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ABSTRACT 
RNA methylation plays an important role in functional regulation of RNAs, and has thus 
attracted an increasing interest in biology and drug discovery. Here, we collected and collated 
transcriptomic, proteomic, structural and physical interaction data from the Harmonizome 
database, and applied supervised machine learning to predict novel genes associated with 
RNA methylation pathways in human. We selected five types of classifiers, which we trained 
and evaluated using cross-validation on multiple training sets. The best models reached 88% 
accuracy based on cross-validation, and an average 91% accuracy on the test set. Using 
protein-protein interaction data, we propose six molecular sub-networks linking model 
predictions to previously known RNA methylation genes, with roles in mRNA methylation, 
tRNA processing, rRNA processing, but also protein and chromatin modifications. Our study 
exemplifies how access to large omics datasets joined by machine learning methods can be 
used to predict gene function.   
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INTRODUCTION 
RNA modifications have been known since the 1960s, when the sequencing of the first 
transfer RNA (tRNA) from yeast revealed 10 chemically modified ribonucleosides, including 
pseudouridine (Ψ)1. Since then, the number of identified modifications has grown to over 
150, found on both coding and non-coding RNAs across all three kingdoms of life2. 
Technological advances in the field have established that RNA modifications are widespread, 
reversible and dynamically regulated1. Methylation is the most abundant type, with methyl-
groups decorating multiple RNA species, such as messenger RNA (mRNA), ribosomal RNA 
(rRNA) and tRNA, at different nucleosides and positions. So far, N6-methyladenosine (m6A) is 
the most studied modification, commonly detected in mRNA, rRNA, long intergenic non-
coding RNA (lincRNA), primary microRNA (pri-miRNA), and small nuclear RNAs (snRNA). Other 
methyl-marks include 5-methylcytosine (m5C), N1-methyladenosine (m1A), 7-
methylguanosine (m7G), 2’-O-dimethyladenosine (m6Am) and 5-hydroxymethylcytosine 
(hm5C)3–5.  
 
Deposition of methyl-marks on RNA is catalysed by writer enzymes, known as RNA 
methyltransferases. To date, there are 57 RNA methyltransferases identified in the human 
genome. Of these, five methylate mRNAs, six small RNAs, 14 rRNAs, and 22 tRNAs, whereas 
12 remain with unknown substrates6. Most enzymes use S-adenosyl-methionine (SAM) as 
a methyl donor to the RNA substrate, while many also recruit accessory proteins, which are 
often essential for substrate binding, localization, and stability. The most well-studied 
examples of RNA methylation writers are by far the complex METTL3-METTL14 complex 
responsible for the deposition of m6A, followed by a NOL1/NOP2/Sun (NSUN) domain-
containing family of tRNA-modifying enzymes depositing m5C on tRNAs7.  
 
Dynamic regulation of RNAs via chemical modifications has recently attracted a rising interest 
in RNA modifying enzymes as new potential therapeutic targets8. This is because multiple 
lines of evidence suggest that RNA methylation plays a far more important role in cell 
functioning than previously thought. In line with this, several studies have shown that RNA 
methylation is a key modulator of transcript stability, gene expression, splicing and translation 
efficiency9–11. Furthermore, a growing body of data has demonstrated that changes in RNA 
methylation processes can be linked to a range of cancers, neurological disorders and various 
other diseases12. Surprisingly, despite this critical role in cellular homeostasis and disease, 
RNA methylation pathways in general remain understudied7. Our current understanding of 
RNA modifications is also highly fragmentary, with an estimated 20% or more of RNA 
modifying enzymes still remaining unknown or unidentified13. 
 
Conventional approaches for studying novel gene functions include a range of labour-
intensive wet-lab techniques, including mutagenesis, gene disruption or gene depletion 
(knocking-down/-out) for characterising gene-specific phenotypic effects, and 
chromatography and mass spectrometry for identifying molecular interactions. However, 
over the last two decades, access to large-scale omics data has enabled the use of “dry” 
computational methods for understanding biological functions. A wide array of bioinformatic 
tools have been developed under the umbrella of functional genomics, ranging from methods 
used to identify homologous genes with similar functionalities across species to genome-wide 
screens for specific sequence motifs and functional domains. Today, machine learning 
techniques are emerging as a powerful approach to harness the increasing wealth of large-
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scale biological data, allowing the discovery of hidden patterns and more reliable statistical 
predictions14.  
 
Here, we aimed to better understand the molecular pathways involved in RNA methylation 
in human using machine learning. To this end, we used publicly available human 
transcriptomic, proteomic, structural and protein-protein interaction data15 and built a large 
machine learning dataset for supervised binary classification. We trained and evaluated five 
ensembles of predictive models: Logistic Regression (LR), Gaussian Naïve Bayes (GNB), 
Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting (GB) models. We 
employed the best models to predict genes functionally associated with RNA methylation 
pathways in the human genome.  
 
RESULTS AND DISCUSSION 
Data engineering and feature selection 
Mining functional annotation databases in conjunction with extensive literature searches 
allowed us to identify 92 proteins involved in RNA methylation (Table 1). These were either 
methyl-writers (known RNA methyltransferases6 and their partner proteins in protein 
complexes), or enzymes previously annotated as putative RNA methyltransferases (see 
Methods). Genes encoding for these proteins constituted our positive class (Class 1) in 
machine learning analyses. To frame our predictive modelling as a binary classification 
problem, we assembled multiple stratified training and test datasets by randomly sampling a 
number of genes equal to our positive set from the remaining genome, ensuring that all genes 
of our initial dataset were sampled exactly once (Figure 1). Our rationale was that this would 
allow machine learning models to be trained and tested across a diverse range of other gene 
functions, instead of just choosing one function for the negative set. In addition, this approach 
alleviates any putative bias that may arise from sampling a single negative set of genes from 
the human genome.  
 
We initially pooled 50,176 features collected from publicly available and previously curated 
transcriptomic, proteomic, functional annotation, structural and physical interaction datasets 
(Table 2). To identify features that were informative for classification and thereby useful for 
predicting genes associated with RNA methylation, we performed feature selection prior to 
model training, followed by feature ranking after training and cross-validation. To reduce the 
feature-to-sample ratio, first we eliminated features with excessive missing data in the 
training dataset. Second, we removed features with low variance, which resulted in a drastic 
dimensionality reduction to 1,505 features for the final dataset. Selected features used for 
classification were drawn from BioGPS16 (35), Gene Ontology17 (GO: 59), GTEx18 (1,114), 
Human Protein Atlas19 (HPA: 107), InterPro (1), Pathway Commons (PathCommons: 150) and 
TISSUES20 (40) datasets. 
 
During model training and cross-validation, we computed feature importance by using the GB 
importance measure as averaged across all training sets. The 50 most informative features 
and their relative importance in classification are shown in Figure 2.  The features with the 
highest importance for the full feature set were mainly GO terms, such as GO:0032259, 
GO:0016740, GO:0003723, GO:0008168 and GO:0016070, all corresponding to methylation, 
transferase/methyltransferase activity and RNA metabolic processes. Equally, the InterPro 
domain IPR029063, which represents the S-adenosyl-L-methionine-dependent 
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methyltransferase superfamily was ranked among the top 50 most informative features 
(Figure 2A). Although anticipated, the fact that the classifiers seemed to rely on RNA and 
methylation-related annotation features provides support that the models learn to classify 
genes with a strong link to RNA methylation processes.  
 
Although GO annotations are informative, they may equally bias gene prediction towards pre-
existing functional annotations. We assembled thus a second feature set of reduced 
dimensionality, by excluding GO and InterPro data types. When classifiers were trained on 
this reduced feature set, the most informative types of features were mainly GTEx expression 
profiles (Figure 2B). The GTEx project aims to provide a comprehensive public resource of 
tissue-specific gene expression and regulation, so far including samples from 54 non-diseased 
tissues across nearly 1000 individuals18. Tissue sample expression data as integrated in 
Harmonizome and thus sampled here, consist of one-hot-encoded sets of genes with high or 
low expression in each tissue sample relative to other tissue samples from the GTEx tissue 
expression profiles dataset.  
 
A possible interpretation of the high ranking of such GTEx expression profile features is that 
under specific biological conditions, i.e., in certain tissues, RNA methylation genes tend to be 
collectively down- or up-regulated as compared to other processes. Alternatively, a high 
ranking of GTEx features may be due to the high proportion of GTEx features in the feature 
set and noise originating from the high dimensionality of the training dataset with respect to 
the feature-to-sample ratio. To investigate this further, we calculated the relative frequency 
of GTEx features in the top hundred most informative features across models from all training 
sets (Table 3). Notably, certain samples taken from the areas of blood, heart, pancreas, and 
brain were retrieved as informative by more than a hundred models.   
 
Model performance 
We selected five machine learning classifiers (LR, GNB, SVM, RF and GB) and trained each on 
training sets from the full and the reduced feature set, creating an ensemble of models per 
classifier and feature set. To evaluate model performance, we used 10-fold cross validation 
and standard performance quantification metrics, i.e., accuracy, precision, recall, F1 score, 
and Area Under the Curve of the Receiver Operating Characteristic (AUCROC). Overall, all five 
model ensembles showed very similar performance based on cross-validation (Table 4). 
Among classifiers trained using the full feature set, GB and RF models showed the highest 
average accuracy at 0.875 and 0.870, respectively, as well as a similarly high average precision 
of 0.895 and 0.870, respectively. The GB ensemble followed by that the RF models also 
yielded the highest AUROC score, with an average AUC estimated at 0.938 and 0.937, 
respectively.  
 
The performance of the five classifiers for the reduced feature set without GO/InterPro 
annotations was diminished compared to the full dataset (Table 4). The model ensembles of 
SVM and RF outperformed the remaining three ensembles across almost all metrics. SVM 
models performed the best on the reduced feature set based on cross-validation, with an 
average prediction accuracy of 0.812, precision of 0.822 and AUROC of 0.864.  
 
Based on the above results, we selected the best model ensembles to apply on previously 
unseen test data: GB for the full feature set and SVM for the reduced feature set. Accuracy, 
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precision, recall and AUCROC for the test datasets were calculated by averaging the values 
obtained for each model in an ensemble. For the ensemble of GB models using the full feature 
set, the average test set accuracy was 0.905, precision 0.897 and recall 0.923 (Figure 3A). The 
average test set accuracy, precision and recall for SVM models trained on the reduced feature 
set were 0.830, 0.820 and 0.857, respectively (Figure 3). The average AUCROC was 0.973 for 
the GB model ensemble, and 0.899 for the SVM ensemble.  
 
Model predictions and in silico validation 
What do the models predict? 
To evaluate results from different models and feature sets, we followed multiple approaches 
described in this and the following subsections. First, to get a high-level understanding of the 
predictions made by our models, we performed exploratory GO enrichment analyses of genes 
predicted with high confidence to be involved in RNA methylation. Here, we defined as high 
confidence all genes in the top 1% of the probability distribution for Class 1. For the GB 
ensemble trained on the full feature set, this comprised the top 269 predictions with an 
average probability score greater than 0.83. For the SVM models trained on the reduced 
feature set, 268 genes with a probability of 0.84 or higher were selected.  
 
The top 50 enriched terms for GB and SVM models are shown in Figures 4A and B, 
respectively. Both model ensembles, independently of the dataset they derived from, yielded 
predictions enriched in GO terms associated with RNA biogenesis, localization, transport and 
processing. Note that top enrichment results for GB included additionally terms associated 
with DNA and protein methylation processes (Figure 4A). This may point to either a lack of 
specificity of the models with regards to the modification substrate, or a close functional link 
between RNA and other methylation pathways. Overall, the GO analyses provided a good 
qualitative control for model performance. The rationale here is that although we did not 
recover enrichment in the biological term “RNA methylation” per se (given that the models 
predict “novel” genes), features closely associated with the term should figure among the top 
GO results.  
 
Do the models agree? 
Our second analysis aimed to assess the degree of concordance between predictive models 
trained on the full and reduced feature sets. Figure 5 shows the predicted probability scores 
of each gene being assigned to Class 1, based on GB models derived from the full feature set 
versus the average probability obtained by the SVM models trained on the reduced feature 
set. Overall, the two ensembles yielded very similar predictions, as exemplified by the strong 
correlation between predicted probability scores (r = 0.872, P < 2.2e-16). Yet, for certain 
genes we observed a high degree of discordance between the GB/full and SVM/reduced 
models. 
 
