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ABSTRACT
The COVID-19 pandemic highlights the need for computational
tools to automate and accelerate drug design for novel protein
targets. We leverage deep learning language models to generate and
score drug candidates based on predicted protein binding affinity.
We pre-trained a deep learning language model (BERT) on ∼9.6
billion molecules and achieved peak performance of 603 petaflops
in mixed precision. Our work reduces pre-training time from days
to hours, compared to previous efforts with this architecture, while
also increasing the dataset size by nearly an order of magnitude.
For scoring, we fine-tuned the language model using an assembled
set of thousands of protein targets with binding affinity data and
searched for inhibitors of specific protein targets, SARS-CoV-2Mpro
and PLpro. We utilized a genetic algorithm approach for finding
optimal candidates using the generation and scoring capabilities
of the language model. Our generalizable models accelerate the
identification of inhibitors for emerging therapeutic targets.

KEYWORDS
COVID-19, drug design, machine learning, language model, pre-
training, fine-tuning, genetic algorithm

ACM Reference Format:
Andrew E Blanchard, John Gounley, Debsindhu Bhowmik, Mayanka Chan-
dra Shekar, Isaac Lyngaas, Shang Gao, Junqi Yin, Aristeidis Tsaris, Feiyi
Wang, Jens Glaser. 2021. Language Models for the Prediction of SARS-CoV-2
Inhibitors. In The International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC ’21), November 14–19, 2021, Hybrid.
ACM, New York, NY, USA, 12 pages. https://doi.org/finalDOI

Copyright statement: This manuscript has been co-authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The
US government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for US government purposes. DOE will provide public access
to these results of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, Hybrid
© 2021 Association for Computing Machinery.
ACM ISBN ISBN. . . $15.00
https://doi.org/finalDOI

1 JUSTIFICATION FOR PRIZE
We:

• pre-train a BERT model on a dataset of 9.6 billion molecules,
nearly an order of magnitude larger than previous efforts
(1.1-1.6 billion) [1, 2],

• achieve 603 petaflops in mixed precision on 4032 Summit
nodes, reducing pre-training time-to-solution from days to
hours, and

• train a general model for protein binding affinity, accelerat-
ing the search for drug candidates relevant to SARS-CoV-2.

2 PERFORMANCE ATTRIBUTES
Performance attribute Our submission

Category of achievement Time to solution, scalability
Type of method used Machine learning
Results reported for Whole application with and

without I/O
Precision reported Mixed precision (FP16 and

FP32)
System scale Measured on full-scale system

(Summit)
Measurement mechanism Internal timers, DeepSpeed

FLOPS profiler

3 OVERVIEW OF THE PROBLEM
The COVID-19 pandemic has drastically altered living conditions
in countries throughout the world over the past two years. To date,
approximately 230 million people have been infected and 4.7 mil-
lion have been killed by variants of the SARS-CoV-2 virus [3]. It is
not unrealistic to assume that another event like this is possible;
several infectious diseases with the potential for global impact have
been documented in recent years, including SARS, MERS, Ebola,
and Zika [4]. Within this broader context, the current pandemic
highlights the need for the development of therapeutic agents to
combat emerging infectious diseases. Unfortunately, the speed at
which antivirals have been developed has not maintained pace with
the frequency of outbreaks. For example, although vaccines have
been developed as an effective means to prevent SARS-CoV-2 in-
fection, no clinically tested therapeutics have been approved for
widespread use except for antibody treatment [5–7]. Furthermore,
recent clinical trials highlight the continued need for antivirals [8].
Therefore, the timely development of drugs to treat emerging vi-
ral threats, in combination with preventive vaccines, poses a key
challenge with global implications.

Although many previous efforts in drug discovery have been
successful, the process can be prohibitively long (i.e., 10 to 15 years)
for response to an emerging pandemic. The approval of a single
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compound for widespread use typically involves the screening of
small molecules for potential candidates, hit-to-lead (H2L) testing
followed by extensive multi-stage clinical trials [9]. The initial step
of determining interesting molecules for further investigation is
pivotal due to the vast size of chemical space, which prevents an
exhaustive search using costly experiments and trials. To acceler-
ate the screening process, tools from machine learning (ML) and
high-performance computing (HPC) have been increasingly used to
guide the selection of promising drug candidates [10–12]. Although
computational methods can partially alleviate some of the associ-
ated experimental costs, typical approaches require the creation of
a large compound library with measured properties for ML model
training [11, 12]. Therefore, a timely response to an emerging pan-
demic also poses a challenge for computational methods, as custom
models and datasets must be quickly generated for the new targets
of interest.

To overcome the challenges associated with accelerating the
discovery of drug candidates for novel protein targets, a computa-
tional approach is needed that satisfies the following criteria: (i)
leverages existing large compound libraries without the need for
chemical property measurements; (ii) predicts affinities for novel
protein targets with limited or no additional experimental data;
(iii) explores chemical space to efficiently identify compounds for
further investigation. To satisfy the three criteria, we leverage high
performance computing (HPC) to train generalizable ML models
for both candidate generation and affinity prediction.

To take advantage of large existing compound libraries, we utilize
a text representation for molecule data known as SMILES, Simpli-
fied Molecular Input Line Entry System [13]. Using Enamine REAL
database [14] as a starting point, we generate a novel dataset of
approximately 9.6 billion unique molecules. The dataset is used to
pre-train a Transformer model (i.e. BERT), using the mask predic-
tion task commonly found in natural language processing applica-
tions. During pre-training, sub-sequences of a given molecule are
replaced by a mask, and the model must predict the appropriate
sequence based on context. Therefore, the model learns a represen-
tation for chemical structure in a completely unsupervised manner
that does not require additional property measurements.

