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One sentence summary: Antibiotic resistance evolves quickly in patients colonized by 
polyclonal pathogen populations.  
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Abstract: 
Antibiotic resistance poses a global health threat, but the within-host drivers of resistance 
remain poorly understood. Pathogen populations are often assumed to be clonal within hosts, 
and resistance is thought to emerge due to selection for de novo variants. Here we show that 
pulmonary populations of the opportunistic pathogen P. aeruginosa are often polyclonal. 
Crucially, resistance evolves rapidly in patients colonized by polyclonal populations through 
selection for pre-existing resistant strains. In contrast, resistance evolves sporadically in 
patients colonized by monoclonal populations due to selection for novel resistance mutations. 
However, strong trade-offs between resistance and fitness occur in polyclonal populations that 
can drive the loss of resistant strains. In summary, we show that the within-host diversity of 
pathogen populations plays a key role in shaping the emergence of resistance in response to 
treatment. 
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Main text: 
Antibiotic resistance in pathogenic bacteria poses a fundamental threat to human health. It is 
well established that antibiotic use is associated with the emergence of resistance (1, 2). 
However, the within-host drivers of resistance remain poorly understood, making it difficult to 
predict the emergence of resistance at the scale of individual patients (3, 4). This is an 
important problem to address, as resistant infections are associated with worse outcomes for 
patients (5, 6). 
 
The dominant model for the within-host emergence of resistance is that resistance evolves as 
a result of selection for novel alleles that are acquired by in situ by mutation or horizontal gene 
transfer (4, 7-11). An implicit assumption of this model is that hosts are colonized by clonal 
pathogen populations that lack genetic variation due to due to bottlenecks that occur during 
transmission (7, 12-15). However, hosts can also be colonized by multiple strains of the same 
pathogen species, giving rise to polyclonal pathogen populations (16-19). Polyclonal 
populations contain both novel genetic variation that is acquired in situ and pre-existing 
variation that reflects differences between the co-colonizing strains.  A key concept from 
evolutionary biology is that this additional source of standing genetic variation in polyclonal 
pathogen populations should accelerate the evolutionary response to antibiotic treatment by 
increasing the genetic diversity that selection acts on (20-22). This simple logic predicts that 
resistance will evolve rapidly in hosts colonized by diverse pathogen populations. In this paper 
we directly test this prediction using populations of the opportunistic pathogen P. aeruginosa  
sampled from critically ill patients who were enrolled in  ASPIRE-ICU, an observational trial of 
P. aeruginosa infection in European hospitals (23).  
 
Clinical microbiology projects usually focus on the analysis a single bacterial isolate per patient 
sample, making it difficult to assess the prevalence and importance of within-patient pathogen 
diversity. To overcome this limitation, we sequenced the genomes of 441 isolates that were 
collected from lower respiratory tract samples of 35 patients from 12 hospitals (Figure 1A) 
(Supplementary Table 1). In line with previous work (24), we found that P. aeruginosa has a 
non-epidemic clonal population structure, consisting of clearly differentiated Sequence Types 
(STs) that are separated by long branches (Figure 1B).  The most prevalent ST (ST235) 
segregated into three sub-lineages, which diversified prior to our sampling (Figure 1C).  Given 
this phylogeny, we considered STs and sub-lineages of ST235 to represent unique clones. 
Clonal diversity in patients was bi-modally distributed (Figure 1A). The majority of patients 
(n=23/35) were colonized by a single clone (ie “monoclonal populations”). However, 
approximately 1/3 of patients (n=12/35) were colonized by multiple clones (ie “polyclonal 
populations”), including 10/17 patients from a single hospital with a high Pseudomonas 
colonization rate (Figure 1A). Clonal diversity in these patients tended to be high (mean 
Simpson’s index=.37, st.dev=.15), reflecting an even distribution of clones of polyclonal 
populations.  
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Figure 1. Overview of patient cohort and isolate dataset. (A) Within-host diversity of P. 
aeruginosa. Bars show the number of isolates and Sequence Type(s) (ST) of P. aeruginosa 
collected from each patient in study cohort. Polyclonal populations were identified in 12/35 
patients. * indicates patients with a polyclonal population consisting of isolates from multiple 
distinct ST235 sub-lineages. Plotted points show the diversity of clones withing patients, as 
measured by Simpson’s index. (B) Neighbour joining phylogeny of all STs found in this study 
and the respective proportion of MDR isolates. (C) Neighbour joining phylogeny of ST235 
isolates showing the three distinct ST235 sub-lineages (cluster A, B and C) and the patients 
(indicated by colour blocks) from whom they were collected. 
ST; Sequence Type 
 
