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Abstract 

Understanding cell behaviors can provide new knowledge on the development of different 

pathologies. Focal adhesion (FA) sites are important sub-cellular structures that are involved in 

these processes. To better facilitate the study of FA sites, deep learning (DL) can be used to predict 

FA site morphology based on limited datasets (e.g., cell membrane images). However, calculating 

the accuracy score of these predictions can be challenging due to the discrete/point pattern like 

nature of FA sites. In the present work, a new image similarity metric, discrete protein metric 

(DPM), was developed to calculate FA prediction accuracy. This metric measures differences in 

distribution (d), shape/size (s), and angle (a) of FA sites between the predicted image and its 

ground truth image. Performance of the DPM was evaluated by comparing it to three other 

commonly used image similarity metrics: Pearson correlation coefficient (PCC), feature similarity 

index (FSIM), and Intersection over Union (IoU). A sensitivity analysis was performed by 

comparing changes in each metric value due to quantifiable changes in FA site location, number, 

aspect ratio, area, or orientation. Furthermore, accuracy score of DL-generated predictions was 

calculated using all four metrics to compare their ability to capture variation across samples. 

Results showed better sensitivity and range of variation for DPM compared to the other metrics 

tested. Most importantly, DPM had the ability to determine which FA predictions were 

quantitatively more accurate and consistent with qualitative assessments. The proposed DPM 

hence provides a method to validate DL-generated FA predictions and can be extended to 

evaluating other predicted or segmented discrete structures of biomedical relevance. 

Introduction 

To better understand human health, gaining insight into different cell behaviors is key. Cells adapt 

to new situations by perceiving information and transforming it into changes in their gene and 

protein expression repertoire (Tosh & Slack, 2002). These changes result in responses that could 
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lead to different pathologies. One such example is the way cells sense and respond to their 

mechanical environment. Mechanosensing, how a cell senses and responds to inter- and 

intra-cellular stresses, can provide new knowledge on the development of diseases such as 

cardiovascular disease (Gaetani et al., 2020), cancer progression (Kärki & Tojkander, 2021), or 

fibrosis (Tschumperlin et al., 2018). These behaviors may be explained in part through close 

observation of cell morphology (McCarron et al., 2017). In response to stimuli (e.g., change in 

substrate stiffness, fluid shear stress), a single cell or group of cells make dynamic morphological 

adjustments. These morphological changes are accompanied with changes in cell adhesion to the 

extracellular matrix and force distributions throughout the cell (Yeung et al., 2005). Insight into 

both changes can be provided by the properties of a sub-cellular structure known as focal adhesions 

(FA). FA sites consist of large macromolecular assemblies of proteins that associate with integrin 

to provide anchor points for a cell to adhere to the extracellular matrix. FA sites play a fundamental 

role in force sensing, which influences several cellular processes and functions, including cell 

migration and cell cycle (Haase et al., 2014). Therefore, studying the morphology of these FA sites 

can provide a better understanding of cell behavior. Such morphology can show changes in FA 

site number, size, and location over time (Berginski et al., 2011) or can show changes in FA site 

alignment due to external stimuli such as shear stress (Davies et al., 1994). 

One method that has been used to quantify the change to sub-cellular morphological features (i.e., 

shape, size, intensity, and texture) is image-based profiling. In this method, averaged profiling is 

used to summarize a cell population (a sample) into a fixed length vector (a sample’s profile), with 

one value per feature per sample (Rohban et al., 2019). Image-based profiling has been used by 

studies coupling morphological features with gene expression, where the modeling procedure 

involves the selection of genes that are associated with a given image-based feature (Nassiri & 
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McCall, 2018). However using this method, multiple configurations of distinct subpopulations of 

cells could yield identical average profiles (Rohban et al., 2019). As a result, this method is limited 

in its ability to recognize cell heterogeneity. Therefore, new methods are needed to quantify 

morphology. 

Machine learning (ML) is a computational method that has been used recently to analyze the 

morphology of cells. For example, deep learning (DL) algorithms, a subset of ML techniques, have 

been developed to perform cell segmentation in 2D microscopy images by detecting cells, 

separating touching cells, and segmenting sub-cellular compartments (e.g., nucleus and cytoplasm) 

(Al-Kofahi et al., 2018). ML has also been used to classify cell images according to their 

morphological features, where these features have been previously extracted from image 

segmentation (Rodellar et al., 2018). While these methods provide great insight into cell 

morphology, they have not been applied to study all sub-cellular components. For the study of 

cells, it is necessary to generate models that identify the morphology of the key components 

involved in their function, including the FA sites. A potential use of DL on morphological analysis 

is through in silico labeling of cellular components. This approach has been proved to be effective 

through the development of DL algorithms that predict fluorescence labels (e.g., nuclei and cell 

membrane) on unlabeled cell images (Christiansen et al., 2018) or DL networks that predict sub-

cellular protein structure images (e.g., alpha actinin, alpha tubulin) using other cell label images 

(e.g., nucleus and cell membrane) as input (Yuan et al., 2019). These algorithms provide the 

advantage of being highly adaptable. For instance, through transfer learning the algorithms can 

use knowledge acquired from previous experiences to perform a new task. This approach is 

especially beneficial when there is limited amount of annotated data available (Kensert et al., 

2019). The use of transfer learning on these types of algorithms has the potential to predict the 
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morphology of relevant sub-cellular structures, such as the FA sites, using limited data (e.g., only 

cell membrane).  