To predict affinities for protein targets, we fine-tune the pre-
trained molecule model on a dataset with over a million known
protein and ligand binding affinities. The fine-tuned model utilizes
two pre-trained language models to generate embeddings for a
given molecule and protein. For the protein embedding, we utilize
a recently published Transformer model for protein sequences [15].
By using models for molecules and proteins trained in an unsuper-
vised manner on large datasets, the fine-tuned model leverages the
structural information in the respective embeddings. A final cross
attention layer is added on top of the embeddings to generate an
affinity score for any given protein and molecule combination. The
fine-tuned model, therefore, can be used to predict affinities for
novel proteins outside the training set and/or can be additionally
fine-tuned given new experimental data.

The pre-trained and fine-tuned models enable both the gener-
ation and scoring of new candidates. For a given input molecule,
the pre-trained model can be used to predict viable sub-sequence
rearrangements similar to the mask prediction task. The fine-tuned
model can then be used to predict the binding affinity for a newly

generated molecule with a provided protein sequence. We utilize
a genetic algorithm to automate rounds of molecule generation,
scoring, and the selection of high scoring candidates.

The large scale of the pre-training and fine-tuning datasets ne-
cessitates the HPC resources of a leadership computing facility.
Similar to natural language processing applications, the scale of the
dataset (i.e., billions of molecules) enables the pre-trained model to
learn generalizable features of molecule structure that are useful for
affinity prediction. Fortunately, after pre-training and fine-tuning,
the models can be used for inference or genetic algorithm optimiza-
tion with modest resources (i.e., a single GPU). Therefore, our work
provides models that can generalize to new protein targets, acceler-
ate screening of potential candidates with limited or no additional
fine-tuning, and be utilized throughout the research community
for drug discovery efforts.

4 CURRENT STATE OF THE ART
4.1 Drug Discovery Pipelines
The complexity and challenges associated with the drug discov-
ery process have motivated the development of pipelines to col-
lect data and organize research efforts [12, 16]. The computational
techniques in such pipelines are primarily organized around the
generation and scoring of new molecules. For molecule generation,
multiple different representations have been used (e.g., SMILES and
graph) along with several ML model architectures (e.g., GAN, VAE,
RNN) [1, 17–20]. In addition, manually-defined rules (e.g., add an
atom, change atom type) have been used to generate new candi-
dates starting from an initial population of molecules [21, 22]. For
scoring candidates, both ML models and docking simulations have
been used along with hybrid approaches [12, 16, 23]. The features
used in ML models for scoring range from learned embeddings to
chemical descriptors and molecular fingerprints [12].

Determining the correct metric for scoring and optimizing mole-
cules is a key difficulty for the practical application of computational
drug discovery pipelines. Cheminformatics packages, such as rd-
kit [24], provide standard heuristic metrics for chemical properties,
including solubility [25], synthesizability [26], and quantitative
estimation of drug-likeness [27]. However, these metrics are not
specific for a given therapeutic target. Alternatively, a supervised
ML model for scoring can provide customized optimization metrics
but requires a suitable experimentally measured dataset [28, 29].
To overcome this difficulty, we here utilize a strategy from natu-
ral language processing, where a model is initially trained in an
unsupervised manner before being fine-tuned to make specific
predictions.

4.2 Transformers
Over the past few years, the field of natural language process-
ing (NLP) has undergone a paradigm shift powered by the use of
Transformer-based models [30]. Previously, the application of ML
models was largely task specific, with a single model being trained
in a supervised manner for each task (e.g., classification, similarity,
entity recognition). However, with the introduction of Transformer
models (e.g., BERT), training was split into two distinct stages. In
the first stage (i.e., pre-training) the model is typically trained on a
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large corpus of text in an unsupervised manner. Unsupervised train-
ing was accomplished by using a mask prediction task, in which
the model was trained to predict a given word based on context. In
the second stage (i.e., fine-tuning), the pre-trained model is trained
in a supervised manner on a relatively small labeled dataset. In this
way, a single pre-trained model can be fine-tuned for any number
of specific tasks. Models developed according to this two stage ap-
proach have achieved state-of-the-art results for a number of NLP
tasks [30–32].

Advances in NLP can be directly applied to drug discovery ef-
forts, as proteins and molecules can be represented as sequences
of text. Recent efforts have indeed trained Transformer models
using molecules in SMILES format for chemical property predic-
tion tasks [2, 33–35]. Most previous work, however, has focused
on a language model vocabulary of individual characters or atoms
within a sequence, limiting the ability of the model to concisely
represent commonly occurring chemical structures. Furthermore,
the largest dataset used for pre-training contained approximately
one billion molecules [2], with most investigations using fewer
than 100 million [33–35]. With the success of previous Transformer
models using SMILES and text data, we were motivated to increase
the number of pre-training samples by an order of magnitude and
utilize different model vocabularies.

