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Abstract

The brain continuously coordinates skeletomuscular movements with internal physiological states like arousal,
but how is this coordination achieved? One possibility is that brain simply reacts to changes in external
and/or internal signals. Another possibility is that it is actively coordinating both external and internal
activities. We used functional ultrasound imaging to capture a large medial section of the brain, including
multiple cortical and subcortical areas, in marmoset monkeys while monitoring their spontaneous movements
and cardiac activity. By analyzing the causal ordering of these different time-series, we found that information

OO NOOULLPE, WN -

flowing from the brain to movements and heart rate fluctuations were significantly greater than in the
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opposite direction. The brain areas involved in this external versus internal coordination were spatially
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distinct but also extensively interconnected. Temporally, the brain alternated between network states for this
12 regulation. These findings suggest that the brain’s dynamics actively and efficiently coordinate motor behavior
13 with internal physiology.
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Animals and humans continuously regulate physiology and behavior to maintain stability, i.e., keep
physiological variables within a tenable range (7). This regulation not only involves triggering autonomic
reflexes that directly adjust physiological processes such as heatt rate, glucose level, and body temperature but
also directs skeletomotor behaviors to interact with the external world that affect physiological states (e.g.,
teeding, locomotion, social interaction)(2, 3). The changing internal states of the body remodel sensorimotor
interactions with the external environment on various timescales (4). For example, the phase of the cardiac
cycle influences the emotional processing of faces (3), vocal interactions are correlated with autonomic
oscillations (6-8), and hunger can modulate the switch between sleep versus foraging behaviors (9). In all
cases, the internal physiological states must be coordinated with motor behaviors through the dynamics of
large-scale networks of cortical and subcortical regions, but how?

Based on the spectrum of cytoarchitectonic differentiation, one proposal is that the mammalian brain
follows a ‘centrifugal’ cortical organization from the outer side (the primary sensory and motor areas) to the
inside. Inside areas include the heteromodal, paralimbic and limbic regions that, in humans, overlap
substantially with the default mode network (70-72). The outside areas directly regulate the interactions with
the external environment, while the inside areas are associated with autonomic functions regulating the
internal milieu through subcortical areas, primarily the hypothalamus (72-74). In humans, functional imaging
and gene expression analyses reveal a division of the brain into two cortical networks corresponding to this
external-internal dichotomy (75, 76). Such a brain architecture entails an embodied account of perception,
emotion, and decision making (77-22).

However, within such a framework, how are motor behaviors and the internal state of the body
organized with the brain’s activity in space and time? If we assume a context in which there are no overt
external sensory signals, and the animal coordinates interactions with external and internal environments by
its intrinsic dynamics, then there are currently three hypotheses for the inter-relationships between brain
activity, motor behavior, and internal physiology (Fig. 1A). The first hypothesis postulates that spontaneous
motor behaviors--like twitches, facial movements, and fidgets--drive the large-scale activity of the brain (23-
26). The behavior-related wide-spread brain activity could originate from re-afferent sensory input and may
facilitate contextualized signal processing (27). Under this hypothesis, there are two possibilities for the
internal physiological state: it is either a follower of movements through peripheral regulation (Hypothesis
#1.1) or centrally regulated (Hypothesis #1.2). In the second hypothesis, brain dynamics are passive
responses to ongoing physiological states and provide signals--including those to produce behaviors--to
maintain homeostasis of the body (Hypothesis #2) (28-30). The third hypothesis proposes that the brain not
only actively predicts signals of the external world (37, 32) but also the interoceptive signals of the body for
homeostatic control (Hypothesis #3) (33-35).

To test these hypotheses, we studied the inter-relationships between the brain, external (spontaneous
movement), and internal (cardiac) activities in marmoset monkeys (Callithrix jacchus) under a task-absent
context. These various activities are prevalent on the timescale of tens of seconds (23, 36-40), and thus can be
tested in experimental sessions lasting for 10-20 minutes. We simultaneously used functional ultrasound (fUS)
imaging of the midsagittal plane of the marmoset brain, along with videos of behaviors and measures of heart
rate (electrocardiogram, ECG) to establish: 1) the direction of information flow between the three
components, and 2) the spatial and the temporal organizations of brain activity as a function of spontaneous
movements and cardiac changes.