Although FA sites can be predicted from limited data, validating DL-generated predictions of FA 

sites can be a challenging task. Such validation would need to be carried out by measuring the 

similarity between the FA ground truth image of a cell and the FA image DL-predicted. Multiple 

image similarity metrics have been used for sub-cellular predictions. For example, Pearson 

correlation coefficient (PCC) has been used to measure nuclei fluorescence image prediction 

accuracy (Christiansen et al., 2018), feature similarity index (FSIM) has been used for delineation 

and detection of cell nuclei (John et al., 2016), and Intersection over Union (IoU) have been used 

to measure accuracy of semantic segmentation to identify nuclei in microscopy cell images (Punn 

& Agarwal, 2020). These metrics are better suited to compute the image similarity of large 

sub-cellular structures such as the nucleus. However, for FA predictions, accuracy scores can be 

difficult to compute and interpret given that FA sites are much smaller structures and have a 

discrete/point-pattern nature. FA predictions will be at different locations, differ in number, and 

will have different aspect ratios, areas, and angles of orientation, so a single metric might fail to 

simultaneously capture variations in all of these measurements. Furthermore, most existing metrics 

yield scores that are inconsistent with qualitative assessment. Therefore, the objective of this 

research is to develop a new image similarity metric to evaluate DL-generated FA sites predictions. 

The new metric, discrete protein metric (DPM), measures similarity in distribution (d), shape (i.e., 

aspect ratio) and shape/size (i.e., area) (s), and orientation angle (a) of FA sites. The DPM was 

compared to three commonly used image similarity metrics for cell images (PCC, FSIM, and IoU) 

and tested on DL-generated FA predictions for validation of its effectiveness on calculating FA 

predictions accuracy scores that are in better agreement to qualitative assessment. 
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Methods 

 

1. Cell culture and culture media 

Human Microvascular Endothelial cells (HMEC-1, #CRL-3243, ATCC, Manassas, VA) were 

maintained in complete growth media. Complete growth media consisted of MCDB 131 media 

(#10372019, Gibco, Grand Island, NY) supplemented with 2 mM L-glutamine (#25030081, 

Thermo Fisher Scientific), 10% (v/v) FBS (#15000044, Thermo Fisher Scientific) and 

penicillin/streptomycin (100 U/ml and 100 µg/ml concentration, respectively). Cells were seeded 

at a density of 10,000 cells/cm2 onto fibronectin-coated glass coverslips (#CS-25R17, thickness 

1.5, Warner Instruments, Hamden CT) (fibronectin, 20 µg/ml, #33016-015, Thermo Fisher 

Scientific) mounted in 6-well plates. The cells were grown to confluence in a humidified 

environment at 37˚C with 5% CO2. 

 

2. Immunofluorescence labeling 

 

Once the cells reached confluence, the plasma membrane of live cells were stained with Wheat 

Germ Agglutinin (WGA) (CF633, Biotium, Fremont, CA). Cells were washed twice in Hank’s 

balanced salt solution (HBSS, #14025076, Thermo Fisher Scientific), then incubated with WGA 

(5 µg/ml) for 30 minutes at 37˚C, then washed twice in HBSS. Next, the cells were simultaneously 

fixed (4% (w/v) paraformaldehyde (PFA) in PBS) and permeabilized in Triton X-100 (0.5% (v/v), 

5 min, #T9284, Sigma-Aldrich). Then post-fixed in 4% (w/v) PFA in PBS, followed by PBS wash 

(3 × 5 min). To image the nucleus, cells were stained with Hoecsht 33258 (1:1000, #116M4139V, 

Sigma-Aldrich). A blocking solution comprised of goat serum (1:20, #G9023, Sigma-Aldrich), 

0.1% Triton X-100, and 0.3M glycine in 0.1% (w/v) BSA was added to cells for 30 minutes. To 

image FA sites, cells were blocked with the previously mentioned blocking solution for 30 minutes 

at room temperature. Then cells were incubated overnight with anti-paxillin 
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(1:500, Abcam, #ab32084). This was followed by a 2-hour incubation with secondary antibody 

goat anti-rabbit Alexa Fluor 488 (1:500, #ab150077, Abcam, Waltham, MA, USA), and a 

0.1% (w/v) BSA wash (3 × 5 min). The fibronectin coated cover slips were then removed from the 

well plates and mounted cell-side-down onto individual glass microscope slides using ProLong 

Glass (#P36982, Thermo Fisher Scientific). 