To test the hypothesis that within-host diversity accelerates the evolution of resistance, we 
measured changes in resistance over time in a sub-set of 12 longitudinally sampled patients 
who were treated with antibiotics that are active against P. aeruginosa.  We measured 
resistance to a panel of antibiotics that included representatives of all of the major families of 
antibiotics (Supplementary Table 1), but was biased towards b-lactam antibiotics due to their 
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of isolates and Sequence Type(s) (ST) of P. aeruginosa collected from each patient in study cohort. Polyclonal populations
were identified in 12/35 patients. * indicates patients with a polyclonal population consisting of isolates from multiple distinct
ST235 sub-lineages. Plotted points show the diversity of clones withing patients, as measured by Simpson’s index.
(B) Neighbour joining phylogeny of all STs found in this study and the respective proportion of MDR isolates. (C) Neighbour
joining phylogeny of ST235 isolates showing the three distinct ST235 sub-lineages (cluster A, B and C) and the patients
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clinical relevance for treating Pseudomonas infections (25). Changes in resistance were 
measured by calculating the change in proportion of isolates that were phenotypically resistant 
to each antibiotic over time. This approach allowed us to distinguish between direct responses 
to antibiotics that were used in treatment and collateral changes in resistance to antibiotics 
that were not used for treatment for each patient (Supplementary Table 2). Surprisingly, the 
average magnitude of direct and collateral responses to antibiotic treatment did not differ from 
each other, implying an overall tendency towards cross-resistance (F1,67=0.59, P=0.44). Given 
this, our analysis of changes in resistance in response to treatment included all antibiotics in 
our panel.  
  
Antibiotics should impose strong selection for resistance in populations where average levels 
of resistance are low. Consistent with this hypothesis, increases in antibiotic resistance were 
negatively correlated with the prevalence of resistant isolates prior to treatment (Figure 2A;  
main effect initial resistance, F1,67=22.00, P<0.0001). Importantly, this effect of initial 
resistance did not differ between patients with monoclonal and polyclonal populations (initial 
resistance*diversity interaction F1,67=.0009, P=0.97). Response to antibiotic treatment varied 
between patients, even after correcting for the impact of initial resistance, implying that 
individual combinations of host/pathogen/treatment played an important role in the evolution 
of resistance (main effect of patient F11,67=3.90, P<0.0002). Crucially, increases in resistance 
were greater in patients colonized by polyclonal populations than monoclonal populations for 
any given level of initial resistance (Figure 2C; main effect diversity, F1,67=14.4, P<0.001).   
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Figure 2: Polyclonal populations accelerate the emergence of resistance. (A) Change in 
the prevalence of MDR isolates in patients with monoclonal (blue) and polyclonal (orange) 
populations. Resistance emerges most rapidly when initial prevalence of MDR isolates is low 
(solid line). (B) Polyclonal populations were associated with large increases in resistance. 
Bars show the mean (+/- s.e) change in resistance after correcting for the effect of initial 
resistance (P<0.001). (C-H) Changes in the prevalence of MDR isolates and strain 
composition in longitudinally sampled patients with polyclonal populations. Percentage of 
MDR isolates is shown between between sampling point 1 (T1) and sampling point 2 (T2), the 
colour blocks between these sampling points indicate patient antibiotic use. The inset pie 
charts show the proportion of STs at each timepoint (inner ring), and the contribution of these 
STs to MDR (outer ring). (C) Patient 8, (D) Patient 15, (E) Patient 17, (F) Patient 10, (G) 
Patient 16, (H) Patient 18.  
 

Figure 2: Polyclonal populations accelerate the emergence of resistance. (A) Change in the prevalence of MDR isolates in
patients with monoclonal (blue) and polyclonal (orange) populations. Resistance emerges most rapidly when initial prevalence of
MDR isolates is low (solid line). (B) Polyclonal populations were associated with large increases in resistance. Bars show the
mean (+/- s.e) change in resistance after correcting for the effect of initial resistance (P<0.001). (C-H) Changes in the prevalence
of MDR isolates and strain composition in longitudinally sampled patients with polyclonal populations. Percentage of MDR
isolates is shown between between sampling point 1 (T1) and sampling point 2 (T2), the colour blocks between these sampling
points indicate patient antibiotic use. The inset pie charts show the proportion of STs at each timepoint (inner ring), and the
contribution of these STs to MDR (outer ring). (C) Patient 8, (D) Patient 15, (E) Patient 17, (F) Patient 10, (G) Patient 16, (H)
Patient 18.
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The accelerated evolution of resistance in polyclonal populations could have been driven by 
either selection for (i) novel resistance polymorphisms or (ii) pre-existing resistant strains. 
Examining changes in the composition of polyclonal populations revealed that non-multidrug 
resistant (non-MDR) STs were repeatedly replaced by ST235 and ST654, both of which are 
well-characterized and epidemiologically successful multidrug resistant (MDR) strains of P. 
aeruginosa (26) (Figure 2 C-H). Selection for these pre-existing resistant strains accounted 
for >90% of the increase in the prevalence of MDR isolates in polyclonal populations (Figure 
3A).  To complement this statistical approach, we searched for polymorphisms in known 
resistance genes that reflect de novo mutation with hosts. Resistance polymorphisms were 
more common in patients colonized by monoclonal populations than polyclonal populations 
(Figure 3B, F1,67=7.549, P<0.05). In contrast, genome-wide levels of polymorphisms did not 
differ between monoclonal and polyclonal populations, suggesting that the de novo evolution 
of resistance in polyclonal patients was not constrained by an underlying lack of genetic 
diversity (Supplementary Figure 1).  In summary, our results show that a fundamental 
dichotomy exists in the mechanism of resistance evolution in patients colonized by monoclonal 
pathogen populations (selection for novel variants) and polyclonal populations (selection for 
pre-existing strains).  
 

