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ABSTRACT

We have entered the multi-omics era, and
we can measure cells from different aspects.
When dealing with such multi-omics data, the
first step is to determine the correspondence
among different omics. In other words, we
should match data from different spaces
corresponding to the same object. This
problem is particularly challenging in the
single-cell multi-omics scenario because
such data are very sparse with extremely
high dimensions. Secondly, matched single-
cell multi-omics data are rare and hard to
collect. Furthermore, due to the limitations
of the experimental environment, the data are
usually highly noisy. To promote the single-cell
multi-omics research, we overcome the above
challenges, proposing a novel framework to
align and integrate single-cell RNA-seq data
and single-cell ATAC-seq data. Our approach
can efficiently map the above data with high
sparsity and noise from different spaces
to a low-dimensional manifold in a unified
space, making the downstream alignment
and integration straightforward. Compared
with the other state-of-the-art methods, our
method performs better on both simulated
and real single-cell data. On the real data,
the performance improvement on accuracy
over the previous methods is up to 55.7%
regarding scRNA-seq and scATAC-seq data
integration. Downstream trajectory inference
analysis shows that our tool can transfer the
labels from scRNA-seq to scATAC-seq with very
high accuracy, which indicates our method’s
effectiveness.

Keywords: Single-cell multi-omics, Multi-omics
integration, Cycle autoencoders, Contrastive
learning, scRNA-seq and scATAC-seq
INTRODUCTION

Single-cell multi-omics methods promise great
opportunities to understand the cellular system more
comprehensively. To achieve that, we should obtain
multi-omics data at the single-cell level, which is not a
trivial task. Although multi-omics profiling approaches
for the same set of single cells have become available
(1), such as single-cell RNA sequencing (scRNA-seq)
and single-cell Assay for Transposase Accessible
Chromatin sequencing (scATAC-seq), the experiments
on large-scale cells are time-consuming and labor-
intensive. Consequently, we have the multi-omics data
for a group of cells, but the correspondence between
different modalities for a single cell is missing (Figure
1a). More specifically, we want to obtain the high-
throughput paired multi-omics data for every single
cell, referred to alignment. On the other hand, even for
data within the same modality, the data distribution of
different cell types varies from each other. Besides,
the data distribution can be inconsistent because of the
subtle differences in measurement processes (2), such as
measurement time or equipment used, which is referred
to as batch effects. They should also be considered
when studying the correspondence among different
modalities. Considering these, we need to integrate
different multi-omics data from the same cell type and
batch, which is called integration. The above tasks are
beneficial and interesting, but challenging, considering
the distribution shifting within and across different
modalities and the sparsity and high dimension of the
single-cell data (3, 4, 5).

Some computational methods have been proposed to
deal with these two crucial but challenging problems,
aligning and integrating data from different omics.
People usually integrate and align multi-omics data in
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the learned low-dimensional embedding space using
dimension reduction techniques, such as Principal
Component Analysis (PCA) (6, 7) and nonlinear
successors of the classic Canonical Correlation Analysis
(CCA) (8). The typical examples are Seurat (9) and
Deep Classic Canonical Correlation (DCCA) (10).
Seurat(9) relies on the linear mapping of PCA and
aligns the embedding vectors based on linear methods
Mutual Nearest Neighbors (MNNs) and CCA, which
weaken its ability to handle nonlinear geometrical
transformations across cellular modalities (11). DCCA
can be effective for nonlinear transformation benefiting
from deep learning. However, according to the results
of our experiments, it is not robust enough when
the signal-to-noise ratio (SNR) is low. We also try
Maximum Mean Discrepancy (MMD) (12) to replace
CCA in the embedding space, but the performance is
also not good enough. Several methods requiring no
correspondence information are derived under advanced
machine learning techniques, such as Pamona (11),
MATCHER (13), MMD-MA (14), UnionCom (15),
SCOT (16). Although these methods are unsupervised
and achieve good performance with encouraging results
(16), other additional conditions are still required. For
example, MMD-MA and UnionCom, Pamona need the
user to specify several hyperparameters, which can be
difficult and may need prior information. At the same
time, MATCHER and SCOT assume that all datasets
share the same underlying structure across cellular
modalities (11), which can be ineffective in confronting
dataset-specific cell types/structures across the single-
cell datasets. Deep learning methods are promising to
provide alignment and transfer learning between datasets
(17, 18). Deep generative models, such as cycleGAN
(19), MAGAN (20), RadialGAN (21) and starGAN
(22), are used to learn a nonlinear mapping from one
domain to another and achieve great performance on
some single modality task. But the above transitions are
almost within the same modality and can be disturbed
by noise or sparsity in the data (8). The scenario of
multi-omics translation and alignment is much more
complicated. Some other works propose models to align
multi-omics data based on multiple autoencoders (23,
24, 25). However, such methods also can be seriously
affected by noise or sparsity, which is a fundamental
characteristic of single-cell data.