 

3. Microscopy and image acquisition 

 

A Leica TCS SP5 confocal microscope with a 63×/1.40 NA oil immersion lens was used to image 

the monolayer. UV 405 nm (nucleus), UV 488 nm (FA sites), and a HeNe 633 nm (membrane) 

lasers were used to sequentially excite samples. Images were acquired at 2048 pixels × 2048 pixels, 

with an x-y spatial resolution of 0.132 µm/pixel and z spatial resolution within the range of 

0.1-0.15 µm/slice for different imaging sessions. A total of 8 fields of view (i.e., 8 image stacks) 

were acquired from cells belonging to all well plates, from which the slice with the brightest 

membrane and FA signal was taken. 

 

4. Image processing and data augmentation 

 
For each field of view, an overlay of the red color channel for membrane and the green color 

channel for FA sites was obtained and processed as an RGB image. From each image, individual 

cells were manually segmented using ImageJ ver1.52i (Schneider et al., 2012). A total of 60 single-

cell images were obtained from all 8 fields of view. Then, the dataset formed by these individual 

cells was augmented performing random rotation and translation for eight iterations. For each 

iteration, a random angle between 0˚ and 360˚ and a random vertical and horizontal shift between 

-100 pixels and 100 pixels were chosen to rotate and shift each individual cell. This resulted in a 

total of 480 single-cell images. Each image was rescaled to a size of 256 pixels × 256 pixels. 
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Finally, FA color channel was processed using a top hat filter with a 3 × 3 rectangular kernel to 

eliminate background noise. 

 

5. Data combination and transformation 

 

The augmented single-cell images were combined with a dataset from the Allen Institute for Cell 

Science (Johnson et al., 2017) to increase the size of the dataset and use transfer learning for neural 

network training. This Allen Institute dataset consisted of 6077 single cell images containing cell 

membrane, nucleus, and one protein of interest stained. This dataset was divided into 10 classes, 

each class consisting of one protein of interest. One of these classes was randomly dropped and 

replaced with the acquired dataset. For all cells from the Allen Institute, the nucleus color channel 

was dropped, and each image was rescaled to a size of 256 pixels × 256 pixels. The final dataset 

consisted of 6077 images containing membrane and the protein/structure of interest. The images 

were then converted to HDF5 format. For the conversion, the images were transformed into 

NumPy arrays. The pixel values were normalized from the 0-255 range to a 0-1 range. The images 

containing both membrane and structure of interest were appended to a single array of dimensions 

(6077, 256, 256, 3) with the third color channel being empty. The labels (i.e., structure of interest) 

were transformed into a one-hot encoded vector and appended to a single array of dimensions 

(6077, 10). The color channel for cell membrane structure was separated from the images and 

appended to a single array of dimensions (6077, 256, 256, 2) with the second color channel being 

empty. Finally, the three arrays were stored into a single HDF5 file. 

 

6. Neural network architecture and training 

 

An open-source neural network (Yuan et al., 2019) was trained to predict the different structures 

of interest, using only cell membrane as input. For the objective of this study, only FA sites 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472147doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472147
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

predictions were analyzed. The network was based on a conditional generative adversarial network 

(cGAN) architecture, consisting of a generator and discriminator (Yuan et al., 2019). The dataset 

was split into training and testing set using an 80/20 ratio. For the images of interest (i.e., FA sites) 

this resulted on 390 images for training and 90 for testing. The network was trained using the 

original parameters (Yuan et al., 2019) with a learning rate of 2 × 10-4 and a batch size of 10. The 

training lasted 50 epochs, as no improvements were observed after this point.  

 

7. Discrete protein metric (DPM) 

 

After training the network, information was extracted from predictions across the 90 samples in 

the test set, along with their respective ground truth. For such extraction, membrane and FA color 

channels from each prediction/ground truth pair were separated and binarized. For membrane 

images, the outline was segmented to produce an image of the segmented membrane. For FA 

images, FA sites that had an area < 1µm2 were dropped (Mullen et al., 2014) and the outline of 

each FA site remaining was segmented to produce an image of the segmented FAs. Subsequently, 

the x-y centroid coordinates for each FA site were extracted to describe their number and location 

and an image was produced. Furthermore, for each FA site a bounding box was drawn around 

them to describe their shape (i.e., aspect ratio) and size (i.e., area) and an image was produced. A 

schematic of this process can be seen in Fig. 1 and Fig. 2.  

 
Fig. 1: Information extraction pipeline of the the cell membrane segmentation process: (A) Membrane 

color channel extraction from cell image; (B) Binarization of membrane image; (C) Segmentation of 

membrane outline. 
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Fig. 2: Information extraction pipeline of the FA site segmentation: (A) FA color channel extraction from 

cell image; (B) Binarization of FA image; (C) Size threshold where FAs with < 1 µm2 area were dropped; 

(D) Segmentation of FAs outline; (E) Extraction of centroids for each FA; (F) Bounding box drawn for 

each FA. 