 
Figure 3: Genomic drivers of resistance evolution within patients. (A) Pre-existing 
genetic variation drives rapid evolution in polyclonal populations. We partitioned the increases 
in the prevalence of MDR isolates in polyclonal populations (patient numbers indicated) into 
changes within STs, that reflect de novo evolution and changes in ST composition, that reflect 
selection on pre-existing genetic variation. (B) Novel mutations drive resistance evolution in 
monoclonal populations. Polymorphisms in established antibiotic resistance genes  that reflect 
de novo mutation were more common in monoclonal populations (P<0.05), but overall levels 
of genetic diversity did not differ between monoclonal and polyclonal populations 
(Supplementary Figure 1).  
 
Fitness trade-offs are thought to play an important role in limiting the evolution of antibiotic 
resistance (27, 28). To test the impact of pathogen diversity on trade-offs, we measured 
bacterial growth rate in populations containing a mixture of MDR and non-MDR isolates 
(Figure 4A). MDR was associated with reduced growth, demonstrating a fitness cost to 
resistance (main effect MDR: F1,167=5.42, P=.021). Crucially, trade-offs were stronger in 
polyclonal populations than in monoclonal populations (MDR*diversity interaction: 
F1,167=11.24; P=0.0010), which may reflect the fact that successful MDR/XDR strains of P. 
aeruginosa typically carry a suite of chromosomal resistance mutations and horizontally 
acquired resistance genes (26, 29). Interestingly, our data set contains an example of a patient 
with a polyclonal population where resistance declined under antibiotic treatment due to 
replacement of the high resistance/low growth rate ST235 by high growth late/low resistance 
ST2211, highlighting the potential clinical significance of fitness trade-offs (Figure 4B).  Thus, 

Figure 3: Genomic drivers of resistance evolution within patients. (A) Pre-existing genetic variation drives rapid evolution
in polyclonal populations. We partitioned the increases in the prevalence of MDR isolates in polyclonal populations (patient
numbers indicated) into changes within STs, that reflect de novo evolution and changes in ST composition, that reflect
selection on pre-existing genetic variation. (B) Novel mutations drive resistance evolution in monoclonal populations.
Polymorphisms in established antibiotic resistance genes that reflect de novo mutation were more common in monoclonal
populations (P<0.05), but overall levels of genetic diversity did not differ between monoclonal and polyclonal populations
(Supplementary Figure 1).
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from the perspective of AMR, pathogen diversity is a double-edged sword: high diversity 
accelerates emergence of resistance under treatment, but accelerates the loss of resistance 
when antibiotic pressure is weak.     
 

 
Figure 4: Fitness trade-offs within patients. (A) Polyclonal populations are associated with 
strong fitness trade-offs. Points show the mean growth rate in antibiotic-free culture medium 
(+/- s.e.m) of 179 MDR and non-MDR isolates from 10 patients. MDR was associated with 
reduced growth rate (P=.021), and the trade-off associated with MDR was strongest in 
polyclonal populations (P=.001). (B) Fitness trade-offs drive the  loss of resistance under 
antibiotic treatment. The prevalence of MDR isolates declined over time in patient 16, in spite 
of strong antibiotic treatment, as shown in Figure 2F. Points show the comparison of the 
growth rate of isolates of ST235 (MDR) and ST2211 (non-MDR) collected from this patient 
(t27=4.88, P<0.0001), and the circular plot shows changes in strain composition (inner circle) 
and MDR phenotype (outer circle) from the first sampling point of this patient (T1) to the 
second (T2).  
 
Evolutionary approaches are increasingly being used to understand and combat antibiotic 
resistance(27, 30-32), and an important challenge for this field is to understand the within-host 
drivers of resistance (3, 4). The key finding of this study is that resistance evolves rapidly in 
patients colonized by diverse P. aeruginosa populations due to selection for pre-existing 
resistant strains, demonstrating a clear link between within-host diversity and resistance 
evolution. Conventional methods used in clinical microbiology labs are systematically biased 
against the detection of pathogen diversity, making it difficult to assess the importance of pre-
existing diversity in resistance across bacterial pathogens. For example, high levels of within-
host diversity may explain why some pathogens, such as Pseudomonas, rapidly adapt to 
antibiotic treatment in patients (33).  
 
Fitness costs are thought to play a key role in preventing the spread of resistance(27). In this 
case, trade-offs between resistance and growth rate make it is challenging to understand how 
strains that vary in resistance can stably coexist within the same patient. Therefore, we 
speculate that polyclonal populations will be most common in high infection rate settings, 
where pathogen strain diversity is high due to recurrent colonization (10), or in patients where 
antibiotic exposure is heterogeneous, allowing high and low resistance strains to effectively 
occupy different niches (34). A further challenge will be to determine if polyclonal populations 
arise as a consequence of single colonization events or by superinfection(35). In a broader 
context,  our study underscores the importance of  understanding of the drivers of within-host 
bacterial diversity and its consequences for within-host evolution and pathogenesis (4, 7, 9, 
36, 37). Ultimately this may lead to novel strategies for predicting and preventing the 
emergence of resistance that are based on quantifying and manipulating the within host 
diversity of bacterial pathogens. 