To further explore these discrepancies, we examined genes predicted to associate with RNA 
methylation pathways with a probability greater than 0.8 by one ensemble, but that were 
assigned to the negative class (P < 0.5) by the other ensemble. GO analysis of RNA methylation 
genes only predicted by SVM showed enrichment in the functions of anaphase-promoting 
complex-dependent catabolic process (P = 2.60E-07), antigen processing and presentation of 
peptide antigen via MHC class I (P = 7.69E-05), and mitochondrial translational elongation (P 
= 2.43E-04) among others (Figure 5).  Given that gene expression constituted the most 
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informative feature type for classifiers trained on the reduced feature set, it is likely that 
genes participating in the aforementioned processes exhibit highly similar expression profiles 
to RNA methylation genes - at least according to transcriptomic resources used here for 
learning.  
 
On the opposite end of the distribution, considering genes recovered with a high probability 
score by GB models only, our analyses found significant enrichment in DNA, histone and 
protein methylation processes, as well as other RNA modification pathways (P < 0.05, Figure 
5). This may represent a modelling artifact, i.e., predictions erroneously assigned to Class 1, 
that could be caused by the hierarchical nature of GO terms (e.g., “methylation” being the 
parent term of both “RNA methylation” and “DNA methylation” processes). An alternative 
interpretation is that our models capture a functional link between modification pathways 
operating at different substrates.  
 
In silico validation of gene predictions 
Of all classifiers, GB models that were trained on the full feature set showed the best 
performance based both on cross-validation and hold-out test datasets. We thus selected the 
top hundred genes predicted by the GB models to associate with RNA methylation pathways 
as candidates for further validation (Table 5). To evaluate these predictions with respect to 
previously known RNA methylation genes, we first performed a hierarchical clustering 
analysis of predicted plus positive (Class 1) genes based on the machine learning data used 
here (Figure 6). As anticipated, known and predicted genes were well clustered together, with 
no evident split between known and predicted RNA methylation genes.  
 
Second, we interrogated the STRING database21 for independent Protein-Protein Interaction 
(PPI) information on known RNA methylation genes and other genes of the human genome. 
We built a PPI network based on interactions with a confidence score of 400 or above, and 
performed Random Walks starting from proteins known to mediate methylation of RNAs 
(Class 1). This allowed us to weigh all other proteins in the network and rank them by their 
importance relative to our positive gene set. To evaluate whether genes predicted by our 
models were highly ranked among important interactors, we performed Gene Set Enrichment 
Analysis (GSEA) using the PageRank score as an input. We obtained a strong positive 
enrichment (NES = 1.605, P = 0.0001) for the model predictions (Table 6), corroborating their 
close functional association with RNA methylation pathways based on independent PPI 
evidence (Figure 7). 
 
Insights into the role of new predictions 
To gain functional insights into the role of newly predicted genes with regards to previously 
annotated RNA methyltransferases and associated proteins, we interrogated the STRING 
database for available PPI data connecting our model predictions to known RNA methylation 
genes. Our search unravelled a dense network of interactions (Figure 8A), comprising 2,450 
edges (confidence ≥ 400). To further dissect these PPI data and identify subgroups of proteins 
associated with specific pathways, we employed the Louvain method of community 
detection22. We identified six communities in total (Figure 8B), which we annotated using a 
large collection of functional annotation resources23. 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.10.472055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472055
http://creativecommons.org/licenses/by-nc-nd/4.0/


Community 1 (C1, Figure 8B) groups most RNA methylation genes from the positive set, 
together with 10 model predictions: CTU2, FARS2, HEMK1, KARS, MOCS3, MTO1, N6AMT1, 
PUS1, PUS3 and TRNT1. Functional analysis of community members showed that proteins 
comprising this sub-network are significantly enriched in the functions of tRNA modification 
(GO:0006400, P = 5.09E-70), tRNA methylation (GO:0030488, P = 6.31E-66), and tRNA 
processing (Reactome R-HSA-72306, P = 4.10E-45).  Indeed, four predictions in the cluster, 
CTU2, MOCS3, PUS1 and PUS3, are RNA modifying enzymes mediating tRNA modifications. 
CTU2 and MOCS3 are involved in 2-thiolation of mcm5S2U at wobble positions of tRNAs, 
whereas PUS1 and PUS3 belong to the tRNA pseudouridine synthase TruA family and mediate 
the formation of pseudouridine at positions 27/28 and 38/39 of certain tRNAs, respectively13. 
Among other members of the same community, the gene TRNT1 encodes the mitochondrial 
CCA tRNA nucleotidyltransferase 1 responsible for the addition of the conserved 3'-CCA 
sequence to tRNAs. It has been previously reported that the presence of the 3'-CCA tail on 
tRNA is required for target recognition by the tRNA methyltransferase NSUN624, which could 
underlie the functional link of TRNT1 with RNA methylation genes in our analyses.  
 
Likewise, two aminoacyl-tRNA synthetases, FARS2 and KARS, were also predicted to be closely 
associated with RNA methylation pathways and were part of Community 1. FARS2 is a 
mitochondrial Phenylalanine-tRNA ligase, responsible for the charging of tRNA(Phe) with 
phenylalanine. KARS encodes a Lysin-tRNA ligase. Although, we have not found any 
orthogonal evidence linking FARS2 to RNA methylation, KARS has been previously inferred to 
physically interact with the RNA methyltransferase TRMT1, based on co-fractionation data 
(source BioGRID25).  
 
The same sub-network also included two HemK methyltransferases, HEMK1 and N6AMT1. 
The former is a N5-glutamine methyltransferase responsible for the methylation of the 
glutamine residue in the GGQ motif of the mitochondrial translation release factor MTRF1L26. 
N6AMT1 methylates the eukaryotic translation termination factor 1 (eRF1) on Gln-185. 
Notably, it has been reported that N6AMT1 forms the catalytic subunit of a heterodimer with 
the RNA methyltransferase TRMT11227, suggestive of a functional interplay between RNA 
methylation and post-translational modifications of translation factors.   
 
Our models also predicted that MTO1 is a gene functionally associated with RNA methylation 
pathways. Previous studies have shown that MTO1 encodes for a mitochondrial protein which 
is indeed involved in the 5-carboxymethylaminomethyl modification (mnm5s2U34) of the 
wobble uridine base in mitochondrial tRNAs, with a crucial role in translation fidelity28.    
 
Community 2 (C2, Figure 8B) consists mainly of newly predicted genes, associated with four 
genes from the positive set: C7orf60, HENMT1, RRNAD1 and RSAD1. The gene C7orf60 or 
BMT2 encodes a probable S-adenosyl-L-methionine-dependent methyltransferase. Recent 
studies have suggested that BMT2 (also known as SAMTOR) acts as an inhibitor of mTOR 
complex 1 (mTORC1) signalling in human, a SAM sensor signalling methionine sufficiency29. 
In yeast, BMT2 is responsible for the m1A2142 modification of 25S rRNA30. Two other 
methyltransferase genes in the same cluster were RRNAD1 and HENMT1. The former encodes 
for ribosomal RNA adenine dimethylase domain containing 1, but little is known about its 
function. HENMT1 is a small RNA methyltransferase that adds a 2'-O-methyl group at the 3'-
end of piRNAs, contributing to the maintenance of Transposable Element (TE) repression in 
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adult germ cells31. Functional annotation of this community indicated an enrichment in 
peptidyl-lysine methylation function (GO:0018022, P = 1.92E-06), albeit this was based on 
only four proteins out the 23 forming this cluster (SETD4, VCPKMT, METTL21A, and METTL18). 
Among members of this community, we identified proteins with a role in methylation of other 
substrates. For example, FAM86A catalyses the trimethylation of the elongation factor 2 
(eEF2) at Lys-52532. METTL13 is also a methyltransferase responsible for the dual post-
translational methylation of the elongation factor 1-alpha (eEF1A) at two positions (Gly-2 and 
Lys-55), modulating mRNA translation in a codon-specific manner33. Both genes are involved 
in modifying translation elongation factor residues, same as N6AMT1 mentioned above. Our 
results hence suggest that post-translational modifications of translation factors and 
epitranscriptomic changes on RNAs could be interconnected in modulating translational 
efficiency.  
 
Community 3 (C3, Figure 8B) comprises 48 protein members, of which 10 are part of our 
positive set and 38 were predicted by the models. Overall, we found a strong enrichment for 
functional terms linked to ncRNA processing (GO:0034470, P = 6.79E-40) and rRNA processing 
(R-HSA-72312, P = 1.03E-39). For example, among Community 3 members, our predictions 
include five genes encoding for members of the nuclear RNA exosome, DIS3, EXOSC2, EXOSC5, 
EXOSC8 and EXOSC9. The exosome is known to participate in a wide variety of cellular RNA 
processing and degradation events preventing nuclear export and/or translation of aberrant 
RNAs. Exosome function is thus likely to be interlinked with epitranscriptomic marks on RNAs.  
 
We also identified a sub-cluster within the community connecting DIMT1, EMG1, FBL and 
NOP2 with 15 proteins predicted by our models. All members of the sub-cluster are RNA-
binding proteins involved in rRNA modification in the nucleus (R-HSA-6790901, P = 5.44E-36). 
EMG1 encodes for an RNA methyltransferase that methylates pseudouridine at position 1248 
in 18S rRNA34. Pathway annotation data further suggest that EMG1 together with eight new 
predictions (CIRH1A, DCAF13, HEATR1, NOL11, UTP3, UTP6, UTP20 and WDR3) are required 
in pre-18S rRNA processing and ribosome biogenesis. Of these, the NOL11 gene encodes a 
nucleolar protein contributing to pre-rRNA transcription and processing35. Partial evidence 
furthermore suggests that NOL11 interacts with the rRNA 2’-O-methyltransferase fibrillarin, 
FBL, which is involved in pre-rRNA processing by catalysing the site-specific 2'-hydroxyl 
methylation of pre-ribosomal RNAs35. FBL together with RRP9 and NOP56 are part of the box 
C/D RNP complex catalysing the ribose-2'-O-methylation of target RNAs. 
 
Finally, three novel gene predictions within this community, DPH5, TPMT and RRP8, were 
previously reported to have SAM-dependent methyltransferase activity. DPH5 is coding for a 
methyltransferase that catalyses the tri-methylation of the eEF2 as part of the diphthamide 
biosynthesis pathway, whereas TPMT encodes an enzyme that metabolizes thiopurine drugs. 
We cannot rule out that these may be false positives cases, i.e., erroneous predictions that 
stem from the presence of the SAM-binding domain in the protein. Yet genes mediating post-
translational modifications were repeatedly classified as components of RNA methylation 
pathways by our machine learning models (e.g., FAM86A in Community 2). A noteworthy case 
is RRP8, which in human is reported to bind to H3K9me2 and to probably act as a 
methyltransferase, yet studies in yeast have shown that the RRP8 homologue is responsible 
for installing m1A in the peptidyl transfer centre of the ribosome (m1A645 in 25S)36. 
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Community 4 (C4, Figure 8B) constitutes a large cluster of 42 proteins. Functional analysis of 
the group indicates that most community members are chromatin modifying enzymes (R-
HSA-3247509, P = 8.74E-29), or are associated in general with chromatin organization (R-HSA-
4839726, P = 8.74E-29) and histone modification (WP2369, P = 1.08E-23). Previously known 
RNA methylation genes in this community were mainly involved in RNA-capping pathways, 
e.g., RNMT, CMTR1, CMTR2, FAM103A1, TGS1 and RNGTT. Recent studies have suggested 
that there is indeed extensive crosstalk between RNA modifications and epigenetic 
mechanisms of gene regulation7,37,38. 
 
Community 5 (C5) and Community 6 (C6) encompass fewer members than the other 
communities. Community 5 consists of 10 proteins creating a small sub-network of RNA 
methyltransferases and partner proteins involved in RNA methylation (GO:0001510, P = 
1.91E-17) and mRNA methylation, in particular (GO:0080009, P = 6.26E-16). Notably, this 
community captures proteins involved in the m6A pathway, including the m6A writer complex 
of METTL3-METTL14 with co-factor WTAP, METTL16 and ZC3H13, as well as the m6Am writer 
METTL439. Community 6 is the smallest of all communities with only four protein members, 
two previously annotated RNA methylation genes, HSD17B10 and KIAA0391, and two 
predicted genes POP1 and POP4. Functional analysis suggests that all four proteins contribute 
to tRNA processing (R-HSA-72306, P = 5.97E-09) and three of them are involved in tRNA 5'-
end processing (GO:0099116, P = 5.32E-08). The HSD17B10 gene encodes the 3-hydroxyacyl-
CoA dehydrogenase type-2, which is involved in mitochondrial fatty acid beta-oxidation. 
HSD17B10 is involved in tRNA processing as it also forms a subcomplex of the mitochondrial 
ribonuclease P together with TRMT10C/MRPP140. This subcomplex, named MRPP1-MRPP2, 
catalyses the formation of N1-methylguanine and N1-methyladenine at position 9 (m1G9 and 
m1A9, respectively) in tRNAs. KIAA0391, also known as PRORP, encodes a catalytic 
ribonuclease component of mitochondrial ribonuclease P. It appears that POP1 and POP2 are 
also components of ribonuclease P and contribute to tRNA maturation via 5'-end cleavage. 
 