Results

Subjects (n=3) were placed in a partial restraint device to allow for both stable neural imaging and
movements of most of the body. Using behavioral videography analysis (35 sessions, 27259 seconds of
recording), we detected occasional movements of the limbs, tail, and body, as well as facial movements,
including blinks and movements of ear and mouth (Fig. 1B). Movements were also quantified by the motion
intensity (MI) regardless of the type. In parallel, we carried out electrocardiography (ECG) for continuous
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heart rate recording (Fig. 1C). The occurrence of different behaviors varied coherently with heart rate to
different degrees with all, except ear movements, showing a peak around 0.03 Hz (test against the 95%
confidence interval (CI) of phase-randomized surrogates; Fig. 1D). Using MI alone, the coherence between
movement and heart rate could also be well captured (Fig. 1D), and there was no temporal difference
between MI and elaborated movements with respect to heart rate (Fig. S1). Thus, for ease of presentation, we
used MI to represent all kinds of movements in the following analyses.
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Figure 1. Organization of external and internal activities. (A) Candidate hypotheses on the interrelationships between brain activity,
movement and heart rate fluctuation. (B) Percentage time spent on different types of movements. Each point is a session. Jitters are added
to help visualize. (C) Two exemplar data of movement type, Ml, and HR. Types of movements are color-coded similarly to (B). Note that
small Ml variations correspond to facial movements such as blinks and large Mls correspond to movements of the body parts. (D) Coherence
between each HR-movement type pair and the HR-MI pair. Highlighted segments are significantly higher than the 95% ClI of the phase-
randomized surrogates.

Meanwhile, we measured brain activity in a large portion of the midsagittal plane, including cortical
and subcortical areas using fUS (35 sessions; Fig. 2A). fUS measures cerebral blood volume (CBV) dynamics
in the microvasculature, an indirect measure of neuronal activity(47-43), with a large field of view (FOV) (16
mm (AP) X 20 mm (DV)), a spatial resolution of 130 pm (AP) X 125 pm (DV), and a frame rate of 2 Hz. The
FOV covered primary sensory and motor areas: the medial motor (M1) and somatosensory (SS); motor
associate areas: pre-supplementary motor area (preSMA) and supplemental motor area (SMA); high-
heteromodal and paralimbic areas: prefrontal (PFC), mid-cingulate cortices (MCC); as well as cortices
constituting the DMN: the ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC)
(44). It also covered subcortical areas relevant to autonomic functions(45), including the dorsal and ventral
lateral septal nuclei (LSD and LSV), preoptic area (POA), ventromedial hypothalamus (VMH), postetior
hypothalamus (PH), mediodorsal nucleus of the thalamus (MD), habenula nuclei (Hb) and part of the
reticular formation (RF) (Fig. 2A). Thus, the simultaneous activities of many brain areas (though not all of
them) highly relevant to motor behavior and internal physiology were incorporated in the measurement.

To evaluate the relationship between brain and peripheral activities, we first parcellated the image
into regions of interest (ROIs) based on fUS signals. We estimated a group-level parcellation using all
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available fUS data based on group independent component analysis (4 subjects, 60 sessions, 85427 frames;
Methods), and segregated the brain section into 19 ROIs (Fig. 2B, C). Among the 19 ROIs, 14 were identified
as non-vessel ROIs and were named based on corresponding anatomical annotations after aligning to a
reference brain atlas (Methods; Fig. 2C, Fig. S2) (46, 47). The brain parcellation results were consistent across
subjects (Fig. 2C), and thus we concatenated the ROI signals across all sessions.

The information flow between time-series of brain activity, movements (M), and heart rate was
assessed using block partial directed coherence (bPDC), a measure of information flow in the frequency
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domain (48) and invariant to causal filtering like the hemodynamic response function (see Supplementary
text) (49). The bPDC treated the ROI signals as one multivariate time-series network node and the movement
and heart rate as the other two nodes (Fig. 2D). We found that the bPDC was significant in both directions
12 between brain and movement, and between brain and heart rate; while the bPDC between movement and

13 heart rate was not significant, suggesting that their coordination was via the brain (test against the
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14 95%confidence intervals (CI) of phase-randomized surrogates, Bonferroni corrected; Fig. 2E). Hence, we

15  could reject Hypothesis #1.1 as the information flow between movement and heart rate was indirect. We

16  then tested if the brain activity was driven more by the periphery or vice versa by comparing the total

17  information flow in each direction, which was calculated by integrating the bPDC over frequencies

18  (Methods). On average, information flowing from the brain to the other two components was significantly
19  higher than the inward flow (bootstrap and paired z-test, p<0.05 Bonferroni corrected; Fig. 2F,G).