Figure 4: Fitness trade-offs within patients. (A) Polyclonal populations are associated with strong fitness trade-offs. Points
show the mean growth rate in antibiotic-free culture medium (+/- s.e.m) of 179 MDR and non-MDR isolates from 10 patients.
MDR was associated with reduced growth rate (P=.021), and the trade-off associated with MDR was strongest in polyclonal
populations (P=.001). (B) Fitness trade-offs drive the loss of resistance under antibiotic treatment. The prevalence of MDR
isolates declined over time in patient 16, in spite of strong antibiotic treatment, as shown in Figure 2F. Points show the
comparison of the growth rate of isolates of ST235 (MDR) and ST2211 (non-MDR) collected from this patient (t27=4.88,
P<0.0001), and the circular plot shows changes in strain composition (inner circle) and MDR phenotype (outer circle) from the
first sampling point of this patient (T1) to the second (T2).
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Materials and Methods 
 
Clinical data 
The subjects were recruited as part of the observational, prospective, multicentre European 
epidemiological cohort study ASPIRE-ICU (The Advanced understanding of Staphylococcus 
aureus and Pseudomonas aeruginosa Infections in Europe–Intensive Care Units, 
(NCT02413242 ClinicalTrials.gov) (23). Between June 2015 and October 2018, the study 
enrolled a total of 2000 adult subjects within 3 days after ICU admission. To be eligible the 
patients needed to be on mechanical ventilation at ICU admission and have an expected 
length of hospital stay ≥48 h. Participants were followed through their ICU stay to assess the 
development of pneumonia. Data on antibiotic use in the two weeks preceding ICU admission 
and during the ICU stay were reported. During ICU stay, lower respiratory tract samples were 
obtained three times in the first week, two times in the three following weeks, on the day of 
diagnosis of protocol pneumonia and seven days after it. The demographic and clinical 
baseline characteristics of the 35 subjects included in this analysis are comparable to those 
of the rest of the study cohort (Supplementary Table 3), except for the APACHE IV score that 
was lower for the patients included in this analysis. 
 
Sample collection and isolation 
Lower respiratory samples used in this study were collected within the ASPIRE-ICU study 
(23). Untreated respiratory samples were stored at −80 °C until shipment and further analysis 
at the central lab at the University of Antwerp. The samples were blended (30,000 rpm, probe 
size 8 mm, steps of 10 s, max 60 s in total), diluted 1:1 v/v with Lysomucil (10% Acetylcysteine 
solution) (Zambon S.A, Belgium) and incubated for 30 min at 37 °C with 10 s vortexing every 
15 min. Thereafter, quantitative culture was performed by inoculating 10-fold dilutions on 
CHROMID P. aeruginosa Agar and blood agar using spiral plater EddyJet (IUL, Spain). Plates 
were incubated at 37 °C for 24 h and CFU/mL was calculated. Plates without growth were 
further incubated for 48 h and 72 h. Matrix-Assisted Laser Desorption Ionization-Time of Flight 
Mass Spectrometry (MALDI-TOF MS) was used to identify 12 P. aeruginosa colonies per 
sample, which were stored at −80 °C until shipment to the University of Oxford and further 
use. 
 
Resistance phenotyping 
All P. aeruginosa isolates were grown from glycerol stocks on Luria-Bertani (LB) Miller Agar 
plates overnight at 37 °C. Single colonies were then inoculated into LB Miller broth for 18–20 h 
overnight growth at 37 °C with shaking at 225 rpm. Overnight suspensions were serial diluted 
to ~5 × 105 CFU/mL. Resistance phenotyping was carried out as minimum inhibitory 
concentration (MIC) testing via broth microdilution as defined by EUCAST recommendations 
(38, 39), with the alteration of LB Miller broth for growth media and the use of P. aeruginosa 
PAO1 as a reference strain. Antibiotics were assayed along the following 2-fold dilution series 
between: ciprofloxacin (0.125 ug/mL - 16 ug/mL), aztreonam (1 ug/mL - 128 ug/mL), 
ceftazidime (1 ug/mL - 256 ug/mL), meropenem (0.25 ug/mL - 64 ug/mL), 
piperacillin/tazobactam (2 ug/mL - 256 ug/mL) and gentamicin (0.5 ug/mL - 128 ug/m). Growth 
inhibition was defined as OD595 < 0.200. We calculated a single biologically independent MIC 
for each of the 441 P. aeruginosa isolates on each antibiotic (Supplementary Table 1). When 
an isolate reached the measurable limit of the MIC assay (i.e. not inhibited at the highest 
concentration used), the MIC was recorded as double of the upper limit in the raw data file of 
MIC results (Supplementary Table 1). The number of resistance phenotypes was calculated 
as the number of MICs per isolate above the following: ciprofloxacin (0.5 ug/mL), aztreonam 
(16 ug/mL), ceftazidime (8 ug/mL), meropenem (8 ug/mL), piperacillin/tazobactam (16 ug/mL) 
and gentamicin (8 ug/mL). These points were set from EUCAST guidelines for Pseudomonas 
(v11 breakpoint table, and MIC distributions for P. aeruginosa data for gentamicin) (39). MDR 
isolates were defined as isolates with 3 or more resistance phenotypes. For longitudinally 
sampled patients treated with colistin (patient 6, patient 16, patient 18, patient 32, patient 35), 
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the same protocol was used to determine colistin MIC along the following 2-fold dilution series 
between: 0.5 ug/mL - 64 ug/mL (Supplementary Table 1), and a colistin resistance phenotype 
was determined as an MIC above 2 ug/mL (Supplementary Table 2) (39).   
  
