

lymphoid cell clusters. D. The UMAP plot of lymphoid cell clusters marked by dataset. 

 

Supplementary Figure S8. Myeloid cell analysis of smoker and never-smoker 

lungs 
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A. UMAP plot of 96,222 myeloid cells. The dots are labeled by cell type as identified by 

marker expression profiles. Eight distinct clusters were identified. B. UMAP plot with 

sample states. Smoker: k = 55,398; never-smoker: k = 40,824. C. Density UMAP plot of 

myeloid cell clusters. D. UMAP plot of myeloid cell clusters marked by dataset. 

 

Supplementary Figure S9. Cell cycle assessment across cell types in the 

cigarette smoking lung atlas 

A. Cell cycle phase prediction based on scRNA-seq profiles. G1, S, and G2/M phases 

are predicted in each cell type. Top: smoker; bottom: never-smoker. B. Cell numbers 

across the cell types. 

 

 

Supplementary Figure S10. Verifying VARIED analysis by repeating random 

sampling 

A. Overview of the accuracy test of VARIED analysis. In first step, the random sampling 

of cells from the clusters (cell number: k = 10, 50, 100, 500, and 1000) were performed 

in R. In second step, sampled cells were transformed to correlational network, and 

performed VARIED analysis. In last step, the median of VARIED score in random 

sampled cells. It returned to first step. Median calculation was repeated 100 times. B. 

The boxplot showed the distribution of VARIED score median in repeating random 

sampling test with each sampling cell number. 

 

Supplementary Figure S11. Analysis of GWAS-based squamous cell 

carcinoma-related genes 
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A. Expression profiles of 92 lung squamous cell carcinoma GWAS genes in all cell types 

based on the cigarette smoking lung atlas. B. MUC1 expression in selected epithelial 

clusters between the smoker and never-smoker groups. Welch’s t test. C. HLA-A 

expression in selected myeloid clusters between the smoker and never-smoker groups. 

Welch’s t test. 

 

Supplementary Figure S12. AGED analysis for cellular senescence 

A heatmap of AGED analysis results for cellular senescence in basal, basal-d, 

AdvFibroblast, AlvFibroblast, Lipofibroblast, methothelial, myofibroblast, and pericyte 

between smokers and never-smokers. “n” represents the cell number in each cluster. 

Welch’s t test. 

 

 

Supplemental Tables 

Supplementary Table S1. A list of publicly-available 8 datasets for the atlas. 

Supplementary Table S2. The details of integrated scRNA-seq samples in the atlas. 

Supplementary Table S3. The DEGs list in basal-d clusters. 

Supplementary Table S4. IPA canonical pathways in smoker basal-d cluster. 

Supplementary Table S5. Signature genes of smoking basal-d clusters from DEGs 

analysis. 
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Figure 4, Nakayama J et al. 
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Figure 5, Nakayama J et al. 
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Figure 6, Nakayama J et al. 
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Supplementary Figure 2, Nakayama J et al. 
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Supplementary Figure 3, Nakayama J et al. 
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Supplementary Figure 9, Nakayama J et al. 
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Supplementary Figure 11, Nakayama J et al. 
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