In general, there are four significant challenges in
multi-omics alignment. Firstly, although we have a large
amount of unaligned multi-omics data, the aligned data
is very scarce. Secondly, the single-cell omics data is
of very high dimension and highly sparse. For example,
the dropout rate is always extremely high in gene count
matrix (26). Furthermore, as we have discussed, the
data are highly noisy (3, 4, 5). Finally, although multi-
omics data describe the cell status, such as scRNA-seq
data and scATAC-seq data, they contain very different

information. The mapping between the two kinds of data
is highly complicated.

To promote the single-cell multi-omics data analysis,
we propose Contrastive Cycle Adversarial Autoencoders
(Con-AAE), a framework that can resolve the above
challenges precisely (Figure 1b). Con-AAE uses two
autoencoders to map the two modality data into two
low-dimensional manifolds, forcing the two spaces to
be as unified as possible. We use two novel loss terms
to achieve that. The first term is called adversarial loss.
That is, we combine GAN with autoencoders, forcing
the two autoencoders to produce unified embedding
to deceive the discriminator, which is designed to
distinguish whether two embedding factors are from the
same modality. However, only using the adversarial loss
may lead to model collapse. To avoid the problem, we
further propose a novel latent cycle-consistency loss. For
instance, we have two autoencoders for two modalities,
ATAC-seq data and RNA-seq data. The embedding
produced by the scRNA-seq encoder will go through
the scATAC-seq decoder and encoder successively to
produce another cycled embedding. We can check
the consistency between the original embedding and
the cycled embedding. In addition to the above two
loss terms, we train the models without pairwise
information for the alignment task but consider the data
noise explicitly by taking advantage of self-supervised
contrastive learning. For the integration task, we train
the framework with annotated data. We extensively
perform experiments on two real-world datasets, a
simulated dataset generated from a real dataset and
a group of simulated datasets consisting of various
distributions. The two real-world datasets consist of
ATAC-seq and RNA-seq data from the same set of cells.
The comprehensive experiments on both simulated and
real-world datasets show that our method has better
performance and is more robust than the other state-
of-art methods. The great performance of our method
can benefit different kinds of downstream analysis, such
as clustering, trajectory inference, pseudotime inference,
detection of differential genes, etc. Trajectory inference
analysis across scRNA-seq and scATAC-seq shows
great effectiveness. Although we hide the scATAC-seq
information from the inference algorithm, with the help
of our method, the label transferred from scRNA-seq
data is consistent with the ground-truth label in the
scATAC-seq data. Considering the sparsity and difficulty
of scATAC-seq data, using information from scRNA-
seq data to reach similar performance suggests the
effectiveness and the practical usage of Con-AAE.

MATERIALS AND METHODS

In this section, we give our framework in detail below
with Fig. 1b, which illustrates the whole pipeline. To
start with, we formalize the alignment problem as,
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(a) Problem setting (b) Framework

Figure 1. (a) scRNA-seq and scATAT-seq data measure different aspects of the same cell. We aim at identifying the correspondence between the
two kinds of data from the same set of cells. (b) The Con-AAE framework uses two autoencoders to map the two kinds of sequence data into
two low dimensional manifolds, forcing the two spaces to be as unified as possible with the adversarial loss and latent cycle-consistency loss. We
train the models without pairwise information for the alignment task but consider the data noise explicitly by utilizing self-supervised contrastive
learning. We feed the annotated data for the integration task to help the model learn.

∀(r,a)∈T ,f(a)=h(r). (1)

We denote (r, a) as a pair of scRNA-seq and scATAC-
seq taken from the same cell. We would like to find two
mappings f and h such that for any aligned {r,a} pairs
in T , f would map the scRNA-seq profile and scATAC-
seq profile to a shared embedding space. Due to the
limitations of available real-world aligned data, we are
actually working on an unsupervised problem, and the
results are evaluated on a few available aligned pairs.