Sequencing 
All isolates were sequenced in the MiSeq or NextSeq illumina platforms yielding a sequencing 
coverage of 21X–142X. Raw reads were quality controlled with the ILLUMINACLIP (2:30:10) 
and SLIDINGWINDOW (4:15) in trimmomatic v. 0.39. Quality controlled reads were 
assembled for each isolate with SPAdes v. 3.13.1 with default parameters. These assemblies 
were further polished using pilon v. 1.23 with minimum number of flank bases of 10, gap 
margin of 100,000, and kmer size of 47. Resulting contigs were annotated based on the P. 
aeruginosa strain UCBPP-PA14 in prokka v. 1.14.0. Each isolate was typed using the 
Pseudomonas aeruginosa multi-locus sequence typing (MLST) scheme from PubMLST (Last 
accessed on 11.06.2021). Sixteen isolates were sequenced with the Oxford nanopore MinION 
platform using the FLO-MIN106 flow-cell and the SQK-LSK109 kit. Raw reads were 
basecalled using guppy v. 0.0.0+7969d57 and reads were demultiplexed using qcat v. 1.1.0 
(https://github.com/nanoporetech/qcat). Resulting sequencing reads were assembled using 
unicycler v. 0.4.8 (40), which used SAMtools v. 1.9 (41), pilon v. 1.23 (42), and bowtie2 v. 
2.3.5.1 (43), in hybrid mode with respective illumina reads. 
  
Variant calling 
Paired-ended reads were mapped to the P. aeruginosa PAO1 reference genome 
(NC_002516.2) with Bowtie 2 v2.2.4, and pileup and raw files were obtained by using 
SAMtools v0.1.16 and PicardTools v1.140, using the Genome Analysis Toolkit (GATK) v3.4-
46 for realignment around InDels. From the raw files, SNPs were extracted if they met the 
following criteria: a quality score (Phred-scaled probability of the samples reads being 
homozygous reference) of at least 50, a root-mean-square (RMS) mapping quality of at least 
25 and a coverage depth of at least 3 reads, excluding all ambiguous variants. MicroInDels 
were extracted from the totalpileup files when meeting the following criteria: a quality score of 
at least 500, a RMS mapping quality of at least 25 and support from at least one-fifth of the 
covering reads (44). Filtered files were converted to vcf and SNPs and InDels were annotated 
with SnpEff v4.2. (45). Gene absence was evaluated using SeqMonk 
(https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/) and OprD structural integrity 
was investigated within the de novo assemblies using an appropriate reference sequence. 
Finally, all mutations within a set of genes known to be involved in antibiotic resistance were 
extracted and natural occurring polymorphisms were filtered (46). The presence of horizontally 
acquired antimicrobial resistance determinants was also investigated using the web tool 
ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/). 

To identify mutations and gene gain/loss during the infection, short-length sequencing reads 
from each isolate were mapped to each of the four long-read de novo assemblies with bwa v. 
0.7.17 using the BWA-MEM algorithm. Preliminary SNPs were identified with SAMtools and 
BCFtools v. 1.9. Low-quality SNPs were filtered out using a two-step SNP calling pipeline, 
which first identified potential SNPs using the following criteria: 1. Variant Phred quality score 
of 30 or higher, 2. At least 150 bases away from contig edge or indel, and 3. 20 or more 
sequencing reads covering the potential SNP position. In the second step, each preliminary 
SNP was reviewed for evidence of support for the reference or the variant base; at least 80% 
of reads of Phred quality score of 25 or higher were required to support the final call. An 
ambiguous call was defined as one with not enough support for the reference or the variant, 
and, in total, only one non-phylogenetically informative SNP position had ambiguous calls. 
Indels were identified by the overlap between the HaplotypeCaller of GATK v. 4.1.3.0 and 
breseq v. 0.34.0. The variable genome was surveyed using GenAPI v. 1.098 based on the 
prokka annotation of the short-read de novo assemblies. The presence or absence of genes 
in the potential variable genome was reviewed by mapping the sequencing reads to the 
respective genes with BWA v.0.7.17.SNPs/indels. 
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Growth assays 
All isolates were grown from glycerol stocks on LB Miller Agar plates overnight at 37 °C. Single 
colonies were then inoculated into LB Miller broth for 18–20 h overnight growth at 37 °C with 
shaking at 225 rpm. Overnight suspensions were serially diluted to an OD595 of ~0.05 and 
placed within the inner 60 wells of a 96-well plate equipped with a lid. To calculate growth rate, 
isolates were then grown in LB Miller broth at 37 °C and optical density (OD595nm) 
measurements were taken at 10-min intervals in a BioTek Synergy 2 microplate reader set to 
moderate continuous shaking. Growth rate was then calculated as the maximum slope of OD 
versus time over an interval of ten consecutive readings, and at least three biologically 
independent replicate cultures were measured for all of the pulmonary isolates to calculate 
the mean growth rate of each isolate (Supplementary Table 1). 
  