20  Consistently, brain activity led the other two activities temporally (Fig. S3). The higher outward information
21 flow was observed for all types of movements as well (Fig. S4). Thus, the results favored Hypothesis #3, that
22 the brain activity was mostly predictive of motor output and fluctuations of internal physiology.
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Figure 2. The brain plays an active role in coordinating movement and heart rate. (A) fUS setup and brain regions covered by imaging. (B)
Exemplar pixel signals from different areas of the brain. (C) Within subject and group-level brain parcellation. We use SMA to represent the
ROI covering SS, M1, and SMA. LSD: lateral septal nucleus dorsal; LSV: lateral septal nucleus ventral. (D) lllustration of bPDC. (E) bPDC of
each direction. Red means significantly higher than phase-randomized surrogate distribution. Note that the lines in “HR to Move” and
“Move to HR” cells are very low. (F) Estimated distribution of information flow of each direction, sorted from high to low. Outward flow
from brain is greater than the corresponding inward flow (p<0.05 Bonferroni corrected). (G) Information flow graph. The thickness of the
arrows is proportional to information flow.

One possible mechanism coupling external and internal activities is that they could be driven by a
common set of brain regions; alternatively, they could be influenced by separate regions that are themselves
temporally coordinated (Fig. 3A). To test this, we first established the network composed of individual ROIs,
movement, and heart rate using PDC analysis for univariate time-series (Fig. 3B) (50). The strength of
connection in each direction between two nodes was quantified as integrated information flow. Two different
subsets of ROIs were involved in strong information exchange with movement and heart rate (Fig. 3C, D).
Thus, the temporally coordinated external and internal activities were driven by spatially separate brain
regions (with the exceptions of PH and SMA).

We next investigated the connectivity between these two wide-spread groups of regions. One
hypothesis is that the functional connectivity, defined as information flow between ROls, exhibits two
network communities corresponding to the external and internal control. Conversely, these two groups of
regions might be so coupled that the network cannot be cleanly separated by the degree of participation in
external and internal control. As the outward information flow was dominant, we formulated the ROI
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function as the difference between information flowing to movement and to heart rate (termed control
preference). The graph revealed that ROIs with different control preference were highly interconnected and
could not be separated by their functional connectivity (spectral clustering for directed graph; Fig. 3E). This
suggested that the coordination between movement and heart rate was due to strongly coupled brain areas.
The functional connectivity established using fUS was backed by structural connectivity from fiber
tractography mapped to the same areas (functional and structural connectivity correlation r=0.46, p=5.0x10-
% Fig. §5), comparable to measurements in other modalities and species (57-53). This internally connected
network ranging from the primary sensorimotor cortex for external control to the limbic areas (here mainly
the LS) for internal control is consistent with the idea of ‘centrifugal’ brain organization (72).
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Figure 3. Separate brain regions regulate internal and external activities. (A) Hypotheses of spatial distribution for different brain areas
involved in external and internal regulation. (B) Exemplars showing individual ROI signals with MI and HR. Each time series is used as a node
for PDC analysis. (C, D) Brain regions sending or receiving information flow to Ml and HR. Outlined areas are the ones above the 75th-
percentile of the information flow within the category. (E) Brain network summary. Circled areas are communities determined by spectral
clustering. Node color corresponds to the preference of control with purple towards external activity and green towards internal activity.
Note that low-level subcortical nodes are separated from higher level nodes, which are further separated into two groups, but different
control preferences are included in the same community.

We then investigated how the control of ongoing behavior and internal physiology were coordinated
temporally. Brain regions collectively transition into different states (38, 54), so the regulation of external and
internal activities may occur concurrently during certain states or alternatively between states. In the first case,
brain regions activated during the same brain state can have different control preferences, while in the second
case, areas with different control preferences are correlated with different brain states (Fig. 4A). To test these
possibilities, we clustered attracting states of collective brain activity using a 2D embedding method described
in a previous study (55) (Methods; n=85427 frames; Fig. 4B; Fig. S6). Four densely populated regions,
representing distinct spectral and spatial activation patterns (Fig. S7), were identified in a 2D space (Fig. 4B).
The fUS signals were then converted to sequences of brain states (Fig. 4C).
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We then evaluated the ROIs’ participation in brain states by calculating the percentage variance of an
ROI signal explained solely by the occurrence of a brain state. Most of the ROIs were significantly explained
by cither only states #1 and #4 or only states #2 and #3 except the MD and PFC (z-test, p<<0.05; Fig. 4D).
Based on this characteristic, we quantified a state score as the log-ratio between the total variance explained
by #1 and #4, and by #2 and #3. The state scote correlated significantly with control preference (+=0.61,
p<0.05; Fig. 4E), suggesting that external and internal regulation occurred during different brain states with
#1 and #4 for external regulation, and #2 and #3 for internal regulation. Therefore, the brain alternated the
control of external and internal activities.
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Figure 4. Brain alternates the control for external and internal activities. (A) Two possibilities for external and internal regulation relative to
brain states: concurrent or alternating. (B) Watershed-based clustering on density map of t-SNE embedding space. (D) Percentage variance
explained for each ROI by different brain states. Most ROIs are correlated with either #1 & #4 or #2 & #3. Error bars are standard deviations.
(F) Correlation between state score and control preference. Error bars are standard deviations. The line is fitted by weighted linear
regression.