The integration problem could be justified as
a clustering problem, and the objective results in
finding the corresponding cluster of each scRNA-seq
or scATAC-seq profile. The ground-truth labels are
available, and, therefore, the model can be trained in a
supervised way. For ∀x∈{scRNA-seq}∪{scATAC-seq},
we want to train a classifier g such that

g(x)= label(x). (2)

Our primary model is built upon the framework of
Adversarial Autoencoders (27) specialized in multi-
modality tasks, integrating our novel embedding
consistency module and contrastive training process
(28). The intuition is that multi-omics from single-
cell data should obtain commonality. Their embeddings
could live in a unified low-dimensional manifold,
making alignment and integration tasks more intuitive.

Adversarial Autoencoders
The usage of adversarial autoencoders aims to map
different omics into a unified latent manifold while
able to reconstruct these different aspects. Therefore,
as shown in Figure 1b, we are using a coupled set of

encoders {Ei,Ej} (29) to map {scATACs-eq,scRNA-
seq} into manifolds {Zi,Zj}, and decoders {Di,Dj}
could decode the embedded manifolds back to the
original distribution. The reconstruction loss is defined
as follows,

Lrecon = Ex∼prnad(x,Dj(Ej(x)))

+ Ex∼patacd(x,Di(Ei(x))), (3)

whereas d stands for indicated distance in the
embedding space. Discriminator D tries to align these
embedded manifolds and works in the sense that input
x∈Zj , D(x)=1 or x∈Zi, D(x)=0.

Ladv = Ex∼prna [logD(Ej(x))]

+ Ex∼patac [log(1−D(Ei(x)))]. (4)

The above losses Lrecon and Ladv are trained together
with the same weights.

Latent Cycle-Consistency Loss
The backbone framework enforces the embedding
manifolds to align gradually. However, a critical problem
underlying is that since scRNA-seq and scATAC-seq
data are sparse in a high dimensional domain, the
training procedure above only aligns and trains on those
regions where the data exist.

For instance, if a region A in the embedding space
around Ej(x

′),x′∈{scRNA-seq} does not involve any
existing Ei(x),x∈{scATAC-seq}. Then, neither the
decoder Di nor the encoder Ei is trained on A, thus
they would not compute in a “reverse” mapping way, and
the result of EiDiEj(x) would be unreasonable or may
not lie on the aligned manifold. This critical problem
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(a) Illustration of latent cycle-consistency loss.

(b) Illustration of latent contrastive loss.

Figure 2. (a) The embedding produced by the first encoder will
go through the second decoder and encoder successfully to produce
another cycled embedding. we can check the consistency between the
original embedding and the cycled embedding. (b) The contrastive
loss minimizes the distance between positive pairs and maximizes the
distance between negative pairs. This loss makes our method more
robust to noise.

causes the difficulty of inferring from scRNA-seq profile
to scATAC-seq profile directly.

Therefore, we introduce a latent consistency loss
shown in Figure 2a (19)(30) to resolve this problem,

Lcyc = Ex∼prna [d(Ej(x),EiDiEj(x))]

+ Ex∼patac [d(Ei(x),EjDjEi(x))]. (5)

Lcyc aims to train the set of encoder-decoder on
the domain where different omics data may not exist,
which enforces the smoothness and consistency in those
regions. In this way, we could compare the embedding
of Ej(x),x∈{scATAC-seq} directly with the existing
scRNA-seq embedding around it.

Supervised Contrastive Loss
The above framework works in an unsupervised manner
such that the embedded latent manifolds of multi-omics
align properly. A simple classifier trained on our latent

space could improve good accuracy of the integration
task.

We could further improve our work on both tasks by
taking advantage of the ground-truth cell type labels.
The cell type labels could refer to biological cell types
or the labels of data batches collected from different
times or platforms. Following the idea of contrastive
learning (31, 32), we employ a contrastive loss in
embedding space. It enforces smaller In-Batch distance
and larger Between-Batch distance. In-Batch refers to
different modality data collected from the same cluster
and vice versa. We equally treat both modalities in
contrastive training, which benefits the alignment task
in the sense that multi-omics of the same single-cell data
should obviously belong to the same cluster. We show
that lowering the In-Batch distance indeed improves the
alignment accuracy in the below ablation studies. On the
other hand, contrastive training benefits integration by
enabling the decision boundary to be smoother and more
robust.

In practice, we first encode data from two modalities
to the embedding space. Define the embedding by z∈Z.
Given za as anchor vector in latent space, we select an zp

such that argmaxzp{d(za,zp)},label{za}= label{zp},
which is named hard positive. The intuition of hard
positive is to find a vector furthest from the anchor within
same cluster. Similarly, we have zn as hard negative
such that argminzn{d(za,zn)},label{za} ̸= label{zp}.
zn is defined as the closest vector that from a different
cluster. The objective immediately follows,

d(za,zp)+α<d(za,zn),∀(za,zp,zn)∈Z. (6)

Above, α is the margin defined accordingly by us.
Thus, by the contrastive loss, we tend to optimize,

Lcon=Eza∼Z [d(z
a,zp)−d(za,zn)+α].