 

A new metric, discrete protein metric (DPM), was developed to use the information extracted to 

compute the accuracy of FA predictions. This metric accounts for three key aspects of a prediction: 

distribution (d), shape and size (i.e., aspect ratio and area) (s), and orientation angle (a) of FA sites. 

The calculation of DPM is a weighted sum of these three components. Equation (1) shows the 

calculation of the metric, 

 

𝐷𝑃𝑀 = 𝑤𝑑𝑑 + 𝑤𝑠𝑠 + 𝑤𝑎𝑎 (1) 

 

where 𝑤𝑑, 𝑤𝑠, and 𝑤𝑎 are the relative weights for distribution, shape/size, and orientation angle 

respectively. These weights are assigned according to the relative importance of each component 

for the research question of interest. The sum of these weights must always equal one. For the 

purpose of later calculations, the importance of all measurements was considered to be equal (i.e., 

all weights were set equal to 0.33). 

 

7.1 Distribution (d) 

 

For the distribution measurement, a k-means clustering algorithm (Pedregosa et al., 2011) was 

employed. The algorithm was trained individually for each ground truth FA site image in the test 

set. For such training, the coordinates of the centroids of each FA site were used as input to group 
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them into five clusters. After training, the algorithm was used to predict which cluster each 

predicted FA site belonged to. If any predicted FA site was outside of the membrane outline, it 

was dropped. The number of FAs dropped was used as a penalizing factor to the overall d score. 

Finally, the ratio of number of FAs belonging to a particular cluster in the prediction to ground 

truth was calculated, and the average of ratios across all clusters was taken. Equation (2) shows 

the calculation of the distribution measurement,  

 

𝑑 = (1 −
𝐹𝐴𝐷
𝐹𝐴𝑃

)∑
1

𝑛
(
min⁡{(𝐹𝐴𝑃)𝑖⁡, (𝐹𝐴𝐺𝑇)𝑖}

max⁡{(𝐹𝐴𝑃)𝑖⁡, (𝐹𝐴𝐺𝑇)𝑖}
)

𝑛

𝑖=1

 (2) 

 

where 𝐹𝐴𝐷 is the number of FAs dropped, 𝐹𝐴𝑃 is the total number of FAs predicted, n is the 

number of clusters, and (𝐹𝐴𝑃)𝑖 and (𝐹𝐴𝐺𝑇)𝑖 are the number of ground truth and predicted FAs in 

the ith cluster respectively. For better interpretability of the d measurement, heat maps showing FA 

numbers and ratios within each cluster were generated. A schematic of the clusters formed after 

training the k-means algorithm can be seen in Fig. 3.  
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Fig. 3: Schematic of clusters formed after k-means algorithm training: (A) Ground truth FA centroids; 

(B) Predicted FA centroids; (C) Clusters generated from ground truth data with each color representing 

a different cluster and cross marks representing the centroid of each cluster; (D) Predicted FA centroids 

assigned to their nearest cluster. 

 

7.2 Shape/size (s) 

 

For the shape/size measurement, the location of the bounding box of each FA site in the prediction 

was matched to its nearest neighbor in the ground truth by setting their centroid coordinates equal 

to each other. After all boxes were at matching locations, their overlap was measured using an F1 

score based on precision and recall. Equations (3), (4), and (5) show, respectively, the calculations 

of F1 score, precision, and recall, 

 

𝑠 = 𝐹1 =
2 × 𝑃𝑐 × 𝑅𝑐

𝑃𝑐 + 𝑅𝑐
 (3) 

 

𝑃𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

𝑅𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 
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where 𝑃𝑐 is precision, 𝑅𝑐 is recall, 𝑇𝑃 is true positives, 𝐹𝑃 is false positives, and 𝐹𝑁 is false 

negatives. A schematic of the calculation of the s measurement can be seen in Fig. 4. 

 

 
Fig. 4: Schematic of calculation of s measurement: (A) Single prediction for a FA site bounding box 

represented in red; (B) Ground truth FA site bounding boxes on predictions vicinity in black; (C) Nearest 

neighbor identification with centroid for each FA represented by cross mark; (D) Location match using 

centroid coordinates. 
 

7.3 Orientation angle (a) 

 

For the orientation angle measurement, the orientation angle of each FA site bounding box in the 

prediction was compared to the orientation angle of the nearest bounding box in the ground truth. 

To calculate such angles, the minimum area rectangle was calculated and the smallest angle that it 

formed with respect to the horizontal axis was taken. After angles were calculated, the deviation 

in the orientation angle was taken as the difference between the angle of the predicted box and the 

ground truth box. This difference was divided by 90˚ as this was considered to be the maximum 

difference there could be between the two angles. Equation (6) shows the calculation of the angle 

measurement, 
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𝑎 = 1 − (
|Ɵ𝑃 − Ɵ𝐺𝑇|

90˚
) (6) 

 

where Ɵ𝑃 and Ɵ𝐺𝑇 are the rotation angles in degrees for prediction and ground truth, respectively. 

A schematic of the calculation of the a measurement can be seen in Fig. 5. 