Statistics 
For each patient sample, we calculated the proportion of isolates that were resistant to each 
antibiotic as described above (38, 39). Changes in resistance for each antibiotic were 
measured as the difference in proportion of resistant isolates between the final and initial 
sample for longitudinally sampled patients (Supplementary Table 2). To test drivers of 
antibiotic resistance we used an ANOVA that included main effects of initial proportion of 
resistant isolates (continuous variable, 1DF), response type (direct or collateral, with the 
inclusion of colistin for colistin-treated patients; 1DF), pathogen diversity (monoclonal or 
polyclonal; 1DF), and we nested patient within pathogen diversity (1DF). We also included an 
interaction term between initial proportion of resistant isolates and pathogen diversity (1DF).  
 
Fitness costs were assessed by comparing the growth rate of co-occuring MDR (i.e. 3 or more 
resistance phenotypes) and non-MDR (i.e. 0-2 resistance phenotypes) lung isolates from the 
same patient. We considered all patients with multiple (i.e. >1) MDR and non-MDR isolates in 
this analysis, giving a total of 179 isolates from 10 patients (Figure 4A). To understand the 
sources of variation in fitness, we used an ANOVA that included main effects of resistance 
phenotype (ie MDR or non-MDR; 1DF), pathogen diversity (monoclonal or polyclonal; 1DF) 
and patient nested within pathogen diversity (8DF). We tested for variation in fitness trade-
offs between monoclonal and polyclonal populations by including a resistance 
phenotype*pathogen diversity interaction in the model.  
 
We tested the association between the number of antibiotic resistance-associated SNPs and 
the type of infection (polyclonal or monoclonal) using a type 2 two-way ANOVA where the 
dependent variable is the number of resistance SNPs, and the independent variables are the 
overall number of SNPs and the type of infection (Figure 3B). We also tested the association 
of either the overall number of SNPs or the number of regions with variable genetic content 
and the type of infection. We used two type 2 two-way ANOVAs: for the first one, the 
dependable variable was the total number of SNPs and the independent variables were the 
number of isolates and the type of infection; for the second one, the dependable variable was 
the total number of regions with variable genetic contents and the independent variables were 
the number of isolates and the type of infection 
 
Supplementary Information 
 
Supplementary Table 1: Dataset of 441 P. aeruginosa isolates. 
Legend – Metadata of 441 P. aeruginosa isolates in study, indicating outputs of genome 
analysis (including ST), phenotyping (mean growth rate, MICs, resistance phenotyping, MDR 
classification) and patient information (including monoclonal or polyclonal population 
classification).  
 
Supplementary Table 2: Collateral or direct treatment response type to antibiotic 
treatment. 
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Legend – Antibiotic treatment information for monoclonal and polyclonal longitudinally 
sampled patients, showing antibiotic treatment predicted active for Pseudomonas (EUCAST 
guidelines). Collateral or direct treatment response type was determined from MIC screening 
against the following antibiotics (/antibiotic classes): meropenem (used as direct response 
type for patients treated with carbapenems), ciprofloxacin (used as direct response type for 
patients treated with fluroquinolones), ceftazidime (used as direct response type for patients 
treated with cephalosporins), gentamicin (used as direct response type for patients treated 
with aminoglycosides), aztreonam, piperacillin/tazobactam and colistin.  
Initial_medianMIC_; Median MIC value for isolates from the first sampling point 
Final_medianMIC_; Median MIC value for isolates from the final sampling point 
Initial_R_: Proportion of resistance phenotypes in isolates from the first sampling point 
Final_R_: Proportion of resistance phenotypes in isolates from the final sampling point 
    
Supplementary Table 3: Comparison of characteristics of study cohort and total 
ASPIRE-ICU set. 
 
Supplementary Figure 1: Within-strain genetic diversity of monoclonal and polyclonal 
populations.  
Legend - Frequency of (A) all variants, SNPs and indels, and (B) regions of variable genetic 
content in monoclonal and polyclonal populations. There was no significant difference ([A] 
F1,67=3.742, P=0.063, [B] F1,67=0.183, P=0.672) in the distribution of these variants between 
monoclonal and polyclonal infections. 
 
Acknowledgements 
This research was supported by Wellcome Trust Grant (106918/Z/15/Z) and the Innovative 
Medicines Initiative Joint Undertaking under COMBACTE-MAGNET (Combatting Bacterial 
Resistance in Europe-Molecules against Gram-negative Infections, grant agreement no. 
115737) and COMBACTE-NET (Combatting Bacterial Resistance in Europe-Networks, grant 
agreement no. 115523), resources of which are composed of financial contribution from the 
European Union’s Seventh Framework Program (FP7/2007-2013) and EFPIA companies’ in 
kind contribution. We thank the Oxford Genomics Center (funded by Wellcome Trust Grant 
203141/Z/16/Z) for the generation and initial processing of Illumina sequence data. 
 
References 
 
1. B. G. Bell, F. Schellevis, E. Stobberingh, H. Goossens, M. Pringle, A systematic review 

and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. 
BMC Infectious Diseases 14,  1-25 (2014). 

2. H. Goossens, M. Ferech, R. Vander Stichele, M. Elseviers, Outpatient antibiotic use in 
Europe and association with resistance: a cross-national database study. The Lancet 
365, 579-587 (2005). 