Potential drawbacks 
Our machine learning models and analyses have provided a wealth of new information on 
putative gene networks underpinning RNA methylation in human. However, it is worth noting 
the limitations of our approach. First, because only few writer enzymes are to date known to 
deposit methyl-marks on RNA6, we started from a very limited number of positive (and by 
consequence negative) samples to use for machine learning. Even though model performance 
based on test data was good, the small sample sizes may have hampered how well our models 
generalise. In addition, our models overpredicted genes associated with RNA methylation 
pathways, as a large number of genes obtained a high probability score for Class 1. This is 
because we followed a modelling approach using balanced positive and negative classes to 
optimise model performance. 
 
Second, it is uncertain whether employing previous knowledge from functional annotations 
may have biased model predictions. We addressed this caveat to an extent by using a reduced 
feature set without annotation features, such as GO terms. When looking at predictions based 
on models trained on this dataset, we identified genes previously known to be involved in cell 
differentiation, G2/M cell cycle, antigen presentation and mitochondrial translation (P < 0.05, 
Figure 5). Even based on this unbiased set of classifiers, machine learning models point to a 
recurrent theme of this study: that RNA methylation is functionally interconnected to a range 
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of other core cellular functions. For example, we repeatedly found genes encoding protein 
methyltransferases among the top model predictions. The key question here is whether these 
genes represent false positives, spurred by the hierarchical structure of GO terms or the 
shared SAM binding domain. These ambiguous predictions should be interpreted with 
caution, although multiple lines of evidence suggest that this could well be a biologically 
meaningful result echoing the crosstalk between DNA, RNA and post-transcriptional 
modification processes.  
 
CONCLUSIONS 
RNA methylation is a key modulator of transcript stability, splicing and translation efficiency, 
playing a critical role in cellular homeostasis and disease4. Yet, its molecular underpinnings 
remain to date poorly understood11. Here, we aimed to gain novel insights into genes 
associated with RNA methylation pathways in human using machine learning approaches. 
Specifically, we analysed available transcriptomic, proteomic, structural and protein-protein 
interaction data in a supervised machine learning framework. 
 
Our machine learning models showed very good performance on unseen test data, reaching 
high accuracy (91%), precision (90%) and recall (92%). A priori gene knowledge (e.g., GO 
annotations) together with expression data constituted the most informative data types in 
predictive modelling. Notably, in certain tissues, such as blood, heart, pancreas and brain, 
genes mediating RNA methylation seemed to show an up- or down-regulated expression 
profile.  
 
Using independent PPI data, we orthogonally validated top model predictions by 
corroborating close functional links to previously known RNA methylation genes. Community 
detection delineated six molecular subnetworks, with distinct roles in tRNA processing (C1, 
C6), rRNA processing (C3), mRNA methylation (C5), but also protein (C2) and chromatin 
modifications (C4). Network analyses suggested that deposition of methyl marks on tRNAs is 
co-orchestrated with other modification processes, such as 2-thiolation and pseudouridine 
formation. Similarly, rRNA methyltransferases appeared functionally linked to several genes 
involved in rRNA processing and ribosomal biogenesis. Intriguingly, RNA-capping enzymes 
were clustered with chromatin modifiers, raising the hypothesis of a crosstalk between the 
two processes. Our results further indicate that post-translational modifications of translation 
factors and epitranscriptomic changes on RNAs are intertwined in modulating translational 
efficiency. Overall, our study exemplifies how access to omics datasets joined by machine 
learning methods can be used to infer molecular pathways and novel gene function.   
 
METHODS 
Dataset assembly and pre-processing 
To assemble a machine learning dataset for predicting genes involved in RNA methylation 
process in the human genome, we first curated a list of previously known RNA methylation 
genes. For this, we performed searches in standard functional annotation resources, such as 
ExPASy ENZYME (https://enzyme.expasy.org/), InterPro (https://www.ebi.ac.uk/interpro/) 
and the GO Resource (http://geneontology.org/), in conjunction with a comprehensive 
literature review for annotated RNA methyltransferases following up on the pioneering paper 
of Schapira6. This allowed us to identify 92 proteins involved – or putatively involved – in RNA 
methylation to use for machine learning modelling (Table 1). 
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To obtain informative features for classifying gene functions, we interrogated the 
Harmonizome database15. Harmonizome provides a large collection of the pre-processed 
datasets for genes and proteins, with ~72 million attributes (functional associations) from 
over 70 major online resources. We selected 15 one-hot-encoded datasets from four broad 
categories: (i) transcriptomics; (ii) proteomics; (iii) structural or functional annotations; and 
(iv) physical interactions (Table 2). In particular, from omics experiments, we sampled 
BioGPS16, GTEx18, HPA19 and TISSUES20 gene and protein expression profile data. From 
functional datasets, we considered GO annotations and InterPro structural domains. Finally, 
from physical interactions datasets, we selected KEGG and Reactome Pathways, as well as 
Hub Proteins and Pathway Commons. Collating these data yielded an initial matrix of 26,935 
genes and 50,176 one-hot-encoded features (“full feature set”). In addition, we compiled a 
second dataset of reduced dimensionality, by excluding all 5,148 GO and InterPro annotation 
features (“reduced feature set”).  
 
Problem framing, model definition, training and evaluation 
To estimate the probability of a gene being associated with RNA methylation, we used 
standard machine learning approaches for binary classification. We labelled the 92 previously 
known RNA methylation genes as positive samples (Class 1), and split them into two sets 
comprising: (i) 80% of the data for training and cross-validation (n=74) and (ii) 20% kept 
unseen for model testing (n=18). We considered the remaining genes of the human genome 
as negative samples (Class 0) and performed an analogous 80/20 split into training/cross-
validation (n=21,476) and test sets (n=5,368). The underlying assumption here is that the vast 
majority of genes in the human genome serve other functions, thus the number of false 
negatives in the training data should be very small.   
 
To produce balanced sets of training samples, and to later reduce the variance of our final 
models through averaging, negative genes kept for training (n=21,476) were further divided 
into sets of 74 – equal to the number of positive samples for training. We thus generated 290 
training sets, where the positive class remained fixed and the negative class was represented 
by a random draw of an equal number of genes from the rest of the genome, sampling each 
gene once.  
 
Starting with 290 training sets and our unprocessed Harmonizome data comprising 50,176 
features, we next performed filtering to remove low-information features. We removed 
features with (i) zero values in more than 70% of the samples in each training set, or (ii) less 
than 16% variance in at least one training set. The selected features for each of the 290 
training sets were then merged into a final list of features for model training and testing. We 
followed the exact same selection process for the reduced feature set as well. 
 
We next considered five types of machine learning models for binary classification: Logistic 
Regression (LR), Gaussian Naïve Bayes (GNB), Support Vector Machine (SVM), Random Forest 
(RF) and Gradient Boosting (GB) models. We used grid search and 3-fold cross-validation on 
each training set for the SVM hyperparameter tuning of the kernel function (linear or RBF), 
cost parameter, and kernel bandwidth (RBF kernel only). For RF, we used grid search to 
determine the optimal number of trees in the forest, followed by a randomized search to 
select the best parameters for maximum number of features considered for splitting a node, 
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maximum number of levels in each decision tree, minimum number of data points placed in 
a node before the node is split, and minimum number of data points allowed in a leaf node. 
Likewise, for the GB model, we performed grid search to optimise the learning rate and 
number of trees in the forest, and subsequently performed a randomized search to tune the 
remaining decision tree parameters (see RF). We trained all five predictive models on each of 
the training sets from the full and reduced feature sets, respectively. The performance of all 
classifiers was estimated using 10-fold cross-validation, i.e., the dataset was split into 10 folds, 
of which nine were used for the training process and one for testing. The process was 
repeated ten times, and model performance was estimated using standard performance 
metrics: accuracy, precision, recall (sensitivity), F1 score and Area Under the Receiver 
Operating Characteristic Curve (AUROC), averaged across the ten repeats. Finally, we used GB 
feature ranking to determine the top 100 most informative features across the ensemble of 
training sets for the full and reduced feature sets, respectively.  
 
Final model testing on test dataset and genome-wide prediction 
Once the best classifiers for the full and reduced datasets were selected based on cross-
validation, we tested the performance of the model ensembles on unseen data. Analogous to 
the procedure described above for training data, we generated 298 testing datasets, by 
splitting the negative genes kept for testing into equal sets of 18 genes, and combining them 
with the 18 of positive samples previously retained. Each model from the classifier ensemble 
was evaluated on each of the test datasets using accuracy, precision, recall, F1 score and 
AUROC. Overall performance was calculated by averaging results of all models across test 
sets. 
 
Likewise, the prediction probability of each human gene was calculated by averaging 
probability scores for Class 1 across all models of the best ensemble for the full and reduced 
feature sets, respectively. Most non-Class 1 genes (all except the test cases) were part of the 
negative samples in the training data of exactly one model in the ensemble; however, due to 
the high number of models (290) the effects of this on the final predictions is expected to be 
negligible.  
 
All visualisations and meta-analyses were performed using the R software environment (v. 
4.0.5)41. A heatmap of known and predicted RNA methylation genes across all features used 
for machine learning was generated using the R package pheatmap. Further in silico validation 
of model predictions was performed using GO enrichment analyses of predicted genes within 
the domain “Biological Process” using the package clusterProfiler42. Protein-Protein 
Interaction (PPI) data for human were obtained from STRING (v.11.0)21 and filtered to 
interactions with a combined score of 400 and above. All network analyses were performed 
using the igraph R package43. Functional annotation of PPI communities was performed using 
EnrichR23. 
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TABLES 
Table 1. Known RNA methyltransferases and related proteins used as positive set (Class 1).  
 
Table 2. Gene-feature omics datasets used in machine learning analyses (source 
Harmonizome). 
 
Table 3. Highly informative features based on models trained on the reduced feature set, and 
their frequency in the top100 features across all models of the classifier ensemble. 
  
Table 4. Model performance based on 10-fold cross-validation. 
 
Table 5. Top 100 gene predictions based on the GB model ensemble of the full feature set.  
 
Table 6. Personalised PageRank score of top 100 model predictions based on PPI data (source: 
STRING).  
 
FIGURES 
Figure 1. Schematic representation of the analysis workflow.  Previously known RNA 
methylation genes were used as positive samples (Class 1) and split into two sets comprising 
80% of the data for training and 20% kept unseen for model testing. An analogous 80/20 split 
was performed for the remaining genes of the human genome, which were further divided 
into sets of equal size to the positive samples and used as negative samples (Class 0) to 
generate stratified sets for training and testing. Following feature pre-filtering, five types of 
machine learning models for binary classification - Logistic Regression (LR), Gaussian Naïve 
Bayes (GNB), Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting (GB) 
- were trained on each of the training sets resulting in a classifier ensemble. Each model from 
the classifier ensemble was evaluated on each of the test datasets and overall performance 
was calculated by averaging results of all models across test sets. The best-performing 
ensemble was used to make predictions for the whole genome. 
 
Figure 2. Feature importance. Top 50 most informative features ranked by their relative 
importance in predictive modelling based on the A. full and B. reduced feature sets. 
 
Figure 3. Model performance based on test data. Accuracy, precision, recall and AUC score 
distributions as estimated across test datasets for the best model ensembles: A. GB models 
for the full feature set; and B. SVM models for the reduced feature set. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.10.472055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472055
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 4. Functional enrichment analyses of high-confidence predictions. GO enrichment 
analysis of all genes in the top 1% of the probability distribution for Class 1 based on A. GB 
models, full feature set and B. SVM models, reduced feature set. Top enriched terms include 
functions such as RNA biogenesis, localization, transport, and processing. For GB predictions, 
additional functions were associated with DNA and protein methylation processes. 
 
Figure 5. Concordance between predictive models. Middle panel: Scatterplot of the 
predicted probability score of each gene being assigned to Class 1, based on GB models 
trained on the full feature set versus SVM models trained on the reduced feature set. Side 
panels: Top 15 enriched GO terms associated with genes assigned to Class 1 with a probability 
greater than 0.8 by one ensemble only (right: SVM models only; left: GB models only). 
Enriched terms are represented as a network with edges connecting overlapping gene sets. 
 