 

 
Fig. 5: Schematic of the calculation of a measurement: (A) Single prediction for a FA site minimum area 

rectangle in red; (B) Ground truth FA site minimum area rectangles in the prediction vicinity in black; 

(C) Nearest neighbor identification; (D) Measurement of smallest orientation angle with respect to 

common horizontal axis. 

 

8. Benchmark with image similarity metrics 

 

To test the performance of the DPM, a benchmark with three common image similarity metrics 

was performed: Pearson correlation coefficient (PCC), Intersection over Union (IoU), and feature 

similarity index metric (FSIM). The metrics were compared by looking at the distribution of 

prediction accuracy across all 90 samples in the test set and by performing a sensitivity analysis.  
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8.1 Distribution of prediction metrics and qualitative assessment 

To look at the distribution of prediction accuracy, all four metrics were computed for each of the 

90 predictions in the test set with respect to their respective ground truth image. The metric value 

for each cell was plotted, and the average was calculated as the intercept of a linear fit and the 

range of variation as the difference between minimum and maximum values. Furthermore, in order 

to determine if quantitave prediction accuracy was in agreement with quality of predictions, a 

qualitative assessment was performed. This assessment looked at differences between a ground 

truth image and its predicted image by identifying areas with different FA site densities (i.e., areas 

missing predicting FA sites or areas with overpredicted number of FA sites), with differences in 

FA size, and area with differences in FA site angles. 

 

8.2 Sensitivity analysis 

 

A sensitivity analysis was performed by looking at the change in a metric value due to a 

quantifiable variation in either number, location, area, aspect ratio, or orientation of FAs predicted. 

Therefore, sensitivity (S) was defined as the difference in metric value for every 1% variation. 

Equation (7) shows the calculation of sensitivity, 

 

𝑆 =
𝑚2 −𝑚1

𝑑𝑒𝑣2 − 𝑑𝑒𝑣1
 (7) 

 

where 𝑚2 and 𝑚1 are the metric values at 𝑑𝑒𝑣2 and 𝑑𝑒𝑣1 variation values, respectively. For 

sensitivity of number of FAs, random FA sites were dropped from ground truth images in the test 

set at 5% intervals from 0-100%, where number of FAs dropped was treated as a percentage of the 

total number of FAs in a cell. Similarly, FAs were added at random locations inside the cell 

boundary and sensitivity to these changes was calculated. For sensitivity of location, centroid 
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coordinates of FA sites in ground truth were randomly altered at intervals of 5% from 0-100%, 

where location change was treated as a percentage of the maximum distance between an FA site 

and the membrane outline. For sensitivity of shape/size, the width and height of FA site bounding 

boxes was randomly altered at intervals of 5% from 0-100%, where shape/size change was 

considered as a percentage of the width and height of the cell, considered to be the maximum size 

a FA site could have. For orientation sensitivity, the angle of FA site minimum area rectangles was 

randomly altered at 5% intervals from 0-100%, where angle change was treated as a percentage of 

maximum deviation angle 90˚.  

 

For each sensitivity analysis, a plot was generated, and sensitivity values were obtained by 

performing a linear fit to the curves and obtaining the slope of the line. Sensitivity values were 

obtained for small changes between 0-10% and for large changes between 10-100%.  

Results 

 

1. Cluster maps 

 

After computing the distribution (d) measurement, heat maps of the FA prediction accuracy for 

each region of the cell showed an interpretable measure of the performance of these predictions 

and how FAs in some areas of the cell might be more difficult to predict than other areas. A 

representative example distribution heat map can be observed in Fig. 6C, where the highest 

accuracies can be identified in the bottom region (0.94) and middle-left region (0.93) while the 

upper regions had the lowest accuracy (0.44 and 0.38). Additionally, heat maps for ground truth 

and prediction for each cell showed a visual representation of the difference in distribution between 

the two images. A representative example heat maps for ground truth and prediction are shown in 

Fig. 6A and 6B, respectively. For these example, the bottom and middle-left regions show the most 

similarity between ground truth and prediction (16 vs 15 FAs for bottom region; 14 vs 13 FAs for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472147doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472147
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

middle-left region) while the upper regions show the largest differences (18 vs 8 FAs and 8 vs 3 

FAs). 

 

 
Fig. 6: A representative sample heat map of the number of FA sites in each of the five clusters for a cell 

in the test set: (A) Ground truth and (B) Predicted FA sites heat map showing distribution across the five 

clusters where the more intense the red color, the more FAs that are present in the cluster; (C) Distribution 

heat map showing prediction accuracy score for each cluster where the more intense the red color, the 

higher accuracy.  

 

2. Sensitivity analysis 

 

Sensitivity plot for location changes is shown in Fig. 7. It can be observed that at small changes, 

the DPM decreases at a lower rate than all other metrics. On the other hand, at larger changes, the 

DPM decreases at a higher rate. Sensitivity values for this test can be seen in Table 1. DPM 

sensitivity was much lower (5.9E-03) than all other metrics for small changes. On the other hand, 

sensitivity was much higher for DPM (8.6E-03) than for all other metrics at large changes. 
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Fig. 7: Sensitivity plot for location changes, with horizontal axis representing the deviation percentage 

(dev) and vertical axis representing metric value (m).  

