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ABSTRACT

Motivation
Independent Component Analysis (ICA) allows the dissection of omic datasets into modules
that help to interpret global molecular signatures. The inherent randomness of this algorithm
can be overcome by clustering many iterations of ICA together to obtain robust components.
Existing algorithms for robust ICA are dependent on the choice of clustering method and on
computing a potentially biased and large Pearson distance matrix.

Results
We present robustica, a Python-based package to compute robust independent components
with a fully customizable clustering algorithm and distance metric. Here, we exploited its
customizability to revisit and optimize robust ICA systematically. From the 6 popular
clustering algorithms considered, DBSCAN performed the best at clustering independent
components across ICA iterations. After confirming the bias introduced with Pearson
distances, we created a subroutine that infers and corrects the components’ signs across
ICA iterations to enable using Euclidean distance. Our subroutine effectively corrected the
bias while simultaneously increasing the precision, robustness, and memory efficiency of the
algorithm. Finally, we show the applicability of robustica by dissecting over 500 tumor
samples from low-grade glioma (LGG) patients, where we define a new gene expression
module with the key modulators of tumor aggressiveness downregulated upon IDH1
mutation.

Availability and implementation
robustica is written in Python under the open-source BSD 3-Clause license. The source
code and documentation are freely available at https://github.com/CRG-CNAG/robustica.
Additionally, all scripts to reproduce the work presented are available at
https://github.com/MiqG/publication_robustica.

Contact: miquel.anglada@crg.eu
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bioinformatics; independent component analysis; clustering; unsupervised learning;
low-grade glioma; Python.
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INTRODUCTION

Independent Component Analysis (ICA) is a matrix factorization method that dissects a
mixture of signals into a predefined number of additive independent sources or components.
ICA finds sets of statistically independent components by minimizing their mutual
information1. In biology, ICA has a wide range of applications such as defining functional
modules, removing technical noise, feature engineering, unsupervised cell type
deconvolution, single-cell trajectory inference, or multi-omic analysis (reviewed in 2). Thanks
to its information-theoretic objective function, ICA results in components that provide a
simpler, more reproducible, and more biologically relevant interpretation than other popular
matrix factorization methods such as Principal Component Analysis (PCA) or Non-negative
Matrix Factorization (NMF)2–7.

FastICA8, one of the most widespread algorithms used to perform ICA, starts with a random
initialization to decompose the data matrix into a source matrix and a mixing matrix of
non-Gaussian independent components (Sup. Fig. 1A). In 2003, Hymberg and Hyvärinen9

developed Icasso to address the inherent randomness of FastICA, by running FastICA
multiple times and clustering the components of source matrices across all runs (Sup. Fig.
1B). This clustering step involves two key choices affecting its computational efficiency and
the final robust components: the distance metric and the clustering algorithm. Current
implementations require pre-computing a potentially large Pearson distance square matrix to
cluster components across ICA runs regardless of their different sign and order resulting
from FastICA’s randomness9–12. However, correlation-based metrics are sensitive to outliers
and non-Gaussian distributions as independent components, which may lead to calculating
imprecise weights13. Additionally, more recently developed clustering algorithms could
potentially improve the efficiency and quality of robust ICA.

Here, we developed robustica, the first Python package to carry out robust ICA with a fully
customizable clustering metric and algorithm based on the powerful library scikit-learn14. By
leveraging the customizability of our package to revisit and optimize the clustering step of
the Icasso algorithm, we improved its precision, robustness, and memory efficiency. Finally,
as a case study, we dissected gene expression signatures from patients with low-grade
glioma (LGG) and found a set of genes related to the mechanism by which mutations in
IDH1 lead to less aggressive tumors.
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RESULTS

Figure 1. Development and implementation of robustica to carry out robust
Independent Component Analysis (ICA).
(A) robustica enables fully customized robust ICA. We built robustica following scikit-learn’s
programming conventions to enable full control of both the iterative and clustering steps
facilitating customization and optimization. In particular, robustica includes a subroutine to
infer and correct the signs of components across ICA runs that improves the precision and
efficiency of the clustering step by enabling us to use Euclidean distance metrics and to
compress the feature space. (B) Comparison of clustering algorithms for robust ICA using
Sastry (2019)15 ‘s dataset. Maximum memory usage and time for each clustering algorithm
to cluster 100 ICA runs with 100 components each. Dot sizes indicate median silhouette
scores (the larger the better). (C) Development steps to improve the precision (Weight Std.)
and efficiency while reducing the bias of robust ICA through our sign
inference-and-correction subroutine combined with PCA and Euclidean distances, using
Sastry (2019)15 ‘s dataset. (D) Case study workflow for robust ICA. We dissected >500 tumor
samples from LGG patients with robustica into 100 robust independent components.
Component 7 was simultaneously associated with multiple sample features (IDH1 mutation
status, mitotic index, and overall survival) and contained genes known to be mechanistically
associated with mutations in IDH1 that modulate tumor aggressiveness.
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robustica enables systematic evaluation of clustering algorithms to perform robust
ICA