Figure 6. Heatmap of predicted and known RNA methylation genes. Hierarchical clustering 
analysis of predicted plus positive genes shows no evident split between predictions (yellow) 
and known RNA methylation genes (green). Features (columns) used for machine learning are 
shown in different colours based on the data source. 
 
Figure 7. GSEA analysis of model predictions based on PageRank score. Personalised 
PageRank score of all human genes was computed using PPI data from STRING, starting from 
previously known RNA methylation genes. A strong positive enrichment (NES = 1.605, P = 
0.0001) was obtained for model predictions, corroborating a close functional association with 
RNA methylation pathways. 
 
Figure 8. PPI network of known and predicted genes involved in RNA pathways. A. Network 
based on available PPI data connecting newly predicted genes with previously annotated RNA 
methyltransferases and associated proteins. B. Subgroups of proteins associated with specific 
pathways, as inferred using the Louvain method of community detection. 
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0.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.0510.857 +/− 0.051
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0.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.0160.899 +/− 0.016
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AUC

0.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.0270.905 +/− 0.027
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Accuracy
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A. B.
SVM – Reduced dataset
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Table 1
HGNC symbol Approved name HGNC ID NCBI gene ID Ensembl UCSC gene ID RefSeq accession Location Modification Synonyms
ALKBH8 alkB homolog 8, tRNA methyltransferase HGNC:25189 91801 ENSG00000137760 uc009yxp.4 NM_138775 11q22.3 mchm5U, mcm5s2U, mcm5U, mcm5Um
BCDIN3D BCDIN3 domain containing RNA methyltransferase HGNC:27050 144233 ENSG00000186666 uc001rvh.4 NM_181708 12q13.12 mm(pN)
BMT2 base methyltransferase of 25S rRNA 2 homolog HGNC:26475 154743 ENSG00000164603 uc003vgo.2 NM_152556 7q31.1 C7orf60
BUD23 BUD23 rRNA methyltransferase and ribosome maturation factor HGNC:16405 114049 ENSG00000071462 uc003tyt.4 NM_001202560 7q11.23 m7G WBSCR22
CBLL1 Cbl proto-oncogene like 1 HGNC:21225 79872 ENSG00000105879 uc003veq.4 NM_024814 7q22.3
CDK5RAP1 CDK5 regulatory subunit associated protein 1 HGNC:15880 51654 ENSG00000101391 uc002wyz.5 NM_016408 20q11.21 ms2i6A
CDKAL1 CDK5 regulatory subunit associated protein 1 like 1 HGNC:21050 54901 ENSG00000145996 uc003ndd.3 NM_017774 6p22.3 ms2t6A
CEBPZ CCAAT enhancer binding protein zeta HGNC:24218 10153 ENSG00000115816 uc002rpz.5 NM_005760 2p22.2
CMTR1 cap methyltransferase 1 HGNC:21077 23070 ENSG00000137200 NM_015050 6p21.2 m7GpppNm
CMTR2 cap methyltransferase 2 HGNC:25635 55783 ENSG00000180917 NM_018348 16q22.2 m7GpppNmNm
DIMT1 DIMT1 rRNA methyltransferase and ribosome maturation factor HGNC:30217 27292 ENSG00000086189 uc003jta.4 NM_014473 5q12.1 m6,6A
EMG1 EMG1 N1-specific pseudouridine methyltransferase HGNC:16912 10436 ENSG00000126749 uc031ysa.2 NM_006331 12p13.31
FBL fibrillarin HGNC:3599 2091 ENSG00000105202 uc002omn.4 NM_001436 19q13.2 Xm
FBLL1 fibrillarin like 1 HGNC:35458 345630 ENSG00000188573 uc011dep.3 NM_001355274 5q34
FDXACB1 ferredoxin-fold anticodon binding domain containing 1 HGNC:25110 91893 ENSG00000255561 uc001pmc.5 NM_138378 11q23.1
FMR1 fragile X mental retardation 1 HGNC:3775 2332 ENSG00000102081 uc010nst.4 NM_002024 Xq27.3
FTSJ1 FtsJ RNA 2'-O-methyltransferase 1 HGNC:13254 24140 ENSG00000068438 uc004djo.3 NM_001282157 Xp11.23 Cm,Um,Gm, f5Cm, hm5Cm, mcm5Um
FTSJ3 FtsJ RNA 2'-O-methyltransferase 3 HGNC:17136 117246 ENSG00000108592 uc002jca.3 NM_017647 17q23.3 m
HENMT1 HEN methyltransferase 1 HGNC:26400 113802 ENSG00000162639 uc001dvu.5 NM_144584 1p13.3
HSD17B10 hydroxysteroid 17-beta dehydrogenase 10 HGNC:4800 3028 ENSG00000072506 uc004dsl.2 NM_004493 Xp11.22 m1G,m1A
LARP7 La ribonucleoprotein 7, transcriptional regulator HGNC:24912 51574 ENSG00000174720 uc003iay.5 NM_016648 4q25
LCMT2 leucine carboxyl methyltransferase 2 HGNC:17558 9836 ENSG00000168806 uc001zrg.4 NM_014793 15q15.3 o2Yw, yW
MEPCE methylphosphate capping enzyme HGNC:20247 56257 ENSG00000146834 uc003uuw.3 NM_001194990 7q22.1 m7Gpp(pN)
METTL1 methyltransferase like 1 HGNC:7030 4234 ENSG00000037897 uc010ssd.3 NM_005371 12q14.1 m7G
METTL14 methyltransferase like 14 HGNC:29330 57721 ENSG00000145388 uc003icf.4 NM_020961 4q26
METTL15  HGNC:26606 196074 ENSG00000169519 uc001msh.3 NM_152636 11p14.1
METTL16 methyltransferase like 16 HGNC:28484 79066 ENSG00000127804 uc002fut.4 NM_024086 17p13.3
METTL2A methyltransferase like 2A HGNC:25755 339175 ENSG00000087995 uc002izv.3 NM_181725 17q23.2
METTL2B methyltransferase like 2B HGNC:18272 55798 ENSG00000165055 uc003vnf.3 NM_018396 7q32.1
METTL3 methyltransferase like 3 HGNC:17563 56339 ENSG00000165819 uc001wbc.4 NM_019852 14q11.2 m6A
METTL4 methyltransferase like 4 HGNC:24726 64863 ENSG00000101574 uc002klh.5 NM_022840 18p11.32 m6Am
METTL5 methyltransferase like 5 HGNC:25006 29081 ENSG00000138382 uc002ufp.4 NM_014168 2q31.1
METTL6 methyltransferase like 6 HGNC:28343 131965 ENSG00000206562 uc062hcc.1 NM_152396 3p25.1 m3C
METTL7A methyltransferase like 7A HGNC:24550 25840 ENSG00000185432 uc058nys.1 NM_014033 12q13.12
METTL7B methyltransferase like 7B HGNC:28276 196410 ENSG00000170439 uc010spr.3 NM_152637 12q13.2
METTL8 methyltransferase like 8 HGNC:25856 79828 ENSG00000123600 uc032ojq.2 NM_024770 2q31.1
MRM1 mitochondrial rRNA methyltransferase 1 HGNC:26202 79922 ENSG00000278619 uc032ggy.3 NM_024864 17q12 Gm
MRM2 mitochondrial rRNA methyltransferase 2 HGNC:16352 29960 ENSG00000122687 uc003slm.3 NM_013393 7p22.3 Um FTSJ2
MRM3 mitochondrial rRNA methyltransferase 3 HGNC:18485 55178 ENSG00000171861 uc002frw.4 NM_018146 17p13.3 Gm RNMTL1
MTERF4 mitochondrial transcription termination factor 4 HGNC:28785 130916 ENSG00000122085 NM_182501 2q37.3
NOP2 NOP2 nucleolar protein HGNC:7867 4839 ENSG00000111641 uc058kgw.1 NM_006170 12p13.31
NSUN2 NOP2/Sun RNA methyltransferase 2 HGNC:25994 54888 ENSG00000037474 uc003jdu.4 NM_017755 5p15.31 m5C
NSUN3 NOP2/Sun RNA methyltransferase 3 HGNC:26208 63899 ENSG00000178694 uc003drl.2 NM_022072 3q11.2 f5C
NSUN4 NOP2/Sun RNA methyltransferase 4 HGNC:31802 387338 ENSG00000117481 uc001cpr.3 NM_199044 1p33 m5C
NSUN5 NOP2/Sun RNA methyltransferase 5 HGNC:16385 55695 ENSG00000130305 uc011kev.4 NM_148956 7q11.23
NSUN6 NOP2/Sun RNA methyltransferase 6 HGNC:23529 221078 ENSG00000241058 uc010qcp.2 NM_182543 10p12.31 m5C
NSUN7 NOP2/Sun RNA methyltransferase family member 7 HGNC:25857 79730 ENSG00000179299 uc003gvj.4 NM_024677 4p14
PCIF1 PDX1 C-terminal inhibiting factor 1 HGNC:16200 63935 ENSG00000100982 uc002xqs.4 NM_022104 20q13.12
PRORP protein only RNase P catalytic subunit HGNC:19958 9692 ENSG00000100890 uc001wsy.3 NM_014672 14q13.2 KIAA0391
RAMAC RNA guanine-7 methyltransferase activating subunit HGNC:31022 83640 ENSG00000169612 uc002bjl.3 NM_031452 15q25.2
RBM15 RNA binding motif protein 15 HGNC:14959 64783 ENSG00000162775 uc021orn.2 NM_022768 1p13.3
RBM15B RNA binding motif protein 15B HGNC:24303 29890 ENSG00000259956 uc003dbd.4 NM_013286 3p21.2
RNGTT RNA guanylyltransferase and 5'-phosphatase HGNC:10073 8732 ENSG00000111880 uc003pmr.4 NM_003800 6q15 m7Gpp(pN)
RNMT RNA guanine-7 methyltransferase HGNC:10075 8731 ENSG00000101654 uc002ksl.2 NM_003799 18p11.21 m7Gpp(pN)
RRNAD1 ribosomal RNA adenine dimethylase domain containing 1 HGNC:24273 51093 ENSG00000143303 uc001fpu.4 NM_015997 1q23.1
RSAD1 radical S-adenosyl methionine domain containing 1 HGNC:25634 55316 ENSG00000136444 uc002iqw.2 NM_018346 17q21.33
SPOUT1 SPOUT domain containing methyltransferase 1 HGNC:26933 51490 ENSG00000198917 uc004bwd.3 NM_016390 9q34.11 C9orf114
TARBP1 TAR (HIV-1) RNA binding protein 1 HGNC:11568 6894 ENSG00000059588 uc001hwd.3 NM_005646 1q42.2 Gm
TFB1M transcription factor B1, mitochondrial HGNC:17037 51106 ENSG00000029639 uc003qqj.5 NM_001350501 6q25.3 m6,6A
TFB2M transcription factor B2, mitochondrial HGNC:18559 64216 ENSG00000162851 uc001ibn.4 NM_022366 1q44
TGS1 trimethylguanosine synthase 1 HGNC:17843 96764 ENSG00000137574 uc003xsj.5 NM_024831 8q12.1 m2,2,7Gpp(pN)
THADA THADA armadillo repeat containing HGNC:19217 63892 ENSG00000115970 uc002rsx.4 NM_022065 2p21
THUMPD2 THUMP domain containing 2 HGNC:14890 80745 ENSG00000138050 uc002rru.3 NM_025264 2p22.1
THUMPD3 THUMP domain containing 3 HGNC:24493 25917 ENSG00000134077 uc003brn.5 NM_015453 3p25.3
TRDMT1 tRNA aspartic acid methyltransferase 1 HGNC:2977 1787 ENSG00000107614 uc001iop.4 NM_004412 10p13 m5C
TRIT1 tRNA isopentenyltransferase 1 HGNC:20286 54802 ENSG00000043514 uc057fcv.1 NM_017646 1p34.2 i6A
TRMO tRNA methyltransferase O HGNC:30967 51531 ENSG00000136932 NM_016481 9q22.33 m6t6A C9orf156
TRMT1 tRNA methyltransferase 1 HGNC:25980 55621 ENSG00000104907 uc060ugy.1 NM_017722 19p13.13 m2,2G
TRMT10A tRNA methyltransferase 10A HGNC:28403 93587 ENSG00000145331 uc003hva.5 NM_152292 4q23 m1G
TRMT10B tRNA methyltransferase 10B HGNC:26454 158234 ENSG00000165275 uc004aai.5 NM_144964 9p13.2 m1G
TRMT10C tRNA methyltransferase 10C, mitochondrial RNase P subunit HGNC:26022 54931 ENSG00000174173 uc003duz.5 NM_017819 3q12.3 m1G,m1A
TRMT11 tRNA methyltransferase 11 homolog HGNC:21080 60487 ENSG00000066651 uc003qam.4 NM_021820 6q22.32
TRMT112 tRNA methyltransferase subunit 11-2 HGNC:26940 51504 ENSG00000173113 uc001nzt.5 NM_016404 11q13.1 m7G
TRMT12 tRNA methyltransferase 12 homolog HGNC:26091 55039 ENSG00000183665 uc003yra.5 NM_017956 8q24.13 o2Yw, yW
TRMT13 tRNA methyltransferase 13 homolog HGNC:25502 54482 ENSG00000122435 uc001dsv.4 NM_019083 1p21.2
TRMT1L tRNA methyltransferase 1 like HGNC:16782 81627 ENSG00000121486 uc001grf.5 NM_030934 1q25.3
TRMT2A tRNA methyltransferase 2 homolog A HGNC:24974 27037 ENSG00000099899 uc002zrk.3 NM_022727 22q11.21 m5U
TRMT2B tRNA methyltransferase 2 homolog B HGNC:25748 79979 ENSG00000188917 uc004egq.4 NM_024917 Xq22.1
TRMT44 tRNA methyltransferase 44 homolog HGNC:26653 152992 ENSG00000155275 uc003glg.3 NM_152544 4p16.1 Um
TRMT5 tRNA methyltransferase 5 HGNC:23141 57570 ENSG00000126814 uc001xff.5 NM_020810 14q23.1 m1G, m1I
TRMT6 tRNA methyltransferase 6 HGNC:20900 51605 ENSG00000089195 uc002wmh.3 NM_001281467 20p12.3 m1A
TRMT61A tRNA methyltransferase 61A HGNC:23790 115708 ENSG00000166166 uc001yng.4 NM_152307 14q32 m1A
TRMT61B tRNA methyltransferase 61B HGNC:26070 55006 ENSG00000171103 uc002rmm.5 NM_017910 2p23.2 m1A
TRMT9B tRNA methyltransferase 9B (putative) HGNC:26725 57604 ENSG00000250305 uc010lsq.4 NM_001099677 8p22 KIAA1456
TRMU tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase HGNC:25481 55687 ENSG00000100416 uc003bhp.4 NM_018006 22q13.31 tm5s2
TYW3 tRNA-yW synthesizing protein 3 homolog HGNC:24757 127253 ENSG00000162623 uc001dgn.4 NM_138467 1p31.1
VIRMA vir like m6A methyltransferase associated HGNC:24500 25962 ENSG00000164944 uc003ygo.3 NM_015496 8q22.1 KIAA1429
WDR4 WD repeat domain 4 HGNC:12756 10785 ENSG00000160193 uc002zci.5 NM_001260474 21q22.3
WDR6 WD repeat domain 6 HGNC:12758 11180 ENSG00000178252 uc062jnu.1 NM_001320546 3p21.31 Cm, Gm,f5Cm, hm5Cm
WTAP WT1 associated protein HGNC:16846 9589 ENSG00000146457 uc003qsl.6 NM_152857 6q25.3
ZC3H13 zinc finger CCCH-type containing 13 HGNC:20368 23091 ENSG00000123200 uc001vas.3 NM_015070 13q14.13
ZCCHC4 zinc finger CCHC-type containing 4 HGNC:22917 29063 ENSG00000168228 uc003grl.5 NM_001318148 4p15.2