 

 

 
Table 1. Sensitivity values for small (0-10% dev) and large (10-100% dev) location changes in FA sites 

PCC FSIM IoU DPM 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

2.6E-02 4.5E-03 1.6E-02 1.6E-03 4.8E-02 1.1E-04 5.9E-03 8.6E-03 

 

Sensitivity plot for dropping FAs is shown in Fig. 8. It can be observed that for both small and 

large changes, the DPM decreases at a higher and constant rate compared to all other metrics. 

Sensitivity values for this test can be seen in Table 2. DPM sensitivity was much higher than all 

other metrics and remained nearly constant for both small (9.4E-03) and large (9.9E-03) changes. 
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Fig. 8: Sensitivity plot for dropping FA sites, with horizontal axis representing the deviation percentage 

(dev) and vertical axis representing metric value (m). 

 
Table 2. Sensitivity values for small (0-10% dev) and large (10-100% dev) drops in number of FA sites 

PCC FSIM IoU DPM 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

3.3E-03 7.8E-03 3.1E-03 3.2E-03 4.7E-03 5.0E-03 9.4E-03 9.9E-03 

 

Sensitivity plot for adding FAs is shown in Fig. 9. It can be observed that for both small and large 

changes, the DPM decreases at a higher rate compared to all other metrics. Sensitivity values for 

this test can be seen in Table 3. DPM sensitivity was much higher for small (8.6E-03) than for 

large (4.3E-03) changes. 

 
Fig. 9: Sensitivity plot for adding FA sites, with horizontal axis representing the deviation percentage 

(dev) and vertical axis representing metric value (m). 
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Table 3. Sensitivity values for small (0-10% dev) and large (10-100%) additions in number of FA sites 

PCC FSIM IoU DPM 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

2.6E-03 1.5E-03 3.2E-03 1.3E-03 4.1E-03 2.1E-03 8.6E-03 4.3E-03 

 

Sensitivity plot for shape/size changes is shown in Fig. 10. It can be observed that for both small 

and large changes, the DPM decreases at a slightly higher rate compared to all other metrics. 

Sensitivity values for this test can be seen in Table 4. DPM sensitivity was higher than all other 

metrics for small (3.7E-02) and large (4.7E-03) changes. 

 

 
Fig. 10: Sensitivity plot for shape/size changes, with horizontal axis representing the deviation 

percentage (dev) and vertical axis representing metric value (m). 

 
Table 4. Sensitivity values for small (0-10% dev) and large (10-100% dev) shape/size changes in FA sites 

PCC FSIM IoU DPM 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

3.4E-02 4.1E-03 3.1E-02 1.4E-03 2.7E-02 2.9E-03 3.7E-02 4.7E-03 

 

Sensitivity plot for angle changes is shown in Fig. 11. It can be observed that at small changes the 

DPM decreases at an intermediate rate, while for large changes it decreases at a higher rate 

compared to all other metrics. Sensitivity values for this test can be seen in Table 5. DPM 

sensitivity was lower than most other metrics for small changes (9.9E-03), while it was higher than 

all other metrics for large changes (6.9E-03). 
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Fig. 11: Sensitivity plot for angle changes, with horizontal axis representing the deviation percentage 

(dev) and vertical axis representing metric value (m). 

 
Table 5. Sensitivity values for small (0-10% dev) and large (10-100% dev) angle changes in FA sites 

PCC FSIM IoU DPM 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

0-10% 

dev 

10-100% 

dev 

1.5E-02 2.4E-03 7.4E-03 1.3E-03 1.3E-02 1.5E-03 9.9E-03 6.9E-03 

 

3. Metric values distribution 

 

The distribution of the values for each metric is shown in Fig. 12. FSIM and IoU showed the least 

variation across samples, whereas PCC and DPM showed more variation. The DPM can detect 

outliers in the predictions, and it also showed the longest range of values (0.36) as seen in Table 6. 
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A 

 

B 

 
C 

 

D 

 
Fig. 12: Distribution of metric values across samples in test set, where horizontal axis represents the cell 

number and the vertical axis the metric value for: (A) PCC; (B) FSIM; (C) IoU; or, (D) DPM. 
 
Table 6. Mean and range values obtained across all test samples for each metric 

PCC FSIM IoU DPM 

Mean Range Mean Range Mean Range Mean Range 

0.33 0.25 0.83 0.081 0.54 0.097 0.62 0.36 

 

To demonstrate the ability of the DPM to distinguish accurate predictions from inaccurate 

predictions, the PCC, FSIM, IoU and DPM values for two representative FA samples in the test 

set were compared and shown in Fig. 13. These quantitative metric values were compared to 

qualitative assessments for each sample. Qualitative assessment showed higher quality for 

Sample 2 (Fig. 13B), as more areas with roughly the same number of FA sites were identified as 

well as more similarities in shape/size and orientation in comparison to Sample 1 (Fig. 13A). The 

DPM was able to successfully distinguish that Sample 2 was quantitively a more accurate 

prediction than Sample 1, which is consistent with Sample 2 having a higher qualitative quality 
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than Sample 1. On the other hand, PCC, FSIM, and IoU determined that Sample 1 was quantitively 

more accurate than Sample 2. 