Discussion

Our findings that brain dynamics are predictive of motor activities and heart rate fluctuations support a view
of the brain as being continuously predicting external and internal activities, anticipating actions and
regulatory signals (2, 3, 33). The regulation of these two aspects is linked to spatially separate but functionally
and structurally interconnected brain regions. This organization of behavior and internal physiology with
brain dynamics is analogous to the blood circulatory system: Different chambers of the heart are involved in
the systemic (analogous to the external interaction) and pulmonary (analogous to the internal interaction)
circulations but are also synchronized by the muscle contractions of the heart. Failure of any loop will lead to
the breakdown of the entire system. Although the brain is a much more complex organ, it may drive coupled
interactions with the external and internal environments in a similar way. We also found that the transitions
of brain states signal the switches between external and internal control. As the brain is metabolically
expensive, multifunctionality in a task-free context would be less economical (56, 57); functional alternation
might be a solution for lowering the running cost of the brain (58). Together with the predictive property of
the brain, presumably on account of minimizing surprises from the external and internal environments (59),
our findings suggest that the brain operates efficiently to minimize energetic cost.

Our findings do not favor the notion that brain-wide fluctuation is driven by spontaneous
movements, which has been suggested by previous studies (23, 25, 26). Information flow from brain to
movement is significantly greater than the opposite direction, suggesting that the brain-wide fluctuation is
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more of an intrinsically organized pattern. Whereas there is no report in vertebrates thus far, a study in C.
elegans observed a distributed motor command network activated even in the immobilized worm, suggesting
brain-wide behavior-related activities independent of re-afferent sensory input (60). If this applies also to the
vertebrates, a possible mechanism unifying the seemingly conflicting findings is that the medial brain (the
focus of this study) may provide the motivation that guides behaviors (67, 62). This motor guidance is
broadcasted to other brain areas and gets manifested in detail by interacting with local neural activities. It
would be interesting to investigate the temporal coordination between the medial brain and other areas in
driving spontaneous behaviors in future studies. Another reason for the seemingly different conclusion could
be attributed to our different data analysis approach. Previous studies adopted multivariate linear models or
cross-correlation estimating the variance explained by movements. Our adoption of PDC method allows us
to distinguish direct and indirect flows in the frequency domain; this is not possible with correlation methods
(49, 63).

Brain fluctuation correlated with physiological signals has been found universally (64-67). However,
when using the hemodynamic signal as a surrogate for neural activity, such as in functional magnetic
resonance imaging (fMRI) and fUS, the cardiovascular and respiratory signals have been treated as confounds
and regressed out in fMRI studies (68). In addition, due to signal distortion and CO; concentration change in
the brain brought by respiration, it is also a general practice to regress out global fMRI signals approximating
the removal of respiration (69). The fUS method does not have the signal distortion issue but could be
influenced by CO: concentration. Although we did not explicitly remove potential global influences in our
analysis, the PDC estimate automatically treated independent external sources as noise. Thus, the global effect
should be discounted at least to the extent of removing the global average. Another technical difference is
that the CBV of the arterioles and capillaries measured with fUS (47) are more similar to CBV-fMRI than
BOLD-fMRI (43). CBV signals exhibit a shorter onset time and time-to-peak than BOLD signals in
marmosets (70) and correlate linearly with neural activity for a wide range of physiological regimes (77-73).
The higher sensitivity of the fUS signal may have contributed to our inference of information flow. Besides
the entangled brain-physiological signal owing to the imaging technique, there is also a neurobiological basis
for the correlation between brain and physiological states (64). Multiple cortical and subcortical areas
participate in autonomic regulations on respiratory, cardiovascular, digestive, and other systems (65, 67, 74).
The temporal relationships between brain activity and the physiological signal are frequency dependent. For
example, in mice, theta oscillations precede and are Granger-causal for the variation of respiration rate,
whereas it is the opposite for the gamma oscillations (75). Our results support that at frequencies <0.5 Hz,
the information mainly flows from brain to heart rate, outweighing the opposite direction. However, we did
not exclude that heart rate and respiratory sinus arrhythmia can influence CBV at higher frequencies around
blood pulsation (~5 Hz) and respiration rate (~1 Hz) in marmosets.