Lcon=Ex∼{RNA}[d(Ej(x),z
p)−d(Ej(x),z

n)+α]

+Ex∼{ATAC}[d(Ei(x),z
p)−d(Ei(x),z

n)+α].

(7)

Figure 2b shows that after training, instances within
the same cluster are pushed towards each other, and
those from the different clusters are forced away. Thus,
the decision boundary of the labels tends to be smoother
and more robust, which also benefits the alignment task.

Training Procedure
In the above sections, we proposed several losses
related to different objectives. Following the training
procedure of Generative Adversarial Nets (23), we
adopt a two-stage training scheme where Ladv and
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Lrecon,Lcyc,Lcon are trained separately as the pseudo-
code in Algorithm 1.

Algorithm 1 Training Procedure

while numbers of training iterations do
while k1 steps do

sample mini-batch {x1,x2,...,xm} from
{scRNA-seq}
sample mini-batch {y1,y2,...,ym} from
{scATAC-seq}
Search positives and negatives za,zp for each
x1,...,ym.
Update Ei,Ej ,Di,Dj by descending its
stochastic gradient 1

m∇Lrecon+Lcyc+Lcon−
Ladv

end while
while k2 steps do

sample mini-batch {x1,x2,...,xm} from
{scRNA-seq}
sample mini-batch {y1,y2,...,ym} from
{scATAC-seq}
Update Discriminator D by descending its
stochastic gradient 1

2m∇Ladv
end while

end while

In this way, the Discriminator D competes against the
encoder-decoder Ei,Ej ,Di,Dj until the training ends
and reaches the equilibrium.

RESULTS

Experimental Setup
Real-world Dataset. We use two sets of single-cell
multi-omics data generated by co-assays. The first
dataset is generated using the sci-CAR assay (2). For the
single-cell ATAC-seq data, we download the processed
data from (23), which are computed as described in (2)
by counting occurrences of each motif in all accessible
sites for each cell, resulting in 815 TF motifs. Then we
have a matrix of 1791×815 TF motifs. For the single-cell
RNA-seq data, we pick the genes with q−value>0.05
from the genes being differentially expressed (2), which
forms a matrix of 1791×2613 genes. Such paired data
are collected from human lung adenocarcinoma-derived
A549 cells corresponding to 0-, 1-, or 3-hour treatment
with Dexamethasone (DEX). So, we have three clusters
here, and the cluster label information is available.

We denote the results of SNAREseq (33) assay as
the second dataset, which also consists of chromatin
accessibility and gene expression. The data are collected
from a mixture of human cell lines: BJ, H1, K562, and
GM12878. We reduce the dimension of the data by PCA.
The resulting matrix for scATAC-seq is of size 1047×
1000 and 1047×500 for gene matrix. The code provided
by the author generates annotation information for BJ,

H1, K562, and GM12878, so labels of four batches are
available.

Simulated Datasets. We simulate several datasets of
different sizes, which contain 1200, 2100, 3000, and
6000 cells, respectively. For the single-cell RNA-
seq data, we utilize three Gaussian distributions with
different parameters to generate three batches, and
the feature dimension is 1000. For the single-cell
ATAC-seq data, we train a four-layer autoencoder
with the simulated scRNA-seq data and map them to
500 dimensions as the scATAC-seq data. After that,
we randomly set around 40% of features to 0 for
RNA-seq data since the real-world scRNA-seq data
matrix is usually very sparse. Considering the inevitable
mismatch in the experiment, we randomly set around
10% mismatches in the datasets and shuffle all the pairs.
Furthermore, we add noise to them with the SNR equal
to 5, 10, 15, 20, and 25, along with the version without
noise. Then, we have 24 simulated datasets here. Surely,
the real-world multi-omics are more complicated than
the simulated data, but the experimental results show that
our method is sufficient to distinguish the performance
of different methods.

In addition to these datasets generated by our method,
we also use Splatter(34) to generate a simulated gene
count matrix. We call it synthetic RNA-seq, where there
are 5000 cells with 1000 genes. Splatter model compute
the parameters for the generation with sci-CAR dataset
inputted, so we have three clusters in the synthetic
RNA-seq data. As described above, we also train a four-
layer autoencoder to create the ATAC-seq matrix of 500
dimensions. We call this dataset syn-RNA.