Transformer models have also been trained using protein se-
quence data. A recent study investigated the performance of multi-
ple model architectures on protein prediction tasks [15]. Further-
more, the outputs of pre-trained models for both molecule data and
protein data can be used as embeddings for additional downstream
tasks [36]. In the context of drug discovery, this enables the pre-
trained models to be fine-tuned on a dataset consisting of many
different protein and ligand combinations with experimentally de-
termined binding affinity. Notably, Transformer-based approaches
have shown significant performance improvements for affinity pre-
diction over alternative architectures, such as convolutional neural
networks [36, 37]. In the current work, we leverage the Transformer
architecture to develop a fine-tuned model capable of predicting
binding affinity for novel protein targets.

4.3 Deep Learning at Scale
Using increasingly large training datasets poses a substantial chal-
lenge in terms of time-to-solution. Data parallelism enables many
deep learning models to be trained efficiently at the scale of cur-
rent supercomputers [38, 39]. Transformers are one such model;
for example, large scale data parallelism has been used to dramati-
cally reduce BERT pre-training times [40–42]. Larger Transformer
models, such as Megatron-LM, have achieved performance of over
500 petaflops in mixed precision on Nvidia’s Selene supercomputer
[43]. Inasmuch as a previous effort to train a BERT model using one
billion molecules required approximately 4 days for pre-training [2],
the potential advantage of using large scale data parallelism to en-
able pre-training on larger datasets with faster turnaround times is
clear.

However, extreme scale data parallelism necessarily leads to ex-
tremely large batch sizes and large batch sizes can lead to instabil-
ity during training which degrades model evaluation performance.
While this problem is general [44], it has also specifically been

observed as a scaling bottleneck in the context of developing deep
learning models for drug discovery: a recent study found that an
overall batch size above 4096 (across 8 or 16 GPUs) was detrimental
to model training onmolecule data for a variational autoencoder [1].
The recently developed LAMB optimizer has been shown to ad-
dress this problem for batch sizes of up to 96 thousand, maintaining
similar evaluation performance as batch size increased [40, 41].

4.4 Genetic Algorithms
Inspired by the mutation and selection observed in natural systems,
genetic algorithms provide a useful framework for solving optimiza-
tion problems across scientific and engineering disciplines [45–48].
Specifically, for drug discovery, genetic algorithms have been used
in several studies to search chemical space. For example, Virshup
et al. proposed a set of hand-crafted rules for mutation and recom-
bination (e.g., add an atom, modify an atom type) to generate new
compounds. The generated compounds were then selected based
on diversity criteria to expand to unexplored regions of chemical
space [21]. Additional studies have used genetic algorithms to op-
timize for drug-specific metrics (e.g., solubility and quantitative
estimation of drug-likeness) [22, 46, 49, 50]. Typically, mutation
operators are manually defined based on the application and not
learned from the data. However, comparisons with alternative ML
optimization techniques have shown that genetic algorithms per-
form well across a range of drug discovery tasks [50].

As an alternative to the manually defined mutation and recom-
bination operators, molecule rearrangements can be determined
by a ML model. Generative models, such as generative adversarial
networks (GANs) can be used to produce molecules with desired
properties [17, 18]. Furthermore, masked language models provide
a useful modeling framework in which to learn viable rearrange-
ments of molecular sequences. During pre-training the language
model learns to predict missing sequences based on context. The
predictions provide a ranked list of all possible substitutions for a
given sub-sequence. Therefore, by sampling from the predictions, a
set of mutations can be generated for a molecule without the need
for manually defined rules. A similar procedure has been used to
find adversarial examples for NLP applications [51, 52]. In this work,
we utilize a masked language model to generate candidate mole-
cules and then apply selection based on scoring from the fine-tuned
model for binding affinity.

5 INNOVATIONS REALIZED
Our strategy for accelerating computational drug discovery is sum-
marized in Figure 1. We begin by constructing the largest molecule
dataset to date for pre-training a masked language model. Pre-
training is performed at scale using a batch size of over a million
molecules for two different tokenization schemes.We then fine-tune
the language model on a dataset with binding affinities for thou-
sands of protein targets. After developing the general pre-trained
and fine-tuned models, we search for drug candidates that optimize
the predicted binding affinities for a given protein.

5.1 Pre-training Molecule Language Models
5.1.1 Dataset Generation. Motivated by the success of Transformer
models (i.e., BERT) for a range of natural language processing tasks,
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Figure 1: Our strategy for developing general models for drug discovery contains three components. The molecule language
model is trained in an unsupervised manner; for pre-training, the model learns to reconstruct an original input molecule after
masking. For data augmentation, the model predictions can be used to generate new molecules. To predict binding affinities,
we use a dataset with measurements for protein and ligands to fine-tune the pre-trained model for predictions. To search for
drug candidates, we use both the pre-trained language model and the fine-tuned model. The pre-trained model generates new
molecules, which are scored by the fine-tuned model. Molecules are then selected based on the predicted score. The process is
iterated in the search for optimized drug candidates.

recent efforts have investigated using the SMILES text represen-
tation of molecules to train a masked language model [2, 33–35].
Large compound libraries such as Enamine REAL database [14] can
be used for the unsupervised pre-training stage, before the model
is fine-tuned for a desired prediction task. Although compound
libraries provide a valuable source of training data, the overwhelm-
ing size of chemical space ensures that many potentially useful
compounds will be excluded from current collections. Current state-
of-the-art generative and masked language models have reached
a training data size of approximately 1.1-1.6 billion compounds,
pushing the boundaries of currently available compound libraries
and compute resources [1, 2]. As a step toward enabling larger
explorations of chemical space, here we utilize the Enamine REAL
database as a starting point to generate a training dataset with ∼9.6
billion unique molecules.