Intrinsic functional architecture revealed in slow spontaneous fluctuations across the brain is not
unique to humans (76) and has been observed across various animal species (77-82). With technologies
allowing for higher spatial and temporal resolutions, we are now able to better understand the neural and
hemodynamic accounts for behavior on a large scale (§3). Using fUS, we revealed how heart rate, a measure
of the moment-to-moment variation of energy supply to the body, is coordinated with motor activity, which
consumes this energy—via a complex brain network. The brain is at the nexus between internal and external
environments. Its functional division into external and internal regulations, and the inseparable nature of
these two dynamics, support a view of the default mode network as a dynamic sense-making network that
actively integrates external and internal life events (84). This coordination may be a consequence of context-
dependent energy optimization. Questions for future studies are how the brain exploits and reconfigures its
intrinsic networks in the face of different internal and external challenges in contexts such as social
interaction and learning (85, §6), and how life experiences can shape the energy landscape of network
dynamics and give rise to the diversity of behavioral phenotypes (§4).
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Methods

Subjects

All experiments were performed in compliance with the Princeton University Institutional Animal Care and
Use Committee guidelines. The subjects used in the study were four adult common marmosets (>2 years old,
one female and three males) housed at Princeton University. All four subjects participated in the fUS
recording; three of them were also used for ECG and video recording. The colony room was maintained at
27°C temperature and 50-60% humidity with a 121.:12D light cycle. Marmosets had ad /ibitum access to water
and were fed with a standard diet. All subjects were acclimated to the experimental environment and
positioning at least a month before the formal experiments.

Surgery

For pre-operative procedures, the animal was placed on a warmed blanket with temperature, pulse,
respiration and SPO2 being monitored and blood glucose measured. Dexamethasone 1 mg/kg and Baytril 5
mg/kg was administered IM. The animal was induced with alfaxalone 10 mg/kg IM before intubation. The
intubated animal was then connected to the anesthesia machine and moved into the OR. The surgical site was
clipped, and the remaining hair was removed with Nair. The surgical site was cleaned with betadine and
covered with surgical drape (3M). Didocaine was injected into the scalp at multiple sites. An incision (~20
mm, rostral/caudal otrientation) was made to expose the skull along the top of the head through the scalp.
Tissue was reflected with a retractor to expose the skull. Sterilized miniature titanium screws were inserted
into the bone at several locations to anchor the head post and the head plate. A customized head post and a
head plate were immobilized on the skull with adhesive cement (C&B Metabond Quick Adhesive Cement
System, Parkell). The head plate allowed the ultrasound probe to be aligned with the midline of the brain.
Within the head plate, a cranial window of ~8 mm X 16 mm was created. During off-experiment time, a
stainless-steel cover was attached to the head plate to protect the head plate and the craniotomy.

Functional nitrasound (fUS) imaging

Our custom ultrasound probe allowed a wide field of view (20 mm depth, 16 mm width), a temporal
resolution of 2 Hz, a spatial resolution of 125 pm in width, 130 um in depth, and 200-800 pm in thickness
depending on the depth (200 pm at 12 mm depth). The probe was connected to an ultrasound scanner
(Vantage 128, Verasonics) controlled by a PC. fUS signals were acquired at the midline sagittal plane. The
image acquisition method was described previously (43).

Experimental protocol for fUS' recording

Each subject participated in experiments once per day around the same time of the day. The subject was
brought to the experimental room from their home cage. The walls of the room (3.2 m X 5.5 m) were
covered with sound attenuating foam. The subject was placed in a custom-designed partial restraint device
with the head fixed by the head post. The cover was removed to expose the cranial window, which was then
flushed with sterile water and covered by sterile ultrasound gel (Sterile Aquasonic 100 Ultrasound Gel). A
customized probe holder was then attached to the top of the head plate with screws and the ultrasound probe
was placed inside the holder. The head post was released before the experiment to allow head movement. An
initial image was acquired to examine the imaging position and quality. Each task-absent trial lasted 10-20
min. After the experiment, the recording surface was cleaned with 0.05% chlorhexidine and sterile water and
was closed with the cover. The animal was then returned to their home cage.