We split all the datasets into training sets and test sets,
with the first 80% as the training sets and the last 20% as
test sets. Note that we shuffled the data before splitting
them.

Evaluation criteria. We utilize two existing manners
(23) to evaluate integration and alignment, respectively.
(a) The fraction of cells whose batch assignment is
predicted correctly based on the latent space embedding.
(b) recall@k, i.e., the proportion of cells whose true
match is within the k closest samples in the embedding
space (in ℓ1-distance), while (b) is for alignment.

Compared with SOTA
Instead of assuming all datasets share the same
underlying structure or specifying parts of
hyperparameters like some traditional machine learning
methods (9, 11, 13, 14, 15, 16), we obtain more
information from datasets with partial correspondence
information (batch label or cell types label). We select
several state-of-art methods based on deep learning like
ours, including cross-modal (23), cross-modal-anchor
(pairwise information added), DCCA (10), cycle-GAN
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Figure 3. Con-AAE compares with SOTA methods on the two real-world datasets and syn-RNA. The upside is the performance of integration,
and the downside is alignment performance. Con-AAE has the best performance on both criteria. Note that the identification of cell pairwise
correspondences between single cells is termed “anchor”(9). Cross-modal-anchor indicates that “anchor” information is provided when training
Cross-modal.

Table 1. Ablation Study of different components in Con-AAE and Comparison with other methods. Basic refers to Coupled AEs plus Simple
classifier; adv refers to adversarial loss; mmd refers to mmd loss; anchor refers to pairwise information added; cyc refers to latent cycle-consistency
loss; contra refers to contrastive loss.

Method Integration Recall@k Recall@k Recall@k Recall@k Recall@k
ACC k=10 k=20 k=30 k=40 k=50

Basic 56.1 3.9 9.2 13.4 18.1 20.6
Basic anchor 60.8 5.3 12 15.9 22.3 28.4

Basic cyc 56.7 6.7 11.7 15.6 19.8 24.5
Basic contra 58.9 6.9 12.5 15.6 21.7 27.3

Basic contra cyc 62.2 7.8 10.8 15.9 21.2 25.9
Basic mmd 57.5 4.7 9.4 12.5 17.3 21.2

Basic mmd anchor 56.4 5.3 11.4 16.7 21.2 24.3
Basic mmd cyc 60.8 3.9 10 16.2 21.2 25.1

Basic mmd contra 57.5 5.8 12.8 15.6 24 27
Basic mmd contra cyc 57.8 4.5 9.5 13.7 19.8 24.8

Basic adv 58.3 4.4 10.3 14.2 17.5 23.1
Basic adv anchor 61.7 5 10.3 15.9 21.2 26.5

Basic adv cyc 58.7 5 10.3 14.2 19.8 24.3
Basic adv contra 60.61 4.4 9.4 13.6 18.4 25.4

Con-AAE 63.9 5.3 12 17 22.6 28.4

(19). Moreover, we also compare our method with
machine learning methods for integration, including
Scanpy (35), Seurat (9), Pamona (11), MMD-MA
(14), UnionCom (15), and SCOT (16). Scanpy (35)

and Seurat (9) assume that all datasets have the same
features, so we apply PCA to make datasets have the
same features before using them. We apply Con-AAE
and these methods on simulated and real-world datasets.
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Figure 4. The figure shows the integration performance on 24 simulated datasets with various data sizes and SNR. We can see that Con-AAE
almost outperforms other methods all the time. Especially, as the SNR ratio decreases and the size of dataset grows, the performance of all the
methods degrades to a different degree. However, Con-AAE still has excellent performance, demonstrating its great scalability and robustness.

Firstly, we evaluate all methods on 24 simulated
datasets generated by our approach, which are relatively
simpler than real datasets and syn-RNA datasets. The
extensive experimental results are shown in Figure 4
and 5. As shown in Figure 4, Con-AAE performs
better than all the other methods in most cases on
the integration task, regardless of data size and SNR.
Regarding alignment, we evaluate different methods
using recall@k, whose results are shown in Figure
5. Again, Con-AAE is consistently better than the
other competing methods. Notice that our method’s
performance is almost consistent against different data
sizes and noise levels. In contrast, the other methods
may perform well in some settings but poorly in
others. The results indicate that Con-AAE is robust
and stable enough to have the potential to handle
the complicated single-cell multi-omics alignment and
integration problems with a low SNR ratio.