 

 
Fig. 13: Comparison between two representative samples in test set: A. Sample 1 ground truth (left) 

versus prediction (right) qualitative assessment and quantitative scores; B. Sample 2 ground truth (left) 

versus prediction (right) qualitative assessment showing higher quality than Sample 1 and quantitative 

scores showing higher DPM score than Sample 1 but lower PCC, FSIM, and IoU scores. 
 

Discussion 

The results presented show the effectiveness of DPM to calculate quantitative accuracy scores for 

FA site predictions that agree with qualitative assessment. Furthermore, the DPM provides a 

method with better sensitivity and better interpretability compared to existing metrics to determine 

the similarity between a predicted FA image and a ground truth image.  

In terms of FA site locations, DPM has a lower sensitivity for small changes. Most of the time, 

predicted FAs will not be at the exact location as ground truth FAs. Therefore, it is important for 

the evaluation metric to have some tolerance to small differences in location. If a difference in 

location is small enough that an FA remains in the same region (i.e., cluster), the predicted FA 

location can be considered acceptable (Mullen et al., 2014). Compared to the other metrics that 

show drastic changes in their score for only small changes in location, the DPM allows for this 
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tolerance. For example, PCC values drop from 1 to 0.74 for only a 10% deviation in location 

(Fig. 7). This drastic change can decrease the overall accuracy score, making a reasonable 

prediction look like a bad prediction. On the other hand, large changes in location should be clearly 

reflected on the value of a metric. The bigger the difference in location, the more FAs that will be 

located outside of the cell and, therefore, the worse the prediction. DPM has a higher sensitivity at 

these large deviations, whereas FSIM and IoU plateau after drastically decreasing at smaller 

deviations. Furthermore, for FA sites located near the edge of the cell, small deviations in location 

might result in the FA site being outside of the cell boundary. The DPM will tolerate small 

differences but will correctly penalize the prediction if the FA site is outside of the cell even if the 

difference in location is small.  

In terms of number of FA sites, DPM had higher sensitivity to both randomly dropping and 

randomly adding FA sites than all other metrics that were tested. As the number of FA sites 

predicted can drastically affect a cell’s behavior (e.g., internal cell tension) (Mullen et al., 2014), 

this measurement has a high importance. While PCC, for example, shows scores as high as 0.90 

after dropping 25% of FA sites, the DPM shows a score (0.75) which is more in accordance with 

this change in FA site number (Fig. 8). Similarly, PCC shows high scores (0.90) after increasing 

the number of FAs by 45%, while DPM once again shows a score (0.69) more consistent with this 

change in FA site number (Fig. 9). Overall, PCC, FSIM, and IoU do not change substantially for 

large changes in FA site number, while DPM scores better reflect these changes. 

In terms of the shape/size of FA sites, the DPM had an overall slightly higher sensitivity than all 

other metrics that were tested. Sensitivity values were higher for small changes, consistent with 

the importance to detect these small changes in FA shape/size. The DPM showed lower values at 

10% deviation (0.63) than PCC (0.66), FSIM (0.69), and IoU (0.72) (Fig. 10). Even more important 
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is the ability of a metric to detect large changes in FA shape/size. The DPM showed much lower 

values at 80% deviation (0.21) compared to all other metrics (PCC: 0.31, FSIM: 0.47, IoU: 0.48) 

(Fig. 10). These measurements are important since shape/size of FAs can have a substantial impact 

on the overall morphology of a cell and, therefore, its behavior. For example, when looking at the 

mechanical behavior of a cell, the higher the substrate stiffness the larger the size of FAs and the 

more force they will likely produce (Haase et al., 2014).  

In terms of the orientation angle of FA sites, DPM had lower sensitivity for small changes than 

most other metrics that were tested, while simultaneously it had higher sensitivity for large 

changes. This lower sensitivity is due to small differences in angle having a high impact in the 

other metrics tested, as these shifts in orientation have a large impact in the match of pixel values 

for FA sites. On the other hand, DPM shows smaller changes in its score since it directly calculates 

the difference between ground truth and predicted FA angle and therefore shows a more linear 

relationship between accuracy scores and deviation percentage. At 10% angle deviation, the DPM 

showed higher values (0.90) than PCC (0.84) and IoU (0.86) (Fig. 11). However, at 80% deviation 

all other metrics showed values much higher (PCC: 0.64, FSIM: 0.81, IoU: 0.74) than DPM (0.36) 

(Fig. 11). Small differences in orientation angle may not be as significant as large differences. For 

example, a large difference in angle can mean a drastic change in the direction of forces in a cell 

due to a change in the direction of flow and shear stress in the cell (Davies et al., 1994). The DPM 

sensitivity for angle differences is more consistent with this behavior. 