Image processing

We first aligned image frames using a rigid body transformation within each session to eliminate any slow
drift of image position within the FOV. To achieve this, we first calculated an averaged image across the
session and saved it as a reference. Then we aligned each frame to this reference using elastix software (§7).
To align all sessions to a common reference, we next consecutively performed rigid body, affine, and B-spline
transformations using elastix. We then created a mask for the within brain area shared across all sessions with
the sagittal sinus excluded.
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To remove timepoints contaminated by motion artifacts, we used the averaged signal of an area
outside the brain as control. We set a criterion for a timepoint to be an outlier if the control signal was above
1.5(Q3-Q1)+Q3, where Qi stands for the it quartile of the control signal. Once the noise was removed, we
band-pass filtered the image data between 0.005 Hz and 0.5 Hz and standardized the signal of each pixel.
Finally, we spatially smoothed the images using a 2D Gaussian filter with sigma=2 pixels in each dimension.

Brain parcellation

We first vectorized the image data such that each column was the masked pixels within a frame. To perform
group parcellation across all sessions, we calculated principal component analysis (PCA) to reduce the
temporal dimensionality (# of columns) to 30 for each session and concatenated all sessions by the reduced
dimension (§8). We then calculated the pairwise Spearman’s rank correlation coefficient, based on which we

established a distance matrix A with diagonal elements 0 and off-diagonals A;; |pl j | PEpyR where n the
Pij

number of pixels, p;; the Spearman’s correlation between pixel i and j. We then performed spectral
clustermg (89) using the distance matrix for which we calculated the symmetric normalized Laplacian matrix

L=D ZAD z, where Dy; = Y. A;j the degree matrix. We calculated the eigenvectors corresponding to the

largest k eigenvalues of L and performed k-means clustering on the eigenvectors. This yields the spectral
clustering results. Similar procedure was carried out for the subject specific parcellation.

Cardiac data acquisition

To record ECG, we put on an elastic band to the chest of the marmosets with a pair of Ag-AgCl surface
electrodes (Grass Technology) sewed on. The data was resampled into 1 kHz and band-pass filtered between
15 and 100 Hz. To identify heartbeats, we calculated sliding correlation coefficients between session-specific
templates and the ECG signal, and these locations were marked as one if the correlation coefficient was
above a threshold. This binary signal was convolved with a Gaussian window to estimate the momentary
heart rate.

Bebavioral videography

In a lighted room, the subject was placed in a customized chair with its front facing a camera (Logitech
C920). Videos of the subjects were recorded at 24-Hz framerate and synchronized with fUS acquisition.
HEssentially, a 1 ps pulse signaling the end of image acquisition (400 ms long per 500 ms cycle) was passed to
the interrupt channel of an Arduino board, which converted the signal to a 200 us TTL pulse to be recorded.
The sound was also recorded from a microphone placed next to the subject (Zoom H4n Pro). Audio, TTL
pulse, and ECG signal were simultaneously recorded through a data acquisition box (Muscle SpikerBox Pro)
at a sample rate of 44.1 kHz. This audio signal was aligned with the audio channel of the video through a
brief playback of white noise. We created masks for the subject based on pixel variance contrasting the static
background and aligned the masked images across sessions through rigid body transformation and affine
transformation using elastix. Video analysis was carried out for the aligned videos. We defined motion
intensity (MI) as the absolute value of the total intensity difference between two adjacent frames, scaled by
the mean across the session. We then downsampled MI to 2 Hz.

To extract different types of motor behaviors, we performed a group independent component
analysis (ICA). First, we carried out group PCA by concatenating the first 100 spatial PCs across 35 video
sessions. Next, we performed ICA on the group PCs and identified 34 spatial modes. By inspecting the spatial
patterns, we categorized the behaviors into six types: blink, mouth movement, ear movement, arm and hand
movement, foot and tail movement, and body movement. We calculated the momentary behavioral index as
the inner product between each IC and the video frame, then took the maximal value at each time point
across the subset of ICs belonging to the same behavioral category. To estimate the fractional time spent on
each type of behavior, we calculated the proportion of time during which behavior indices were above a
threshold of the session. Time not spent on any movements was determined as being still.
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Coberence

The coherence between motion intensity and heart rate was calculated using the MATLAB function ewtm. We
concatenated the time series of all 35 sessions to minimize the edge effect. To remove the baseline difference
in heart rate by sessions, we used the z-score of heart rate. Statistical significance was determined as being
greater than the 95% CI of the null coherence, which was estimated by phase-randomized surrogates of the
time series repeated 1000 times. We separated periods of substantial movements and subtle movements using
a threshold of MI. If a substantial movement was detected, we also included the timepoints 10 s before and
after. The rest was considered to contain only subtle movements. The coherence analyses were repeated for
concatenated segments of substantial and subtle movements.