Eventually, we care about the methods’ performance
on the real-world dataset the most, although the real-
world dataset with ground-truth information is limited.
We also compare all methods on syn-RNA in this part
since syn-RNA is generated from sci-CAR. Still, Con-
AAE shows superior performance. On the sci-CAR
datasets, Con-AAE outperforms the other methods by
up to 36.3% on the integration task, as shown in the
upper part of Figure 3. For alignment, Con-AAE always
has better performance than all the other methods no
matter what k is (the bottom part of Figure 3). On the
SNAREseq datasets, more obviously, Con-AAE also has
dominant performance on each evaluation metric. The
improvement on the integration task is up to 55.7%
(Figure 3). On the other hand, the performance on
recall@k is better than others no matter what k is
(Figure 3).
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Figure 5. The figure shows the alignment performance on 24 simulated datasets with various data sizes and SNR. Con-AAE almost has the best
performance no matter what k is. Corresponding to each K, the box represents the performance on datasets of different sizes and SNR.

Ablation Studies
We perform comprehensive ablation studies on the sci-
CAR dataset, and the results show the effectiveness of
different components.

There are three parts in Table 1. The first part indicates
there is no adversarial loss in embedding space. The
second part indicates an MMD loss (36) instead of an
adversarial loss. And the last part indicates whether there
is an adversarial loss in the embedding space. Most items
in the third part are better than the corresponding items
in the other two parts, demonstrating that the adversarial
loss works better than MMD loss on this problem.

There are five items in each part of Table 1. The first
row represents the basic framework, consisting of two
coupled autoencoders and a simple one-layer classifier.
The anchor one means pairwise information provided,
which indicates that it is a supervised learning model
instead of an unsupervised one. “cyc” and “contra”
denote latent cycle-consistency loss and contrastive loss,
respectively. As shown in the table, adding “cyc” and
“contra” improves the model. Apparently, Con-AAE has
the best performance. Latent cycle-consistency loss and
contrastive loss alone can improve the performance to

some degree, but Con-AEE is more robust and has better
scalability.

Impressively, Con-AAE has better performance even
compared to some supervised methods with the pairwise
information provided. Within Table 1, we compare
our approach with methods fed pairwise information.
We train them using the pairwise information as the
supervision for such methods. For Con-AAE, we still
perform unsupervised learning using cycle-consistency
loss and contrastive loss. Even without the supervised
information, Con-AAE can still outperform the basic
supervised anchor methods consistently on both tasks.
It suggests that cycle-consistency loss and contrastive
loss can force our model to learn a unified latent space
for the two kinds of single-cell omics data, making the
alignment and integration much easier. We also try to
combine Con-AAE with the pairwise information. The
supervised information can help our method further,
but the degree is very slight. We suppose that in the
real data, the pairwise information may contain noise,
which is common in the single-cell field. Because of
the contrastive loss, which makes Con-AAE a robust
method, such weak supervision does not help our model
too much.
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Original sci-CAR ATAC distribution Original sci-CAR RNA distribution

Reconstructed sci-CAR ATAC distribution Reconstructed sci-CAR RNA distribution
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ATAC-seq vector

RNA-seq vector

Embedding space

Figure 6. Visualization of the sci-CAR data in the original spaces, shared embedding space, and the reconstructed spaces. The star represents the
scATAC-seq data while the square means the scRNA-seq data. Different colors refer to different batch labels, corresponding to 0-, 1-, 3- hours
treatment with DEX. For easy viewing, we used different colors when reconstructing data. The distribution of reconstructed data is close to the
originality.

Visualization
We utilize t-SNE to project the data from the embedding
space to the 2D space to visualize the integration and
alignment. As we can see in Figure 6 and 7, for
the two real-world datasets, we project the scATAC-
seq data and scRNA-seq data to a shared embedding
space. And within the space, the different omics (with
different shapes, such as star and square) data from the
same cluster (with the same color) form into clusters,
suggesting that our method indeed learned a latent space
making it easy to integrate the data from different
omics. Furthermore, we use the decoder of each side
to translate the embedding vector back to the original
space. The resulting data distribution is quite close to the
initial distribution, which indicates that our framework
learns the underlying features of the data and effectively
removes redundant features in encoding.