Table 2
Dataset Description Measurement Association Category Resource Genes Attributes Associations
BioGPS Human Cell Type and Tissue Gene Expression Profiles Dataset mRNA expression profiles for human tissues and cell typesGene expression by microarrayGene-cell type or tissue associations by differential expression of gene across cell types and tissuesTranscriptomics BioGPS 16379 84 cell type or tissues 205445 gene-cell type or tissue associations
GTEx Tissue Gene Expression Profiles Dataset mRNA expression profiles for tissuesGene expression by RNA-seqGene-tissue associations by differential expression of gene across tissuesTranscriptomics Genotype Tissue Expression 25557 29 tissues 112583 gene-tissue associations
GTEx Tissue Sample Gene Expression Profiles Dataset mRNA expression profiles for tissue samplesGene expression by RNA-seqGene-tissue sample associations by differential expression of gene across tissue samplesTranscriptomics Genotype Tissue Expression 19247 2918 tissue samples 8421199 gene-tissue sample associations
HPA Cell Line Gene Expression Profiles Dataset mRNA expression profiles for cell linesGene expression by RNA-seqGene-cell line associations by differential expression of gene across cell linesTranscriptomics Human Protein Atlas 15372 43 cell lines 102943 gene-cell line associations
HPA Tissue Gene Expression Profiles Dataset mRNA expression profiles for tissuesGene expression by RNA-seqGene-tissue associations by differential expression of gene across tissuesTranscriptomics Human Protein Atlas 17423 31 tissues 81082 gene-tissue associations
HPA Tissue Sample Gene Expression Profiles Dataset mRNA expression profiles for tissue samplesGene expression by RNA-seqGene-tissue sample associations by differential expression of gene across tissue samplesTranscriptomics Human Protein Atlas 16657 121 tissue samples 303267 gene-tissue sample associations
GO Biological Process Annotations Dataset Curated annotations of genes with biological processesAssociation by literature curationGene-biological process associations from curated gene annotationsStructural or functional annotations Gene Ontology 15717 13212 biological processs 969303 gene-biological process associations
GO Molecular Function Annotations Dataset Curated annotations of genes with molecular functionsAssociation by literature curationGene-molecular function associations from curated gene annotationsStructural or functional annotations Gene Ontology 15777 4162 molecular functions 223181 gene-molecular function associations
InterPro Predicted Protein Domain Annotations Dataset Protein domains predicted for gene products based on sequence similarity to known domain signaturesAssociation by computational motif searchProtein-protein domain associations by sequence similarity to domain signaturesStructural or functional annotations InterPro 18002 11015 protein domains 62614 gene-protein domain associations
KEGG Pathways Dataset Sets of proteins participating in pathwaysAssociation by literature curationProtein-pathway associations from curated pathways Structural or functional annotations Kyoto Encyclopedia of Genes and Genomes3947 200 pathways 9324 gene-pathway associations
Reactome Pathways Dataset Sets of proteins participating in pathwaysAssociation by literature curationProtein-pathway associations from curated pathways Structural or functional annotations Reactome 7535 1638 pathways 83680 gene-pathway associations
TISSUES Curated Tissue Protein Expression Evidence Scores Dataset Protein tissue expression evidence scores by manual literature curationAssociation by literature curationProtein-tissue associations by integrating evidence from manual literature curationProteomics TISSUES 16215 643 tissues 357442 gene-tissue associations
HPA Tissue Protein Expression Profiles Dataset Semiquantitative protein expression profiles for tissuesProtein expression by immunohistochemistryProtein-tissue associations by differential expression of protein across tissuesProteomics Human Protein Atlas 15704 44 tissues 138576 gene-tissue associations
Hub Proteins Protein-Protein Interactions Dataset Sets of proteins interacting with hub proteinsAssociation by data aggregationProtein-hub protein associations from aggregated protein-protein interaction dataPhysical interactions Hub Proteins 9362 289 hub proteins 58320 gene-hub protein association
Pathway Commons Protein-Protein Interactions Dataset Protein-protein interactions from low-throughput or high-throughput studies aggregated by Pathway Commons from the following databases: Reactome, NCI Pathways, PhosphoSite, HumanCyc, HPRD, PANTHER, DIP, BioGRID, IntAct, BIND, Transfac, MiRTarBase, Drugbank, Recon X, Comparative Toxicogenomics Database, and KEGGAssociation by data aggregationProtein-protein associations from low-throughput or high-throughput protein-protein interaction dataPhysical interactions Pathway Commons 15747 15747 interacting proteins 3527164 gene-interacting protein associations