3. I. Yelin, O. Snitser, G. Novich, R. Katz, O. Tal, M. Parizade, et al., Personal clinical 
history predicts antibiotic resistance of urinary tract infections. Nature medicine 25, 
1143-1152 (2019). 

4. X. Didelot, A. S. Walker, T. E. Peto, D. W. Crook, D. J. Wilson, Within-host evolution 
of bacterial pathogens. Nature Reviews Microbiology 14, 150-162 (2016). 

5. N. D. Friedman, E. Temkin, Y. Carmeli, The negative impact of antibiotic resistance. 
Clinical Microbiology and Infection 22, 416-422 (2016). 

6. V. Aloush, S. Navon-Venezia, Y. Seigman-Igra, S. Cabili, Y. Carmeli, Multidrug-
resistant Pseudomonas aeruginosa: Risk factors and clinical impact. Antimicrobial 
Agents and Chemotherapy 50, 43-48 (2006). 

7. R. Wheatley, J. D. Caballero, N. Kapel, F. H. de Winter, P. Jangir, A. Quinn, et al., 
Rapid evolution and host immunity drive the rise and fall of carbapenem resistance 
during an acute Pseudomonas aeruginosa infection. Nature Communications 12, 1-12 
(2021). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.10.472119doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472119


8. V. Eldholm, G. Norheim, B. von der Lippe, W. Kinander, U. R. Dahle, D. A. Caugant, 
et al., Evolution of extensively drug-resistant Mycobacterium tuberculosis from a 
susceptible ancestor in a single patient. Genome Biology 15,  (2014). 

9. T. D. Lieberman, J. B. Michel, M. Aingaran, G. Potter-Bynoe, D. Roux, M. R. Davis, et 
al., Parallel bacterial evolution within multiple patients identifies candidate 
pathogenicity genes. Nature Genetics 43, 1275-U1148 (2011). 

10. C. Juan, O. Gutierrez, A. Oliver, J. I. Ayestaran, N. Borrell, J. L. Perez, Contribution of 
clonal dissemination and selection of mutants during therapy to Pseudomonas 
aeruginosa antimicrobial resistance in an intensive care unit setting. Clinical 
Microbiology and Infection 11, 887-892 (2005). 

11. D. Hughes, D. I. Andersson, in Annual Review of Microbiology, Vol 71, S. Gottesman, 
Ed. (Annual Reviews, Palo Alto, 2017), vol. 71, pp. 579-596. 

12. E. R. Moxon, P. A. Murphy, Haemophilus influenzae bacteremia and meningitis 
resulting from survival of a single organism. Proceedings of the National Academy of 
Sciences 75, 1534-1536 (1978). 

13. A. Gerlini, L. Colomba, L. Furi, T. Braccini, A. S. Manso, A. Pammolli, et al., The role 
of host and microbial factors in the pathogenesis of pneumococcal bacteraemia arising 
from a single bacterial cell bottleneck. PLoS pathogens 10, e1004026 (2014). 

14. B. C. Young, T. Golubchik, E. M. Batty, R. Fung, H. Larner-Svensson, A. A. Votintseva, 
et al., Evolutionary dynamics of Staphylococcus aureus during progression from 
carriage to disease. Proceedings of the National Academy of Sciences 109, 4550-4555 
(2012). 

15. M. Kono, M. A. Zafar, M. Zuniga, A. M. Roche, S. Hamaguchi, J. N. Weiser, Single cell 
bottlenecks in the pathogenesis of Streptococcus pneumoniae. PLoS pathogens 12, 
e1005887 (2016). 

16. O. Balmer, M. Tanner, Prevalence and implications of multiple-strain infections. The 
Lancet infectious diseases 11, 868-878 (2011). 

17. R. M. Warren, T. C. Victor, E. M. Streicher, M. Richardson, N. Beyers, N. C. G. Van 
Pittius, et al., Patients with active tuberculosis often have different strains in the same 
sputum specimen. American journal of respiratory and critical care medicine 169, 610-
614 (2004). 

18. R. R. Nathavitharana, C. X. Shi, L. Chindelevitch, R. Calderon, Z. Zhang, J. T. Galea, 
et al., Polyclonal pulmonary tuberculosis infections and risk for multidrug resistance, 
Lima, Peru. Emerging infectious diseases 23, 1887 (2017). 

19. G. Wewalka, D. Schmid, T. Harrison, S. Uldum, C. Lück, Dual infections with different 
Legionella strains. Clinical Microbiology and Infection 20, O13-O19 (2014). 

20. R. D. Barrett, D. Schluter, Adaptation from standing genetic variation. Trends in 
ecology & evolution 23, 38-44 (2008). 

21. M. Bitter, L. Kapsenberg, J.-P. Gattuso, C. Pfister, Standing genetic variation fuels 
rapid adaptation to ocean acidification. Nature communications 10, 1-10 (2019). 

22. F. C. Jones, M. G. Grabherr, Y. F. Chan, P. Russell, E. Mauceli, J. Johnson, et al., The 
genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55-61 
(2012). 

23. F. P. Paling, D. P. R. Troeman, M. Wolkewitz, R. Kalyani, D. R. Prins, S. Weber, et al., 
Rationale and design of ASPIRE-ICU: a prospective cohort study on the incidence and 
predictors of Staphylococcus aureus and Pseudomonas aeruginosa pneumonia in the 
ICU. BMC Infectious Diseases 17, 643 (2017). 