Trajectory inference
Suppose that we have one omics data with known
cell types, and we want to analyze other omics data
from the same population of cells without the label
information. For instance, there are lots of work for
RNA-seq clustering (9, 37, 38, 39), but little work

for ATAC-seq clustering since the sparsity of ATAC-
seq poses challenges on computational methods (40).
Although obtaining scATAC-seq data from cells is
becoming simpler and less expensive (41), getting the
clustering information is not an easy task. In this
scenario, we can cluster the scRNA-seq data first and
then integrate scATAC-seq data with our method to
get the cluster information of scATAC-seq data, which
can be summarized as label transferring. After that, we
can conduct downstream analysis on the scATAC-seq
data, such as inferring trajectory, mapping nucleosomes,
detecting transcription factor binding sites or differential
chromatin states (41). Here, we demonstrate our model
on the test set of sci-CAR, which has 359 cells. We
integrate scATAC-seq data with scRNA-seq data and
transfer the labels from scRNA-seq. We implement
trajectory inference on these scATAC-seq data with
transferred labels by PAGA (42) and compare it with
the trajectory inference derived from original ground-
truth labels as shown in Figure 8. Clearly, the trajectory
inference results of transferred and original labels
are similar, demonstrating our method’s effectiveness
and practical usage. In addition, we show that the
accessibility of transcription factor motifs changes with
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Original SNAREseq ATAC distribution Original SNAREseq RNA distribution

Reconstructed SNAREseq ATAC distribution Reconstructed SNAREseq RNA distribution
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Figure 7. Visualization of the SNAREseq data in the original spaces, shared embedding space, and the reconstructed spaces. The star represents the
scATAC-seq data while the square means the scRNA-seq data. Different colors refer to the H1, BJ, K562, and GM12878 human cells. We can see
that the scATAC-seq data and scRNA-seq data from the same cell type are tightly combined in the embedding space. And also, we utilize different
colors representing reconstructed data, which is quite similar to the original distribution. It further illustrates that our method learns the underlying
characteristics of the data.

the treatment time of DEX, which can help us understand
how cells respond to drugs.

DISCUSSION

In this paper, we propose a novel framework, Con-
AAE, aiming at integrating and aligning the multi-
omics data at the single-cell level. On the one hand,
our proposed method can map different modalities
into the embedding spaces and overlap these two
distributions with the help of an adversarial loss and a
novel latent cycle-consistency loss. On the other hand,
we apply a novel self-supervised contrastive loss in
the embedding space to improve the robustness and
scalability of the entire framework. Comprehensive
experimental results on the simulated and real datasets
show that the proposed framework can outperform the
other state-of-the-art methods for both alignment and
integration tasks. Detailed ablation studies also dissect
and demonstrate the effectiveness of each component
in the framework. Trajectory inference on multi-omics
data further demonstrates our method’s effectiveness
and practical usage. Our method will be helpful for

both the single-cell multi-omics research and the general
multi-modality learning tasks in computational biology.

For future work, we aim to extend our work from a
two-domain task to a multiple-domain study, allowing it
to integrate and align multiple omics. Besides integration
and alignment between sequence modalities, we intend
to perform our method on different kinds of biological
data, including but not limited to images, geometrical
spatial structure, etc. Obviously, it is exciting to
investigate the spatial transcriptomics data. We will also
develop methods for translating modalities. By doing so,
we hope to build a system that could benefit various
downstream analyses in single-cell multi-omics and
spatial multi-omics.
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Figure 8. The trajectory inference results of the transferred and original labels are similar. 0,1,3 correspond to 0-, 1-, or 3-hour treatment with
DEX. The trajectory inference infers the pattern of cells in the dynamically developmental progress with the treatment of dexamethasone (DEX).
The result of labels transferred from scRNA-seq data is very similar to the effects of ground-truth labels, which suggests that our model performs
significantly on the integration task.
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Details of the experiments
The details of the network architecture are summarized
in Table 1. The learning rate of the model is 0.0001, and
the batch size is 32 for the real-world dataset, 100 for
simulated datasets. We train this model for 4000 epochs
using the Adam optimizer with β1=0.5, β2=0.999, and
weight decay is set to 0.0001. Using early stopping, we
find that the best model usually appears in 1000 epoch or
2000 epoch. The activation function is LeakyReLU after
each layer, followed by Batch Normalization.

Table 1. “d” refers to the dimension of the input data. 50 is the
dimension of the embedding space. Note that the last hidden layer in
the encoder and the fast layer in the decoder are 100.

Encoder Decoder
Input size d 50
Hidden layer size d, d, d, 100 100, d, d, d
Output size 50 d

The discriminator consists of 2 hidden layers with 50
and 100 nodes, respectively. The output size is 1. The
simple classifier consists of 1 layer, and the output size
is 3.

Implementation of Con-AAE
We have implemented the Con-AAE in Python
3.7.7 with Pytorch 1.0, whose experiments were
run on Nvidia Tesla P100. The source code is
available at https://github.com/kakarotcq/RNA-Seq-and-
ATAC-Seq-mapping.