Partial directed coberence

We used partial directed coherence (PDC) to elucidate the coordination between brain and peripheral
activities. To combine time-series across all sessions, we normalized ROI signals and HR, but MI, within each
session. By concatenating the time series, we reduced potential edge effects and increased statistical
robustness. We treated the ROIs as multivariate time-series and applied block-PDC (bPDC) for the total
causality measure between the brain and peripheral components. The bPDC as an extension to PDC is
available at https://www.lcs.poli.usp.br/~baccala/pdc/canon/. We designed three blocks of time series,
consisting of 1) all ROIs, 2) M1, 3) HR. Here we used all ROls, including those identified as big vessels. The
optimal maximum order of the autoregressive model was determined using the Akaike information criteria
(AIC). To find significantly high PDC, we phase-randomized the time-series 1000 times and calculated the
95% CI of the null distribution. We set the criteria for statistical significance with Bonferroni correction for
multiple compatisons @ = 0.05/6, as there were 6 directional relationships to examine. For PDC of
univariate time-series, we applied the package available at https://www.lcs.poli.usp.br/~baccala/pdc/. The
maximum order of the autoregressive model was determined using AIC.

2
We adopted the informational metric of PDC |L7T ij (a))l , which is essentially linked to the mutual

2
information rate via MIR;; = — ﬁ f_nﬂ log(1 — |L7Tl-j (a))l ) dw (50). In this work, we used a similar measure

as MIR for total information flow I;; = — fOfC log (1 — |L7Tij (f)lz) df, where the cutoff frequency f, = 0.5

Hz. To test the difference between [; j, and [, ;,, we bootstrapped the data by resampling sessions with
replacement and calculated bPDC for each resampled time series. This procedure was repeated 1000 times to
estimate the distribution of information flow in each direction. We then compared each pair of directions
using paired z-test with a Bonferroni corrected criterion @ = 0.05/15.

We defined information flow above the 75th-percentile within each category as strongly influencing
directions. The categories were 1) I;; for i,j € ROIs, 2) I;; fori € ROIs,j = Ml and i = MI,j € ROls,
and 3) I;; fori € ROIs,j = HR and i = HR,j € ROIs.

Directed graph clustering

We adopted the weighted cuts algorithm for spectral clustering in a directed graph (90). The MATLAB
package can be found at https://sites.stat.washington.edu/mmp/software.html. Essentially, we normalized
the Laplacian matrix with node weights T;, here we used T; = D; = X.; A;j, which is simply the out-degree.

1
We next found the eigenvectors corresponding to the k smallest eigenvalues of H = %T_E(ZD —A-

1
AT)T 7z, and then performed the k-means clustering on the eigenvectors.

Brain state clustering

We followed (55) to decompose imaging data into a spectro-spatial space. We calculated 25 group
independent components (group-ICA) representing the spatial distribution of potential source signals. The
group-ICA was performed based on the temporally reduced concatenated data described above for spectral
clustering (88). We filtered the brain images into spectral bands using maximal overlap discrete wavelet packet
transformation with a Daubechies wavelet of 2 vanishing moments. Then we multiplied the ICs and each of
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the frequency bands of the brain image X = SWp, where S the ICs of size Nje X Npixe; and W the wavelet
packet transform of frequency f with size of Npixe; X Ngime. Thus, the dimension of a time point was
reduced to Nje X Npreq = 400.

One problem with group-level clustering is that variations created by experiments due to slight
differences in, e.g., probe positioning and signal quality and the difference in subjects may become dominant
and drive the clustering results. To deal with this, we minimized the dependence on experimental sessions
using an expectation-maximization (EM) procedure with penalization on session dependence in the objective
function of K-means clustering. Then, we transformed the data iteratively to a common space across
sessions. This algorithm was based on the Harmony method developed for high-dimensional biological data
like RNA-seq (97). In this study, we moditied this algorithm to deal with time series with the temporal
structure maintained during the optimization by applying fused lasso regularization (the elaborated method
will appear in a separate article). The transformed data yielded clustering with session-dependence largely
reduced (Fig. S7). Data used for the correction were the dimensionality reduced data described above.