24. L. Freschi, J. Jeukens, I. Kukavica-Ibrulj, B. Boyle, M. J. Dupont, J. Laroche, et al., 
Clinical utilization of genomics data produced by the international Pseudomonas 
aeruginosa consortium. Frontiers in Microbiology 6, 8 (2015). 

25. A. C. Kalil, M. L. Metersky, M. Klompas, J. Muscedere, D. A. Sweeney, L. B. Palmer, 
et al., Management of adults with hospital-acquired and ventilator-associated 
pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of 
America and the American Thoracic Society. Clinical Infectious Diseases 63, e61-e111 
(2016). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.10.472119doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472119


26. E. del Barrio-Tofino, C. Lopez-Causape, A. Oliver, Pseudomonas aeruginosa 
epidemic high-risk clones and their association with horizontally-acquired beta-
lactamases: 2020 update. International Journal of Antimicrobial Agents 56, 9 (2020). 

27. D. I. Andersson, D. Hughes, Antibiotic resistance and its cost: is it possible to reverse 
resistance? Nature Reviews Microbiology 8, 260-271 (2010). 

28. P. A. zur Wiesch, R. Kouyos, J. Engelstadter, R. R. Regoes, S. Bonhoeffer, Population 
biological principles of drug-resistance evolution in infectious diseases. Lancet 
Infectious Diseases 11, 236-247 (2011). 

29. J. P. Horcajada, M. Montero, A. Oliver, L. Sorli, S. Luque, S. Gomez-Zorrilla, et al., 
Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant 
Pseudomonas aeruginosa Infections. Clinical Microbiology Reviews 32,  (2019). 

30. A. C. Palmer, R. Kishony, Understanding, predicting and manipulating the genotypic 
evolution of antibiotic resistance. Nature Reviews Genetics 14, 243-248 (2013). 

31. D. I. Andersson, N. Q. Balaban, F. Baquero, P. Courvalin, P. Glaser, U. Gophna, et 
al., Antibiotic resistance: turning evolutionary principles into clinical reality. Fems 
Microbiology Reviews 44, 171-188 (2020). 

32. R. C. MacLean, A. R. Hall, G. G. Perron, A. Buckling, The population genetics of 
antibiotic resistance: integrating molecular mechanisms and treatment contexts. 
Nature Reviews Genetics 11, 405-414 (2010). 

33. D. N. Fish, S. C. Piscitelli, L. H. Danziger, Development of resistance during 
antimicrobial therapy: a review of antibiotic classes and patient characteristics in 173 
studies. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 
15, 279-291 (1995). 

34. H. Levene, Genetic equilibrium when more than one ecological niche is available. The 
American Naturalist 87, 331-333 (1953). 

35. S. J. McCallum, J. Corkill, M. Gallagher, M. J. Ledson, C. A. Hart, M. J. Walshaw, 
Superinfection with a transmissible strain of Pseudomonas aeruginosa in adults with 
cystic fibrosis chronically colonised by P aeruginosa. Lancet 358, 558-560 (2001). 

36. B. C. Young, C. H. Wu, N. C. Gordon, K. Cole, J. R. Price, E. L. Liu, et al., Severe 
infections emerge from commensal bacteria by adaptive evolution. Elife 6, 25 (2017). 

37. A. Folkesson, L. Jelsbak, L. Yang, H. K. Johansen, O. Ciofu, N. Høiby, et al., 
Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary 
perspective. Nature Reviews Microbiology 10, 841-851 (2012). 

38. http://www.eucast.org, The European Committee on Antimicrobial Susceptibility 
Testing. EUCAST Reading Guide for Broth Microdilution., Version 11.0 (2021). 

39. http://www.eucast.org, The European Committee on Antimicrobial Susceptibility 
Testing. Breakpoint Tables for interpretation of MICs and Zone Diameters, Version 
11.0 (2021). 

40. R. R. Wick, L. M. Judd, C. L. Gorrie, K. E. Holt, Unicycler: resolving bacterial genome 
assemblies from short and long sequencing reads. PLoS computational biology 13, 
e1005595 (2017). 

41. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, et al., The sequence 
alignment/map format and SAMtools. Bioinformatics 25, 2078-2079 (2009). 

42. B. J. Walker, T. Abeel, T. Shea, M. Priest, A. Abouelliel, S. Sakthikumar, et al., Pilon: 
an integrated tool for comprehensive microbial variant detection and genome 
assembly improvement. PLoS one 9, e112963 (2014). 

43. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nature 
methods 9, 357-359 (2012). 

44. R. L. Marvig, L. M. Sommer, S. Molin, H. K. Johansen, Convergent evolution and 
adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nature 
Genetics 47, 57-+ (2015). 

45. P. Cingolani, A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang, et al., A program 
for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: 
SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6, 
80-92 (2012). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.10.472119doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472119


46. S. Cortes-Lara, E. d. Barrio-Tofiño, C. López-Causapé, A. Oliver, L. Martínez-
Martínez, G. Bou, et al., Predicting Pseudomonas aeruginosa susceptibility 
phenotypes from whole genome sequence resistome analysis. Clinical Microbiology 
and Infection (2021). 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.10.472119doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472119