Table 3
Data source Feature ID Tissue (if applicable) Nb Sets Frequency
PathCommons_PPI NRF1 233 80.9
PathCommons_PPI UBC 193 67.0
GTEx_SampleGene GTEX-RVPV-0006-SM-2TF6Q Whole Blood 172 59.7
HPA_TissueSample pancreas_6b Pancreas 170 59.0
GTEx_SampleGene GTEX-WYJK-0005-SM-3NMA1 Whole Blood 169 58.7
GTEx_SampleGene GTEX-WRHU-1226-SM-4E3IJ Heart - Left Ventricle 155 53.8
HPA_TissueGene lymph_node Lymph Node 152 52.8
HPA_TissueSample lymphnode_5a Lymph Node 144 50.0
HPA_TissueSample lymphnode_4b Lymph Node 139 48.3
GTEx_SampleGene GTEX-T5JW-0008-SM-4DM5X Cells - Cultured fibroblasts 137 47.6
GTEx_SampleGene GTEX-XLM4-0004-SM-4AT5I Cells - EBV-transformed lymphocytes 133 46.2
BioGPS CD19+_BCells(neg._sel.) B Cells 132 45.8
GTEx_SampleGene GTEX-RVPU-0005-SM-2TF6L Whole Blood 129 44.8
GTEx_SampleGene GTEX-NFK9-0726-SM-2HMJW Thyroid 128 44.4
HPA_TissueGene pancreas Pancreas 126 43.8
GTEx_SampleGene GTEX-XBEC-1326-SM-4AT69 Heart - Left Ventricle 125 43.4
GTEx_SampleGene GTEX-OHPN-0011-R4A-SM-2I5FD Brain - Amygdala 122 42.4
GTEx_SampleGene GTEX-VUSG-0003-SM-3NMDK Cells - EBV-transformed lymphocytes 121 42.0
GTEx_SampleGene GTEX-T6MO-0003-SM-3NMAG Cells - EBV-transformed lymphocytes 113 39.2
GTEx_SampleGene GTEX-Q2AI-0008-SM-48U2H Cells - Cultured fibroblasts 112 38.9
GTEx_SampleGene GTEX-WFG7-0001-SM-3P61S Cells - EBV-transformed lymphocytes 111 38.5
GTEx_SampleGene GTEX-WZTO-0426-SM-3NM99 Lung 111 38.5
GTEx_SampleGene GTEX-X62O-0008-SM-46MU5 Cells - Cultured fibroblasts 111 38.5
TISSUES_curatProtein BTO:0003091 Urogenital System 101 35.1
GTEx_SampleGene GTEX-S7SF-0008-SM-3NM8T Cells - Cultured fibroblasts 100 34.7
GTEx_SampleGene GTEX-NL3H-0011-R1a-SM-48TDJ Brain - Hippocampus 98 34.0
TISSUES_curatProtein BTO:0000000 96 33.3
PathCommons_PPI HNF4A 94 32.6
BioGPS CD8+_Tcells T Cells 93 32.3
TISSUES_curatProtein BTO:0000081 Reproductive System 90 31.3
TISSUES_curatProtein BTO:0000042 89 30.9
BioGPS CD34+ 88 30.6
GTEx_SampleGene GTEX-S4UY-0008-SM-3NM8H Cells - Cultured fibroblasts 88 30.6
GTEx_SampleGene GTEX-UJMC-0326-SM-3GAE2 Thyroid 86 29.9
GTEx_SampleGene GTEX-XGQ4-0008-SM-4AT3Z Cells - Cultured fibroblasts 86 29.9
BioGPS CD105+_Endothelial 85 29.5
GTEx_SampleGene GTEX-WYVS-1726-SM-3NMAY Breast - Mammary Tissue 85 29.5
HPA_CellLineGene karpas707 81 28.1
GTEx_SampleGene GTEX-WZTO-0006-SM-3NM9T Whole Blood 80 27.8
GTEx_SampleGene GTEX-S3XE-0006-SM-3K2AA Whole Blood 78 27.1
GTEx_SampleGene GTEX-TML8-0001-SM-3NMAF Cells - EBV-transformed lymphocytes 78 27.1
GTEx_SampleGene GTEX-X638-0003-SM-47JZ1 Cells - EBV-transformed lymphocytes 77 26.7
GTEx_SampleGene GTEX-NL3H-0011-R7a-SM-2I3G5 Brain - Putamen (basal ganglia) 76 26.4
GTEx_SampleGene GTEX-QDVJ-0008-SM-48U2E Cells - Cultured fibroblasts 76 26.4
GTEx_SampleGene GTEX-UPK5-0003-SM-3NMDI Cells - EBV-transformed lymphocytes 75 26.0
HPA_TissueSample testis_7a Testis 75 26.0
GTEx_SampleGene GTEX-QCQG-0006-SM-2S1OW Whole Blood 73 25.3
PathCommons_PPI EFTUD2 73 25.3
GTEx_SampleGene GTEX-NL4W-0006-SM-2I3GH Whole Blood 72 25.0
HPA_CellLineGene u698 72 25.0
GTEx_SampleGene GTEX-S7PM-0008-SM-3NM9Q Cells - Cultured fibroblasts 71 24.7
GTEx_SampleGene GTEX-U3ZN-0326-SM-3DB86 Thyroid 71 24.7
GTEx_SampleGene GTEX-XQ8I-0006-SM-4BOQ5 Whole Blood 71 24.7
GTEx_SampleGene GTEX-X4XX-0926-SM-46MV7 Thyroid 70 24.3
HPA_TissueGene tonsil Tonsil 70 24.3
GTEx_SampleGene GTEX-S4P3-0008-SM-3NM8R Cells - Cultured fibroblasts 69 24.0
GTEx_SampleGene GTEX-S4Q7-0006-SM-3K2AT Whole Blood 67 23.3
GTEx_SampleGene GTEX-WHSB-1826-SM-3TW8M Muscle - Skeletal 67 23.3
PathCommons_PPI BCLAF1 67 23.3
GTEx_SampleGene GTEX-UPIC-0226-SM-3GADO Thyroid 65 22.6
GTEx_SampleGene GTEX-WOFL-0006-SM-3TW8K Whole Blood 65 22.6
GTEx_SampleGene GTEX-X261-0011-R7A-SM-4E3JJ Brain - Putamen (basal ganglia) 65 22.6
HPA_TissueSample testis_7e Testis 65 22.6
GTEx_SampleGene GTEX-RVPU-0011-R1A-SM-2XCAI Brain - Hippocampus 64 22.2
GTEx_SampleGene GTEX-S341-0006-SM-3NM8D Whole Blood 64 22.2
GTEx_SampleGene GTEX-T6MN-0002-SM-3NMAH Cells - EBV-transformed lymphocytes 63 21.9
GTEx_SampleGene GTEX-NFK9-0006-SM-3GACS Whole Blood 62 21.5
GTEx_SampleGene GTEX-P44H-0006-SM-2XCFB Whole Blood 62 21.5
GTEx_SampleGene GTEX-UPIC-1526-SM-4IHLU Uterus 62 21.5
GTEx_SampleGene GTEX-POMQ-0008-SM-48TE7 Cells - Cultured fibroblasts 61 21.2
GTEx_SampleGene GTEX-VUSH-0004-SM-3P61T Cells - EBV-transformed lymphocytes 61 21.2
GTEx_SampleGene GTEX-X8HC-0726-SM-46MWG Thyroid 61 21.2
GTEx_SampleGene GTEX-QESD-0006-SM-2I5G6 Whole Blood 60 20.8
GTEx_SampleGene GTEX-S4P3-0006-SM-3K2AW Whole Blood 60 20.8
HPA_TissueProtein rectum Rectum 60 20.8
PathCommons_PPI NOP56 60 20.8
GTEx_SampleGene GTEX-T5JC-0001-SM-3NMAK Cells - EBV-transformed lymphocytes 59 20.5
GTEx_SampleGene GTEX-X585-0002-SM-46MVA Cells - EBV-transformed lymphocytes 59 20.5
GTEx_SampleGene GTEX-WHSE-0126-SM-3NMBT Skin - Not Sun Exposed (Suprapubic) 58 20.1
PathCommons_PPI RPS9 58 20.1
GTEx_SampleGene GTEX-RTLS-0006-SM-2TF58 Whole Blood 57 19.8
GTEx_SampleGene GTEX-T2IS-0426-SM-32QPE Heart - Left Ventricle 57 19.8
GTEx_SampleGene GTEX-UPIC-0926-SM-4IHLV Liver 57 19.8
TISSUES_curatProtein BTO:0001489 Whole Body 57 19.8
GTEx_SampleGene GTEX-RWS6-0326-SM-2XCAP Heart - Left Ventricle 56 19.4
PathCommons_PPI RPL7A 56 19.4
HPA_TissueSample tonsil_8b1 Tonsil 55 19.1
HPA_TissueSample skeletalmuscle_d Muscle - Skeletal 54 18.8
HPA_TissueSample testis_7b Testis 54 18.8
GTEx_SampleGene GTEX-PVOW-1626-SM-48TC9 Esophagus - Mucosa 53 18.4
GTEx_SampleGene GTEX-WFON-0001-SM-3P61W Cells - EBV-transformed lymphocytes 53 18.4
GTEx_SampleGene GTEX-XGQ4-0005-SM-4AT5U Whole Blood 53 18.4
HPA_TissueSample testis_4a Testis 53 18.4
PathCommons_PPI RPS13 53 18.4
GTEx_SampleGene GTEX-TSE9-2626-SM-4DXV2 Uterus 52 18.1
TISSUES_curatProtein BTO:0000534 Gonad 52 18.1
GTEx_SampleGene GTEX-U8T8-0008-SM-4DXSP Cells - Cultured fibroblasts 51 17.7
HPA_TissueSample pancreas_6a Pancreas 51 17.7
GTEx_SampleGene GTEX-P78B-0008-SM-48TE1 Cells - Cultured fibroblasts 50 17.4
GTEx_SampleGene GTEX-SIU7-0001-SM-3NMAW Cells - EBV-transformed lymphocytes 50 17.4



Table 4
Full Dataset
Model Accuracy +/- Precision +/- Recall +/- F1 +/- AUC +/-
Gradient Boosting (GB) 0.875 0.025 0.895 0.033 0.865 0.031 0.872 0.025 0.938 0.015
Gaussian Naïve Bayes (GNB) 0.851 0.025 0.821 0.032 0.924 0.021 0.863 0.021 0.862 0.023
Logistic Regression (LR) 0.859 0.021 0.870 0.025 0.859 0.023 0.857 0.021 0.921 0.015
Random Forest (RF) 0.870 0.021 0.870 0.026 0.886 0.032 0.871 0.022 0.937 0.014
Support Vector Machine (SVM) 0.856 0.022 0.876 0.028 0.845 0.027 0.852 0.023 0.921 0.017

Dataset w/o GO/InterPro
Gradient Boosting (GB) 0.799 0.029 0.800 0.035 0.819 0.032 0.801 0.029 0.860 0.031
Gaussian Naïve Bayes (GNB) 0.781 0.022 0.765 0.028 0.840 0.043 0.792 0.024 0.800 0.021
Logistic Regression (LR) 0.795 0.030 0.797 0.035 0.814 0.030 0.797 0.029 0.857 0.032
Random Forest (RF) 0.805 0.024 0.802 0.033 0.833 0.023 0.809 0.022 0.867 0.025
Support Vector Machine (SVM) 0.812 0.027 0.822 0.036 0.816 0.032 0.811 0.027 0.864 0.026



Table 5
Gene Mean Prob UniProt Entry Entry Name Gene Names Protein Names

METTL13 0.944 Q8N6R0 EFNMT_HUMAN EEF1AKNMT KIAA0859 METTL13 CGI-01
eEF1A lysine and N-terminal methyltransferase (eEF1A-KNMT) (Methyltransferase-like protein 13) [Includes: eEF1A 
lysine methyltransferase (EC 2.1.1.-); eEF1A N-terminal methyltransferase (EC 2.1.1.-)]

PRMT5 0.943 O14744 ANM5_HUMAN PRMT5 HRMT1L5 IBP72 JBP1 SKB1

Protein arginine N-methyltransferase 5 (PRMT5) (EC 2.1.1.320) (72 kDa ICln-binding protein) (Histone-arginine N-
methyltransferase PRMT5) (Jak-binding protein 1) (Shk1 kinase-binding protein 1 homolog) (SKB1 homolog) (SKB1Hs) 
[Cleaved into: Protein arginine N-methyltransferase 5, N-terminally processed]

RRP8 0.940 O43159 RRP8_HUMAN RRP8 KIAA0409 NML hucep-1 Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin)

METTL18 0.933 O95568 MET18_HUMAN METTL18 ASTP2 C1orf156
Histidine protein methyltransferase 1 homolog (EC 2.1.1.-) (Arsenic-transactivated protein 2) (AsTP2) 
(Methyltransferase-like protein 18)

SETD2 0.933 Q9BYW2 SETD2_HUMAN SETD2 HIF1 HYPB KIAA1732 KMT3A SET2 HSPC069

Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting 
protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-
methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP)

RBBP5 0.930 Q15291 RBBP5_HUMAN RBBP5 RBQ3 Retinoblastoma-binding protein 5 (RBBP-5) (Retinoblastoma-binding protein RBQ-3)

SETDB1 0.929 Q15047 SETB1_HUMAN SETDB1 ESET KIAA0067 KMT1E
Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone 
H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1)

PRDM15 0.929 P57071 PRD15_HUMAN PRDM15 C21orf83 ZNF298 PR domain zinc finger protein 15 (EC 2.1.1.-) (PR domain-containing protein 15) (Zinc finger protein 298)

SUZ12 0.928 Q15022 SUZ12_HUMAN SUZ12 CHET9 JJAZ1 KIAA0160
Polycomb protein SUZ12 (Chromatin precipitated E2F target 9 protein) (ChET 9 protein) (Joined to JAZF1 protein) 
(Suppressor of zeste 12 protein homolog)

SUV39H1 0.927 O43463 SUV91_HUMAN SUV39H1 KMT1A SUV39H

Histone-lysine N-methyltransferase SUV39H1 (EC 2.1.1.355) (Histone H3-K9 methyltransferase 1) (H3-K9-HMTase 1) 
(Lysine N-methyltransferase 1A) (Position-effect variegation 3-9 homolog) (Suppressor of variegation 3-9 homolog 1) 
(Su(var)3-9 homolog 1)

KRR1 0.927 Q13601 KRR1_HUMAN KRR1 HRB2
KRR1 small subunit processome component homolog (HIV-1 Rev-binding protein 2) (KRR-R motif-containing protein 1) 
(Rev-interacting protein 1) (Rip-1)

GART 0.926 P22102 PUR2_HUMAN GART PGFT PRGS

Trifunctional purine biosynthetic protein adenosine-3 [Includes: Phosphoribosylamine--glycine ligase (EC 6.3.4.13) 
(Glycinamide ribonucleotide synthetase) (GARS) (Phosphoribosylglycinamide synthetase); 
Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1) (AIR synthase) (AIRS) (Phosphoribosyl-aminoimidazole 
synthetase); Phosphoribosylglycinamide formyltransferase (EC 2.1.2.2) (5'-phosphoribosylglycinamide transformylase) 
(GAR transformylase) (GART)]

SNRPD3 0.926 P62318 SMD3_HUMAN SNRPD3 Small nuclear ribonucleoprotein Sm D3 (Sm-D3) (snRNP core protein D3)

DIS3 0.922 Q9Y2L1 RRP44_HUMAN DIS3 KIAA1008 RRP44
Exosome complex exonuclease RRP44 (EC 3.1.13.-) (EC 3.1.26.-) (Protein DIS3 homolog) (Ribosomal RNA-processing 
protein 44)

SUV39H2 0.922 Q9H5I1 SUV92_HUMAN SUV39H2 KMT1B
Histone-lysine N-methyltransferase SUV39H2 (EC 2.1.1.355) (Histone H3-K9 methyltransferase 2) (H3-K9-HMTase 2) 
(Lysine N-methyltransferase 1B) (Suppressor of variegation 3-9 homolog 2) (Su(var)3-9 homolog 2)

WDR5 0.922 P61964 WDR5_HUMAN WDR5 BIG3 WD repeat-containing protein 5 (BMP2-induced 3-kb gene protein)
PRDM4 0.920 Q9UKN5 PRDM4_HUMAN PRDM4 PFM1 PR domain zinc finger protein 4 (EC 2.1.1.-) (PR domain-containing protein 4)

EXOSC2 0.920 Q13868 EXOS2_HUMAN EXOSC2 RRP4 Exosome complex component RRP4 (Exosome component 2) (Ribosomal RNA-processing protein 4)

PRMT1 0.918 Q99873 ANM1_HUMAN PRMT1 HMT2 HRMT1L2 IR1B4
Protein arginine N-methyltransferase 1 (EC 2.1.1.319) (Histone-arginine N-methyltransferase PRMT1) (Interferon 
receptor 1-bound protein 4)

SKIV2L2 0.917 P42285 MTREX_HUMAN MTREX DOB1 KIAA0052 MTR4 SKIV2L2
Exosome RNA helicase MTR4 (EC 3.6.4.13) (ATP-dependent RNA helicase DOB1) (ATP-dependent RNA helicase 
SKIV2L2) (Superkiller viralicidic activity 2-like 2) (TRAMP-like complex helicase)

