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Abstract 23 

Background 24 

Human saliva contains diverse bacterial communities, reflecting human health status, dietary patterns 25 

and contributing to variability in the sensory perception of food. Many descriptions of salivary 26 

microbiome diversity compare commonalities and differences with reference to a diseased state, but 27 

the composition of healthy saliva has not been described.  28 

Results 29 

Here, we use a meta-analysis approach to define and explore the core membership of the human 30 

salivary microbial community by collecting and re-analysing raw 16S rRNA amplicon sequencing 31 

data from 47 studies with 2206 saliva samples. We found 68 core bacterial taxa that were consistently 32 

detected. Differences induced by various host intrinsic and behaviour factors, including gender, age, 33 

geographic location, tobacco usage, and alcohol consumption, were evident. The core of the salivary 34 

microbiome was verified by collecting and analysing saliva in an independent study.  35 

Conclusion 36 

These results suggest that the methods used can effectively define a core microbial community in 37 

human saliva with high prevalence. The core salivary microbiome demonstrated both stability and 38 

variability among populations. Geographic location was identified as the host factor with the largest 39 

effect in shaping salivary microbiota. The independent analysis underlined that the impact of 40 

geographic variation is likely due to diet.  41 

 42 

Background 43 

Human saliva plays an essential role in influencing the sensory perception of foods and beverages and 44 

driving the purchase decisions of consumers. When food is taken into the mouth, mixing and 45 

mastication allow a semi-solid bolus to be formed, and at the same time, aroma and flavour to be 46 

released from the food [1]. The variation in perceived responses can be attributed to the inter-47 

individual variability in salivary composition, especially salivary microorganisms. As a complex 48 
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ecosystem, the human oral cavity hosts thousands of bacterial taxa, accompanied by interactions with 49 

other microorganisms [2]. It is an ecological system that contains many distinct sub-niches, including 50 

saliva, dental plaques, gingival sulcus, epithelial cells on the cheek, tongue, and teeth [3]. High 51 

heterogeneity has been reported between the composition of microbial communities that colonise on 52 

different sites [4]. The saliva is recognised as a reservoir with microorganisms from all ecological 53 

niches in the human mouth with long-term stability [5]. The ensemble of microorganisms and the 54 

expressed genetic material in human saliva is known as the “salivary microbiome”.  55 

 56 

The contribution of salivary microbiome to sensory perception of foods has been described by various 57 

studies [6-8]. However, the diverse conclusions suggest that the role of the salivary microbiome may 58 

be confounded by inter-individual variance. Meanwhile, comparing results from different studies 59 

introduces significant technical and bioinformatic biases [9] especially when studies have targeted 60 

different 16S rRNA hypervariable regions for amplification [10]. Characterising the microbial 61 

communities commonly found in most human saliva regardless of the study-specific variation could 62 

help establish the connection between salivary composition and food preference. On this basis, the 63 

shifts from a common salivary microbiome by diseases or host lifestyle factors will also be more 64 

prominent. A meta-analysis can summarise the existing knowledge and identify the commonalities 65 

and differences in salivary microbiota between people from various backgrounds. 66 

 67 

The core oral microbiome of a healthy human has been tried to be defined for more than ten years 68 

[11]. The core microbiome is described as the common group of microbes that are important for host 69 

biological function [12]. Defining the core only depends on occupancy frequency does not necessarily 70 

reflect the underlying host-microbes functional relationship. However, it provides a foundation for 71 

prioritising members adapted to the host environment [13]. A variety of studies have been devoted to 72 

discovering the changes in human salivary microbiota based on different conditions. The variability in 73 

the microbial profile of human saliva has not only been associated with oral diseases [14-16] but also 74 

various chronic diseases that do not occur in the oral cavity, such as diabetes [17] pancreatic cancer 75 
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[18] and Polycystic ovary syndrome [19]. Although the shift in human salivary composition caused by 76 

diseases has been studied for decades, our understanding of the impact of host intrinsic and behaviour 77 

factors is still limited. 78 

 79 

Many host characteristics have been shown to have an impact on the composition of the salivary 80 

microorganisms, including age [20], diet [21, 22], ethnicity [23], gender [24], smoking [25], alcohol 81 

use [26], circadian rhythm [27], body mass index [28], and the type of stimulation [29]. Some studies 82 

have correlated the diverse microbiome with the distinct sensory responses between consumer groups 83 