Our strategy for dataset augmentation is motivated by the pre-
training stage for masked language models. During pre-training,
random sequences of an input molecule SMILES are masked, and
the model is trained to predict the identity of the masked sequences
based on the surrounding context. We, therefore, use a pre-trained
model, developed using Enamine as the training data, to predict
possible structural rearrangements for a given molecule as shown
in Figure 1. We also use the pre-trained model to combine two mol-
ecules; initial sequences are chosen from each respective molecule,
and a mask is placed in between. To be included in the training set,
all produced molecules must be valid [24] and have a normalized

synthesizability [18, 26] score above 0.3. To arrive at the final dataset
of 9.57 billion molecules, we applied random structural rearrange-
ments to molecules in the Enamine dataset with a maximum of five
masks per molecule. The top 5 predicted rearrangements from the
pre-trained model were considered, resulting in the dataset growing
from approximately 1.34 billion unique compounds to 4.14 billion
unique compounds. Another round of rearrangements for the ex-
panded dataset was accompanied by combinations of molecules
to generate the final training set. All molecules were converted to
canonical form using rdkit [24] and only unique molecules were
retained in the final dataset. As shown in Figure 2, the histograms
for drug-likeness, normalized synthesizability, and solubility did
not substantially change between the original data and the aug-
mented data, although the total number of compounds substantially
increased.

5.1.2 Tokenization. The process of tokenization is used to convert
any given sequence of text into a format that can be recognized by
the model. This is accomplished by constructing a vocabulary for
the model, which consists of a mapping between sub-sequences
of text and unique integer ids. One common method, WordPiece
tokenization [53, 54], builds the model vocabulary by assembling all
unique single characters and then including commonly occurring
sequences of increasing length. Although a collection of different
tokenization methods have been used for NLP tasks, for molecule
language models a simple vocabulary based on single atoms and
characters has predominantly been used [2, 19, 20, 33, 35, 55, 56].
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Figure 2: Although the augmented dataset contains roughly
7 times more molecules than the original dataset, the his-
tograms show that the augmentation strategy largely pre-
serves the distribution of multiple molecule metrics. For
Synthesizability, generated molecules for data augmentation
were required to have a score above 0.3, resulting in the ob-
served sharp decline in the histogram. For drug-likeness, no
constraints were placed on the augmented data, which re-
sulted in a decrease in typical scores relative to Enamine.

Here, we utilized two different tokenization methods, the standard
single atom and character Regex [56] and WordPiece tokenization.
As shown in Figure 3, the vocabulary generated by WordPiece tok-
enization enables large sub-sequences of a SMILES string (e.g., a
benzene ring) to be represented as a single token. Notice that for the
Regex tokenizer, the vocabulary will contain only individual charac-
ters and atoms, so commonly occurring chemical structures cannot
be assigned to a single token. Also, the size of the vocabularies for
the two tokenizers is drastically different, with the WordPiece tok-
enizer having 3 · 104 different tokens, while the Regex tokenizer has
around 200. Given the substantially different representations of mol-
ecules produced by the two tokenizers, we utilized both methods
for pre-training and fine-tuning tasks to determine the impact of
tokenization on fine-tuning and molecule generation performance.

5.1.3 Pre-training with Large Batch Sizes. We trained BERT models
using the LAMB optimizer with both the Regex and WordPiece
tokenizers utilizing different numbers of nodes on Summit. Each
node contained 6 GPUs, each having a single partition of 3.95 ·
105 unique molecules. The batch size per GPU was set to 240 (80
with 3 gradient accumulation steps); therefore, the total batch size
is given by 1440 (i.e., 240·6) multiplied by the number of nodes
[57]. At 1000 nodes, this results in over 1.4 million molecules per
batch. As shown in Tables 1-2, even with large batch sizes, the
model can be trained successfully, as evidenced by the validation
accuracy for mask prediction. Validation accuracy was determined
by evaluating the model on a hold-out set of 105 molecules; for each
molecule a random number of masks (up to 5 for Regex and up to

Figure 3: The vocabulary generated by WordPiece tokeniza-
tion represents commonly occurring sub-sequences from the
training data as individual tokens. The histogram shows the
distribution of number of characters for all tokens in the
vocab along with the chemical structure for sample tokens
of different length.

Table 1: Validation Accuracy for Pre-training Runs with
WordPiece Tokenizer.

Nodes Molecules Batch Size Accuracy

1 2.4 · 106 1.4 · 103 0.760

10 2.4 · 107 1.4 · 104 0.783

100 2.4 · 108 1.4 · 105 0.797

1000 2.4 · 109 1.4 · 106 0.798

1008 9.6 · 109 1.5 · 106 0.808

4032 9.6 · 109 5.8 · 106 0.801

3 for WordPiece) were sampled and used to replace tokens. Each
pre-training run consisted of 7 epochs, with model checkpoints
saved and validation accuracy determined after each epoch. The
maximum accuracy across checkpoints is shown. Notice that a
comparison of accuracy between Table 1 and Table 2 should not
be made, as the mask prediction task is substantially easier for the
Regex tokenizer (i.e., only single atoms or characters are predicted).