With robustica, one can fully customize the clustering method to use as long as they follow
scikit-learn conventions14. We purposefully included this feature to compare how 6 different
popular clustering algorithms perform at finding robust components (see Methods). As a
benchmark, we dissected the >250 E. coli gene expression signatures from Sastry (2019)15

into 100 components with 100 ICA runs and selected different clustering algorithms to
compute the robust components. We then evaluated the performance of the different
algorithms by measuring their run time, memory usage, and silhouette scores to quantify
how similar each component is to the components in the cluster compared to the
components assigned to other clusters. Overall, the DBSCAN algorithm showed the best
performance taking ~20 seconds and ~5500 MiB of maximum memory usage to obtain
clusters with the highest median silhouette scores (median=0.89). CommonNNClustering
also performed well, with better memory efficiency at the cost of a lower silhouette score
(median=0.81) (Fig. 1B; Sup. Fig. 2-3; Sup. Tab. 1).

Supplementary Figure 1. Independent Component Analysis (ICA) and robust ICA with
the Icasso algorithm.
(A) ICA is a matrix factorization algorithm applied for blind-source separation problems that
decomposes a data matrix (X) into n independent components generating a source matrix
(S) and a mixing matrix (A) with information on how features and samples contribute to each
independent component, respectively. (B) The Icasso algorithm overcomes the inherent
randomness of the FastICA algorithm -a widespread algorithm to perform ICA- by running
ICA multiple times and clustering the resulting independent components in S across all runs
using an agglomerative clustering approach with average linkage and a Pearson distance

matrix dimensions as input.(𝑛.  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  ·  𝑛.  𝑟𝑢𝑛𝑠)2 
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Supplementary Figure 2. DBSCAN shows the best performance to compute robust
independent components.
Time (seconds) and maximum memory usage (MiB) compared to the average silhouette
scores of each robust component (i.e. cluster) obtained using 6 different algorithms to cluster
the independent components produced across 100 runs of ICA with n_components=100 by
dissecting Sastry (2019)1 ’s dataset.

Supplementary Figure 3. Computing the Pearson distance matrix takes the most time
when using the DBSCAN algorithm.
Memory usage across time and substeps (functions) to compute robust independent
components in our comparison of clustering algorithms by dissecting Sastry (2019)1 ’s
dataset.
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Clustering ICA runs with Euclidean distances improves the precision of robust ICA

After running ICA multiple times, the Icasso algorithm computes a potentially large Pearson
distance matrix (Sup. Fig. 1B). However, the sensitivity of Pearson distance to non-Gaussian
distributions strongly biases weights in robust independent components, as the standard
deviation of the weights across components in the same cluster strongly correlates with their
average (Sup. Fig. 4-5). We tackled this problem with a simple subroutine to infer and
correct the sign of the components across ICA runs to enable using Euclidean distances
(see Methods). Our approach produced robust components with high silhouette scores and
lowered the bias and standard deviation of their weights (Sup. Fig. 4-5). Since this
implementation required less memory but more time to cluster sign-corrected components
(Sup. Fig. 4D), we compressed the feature space of all ICA runs through PCA to reduce the
overall run time and memory usage while maintaining the same performance (Sup. Fig. 4;
Sup. Tab. 2-6).
Finally, we assessed how much the resulting gene modules differ using either Pearson or
Euclidean distances (Sup. Tab. 7). While both approaches found highly similar modules,
Euclidean distance tended to find more components of high silhouette scores (Sup. Fig. 6A
and B). In addition, we measured how much the high precision of Euclidean distance made
the modules significantly more robust to random noise compared to Pearson distance and
allowed using fewer runs to recover most of the gene modules defined using 100 ICA runs to
compute robust components (Sup. Fig. 6C and D; Sup. Tab. 2-7). Bypassing the bias
introduced by Pearson distances through Euclidean distances increased the reproducibility
of the gene modules defined through robust ICA.
Our sign inference-and-correction subroutine creates high-quality, robust independent
components by enabling us to efficiently cluster independent components across ICA runs
using Euclidean distances (Fig. 1C).
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Supplementary Figure 4. Our sign inference-and-correction subroutine combined with
PCA and DBSCAN with Euclidean distances leads to efficiently computing unbiased
and precise robust independent components.
Each panel illustrates how our versions of the Icasso algorithm perform at dissecting Sastry
(2019)1 ’s dataset using: the original Pearson distance matrix (Pearson); plain Euclidean
distance (Euclidean); Euclidean distance after our sign inference-and-correction subroutine
(Sign Infer. + Euclidean); or Euclidean distance after our sign inference-and-correction
subroutine and feature compression with PCA (Sign Infer. + PCA + Euclidean). (A) Average
standard deviations of weights used to calculate the weights of each robust independent
component. (B) Distributions of correlations between weight averages and weight standard
deviations that correspond to each robust independent component. (C) Average silhouette
scores of each component used to calculate the robust independent components. (D)
Memory usage across time and substeps of every version of the Icasso algorithm:
computing Pearson distance (yellow); clustering components with DBSCAN (dark red);
computing centroids (grey); inferring components’ signs (dark green); compressing feature
space with PCA (dark blue).
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Supplementary Figure 5. Examples of weight mean and standard deviation bias in
robust independent components.
The different panels illustrate how the mean and standard deviation of the components’
weights used to compute robust independent components correlated depending on which
version of the Icasso algorithm we used to dissect Sastry (2019)1 ’s dataset: the original
Pearson distance matrix (Pearson); plain Euclidean distance (Euclidean); or Euclidean
distance after our sign inference-and-correction subroutine (Sign Infer. + Euclidean);
Euclidean distance after our sign inference-and-correction subroutine and feature
compression with PCA (Sign Infer.  + PCA + Euclidean).
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Supplementary Figure 6. Comparison between gene modules obtained from Sastry
(2019)1 ’s dataset with the classical (Pearson) and the revisited (Sign Infer. + PCA +
Euclidean) Icasso algorithm to perform robust ICA.
(A) Number of components with high silhouette scores using different thresholds. (B) Sizes
of gene modules uniquely mapped between the two approaches (47 in total). The color
gradient indicates the degree of Jaccard similarity between mapped modules. (C) Average
Jaccard similarities between the gene modules defined using inferred robust independent
components and their corresponding weights subjected to random noise sampled 100 times.
(D) Distributions (mean and standard deviation) of maximum Jaccard similarities between
the gene modules defined using a different number of ICA runs compared with the gene
modules defined using 100 ICA runs for both the classical and the revisited approaches.
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robustica recovers a gene expression module with the key regulators of tumor
aggressiveness in LGG mechanistically associated to mutations in IDH1