UTP23 0.917 Q9BRU9 UTP23_HUMAN UTP23 C8orf53 rRNA-processing protein UTP23 homolog

FAM86A 0.917 Q96G04 EF2KT_HUMAN EEF2KMT FAM86A SB153 Protein-lysine N-methyltransferase EEF2KMT (EC 2.1.1.-) (eEF2-lysine methyltransferase) (eEF2-KMT)
RPP30 0.917 P78346 RPP30_HUMAN RPP30 RNASEP2 Ribonuclease P protein subunit p30 (RNaseP protein p30) (EC 3.1.26.5) (RNase P subunit 2)

EHMT1 0.917 Q9H9B1 EHMT1_HUMAN EHMT1 EUHMTASE1 GLP KIAA1876 KMT1D

Histone-lysine N-methyltransferase EHMT1 (EC 2.1.1.-) (Euchromatic histone-lysine N-methyltransferase 1) (Eu-
HMTase1) (G9a-like protein 1) (GLP) (GLP1) (Histone H3-K9 methyltransferase 5) (H3-K9-HMTase 5) (Lysine N-
methyltransferase 1D)

METTL17 0.917 Q9H7H0 MET17_HUMAN METTL17 METT11D1
Methyltransferase-like protein 17, mitochondrial (EC 2.1.1.-) (False p73 target gene protein) (Methyltransferase 11 
domain-containing protein 1) (Protein RSM22 homolog, mitochondrial)

EXOSC9 0.917 Q06265 EXOS9_HUMAN EXOSC9 PMSCL1

Exosome complex component RRP45 (Autoantigen PM/Scl 1) (Exosome component 9) (P75 polymyositis-scleroderma 
overlap syndrome-associated autoantigen) (Polymyositis/scleroderma autoantigen 1) (Polymyositis/scleroderma 
autoantigen 75 kDa) (PM/Scl-75)

N6AMT2 0.916 Q8WVE0 EFMT1_HUMAN EEF1AKMT1 N6AMT2
EEF1A lysine methyltransferase 1 (EC 2.1.1.-) (N(6)-adenine-specific DNA methyltransferase 2) (Protein-lysine N-
methyltransferase N6AMT2)

DDX56 0.916 Q9NY93 DDX56_HUMAN DDX56 DDX21 NOH61
Probable ATP-dependent RNA helicase DDX56 (EC 3.6.4.13) (ATP-dependent 61 kDa nucleolar RNA helicase) (DEAD box 
protein 21) (DEAD box protein 56)

TPMT 0.916 P51580 TPMT_HUMAN TPMT Thiopurine S-methyltransferase (EC 2.1.1.67) (Thiopurine methyltransferase)
DPH5 0.915 Q9H2P9 DPH5_HUMAN DPH5 AD-018 CGI-30 HSPC143 NPD015 Diphthine methyl ester synthase (EC 2.1.1.314) (Diphthamide biosynthesis methyltransferase)

SETD1A 0.915 O15047 SET1A_HUMAN SETD1A KIAA0339 KMT2F SET1 SET1A
Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.354) (Lysine N-methyltransferase 2F) (SET domain-containing 
protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1)

UTP3 0.915 Q9NQZ2 SAS10_HUMAN UTP3 CRLZ1 SAS10
Something about silencing protein 10 (Charged amino acid-rich leucine zipper 1) (CRL1) (Disrupter of silencing SAS10) 
(UTP3 homolog)

SUV420H1 0.914 Q4FZB7 KMT5B_HUMAN KMT5B SUV420H1 CGI-85

Histone-lysine N-methyltransferase KMT5B (Lysine N-methyltransferase 5B) (Lysine-specific methyltransferase 5B) 
(Suppressor of variegation 4-20 homolog 1) (Su(var)4-20 homolog 1) (Suv4-20h1) ([histone H4]-N-methyl-L-lysine20 N-
methyltransferase KMT5B) (EC 2.1.1.362) ([histone H4]-lysine20 N-methyltransferase KMT5B) (EC 2.1.1.361)

EED 0.912 O75530 EED_HUMAN EED
Polycomb protein EED (hEED) (Embryonic ectoderm development protein) (WD protein associating with integrin 
cytoplasmic tails 1) (WAIT-1)

DKC1 0.912 O60832 DKC1_HUMAN DKC1 NOLA4
H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein 
of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1)

METTL23 0.911 Q86XA0 MET23_HUMAN METTL23 C17orf95 Methyltransferase-like protein 23 (EC 2.1.1.-)

HEMK1 0.911 Q9Y5R4 HEMK1_HUMAN HEMK1 HEMK
MTRF1L release factor glutamine methyltransferase (EC 2.1.1.297) (HemK methyltransferase family member 1) 
(M.HsaHemKP)

PRDM10 0.910 Q9NQV6 PRD10_HUMAN PRDM10 KIAA1231 PFM7 TRIS PR domain zinc finger protein 10 (EC 2.1.1.-) (PR domain-containing protein 10) (Tristanin)
POP1 0.910 Q99575 POP1_HUMAN POP1 KIAA0061 Ribonucleases P/MRP protein subunit POP1 (hPOP1) (EC 3.1.26.5)

NSD1 0.910 Q96L73 NSD1_HUMAN NSD1 ARA267 KMT3B

Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa 
protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) 
(Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein)

KMT2D 0.910 O14686 KMT2D_HUMAN KMT2D ALR MLL2 MLL4
Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.354) (ALL1-related protein) 
(Myeloid/lymphoid or mixed-lineage leukemia protein 2)

SMYD4 0.909 Q8IYR2 SMYD4_HUMAN SMYD4 KIAA1936 SET and MYND domain-containing protein 4 (EC 2.1.1.-)

MOCS3 0.909 O95396 MOCS3_HUMAN MOCS3 UBA4

Adenylyltransferase and sulfurtransferase MOCS3 (Molybdenum cofactor synthesis protein 3) (Molybdopterin synthase 
sulfurylase) (MPT synthase sulfurylase) [Includes: Molybdopterin-synthase adenylyltransferase (EC 2.7.7.80) 
(Adenylyltransferase MOCS3) (Sulfur carrier protein MOCS2A adenylyltransferase); Molybdopterin-synthase 
sulfurtransferase (EC 2.8.1.11) (Sulfur carrier protein MOCS2A sulfurtransferase) (Sulfurtransferase MOCS3)]

MTR 0.907 Q99707 METH_HUMAN MTR
Methionine synthase (MS) (EC 2.1.1.13) (5-methyltetrahydrofolate--homocysteine methyltransferase) (Cobalamin-
dependent methionine synthase) (Vitamin-B12 dependent methionine synthase)

RPF1 0.906 Q9H9Y2 RPF1_HUMAN RPF1 BXDC5 Ribosome production factor 1 (Brix domain-containing protein 5) (Ribosome biogenesis protein RPF1)

PPIG 0.906 Q13427 PPIG_HUMAN PPIG
Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-
cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G)

PUS1 0.905 Q9Y606 TRUA_HUMAN PUS1 PP8985
tRNA pseudouridine synthase A (EC 5.4.99.12) (tRNA pseudouridine(38-40) synthase) (tRNA pseudouridylate synthase 
I) (tRNA-uridine isomerase I)

SETD4 0.904 Q9NVD3 SETD4_HUMAN SETD4 C21orf18 C21orf27 SET domain-containing protein 4 (EC 2.1.1.-) (EC 2.1.1.364)
MTO1 0.904 Q9Y2Z2 MTO1_HUMAN MTO1 CGI-02 Protein MTO1 homolog, mitochondrial

PRMT3 0.903 O60678 ANM3_HUMAN PRMT3 HRMT1L3
Protein arginine N-methyltransferase 3 (EC 2.1.1.-) (Heterogeneous nuclear ribonucleoprotein methyltransferase-like 
protein 3)

CTU2 0.903 Q2VPK5 CTU2_HUMAN CTU2 C16orf84 NCS2 Cytoplasmic tRNA 2-thiolation protein 2 (Cytosolic thiouridylase subunit 2)

EZH2 0.903 Q15910 EZH2_HUMAN EZH2 KMT6
Histone-lysine N-methyltransferase EZH2 (EC 2.1.1.356) (ENX-1) (Enhancer of zeste homolog 2) (Lysine N-
methyltransferase 6)

WDR3 0.902 Q9UNX4 WDR3_HUMAN WDR3 WD repeat-containing protein 3
FAM86C1 0.902 Q9NVL1 F86C1_HUMAN FAM86C1P FAM86C FAM86C1 Putative protein FAM86C1P (EC 2.1.1.-) (Protein FAM86C)
PCMTD2 0.901 Q9NV79 PCMD2_HUMAN PCMTD2 C20orf36 Protein-L-isoaspartate O-methyltransferase domain-containing protein 2

SSB 0.901 P05455 LA_HUMAN SSB Lupus La protein (La autoantigen) (La ribonucleoprotein) (Sjoegren syndrome type B antigen) (SS-B)
MPHOSPH10 0.900 O00566 MPP10_HUMAN MPHOSPH10 MPP10 U3 small nucleolar ribonucleoprotein protein MPP10 (M phase phosphoprotein 10)

HEATR1 0.900 Q9H583 HEAT1_HUMAN HEATR1 BAP28 UTP10
HEAT repeat-containing protein 1 (Protein BAP28) (U3 small nucleolar RNA-associated protein 10 homolog) [Cleaved 
into: HEAT repeat-containing protein 1, N-terminally processed]

ASH2L 0.900 Q9UBL3 ASH2L_HUMAN ASH2L ASH2L1 Set1/Ash2 histone methyltransferase complex subunit ASH2 (ASH2-like protein)

METTL20 0.899 Q8IXQ9 ETKMT_HUMAN ETFBKMT C12orf72 METTL20
Electron transfer flavoprotein beta subunit lysine methyltransferase (EC 2.1.1.-) (ETFB lysine methyltransferase) (ETFB-
KMT) (Protein N-lysine methyltransferase METTL20)

POP4 0.899 O95707 RPP29_HUMAN POP4 RPP29 Ribonuclease P protein subunit p29 (hPOP4) (EC 3.1.26.5)

RRP9 0.899 O43818 U3IP2_HUMAN RRP9 RNU3IP2 U355K
U3 small nucleolar RNA-interacting protein 2 (RRP9 homolog) (U3 small nucleolar ribonucleoprotein-associated 55 
kDa protein) (U3 snoRNP-associated 55 kDa protein) (U3-55K)



PRMT6 0.899 Q96LA8 ANM6_HUMAN PRMT6 HRMT1L6
Protein arginine N-methyltransferase 6 (EC 2.1.1.319) (Heterogeneous nuclear ribonucleoprotein methyltransferase-
like protein 6) (Histone-arginine N-methyltransferase PRMT6)

UPF2 0.899 Q9HAU5 RENT2_HUMAN UPF2 KIAA1408 RENT2
Regulator of nonsense transcripts 2 (Nonsense mRNA reducing factor 2) (Up-frameshift suppressor 2 homolog) 
(hUpf2)

PRMT7 0.898 Q9NVM4 ANM7_HUMAN PRMT7 KIAA1933
Protein arginine N-methyltransferase 7 (EC 2.1.1.321) (Histone-arginine N-methyltransferase PRMT7) ([Myelin basic 
protein]-arginine N-methyltransferase PRMT7)

TRNT1 0.898 Q96Q11 TRNT1_HUMAN TRNT1 CGI-47

CCA tRNA nucleotidyltransferase 1, mitochondrial (EC 2.7.7.72) (Mitochondrial tRNA nucleotidyl transferase, CCA-
adding) (mt CCA-adding enzyme) (mt tRNA CCA-diphosphorylase) (mt tRNA CCA-pyrophosphorylase) (mt tRNA 
adenylyltransferase)

SETD1B 0.898 Q9UPS6 SET1B_HUMAN SETD1B KIAA1076 KMT2G SET1B
Histone-lysine N-methyltransferase SETD1B (EC 2.1.1.354) (Lysine N-methyltransferase 2G) (SET domain-containing 
protein 1B) (hSET1B)

UTP6 0.898 Q9NYH9 UTP6_HUMAN UTP6 C17orf40 HCA66 MHAT
U3 small nucleolar RNA-associated protein 6 homolog (Hepatocellular carcinoma-associated antigen 66) (Multiple hat 
domains protein)