For the full dataset, we used two different training configurations.
First, we used 1008 nodes, with 4 partitions of 3.95 · 105 unique mol-
ecules per GPU. For comparison, we also performed pre-training on
over 4000 nodes for the WordPiece tokenizer with a single partition
per GPU (last row of Table 1). Both pre-training runs used a warmup
of 1 epoch. As expected from previous studies [41], the increased
batch size for the 4032 node run resulted in decreased validation
accuracy; however, it is notable that a batch size of nearly 6 million
incurred only a slight decrease in performance, suggesting that
distributed training for even larger molecule datasets is possible.
The 1008 node runs were completed in 8 hours each for 7 epochs;
the 4032 node run was stopped after failing to increase validation
accuracy (maximum was at 5 epochs), taking less than 2 hours. For
downstream tasks, such as fine-tuning, we used the models trained
on 1008 nodes for the WordPiece and Regex tokenizers.
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Table 2: Validation Accuracy for Pre-training Runs with
Regex Tokenizer.

Nodes Molecules Batch Size Accuracy

1 2.4 · 106 1.4 · 103 0.845

10 2.4 · 107 1.4 · 104 0.866

100 2.4 · 108 1.4 · 105 0.878

1000 2.4 · 109 1.4 · 106 0.882

1008 9.6 · 109 1.5 · 106 0.889

5.2 Predicting Binding Affinities
To determine whether a given drug molecule binds to a target mol-
ecule, i.e., a protein, both the candidate molecule and the amino
acid sequence of the protein need to be embedded. Then, to predict
the binding affinity, hidden layers are added that accept the conca-
tentation of the two embeddings as inputs. The predictive power
of such an ensemble model is chiefly determined by the expressive
power of the individual embeddings. Therefore, we expect that
using powerful pre-trained models to embed the molecules results
in superior performance on the downstream task. Here, we focus
on regression to predict the numerical value of the binding affinity,
however, the model architecture lends itself equally well to clas-
sification. Pre-trained embeddings and extra layers are fine-tuned
simultaneously, i.e., with all weights adjustable, on a labeled data
set of 1.67 · 106 receptor amino acid sequences and ligand SMILES,
with binding affinities. Note that this dataset used for fine-tuning is
much smaller than the datasets used for pre-training (Tables 1&2).

5.2.1 Binding Affinity Dataset. We curated a dataset [58] of bind-
ing affinities by concatenating the entries of the BindingDB [59],
PDBBind-cn [60], BindingMOAD [61], and BioLIP [62] databases,
following the example of Ref. [63]. Records containing 𝐾𝑖 , 1/𝐾𝑎 , 𝐾𝑏
and IC50 valueswere retained and converted to pKd= − log10 𝐾𝑑 [M]
units, and MACCS fingerprints were calculated on the molecules to
remove duplicates, resulting in 1,670,637 protein sequences, SMILES
strings and binding affinities.

5.2.2 Model Architecture. Figure 4 shows the neural network ar-
chitecture used to predict affinities. For embedding molecules, we
use the tokenizers and pre-trained models discussed above. For em-
bedding proteins, we make use of the readily available pre-trained
ProtBERT model [64], where every token is a letter in the amino
acid alphabet. The embeddings are fed to a cross-attention module
[65]. The purpose of the cross-attention layer is that molecule sub-
units attend to amino-acids in the protein sequence, and vice versa.
This architecture represents the physical situation in which the
molecule makes well-defined atom-atom contacts with the protein.
However, the model is not constrained to learn real physical con-
tacts, and importantly, it is not given any information about which
residues belong to the active site of the protein, which it has to learn
by itself from the given correlation between structures and binding
affinities. Despite the physical motivation behind its architecture,
the model is still to be considered as a ’black-box’. It cannot be
expected that the cross-attention weights directly correspond to
observable physical contacts, as sometimes suggested [63, 65].

The hidden layer outputs of the cross-attention module are con-
catenated, their mean is taken over the sequence length and they are
connected to a linear layer to predict the binding affinity. The model
is fine-tuned by minimizing the mean-squared error (MSE) between
the predicted and the experimental affinity. We validated the model
on a hold-out set from the training data as well as three additional
datasets as shown in Tables 3-4. We characterize the ability of the
model to correctly reproduce the order of the experimental affinity
values by the Spearman-𝜌 rank correlation coefficient (higher is
better) [69], as well as the mean-squared error for the predicted
affinity (lower is better). We calculate the uncertainty in the re-
ported values using the bootstrap method with 𝑛 = 500 samples.
Notably, the Regex tokenizer (and associated ensemble) outper-
forms the WordPiece tokenizer for certain datasets (i.e., Hold-out
and Kinases), but underperforms for others (i.e., PLpro), suggesting
that different molecule representations may be suitable for different
affinity prediction tasks.

Figure 5 demonstrates the performance for the validated and
transferable model on a binary classification task, using the metrics
of precision and recall. Here, we impose a threshold of 5 𝜇M (Mpro)
and 1 𝜇M (PLpro) on the experimental IC50 value (lower is better)
to label active molecules. These thresholds are typical of more
potent non-covalent inhibitors for the Mpro and PLpro targets. We
use sampling from the normal distribution of affinities implied by
the mean and the variance of the ensemble model to estimate the
confidence intervals, as well as the standard error from 𝑛 = 500
bootstrap samples. Remarkably, the model achieves a maximum
precision of 0.60 both for Mpro and PLpro, meaning that 60% of the
highest scoring molecules are true actives, which suggests excellent
virtual screening performance.