As a case study, we dissected gene expression profiles from >500 LGG tumor samples from
The Cancer Genome Atlas (TCGA). LGGs are characterized by mutations in the isocitrate
dehydrogenase (IDH1) enzyme that decrease tumor aggressiveness by indirectly inhibiting
the E2F transcription program, an important switch controlling homeostasis and
tumorigenesis16–18. We then explored whether certain gene modules associated with IDH1
mutations recovered known molecular mechanisms.
Weights in component 7 were highly associated with IDH1 mutation status, survival
probability, and expression-based indices of cell proliferation (Sup. Fig. 7A-C). We related
these sample traits to the gene expression signatures by defining a module of 421 genes
(Sup. Fig. 7D; Sup. Tab. 8) which, as expected, was enriched in proliferation-related
biological processes (Sup Fig. 8; Sup. Tab. 8) and contained 7 out of the 9 genes used to
compute the mitotic index19 and known proliferation markers as MKI6720. Interestingly, our
gene module also included 4 E2F transcription factors (E2F1, E2F2, E2F7, E2F8) and was
enriched with 98 targets of E2Fs (Sup. Fig. 9; Sup. Tab. 8).
With this, we demonstrate the utility of robustica to identify gene sets whose combined
expression in LGG is associated with genotypes and phenotypes of interest. Our identified
module contained downstream effectors controlling cell proliferation associated with IDH1
mutation status and tumor aggressiveness (Fig. 1D), demonstrating the biological
applicability of this approach.
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Supplementary Figure 7. Independent component 7 defines a module simultaneously
associated with LGG patients’ mutation status in IDH1, survival probability, and
mitotic index.
(A) Distribution of sample weights in component 7 in the robust mixing matrix among
patients with (Mutated) or without (WT) mutations in gene IDH1. We used a Wilcoxon Rank
Sum test to assess the statistical differences between the groups (top label). (B)
Kaplan-Meier curves of patients with weights higher or lower than the median weight in
component 7 in the robust mixing matrix. The p-value of the log-rank test between the two
groups is indicated at the bottom left. (C) Relationship between weights in component 7 in
the robust mixing matrix and each sample’s mitotic index. The Spearman correlation
coefficient and its corresponding p-value are indicated at the top left (R and p, respectively).
(D) Distribution of weights in component 7 in the robust source matrix used to define the
gene module corresponding to our sample features of interest. The horizontal dashed lines
indicate the thresholds applied to define the module.
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Supplementary Figure 8. The gene module defined from component 7 is enriched in
proliferation-related biological processes.
Results from overrepresentation tests of our gene module defined from component 7 and
Gene Ontology (GO) Biological Processes.
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Supplementary Figure 9. The gene module defined from component 7 is enriched in
targets of E2F transcription factors, known modulators of glioma aggressiveness.
Results from overrepresentation tests of our gene module defined from component 7 and
MSigDB Hallmarks.

CONCLUSION

We created robustica, a new Python package built on top of scikit-learn that enables
performing precise, efficient, and customizable robust ICA. Through its customizability, we
explored how different clustering algorithms and distance metrics can further optimize robust
ICA. Our sign correction subroutine improved the precision, robustness, and memory
efficiency of the clustering step. Finally, we showcased how robustica can be used to explore
gene modules associated with combinations of features of biological interest. Given the
broad applicability of ICA for omic data analysis, we envision robustica will facilitate the
seamless computation and integration of robust independent components in large pipelines.
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