WDR36 0.898 Q8NI36 WDR36_HUMAN WDR36 WD repeat-containing protein 36 (T-cell activation WD repeat-containing protein) (TA-WDRP)
NOL9 0.897 Q5SY16 NOL9_HUMAN NOL9 Polynucleotide 5'-hydroxyl-kinase NOL9 (EC 2.7.1.-) (Nucleolar protein 9)
FARS2 0.897 O95363 SYFM_HUMAN FARS2 FARS1 HSPC320 Phenylalanine--tRNA ligase, mitochondrial (EC 6.1.1.20) (Phenylalanyl-tRNA synthetase) (PheRS)

VCPKMT 0.896 Q9H867 MT21D_HUMAN VCPKMT C14orf138 METTL21D
Protein-lysine methyltransferase METTL21D (EC 2.1.1.-) (Methyltransferase-like protein 21D) (VCP lysine 
methyltransferase) (VCP-KMT) (Valosin-containing protein lysine methyltransferase)

EXOSC8 0.896 Q96B26 EXOS8_HUMAN EXOSC8 OIP2 RRP43
Exosome complex component RRP43 (Exosome component 8) (Opa-interacting protein 2) (OIP-2) (Ribosomal RNA-
processing protein 43) (p9)

NOP56 0.896 O00567 NOP56_HUMAN NOP56 NOL5A Nucleolar protein 56 (Nucleolar protein 5A)

ASMTL 0.896 O95671 ASML_HUMAN ASMTL

Probable bifunctional dTTP/UTP pyrophosphatase/methyltransferase protein [Includes: dTTP/UTP pyrophosphatase 
(dTTPase/UTPase) (EC 3.6.1.9) (Nucleoside triphosphate pyrophosphatase) (Nucleotide pyrophosphatase) (Nucleotide 
PPase); N-acetylserotonin O-methyltransferase-like protein (ASMTL) (EC 2.1.1.-)]

SMYD5 0.895 Q6GMV2 SMYD5_HUMAN SMYD5 RAI15 SET and MYND domain-containing protein 5 (EC 2.1.1.-) (Protein NN8-4AG) (Retinoic acid-induced protein 15)

DNMT1 0.895 P26358 DNMT1_HUMAN DNMT1 AIM CXXC9 DNMT
DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase 
HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT)

PRMT9 0.895 Q6P2P2 ANM9_HUMAN PRMT9 PRMT10 Protein arginine N-methyltransferase 9 (Protein arginine N-methyltransferase 10) (EC 2.1.1.320)

PUS3 0.894 Q9BZE2 PUS3_HUMAN PUS3 FKSG32
tRNA pseudouridine(38/39) synthase (EC 5.4.99.45) (tRNA pseudouridine synthase 3) (tRNA pseudouridylate synthase 
3) (tRNA-uridine isomerase 3)

NDUFAF7 0.894 Q7L592 NDUF7_HUMAN NDUFAF7 C2orf56 PRO1853
Protein arginine methyltransferase NDUFAF7, mitochondrial (EC 2.1.1.320) (NADH dehydrogenase [ubiquinone] 
complex I, assembly factor 7) (Protein midA homolog)

RTCB 0.894 Q9Y3I0 RTCB_HUMAN RTCB C22orf28 HSPC117 RNA-splicing ligase RtcB homolog (EC 6.5.1.8) (3'-phosphate/5'-hydroxy nucleic acid ligase)
RRP1B 0.893 Q14684 RRP1B_HUMAN RRP1B KIAA0179 Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B)

N6AMT1 0.893 Q9Y5N5 N6MT1_HUMAN N6AMT1 C21orf127 HEMK2 KMT9 PRED28

Methyltransferase N6AMT1 (HemK methyltransferase family member 2) (M.HsaHemK2P) (Lysine N-methyltransferase 
9) (EC 2.1.1.-) (Methylarsonite methyltransferase N6AMT1) (EC 2.1.1.-) (Protein N(5)-glutamine methyltransferase) 
(EC 2.1.1.-)

DDX21 0.893 Q9NR30 DDX21_HUMAN DDX21
Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA 
helicase II) (RH II/Gu)

POLR2B 0.892 P30876 RPB2_HUMAN POLR2B
DNA-directed RNA polymerase II subunit RPB2 (EC 2.7.7.6) (DNA-directed RNA polymerase II 140 kDa polypeptide) 
(DNA-directed RNA polymerase II subunit B) (RNA polymerase II subunit 2) (RNA polymerase II subunit B2)

DCAF13 0.892 Q9NV06 DCA13_HUMAN DCAF13 WDSOF1 HSPC064 DDB1- and CUL4-associated factor 13 (WD repeat and SOF domain-containing protein 1)
NOL11 0.892 Q9H8H0 NOL11_HUMAN NOL11 L14 Nucleolar protein 11

DHX15 0.891 O43143 DHX15_HUMAN DHX15 DBP1 DDX15
Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 (EC 3.6.4.13) (ATP-dependent RNA helicase #46) (DEAH 
box protein 15)

PRPF4B 0.890 Q13523 PRP4B_HUMAN PRPF4B KIAA0536 PRP4 PRP4H PRP4K
Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 
homolog)

UTP18 0.890 Q9Y5J1 UTP18_HUMAN UTP18 WDR50 CDABP0061 CGI-48 U3 small nucleolar RNA-associated protein 18 homolog (WD repeat-containing protein 50)
KARS 0.889 Q15046 SYK_HUMAN KARS1 KARS KIAA0070 Lysine--tRNA ligase (EC 2.7.7.-) (EC 6.1.1.6) (Lysyl-tRNA synthetase) (LysRS)

METTL21A 0.889 Q8WXB1 MT21A_HUMAN METTL21A FAM119A HCA557B
Protein N-lysine methyltransferase METTL21A (EC 2.1.1.-) (HSPA lysine methyltransferase) (HSPA-KMT) 
(Hepatocellular carcinoma-associated antigen 557b) (Methyltransferase-like protein 21A)

EXOSC5 0.889 Q9NQT4 EXOS5_HUMAN EXOSC5 CML28 RRP46
Exosome complex component RRP46 (Chronic myelogenous leukemia tumor antigen 28) (Exosome component 5) 
(Ribosomal RNA-processing protein 46) (p12B)

NOL8 0.889 Q76FK4 NOL8_HUMAN NOL8 C9orf34 NOP132 Nucleolar protein 8 (Nucleolar protein Nop132)
PCMTD1 0.888 Q96MG8 PCMD1_HUMAN PCMTD1 Protein-L-isoaspartate O-methyltransferase domain-containing protein 1

KMT2B 0.888 Q9UMN6 KMT2B_HUMAN KMT2B HRX2 KIAA0304 MLL2 MLL4 TRX2 WBP7
Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.354) (Myeloid/lymphoid or mixed-
lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7)

UTP20 0.888 O75691 UTP20_HUMAN UTP20 DRIM
Small subunit processome component 20 homolog (Down-regulated in metastasis protein) (Novel nucleolar protein 
73) (NNP73) (Protein Key-1A6)

CIRH1A 0.888 Q969X6 UTP4_HUMAN UTP4 CIRH1A cPERP-E KIAA1988 U3 small nucleolar RNA-associated protein 4 homolog (Cirhin) (UTP4 small subunit processome component)

CARM1 0.887 Q86X55 CARM1_HUMAN CARM1 PRMT4
Histone-arginine methyltransferase CARM1 (EC 2.1.1.319) (Coactivator-associated arginine methyltransferase 1) 
(Protein arginine N-methyltransferase 4)

METTL25 0.887 Q8N6Q8 MET25_HUMAN METTL25 C12orf26 Methyltransferase-like protein 25 (EC 2.1.1.-)



Table 6
Gene Mean Pr GB Mean Pr SVM PPagerank Score Rank
METTL13 0.944 0.904 0.000142 998
PRMT5 0.943 0.880 0.000235 476
RRP8 0.940 0.813 0.000637 75
METTL18 0.933 0.926 0.000047 4535
SETD2 0.933 0.838 0.000139 1022
RBBP5 0.930 0.898 0.000134 1074
SETDB1 0.929 0.843 0.000092 1841
PRDM15 0.929 0.697 0.000010 13477
SUZ12 0.928 0.768 0.000107 1502
SUV39H1 0.927 0.620 0.000103 1577
KRR1 0.927 0.916 0.000568 92
GART 0.926 0.909 0.000295 339
SNRPD3 0.926 0.916 0.000311 316
DIS3 0.922 0.920 0.000246 447
SUV39H2 0.922 0.827 0.000075 2568
WDR5 0.922 0.871 0.000165 818
PRDM4 0.920 0.724 0.000010 13449
EXOSC2 0.920 0.952 0.000522 121
PRMT1 0.918 0.855 0.000300 333
SKIV2L2 0.917 0.917 0.000840 15
UTP23 0.917 0.930 0.000500 136
FAM86A 0.917 0.759 0.000058 3616
RPP30 0.917 0.885 0.000290 348
EHMT1 0.917 0.922 0.000094 1775
METTL17 0.917 0.872 0.000060 3446
EXOSC9 0.917 0.849 0.000270 388
N6AMT2 0.916 0.702 0.000065 3179
DDX56 0.916 0.955 0.000710 47
TPMT 0.916 0.691 0.000017 10001
DPH5 0.915 0.775 0.000137 1042
SETD1A 0.915 0.696 0.000120 1263
UTP3 0.915 0.936 0.000598 88
SUV420H1 0.914 0.833 0.000066 3095
EED 0.912 0.911 0.000101 1608
DKC1 0.912 0.914 0.000686 60
METTL23 0.911 0.778 0.000024 8067
HEMK1 0.911 0.616 0.000296 336
PRDM10 0.910 0.664 0.000032 6570
POP1 0.910 0.917 0.000158 876
NSD1 0.910 0.754 0.000045 4833
KMT2D 0.910 0.677 0.000122 1247
SMYD4 0.909 0.684 0.000014 11347
MOCS3 0.909 0.834 0.000168 799
MTR 0.907 0.716 0.000048 4483
RPF1 0.906 0.843 0.000647 73
PPIG 0.906 0.908 0.000073 2649
PUS1 0.905 0.929 0.000500 137
SETD4 0.904 0.774 0.000242 459
MTO1 0.904 0.890 0.000180 723
PRMT3 0.903 0.887 0.000234 480
CTU2 0.903 0.749 0.000149 941
EZH2 0.903 0.675 0.000213 553
WDR3 0.902 0.865 0.000891 6
FAM86C1 0.902 0.780 0.000056 3757
PCMTD2 0.901 0.662 0.000033 6449
SSB 0.901 0.886 0.000197 616
MPHOSPH10 0.900 0.916 0.000571 91
HEATR1 0.900 0.888 0.000684 61
ASH2L 0.900 0.775 0.000104 1555
METTL20 0.899 0.596 0.000145 973
POP4 0.899 0.918 0.000166 812
RRP9 0.899 0.922 0.000790 23
PRMT6 0.899 0.700 0.000161 848
UPF2 0.899 0.893 0.000155 890
PRMT7 0.898 0.746 0.000039 5441
TRNT1 0.898 0.838 0.000213 555
SETD1B 0.898 0.454 0.000145 970
UTP6 0.898 0.917 0.000878 7
WDR36 0.898 0.917 0.000758 33
NOL9 0.897 0.689 0.000212 557
FARS2 0.897 0.801 0.000096 1737
VCPKMT 0.896 0.679 0.000077 2434
EXOSC8 0.896 0.894 0.000211 561
NOP56 0.896 0.929 0.000898 5
ASMTL 0.896 0.595 0.000145 974
SMYD5 0.895 0.721 0.000021 8896
DNMT1 0.895 0.743 0.000177 741
PRMT9 0.895 0.563 0.000018 9876
PUS3 0.894 0.840 0.000563 94
NDUFAF7 0.894 0.598 0.000199 607
RTCB 0.894 0.890 0.000036 5960
RRP1B 0.893 0.906 0.000505 130
N6AMT1 0.893 0.696 0.000385 222
DDX21 0.893 0.801 0.000372 242
POLR2B 0.892 0.916 0.000628 77
DCAF13 0.892 0.883 0.000669 65
NOL11 0.892 0.900 0.000236 472
DHX15 0.891 0.928 0.000741 37
PRPF4B 0.890 0.921 0.000052 4110
UTP18 0.890 0.881 0.000796 22
KARS 0.889 0.912 0.000267 396
METTL21A 0.889 0.638 0.000083 2195
EXOSC5 0.889 0.894 0.000308 320
NOL8 0.889 0.930 0.000048 4463
PCMTD1 0.888 0.375 0.000034 6166
KMT2B 0.888 0.669 0.000073 2651
UTP20 0.888 0.808 0.000360 255
CIRH1A 0.888 0.842 0.000708 48
CARM1 0.887 0.619 0.000125 1199
METTL25 0.887 0.580 0.000009 14177