5.3 Searching for Drug Candidates
Similar to the strategy we used for data augmentation, the pre-
trained model can easily be adapted to generate rearrangements
for a given population of molecules. Here we utilize three different
types of rearrangements for a given tokenized molecule: insertion,
deletion, and replacement. For insertion, a mask is randomly in-
serted in between existing tokens or at the beginning or end. For
deletion, a mask randomly replaces two adjacent existing tokens.
With replacement, a single existing token is randomly masked.
To search for new drug candidates, we randomly sampled up to
5 masks and a rearrangement type for molecules in the popula-
tion. In addition, we consider recombination by randomly sampling
two molecules, selecting a sub-sequence from each and inserting a
mask in between. A canonical and randomized SMILES were used
to represent each molecule before masking, and the top 10 mole-
cules predicted by the pre-trained model were used as candidates.
As a starting population, we used molecules from the validation
set for pre-training. Only unique molecules were retained in the
population, as determined by canonical SMILES computed using
rdkit [24].

To score the molecules generated through rearrangements, we
utilized three metrics: normalized synthesizability, quantitative
estimation of drug-likeness, and the affinity predictions of the fine-
tuned model. The predicted score for the affinity was divided by
10 and clipped between 0 and 1 to generate a normalized affinity
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Figure 4: Architecture of the affinity prediction model used for fine-tuning. It uses two independent models for protein
sequences (Protein Language Model) and molecule SMILES (Molecule Language Model) connected to a cross-Attention module
that predicts the logarithm of the binding affinity.

Test set Ensemble Model 1 Model 2 Model 3
𝜌 MSE 𝜌 MSE 𝜌 MSE 𝜌 MSE

Hold-out 0.881(2) 0.69(1) 0.866(3) 0.77(1) 0.865(3) 0.79(1) 0.866(3) 0.75(1)
Kinases [66] 0.38(1) 1.67(3) 0.35(1) 1.80(3) 0.35(1) 1.88(3) 0.35(1) 1.80(3)
Mpro [67] 0.39(2) 1.82(5) 0.28(2) 1.79(5) 0.37(2) 2.24(6) 0.32(2) 1.82(5)
PLpro [68] 0.54(8) 0.8(1) 0.55(8) 0.9(1) 0.25(10) 0.67(11) 0.45(8) 1.3(2)

Table 3: Validation of the affinity prediction on different test sets, with Regex tokenizer for SMILES. Shown are Spearman 𝜌
rank correlation coefficient, and mean-squared error (MSE) for the ensemble and the individual models. Values in parentheses
indicate the uncertainty of the last reported digit.

Test set Ensemble Model 1 Model 2 Model 3
𝜌 MSE 𝜌 MSE 𝜌 MSE 𝜌 MSE

Hold-out 0.864(3) 0.72(1) 0.830(3) 0.94(2) 0.846(3) 0.84(1) 0.854(3) 0.77(1)
Kinases [66] 0.30(1) 2.03(3) 0.23(1) 2.90(4) 0.26(1) 1.95(3) 0.30(1) 1.94(3)
Mpro [67] 0.37(2) 1.23(5) 0.33(3) 1.23(5) 0.29(2) 1.49(5) 0.31(3) 1.44(5)
PLpro [68] 0.57(8) 0.71(10) 0.51(8) 0.45(7) 0.61(7) 0.76(10) 0.30(10) 1.7(2)

Table 4: Validation of the affinity prediction on different test sets, with WordPiece tokenizer for SMILES. Shown are Spearman 𝜌
rank correlation coefficient, and mean-squared error (MSE) for the ensemble and the individual models. Values in parentheses
indicate the uncertainty of the last reported digit.

metric. The harmonic mean of the three metrics was then used to
define the fitness of a given candidate. To find optimized candidates,
an initial population of 104 molecules was used from the validation
set for pre-training. Then, masked rearrangements were applied to
5 · 103 samples and recombination was applied to 5 · 103 sampled
pairs. The resulting molecules were added to the population and
ranked according to fitness; the top 104 overall were retained as the
starting population for the next generation. Based on the Hold-out
fine-tuning results, we selected Model 3 with a Regex Tokenizer
to predict scores. For molecule rearrangements, we used the pre-
trained model with WordPiece Tokenizer as it generated higher
fitness scores than the corresponding Regex Tokenizer.

As shown in Figure 6 (top two rows), 50 generations of optimiza-
tion to search for Mpro inhibitors resulted in a substantial shift
in the distributions of the three optimized metrics. Notably, the
mean for the affinity score increases, with the maximum generated
molecule having a normalized affinity score greater than 0.9. By
optimizing for synthesizability and drug-likeness in addition to
affinity, the generated molecules are constrained by useful heuristic
scoring functions for drug discovery [26, 27]. We also show the
top scoring molecule in the final population for each respective
metric. The three examples show that optimization successfully
found molecules with higher predicted affinities while maintaining
high synthesizability and drug-likeness scores. The bottom two
rows of Figure 6 show the corresponding results for PLpro. The
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Figure 5: Transferability and virtual-screening performance
of the fine-tuned model on two experimental SARS CoV-
2 protein affinity data sets, Mpro (top, from Ref. [67]) and
PLpro (bottom, from Ref. [68]), showing precision [=𝑡𝑝/(𝑡𝑝 +
𝑓 𝑝)] as a function of recall [=𝑡𝑝/(𝑡𝑝 + 𝑓 𝑛)].

only change to the genetic algorithm is the input protein sequence,
highlighting the generality of our approach.