We further performed manifold embedding onto a 2D space for the corrected data using the t-
distributed stochastic neighbor embedding (t-SNE) algorithm. MATLAB routine #7e was used with the
Barnes-hut approximations, correlational distances, and perplexity of 32. Following (55), we performed a
watershed transform of the negative density map to identify densely populated regions. The density map was
constructed from a 2D histogram with a Gaussian filter. The width of the Gaussian filter controlled the
granularity of the density map. We chose the parameters to ensure that each cluster across multiple sessions
was not significantly biased by a single trial. The watershed transform was performed using the MATLAB
function watershed.

State score

To evaluate to what extend the ROI activity was attributed to changes in brain state, we estimated the
percentage variance of ROI activity explained by the occurrence of each brain state using cross-validation. We
randomly stratified the data into ten folds, trained linear models of y; = a;; + B;jX; + €; where y; the
activity of the ith ROI, X; the one-hot encoding of brain state j, and €; a random noise, using the nine folds
of the data, and calculated test variance explained as R? = 1 — RSS/TSS using the remaining fold. We
estimated the mean and standard deviation of variance explained across the 10-time cross-validations for each
ROI and each brain state. Assuming the variances explained were normally distributed, we tested whether the
variance explained was equal to zero. The null hypothesis would be rejected if the mean variance explained
was greater than 1.96 times the estimated standard deviation. Our results showed that states #1 and #4 co-
varied and #2 and #3 co-varied. We thus defined a state score as SS; = log(R% + R%) — log(R% + RE),
where ﬁ?] is the variance explained for ROI #i by the j-th state. Thus, if a signal were more strongly
correlated with #1 and #4 than #2 and #3, the state score would be positive, and vice versa. To estimate the
o+ 3500

~ ~ 2 ~ ~ 2-
(RA+RG)”  (RL+RG

variance of the state scores, we applied chain rule 6‘525i =

State correlation with control preference
We defined the control preference as the difference between the information flow from ROI to movement

and from ROI to heatt rate: CP; = ;00 — Ij—yr. To test the dependence of control preference on brain
state, using each ROI as a sample, we performed a weighted linear regression with the weight as 1/ 65251’ (a
similar result was obtained with ordinary least squates). The criterion for statistical significance was set at @ =

0.05.
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Fig. S3. Canonical correlations between ROI activities and movement and between ROI activities
and heart rate. Shaded areas are 95% CI. Red bars label the peak position. For movement, the lag of
brain is -0.5110.40 s, and for heart rate it is -1.020.0 s (mean +\- s.d.). A negative lag means that
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Fig. S4. bPDC between ROIs and each type of movement. The bPDC was among three subsets:
ROlIs, types of movements, HR. Red highlights values significantly higher than the 95% CI of
phase-randomized surrogates.
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Fig. S7. Spatial wavelet packet transform amplitude at different frequencies for each cluster.
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Fig. S8. t-SNE before and after correction for session dependence. Color represents session number.

Proof of PDC’s invariance to causal filtering

Given the Foutier transform of a multivariate time-series X (w), applying any causal filtering G (w) gives
filtered signals Y (w) = G(w)X(w). In the frequency domain, X (@) can be written in a moving average
representation X (w) = H(w)w(w), where H(w) stands for the moving average coefficient and w(w) is the
Fourier transform of the zero-mean innovation process. Hence we have Y(w) = G(w)H(w)w(w).
Assuming H and G are invertible, we can further write H 1 (0)G " (@)Y (w) = w(w).
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|4jj ()]
[P Ay @)y @)
A(w) and A(w) is the autoregression coefficient and N the total number of signals. It is known that A(w) =
H™(w) and hence we have A(0)G 1 (w)Y (w) = w(w). As G is diagonal (otherwise inter-dependence is

By definition, the PDC from j — i is ;j(w) = , where the matrix A(w) = I —

artificially introduced), element-wise we have 4; j(w) = A; ] (w)G]-_l (w). The new PDC of Y is then
|4;j(w)] _ 1Aij ()6 ()]

(0) = —20 A
\/Zk=1Akj(w)A7<j(w) J2k=1Ak]-(w)G].‘l(a))G].‘l*(w)A*k]-(w)

= T[ij ((l)) QED
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