The hyperparameter tunning range
For all the methods, the weights of different loss terms
are shown in Table 2. The weights of anchor loss and
cycle-consistency loss are supposed to be low because
the noise level of the real dataset is high, with a few
mismatches, while contrastive loss should be adjusted to
a higher value.

Table 2. Loss terms and their corresponding weights for training Con-
AAE.

Loss function Loss type Weight
Reconstruction loss MSELoss 10.0
Adversarial loss MSELoss 10.0
Classifier loss CrossEntropyLoss 1.0
Cycle-consistency loss MSELoss 1.0, 5.0, 10.0
Contrastive loss MarginRankingLoss 1.0, 5.0, 10.0
Anchor loss MSELoss 0.05, 0.1, 1.0

EXTRA EXPERIMENTAL RESULTS

We also try to train Con-AAE with the pairwise
information, denoted as Con-AAE-anchor. The
comparison between Con-AAE and Con-AAE-anchor

is shown in Table 3. We can see that the integration
performance is almost the same while the alignment
performance is improved slightly as the pairwise
information is added. In general, Con-AAE is a very
stable unsupervised method, which is robust to noise. So
the weak supervised pairwise information with a high
level of noise does not significantly improve Con-AAE’s
performance. But still, this experiment suggests that
Con-AAE is a flexible framework that can incorporate
supervised information.

We also conduct ablation studies on the simulated
datasets. The quantitative results are shown in the Table 4
and Figure 1. We can see that the cycle-consistency loss
and contrastive loss could improve the model in many
cases, but not stably enough. Compared with that, Con-
AAE almost always has the best performance with the
change of data sizes and SNRs, while the other methods
struggle when the SNRs or data sizes change.
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Table 3. Comparison between Con-AAE and Con-AAE-anchor on sci-CAR dataset. Con-AAE is a very stable unsupervised method, which is
robust to noise. So the weak supervision with a high level of noise does not significantly improve Con-AAE’s performance.

Method Integration ACC Recall@k=10 Recall@k=20 Recall@k=30 Recall@k=40 Recall@k=50
Con-AAE 63.9 5.3 12 17 22.6 28.4
Con-AAE-anchor 63.4 7 13.7 18.4 25.4 29.1

Table 4. Ablation study on the simulated datasets with various SNRs: basic plus adversarial loss (denoted as Basic adv), basic plus adversarial loss
and cycle-consistency loss method (denoted as Basic adv cyc), basic plus adversarial loss and contrastive loss (denoted as Basic adv contra) and
basic plus adversarial loss, cycle-consistency loss, and contrastive loss (Con-AAE). The performance of Con-AAE is in bold. Clearly, Con-AAE’s
performance is very stable across different data sizes and SNRs, compared to the other baseline methods.

#Sample Method No Noise SNR25 SNR20 SNR15 SNR10 SNR5 SD AVG

1200
Basic adv 80.4 83.3 83.3 81.3 82.1 76.7 2.47 81.18

Basic adv cyc 83.3 83.3 83.8 83.3 84.2 82.3 0.64 83.36
Basic adv contra 85.0 85.4 85.0 87.5 83.8 72.5 5.38 83.20

Con-AAE 87.5 86.7 87.9 88.3 87.1 81.7 2.43 86.53

2100
Basic adv 85.0 85.0 84.2 82.9 84.5 81.4 1.42 83.80

Basic adv cyc 72.4 72.4 71.2 70.4 76.2 77.4 2.82 73.33
Basic adv contra 91.0 90.0 91.9 91.4 86.2 72.1 7.63 87.10

Con-AAE 89.3 88.8 88.6 90.0 87.8 82.6 2.67 87.85

3000
Basic adv 81.1 82.5 82.5 81.8 77.2 75.3 3.06 80.07

Basic adv cyc 85.8 86.8 87.0 86.5 84.0 80.6 2.47 85.12
Basic adv contra 88.8 90.0 89.2 67.5 60.8 86.5 12.87 80.47

Con-AAE 89.7 88.6 88.2 89.1 74.2 82.0 6.12 85.30

6000
Basic adv 81.0 81.2 74.2 67.5 44.7 35.8 19.33 64.07

Basic adv cyc 81.1 85.2 85.5 78.6 79.2 78.5 3.24 81.35
Basic adv contra 90.8 90.9 91.3 90.0 81.9 67.6 9.43 85.42

Con-AAE 87.5 89.7 88.3 87.3 82.9 77.1 4.69 85.47

Figure 1. The alignment performance on simulated datasets with different components.
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