6 HOW PERFORMANCEWAS MEASURED
6.1 Applications Used to Measure Performance
In this study, we performed pre-training, fine-tuning, and a ge-
netic algorithm on Transformer models. All models are written
in PyTorch using the Hugging Face Transformers API [70]. Mod-
els are pre-trained and fine-tuned with DeepSpeed [42], a high
performance wrapper for distributed Transformer training. Model
training is performed with data parallelism using DeepSpeed’s
fused-kernel LAMB optimizers. Sharded I/O is performed using the
WebDataset library [71]. As pre-training of the molecule language
model is by far the most computationally expensive stage of the
study, it is the focus of the performance analysis.

The architecture used for the molecule language model is BERT-
base, which has approximately 109 million learnable parameters.
Pre-training of the model is performed with data parallelism, in
which each GPU trains the model on separate data. Communica-
tion takes the form of a global asynchronous AllReduce which is
performed during backpropagation on each batch.

6.2 Measuring Performance
Performance of molecule language model pre-training was mea-
sured in two respects. First, sustained performance was measured

Figure 6: Results from optimizing molecules for the har-
monic mean of synthesizability, drug-likeness, and affinity.
The top two rows show results forMpro; the bottom two rows
show results for PLpro. The histograms show the changes in
the probability distributions from the starting population
to the optimized population after 50 generations. The three
examples show the highest scoring molecules for each re-
spective metric in the optimized population.

using built-in timers which report the total wall clock time elapsed
during training and the time for I/O operations (specifically, saving
checkpoints and trained models). Additionally, to measure peak ap-
plication performance relative to theoretical machine peak, mixed
precision floating point operations per second (FLOPs) are com-
puted using the DeepSpeed FLOPS Profiler.

6.3 System
6.3.1 Hardware. Performance was measured on the Summit su-
percomputer at the Oak Ridge Leadership Computing Facility at
ORNL [72]. Summit is comprised of 4674 IBM Power System AC922
nodes which are arranged in a non-blocking Fat Tree topology with
dual-rail EDR InfiniBand interconnect. Each node has two IBM
Power9 CPUs, six Nvidia 16 GB V100 GPUs, and 512GB of main
memory. The V100 device has an estimated peak performance of
14 teraflops for single precision (FP32) and 112 teraflops for mixed
precision using the Tensor Cores, which are capable of performing
matrix multiply in FP16 with FP32 accumulation for some kernels.
Consequently, Summit’s peak performance for mixed precision is
approximately 3.1 exaflops.

6.3.2 Software. Summit runs the Red Hat Enterprise Linux 8 oper-
ating system and uses the IBM LSF job scheduler. Our Python-based
software stack uses Open Cognitive Environment v1.2.0, PyTorch
v1.7.1, Transformers v4.5.1, DeepSpeed v0.4.5, and WebDataset
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Figure 7: Single node algorithmic and performance optimiza-
tion for pre-training the molecule language model: (1) base-
line with Adam optimizer, (2) use of mixed precision arith-
metic on V100 Tensor Cores, (3) larger per device batch size
enabled by mixed precision, (4) fused LAMB optimizer, and
(5) optimal balance of batch size per device and gradient accu-
mulation steps for single node performance and scalability.

v0.1.62. The GPU libraries include CUDA 11.0.3, NCCL 2.7.8, and
cuDNN 8.0.4.

7 PERFORMANCE RESULTS
7.1 Node Level Optimization
The results of node level optimization for molecule language model
pre-training are shown in Figure 7, in terms of runtime per epoch
plotted versus a series of successive optimizations. In this setting,
data parallelism is applied to train the molecule language model
across the six GPUs of a Summit node. The baseline case uses
the Adam optimizer, single precision arithmetic, and the largest
batch size per device (96) for which the model fits in GPU memory.
Enabling mixed precision with the V100 Tensor Cores decreases
runtime by approximately 43%. In addition, mixed precision enables
a larger per device batch size (128) to be used while keeping the
model within GPU memory, further decreasing runtime per epoch
by about 15%. While the decision to switch to the LAMB optimizer
was motivated by large batch sizes, as discussed in section 5.1.3,
DeepSpeed’s fused LAMB optimizer implementation also improves
performance by roughly 15%. Finally, leveraging LAMB’s stabil-
ity for very large batches, we changed the batch size to 80 and
added 3 gradient accumulation steps, for an effective batch size per
device of 240. While the addition of gradient accumulation does
not improve node level performance, this configuration enables
better scaling at very high node counts due to reduced communica-
tion frequency and, after hyperparameter optimization, maintains
comparable accuracy.

7.2 Scaling
As this study incorporates the largest molecule dataset ever used
for pre-training, the primary focus for scalability was weak scaling.
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Figure 8: Weak scaling of molecule language model pre-
training on Summit for a constant 395 thousand molecule
problem size per GPU. I/O operations are saving checkpoints
and trained models.

In Figure 8, we assess the weak scaling of pre-training the molecule
language model on Summit. For weak scaling, the problem size per
device is kept constant at 3.95 · 105 molecules. The training config-
uration is that identified in section 7.1, extended to the multi-node
setting, with data parallelism used to train a single model across
the given number of nodes. These runs are the production runs in
section 5.1.3 with the WordPiece tokenizer, and therefore include
I/O operations to save checkpoints and the final trained model.
Parallel efficiency for weak scaling from 1 to 4032 Summit nodes is
measured at 68.0%. However, a significant amount of performance
degradation at large node counts is due to I/O; when I/O time is
subtracted out, parallel efficiency over the same interval improves
to 83.3%. In combination with the validation accuracy results from
Tables 1 and 2, this clearly indicates that pre-training can be ex-
tended to incorporate unprecedented molecule dataset and batch
sizes without significantly compromising computational efficiency
or accuracy.