A FA prediction can have deviations in location, number, shape/size, and angle with respect to its 

ground truth. Therefore, to evaluate the accuracy of a prediction, a metric needs to have a balanced 

sensitivity across all these measurements to be able of recognizing such deviations. However, it 

should also have the ability to capture the variation in a population. In other words, being able to 
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discern which predictions are more or less accurate. Looking at the distribution of the metric values 

across test set samples (Fig. 12), the ability of DPM to capture the variation of the test samples 

was greater than any other metric that was tested. For instance, both FSIM and IoU show little 

variation in their values across samples (0.08 and 0.09 respectively), implying that all predictions 

were equally as good. On the other hand, PCC showed higher variation (0.24). DPM had the 

highest range of variation (0.36) out of all metrics that were used, showing its ability to identify a 

higher degree of variation within predictions leading to a better tool for validating DL training. 

Furthermore, the DPM provides interpretability by measuring distribution (d), shape/size (s), and 

angle (a). Across all samples in the test set, each metric showed different average values: PCC 

0.32, FSIM 0.82, IoU 0.54, DPM 0.61. However, DPM provides additional information for 

prediction accuracy on the three specific measures (distribution, shape/size, and angle): d 0.61, s 

0.57, a 0.67. This information can provide better insight into the strengths and weaknesses of a 

neural network model’s predictions. For example, results in the test set show that the neural 

network used has higher accuracy for predicting the distribution and angle of orientation of FAs 

compared to predicting the shape and size for each FA. Furthermore, Fig. 6 shows further 

interpretation of the distribution measurement. The heat maps provide key information into which 

areas of the cell have a higher prediction accuracy for FAs. For example, for some cells the network 

might be more accurate at predicting FAs near the center of the cell compared to the edges (as seen 

in the sample shown in Fig. 6).  

In Fig. 13, the DPM is shown to be capable of determining which FA prediction is quantitively 

more accurate and consistent with qualitative assessment while other metrics do not. Sample 1 

(Fig. 13A) prediction can be seen to be visually less similar to its ground truth than Sample 2 and 

its ground truth (Fig. 13B). However, PCC determines that Sample 1 (0.42) is a more accurate 
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prediction than Sample 2 (0.33), FSIM determines that predictions for both samples are of similar 

accuracy compared to their respective ground truth images (Sample 1: 0.83, Sample 2: 0.81), and 

IoU also determines that Sample 1 (0.60) is a more accurate prediction than Sample 2 (0.54). On 

the other hand, DPM determines that Sample 2 is a more accurate prediction than Sample 1 with 

a score that is nearly 1.5 times different (Sample 1: 0.46, Sample 2: 0.70). This ability is crucial to 

the analysis of FA predictions, as these scores will be used to determine if a neural network is 

performing well or if further tuning is needed. 

The applications of DPM are not limited to FA predictions. This metric could be extended to study 

the prediction or segmentation of other discrete subcellular structures. For example, mitochondrial 

marker Tom20 (Johnson et al., 2017) shows a structure like that of FA sites, showing discrete 

structures across the cell. Prediction of such structures could be analyzed with DPM, looking at 

the distribution, shape/size, and angle of each mitochondrion compared to ground truth images. In 

addition, segmentation accuracy of small structures in CT scans could also be analyzed with this 

metric by comparing automated segmentation to ground truth segmentation (Ren et al., 2018). The 

DPM can provide better interpretability for segmentation accuracy compared to commonly used 

metrics such as Dice coefficient which only accounts for shape/size of structures and Hausdorff 

distance which only accounts for location of structures (Raudaschl et al., 2016). Furthermore, since 

the DPM allows the weight of each measurement (d, s, a) to be adjusted, the DPM allows users to 

tune the weight/importance of each measurement, depending on the research question of interest. 

For example, in the case of FA sites, mechanical behavior of a cell, such as internal cell tension, 

might be most affected by the number and location of FAs (Mullen et al., 2014), and, therefore, a 

higher weight might be given to the distribution (d) measurement.  
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Conclusion 

The proposed DPM provides a new image similarity metric that can calculate quantitative accuracy 

scores for DL-generated FA site predictions that are consistent with qualitative assessment. 

Furthermore, this method has better interpretability than the other image similarity metrics tested 

by measuring differences in distribution, shape/size, and angle of each FA site. The DPM can be 

extended to calculate accuracy of prediction and/or segmentation of other discrete structures of 

medical relevance. 

Code availability 

Code for calculating discrete protein metric (DPM) score is on GitHub at 

https://github.com/mechanobiology/dpm. It includes raw focal adhesion (FA) sites ground truth 

and prediction samples for testing the DPM function, as well as expected DPM values for the 

samples and the image processing pipelines.  
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