Strong scaling of the molecule language model pre-training is
shown in Figure 9 from 25 to 1600 Summit nodes. The total problem
size is kept constant at approximately 1.9 billion molecules, with
the same training configuration as for weak scaling. However, as
full runs could not be completed within facility wallclock limits for
many node counts, the reported runtime per epoch is measured
for the first 0.25 epochs for the 25 node job and for the first epoch
for all other node counts. Strong scaling is near linear from 25
to 400 Summit nodes and maintains approximately 67.4% parallel
efficiency at 1600 nodes versus the 25 node baseline.

7.3 Peak Performance
Table 5 shows the peak performance achieved formolecule language
model pre-training on Summit during the largest weak scaling run
from section 7.2. On 4032 nodes, peak performance of approxi-
mately 603.4 petaflops in mixed precision is achieved. As Summit’s
theoretical peak at this node count is projected at ∼2.71 exaflops,
our result represents about 22.3% of this mixed precision peak.
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Figure 9: Strong scaling of molecule language model pre-
training on Summit for a constant total problem size of ∼1.9
billion molecules.

Nodes Molecules Batch Size FLOPs
4032 9.6 · 109 5.8 · 106 603.4 petaflops

Table 5: Peak performance for molecule language model
pre-training on Summit in mixed precision floating point
operations per second (FLOPs).

8 IMPLICATIONS
8.1 ML Models for Drug Discovery
Supervised training ofMLmodels for drug discovery poses a key dif-
ficulty in terms of both time and resources, as a labeled dataset must
be created for each new therapeutic target. As demonstrated by
language models for both text [30] and chemical sequence data [2],
an alternative approach is to leverage large unlabeled datasets to
train a general model. The general model is then fine-tuned on a
relatively small dataset for a specific task of interest. Although fine-
tuning still requires supervised training, unsupervised pre-training
has enabled state-of-the-art results across a range of tasks with
limited labeled data [30, 32]. Here, we have taken the shift towards
general models a step further by using pre-training and fine-tuning
tasks that can generalize to any protein and molecule sequence.

The ability to pre-train molecule language models with large
batch sizes enables an unprecedented exploration of chemical space.
Current chemical databases provide hundreds of billions of mole-
cules, but contain only a small fraction of potentially synthesizable
molecules [73]. Through the process of tokenization and mask
prediction, language models can leverage large datasets to auto-
matically learn commonly occurring subsequences (i.e., structural
components) and possible rearrangements for effective searches of
chemical space.

By combining a pre-trained model for molecule and protein
sequences, the fine-tuning task can leverage data from many previ-
ous experimental investigations. Furthermore, additional modeling
techniques, such as docking simulations, could be used to augment
the training data in novel regions of interest. Recent development in

protein structure prediction [74] leverage both sequence and spatial
information to increase predictive performance. Although there
is still much work to be done to make a truly general model for
drug discovery, the increase in unsupervised and semi-supervised
approaches to training along with the increase in available exper-
imental and simulation data for protein and ligand interactions
makes possible the development of off-the-shelf models that gener-
alize across therapeutic targets. Developing a generalizable model is
key to reducing the time for discovering and screening new targets
in an emerging pandemic, such as COVID-19.

Using a genetic algorithm coupled with a pre-trained language
model for optimization enables incremental exploration and refine-
ment from known drugs aswell as population searches. For example,
a certain subsequence of a known compound can be masked, and
the language model can predict the most likely rearrangements.
Heuristic metrics andMLmodels can then be used to analyze the ex-
pected impact of structural changes. The intuitive process of making
incremental changes during exploration can be used to complement
and guide researcher intuition during the drug discovery process.
Therefore, our suggested optimization strategy provides a natural
framework for both fully-automated and user-guided exploration
of chemical space.

8.2 HPC Resources for Model Development
The pre-training phase of developing a language model requires
substantial computational resources; here, we utilized thousands
of GPUs and corresponding node hours to complete training. Simi-
larly, as the labeled dataset and the compound library for screening
grows, fine-tuning and inference can also necessitate the resources
of a leadership computing facility. Although these resource re-
quirements provide an excellent use case and motivation for the
continued development of HPC systems, they generate challenges
for the utilization and training of models throughout the research
community. Fortunately, the pre-trained models can be leveraged
for inference and to some extent fine-tuning applications with only
a single GPU.

For fine-tuning tasks with a specific protein target or chemical
property, training can typically be done without the need for HPC
resources. For inference, our results show that a genetic algorithm
using the pre-trained model for mutations can be used to generate
optimized candidates without the need for large scale model evalu-
ations. Furthermore, the genetic algorithm approach provides an
interpretable scheme for modifying a single molecule. The mask
predictions and scores can be inspected to determine single muta-
tions that lead to higher scores for a given metric. Also, the reported
genetic algorithm runs from this work used only a single V100 GPU
for less than 10 hours for optimization. Therefore, although the
pre-trained models require substantial computational resources for
training, the models can be used for exploration throughout the
research community.
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