[30, 31] It has also been reported that people from different countries are colonised with distinct 84 

salivary bacterial communities [32]. Li et al. analysed the human oral microbiome from Africa, 85 

Alaska, and Germany and reported differences between the human groups living in various climate 86 

conditions [33]. However, no study to date has demonstrated a clear global pattern in salivary 87 

microbial composition. 88 

 89 

In this paper, we collected raw 16S rRNA sequences of human salivary microbiota from 47 publicly 90 

available datasets spanning 15 different countries. These raw data were systematically re-analysed and 91 

pooled together to define a core salivary microbiome. We classified all sequences into operational 92 

taxonomic units (OTUs) at 97% identity against the Human Oral Microbiome Database (HOMD) to 93 

minimise the technical variation induced by comparing data from different hypervariable regions. It 94 

allowed us to make a comparison between studies and reduced the redundancy in the dataset for 95 

defining the “core”. Using the metadata acquired with raw data, we also investigated the influences of 96 

several host factors and technical factors on human salivary microbiota. Factors that showed a 97 

potentially strong impact on shaping microbial communities in saliva were selected, and the taxa as 98 

potential biomarkers were identified, and linked with functional predictions. Finally, saliva samples 99 

were collected from independent, healthy individuals and analysed for microbial composition to 100 

confirm the results found from the global dataset. These data confirmed the composition of the core 101 

microbiome members, but the verification of geographic origin was not possible. Our study 102 

contributes to fundamental understandings of the stable and differential salivary microbiome across 103 
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healthy adult populations. We have identified bacteria linked to particular identities of participants 104 

and points to salivary microbiome composition being linked to diet, rather than ethnic origin.  105 

  106 

Methods 107 

1.  Literature search and data collection 108 

To acquire sufficient data from healthy human saliva, available public studies related to human 109 

salivary microbiota were systematically reviewed. A literature search was performed using the 110 

combination of relative terms in EMBASE, MEDLINE and Web of Science for the studies published 111 

before November 2020 using the terms described in supplementary data (Table S1). A supplementary 112 

dataset search in NCBI’s Sequence Read Archive (SRA) was also performed using the search term 113 

‘salivary microbiome’. The included studies met the following criteria: 1) Having samples from 114 

participants without any diagnosed disease state. For studies investigating the influence of certain 115 

kind of disease on salivary microbiota, only samples collected from healthy controls were included in 116 

further analysis; 2) Using whole human saliva collected by spitting, swab, mouth washing or oral 117 

rinsing, samples exclusively extracted from any specific oral spot, like tongue surface, parotid gland, 118 

supragingival plaque, were excluded; 3) Using 16 rRNA gene high-throughput sequencing and 119 

sequenced with the Illumina MiSeq platform; 4) Having and sequence file with quality score and 120 

associated metadata, information about geographic locations are required; 5) Having freely available 121 

sequencing data; 6) Sequencing data correctly separated according to the metadata. Raw sequence 122 

data acquired from the healthy individuals of selected studies were downloaded from SRA, European 123 

Nucleotide Archive (ENA), using SRA Toolkit. The files were converted to the FASTQ formats if 124 

necessary.  125 

2. 16S rRNA gene sequence processing 126 

Sequence data from each selected study were processed separately using QIIME2 (version.2020.2) 127 

[34]. Sequences with primers were trimmed with “q2-cutadapt” (https://github.com/qiime2/q2-128 

cutadapt) to retain the targeted hypervariable regions. The demultiplexed paired-end sequences were 129 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.471511doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.471511
http://creativecommons.org/licenses/by-nc/4.0/


 6 

firstly joined by “q2-vsearch” (https://github.com/qiime2/q2-vsearch), then subjected to a quality 130 

filter with a minimum quality of Q30. The remaining reads were then clustered into operational 131 

taxonomic units (OTUs) at 97% similarity against the expanded Human Oral Microbiome Database 132 

(eHOMD) version 15.1 [35] by the closed-reference OTU picking command. Reads that failed to 133 

match a reference sequence in the HOMD database were discarded. The chimeras and features with a 134 

frequency ≤10 or detected in a single sample were also removed. The resulting tables and sequences 135 

from all studies were merged by QIIME2’s merge and merge-seqs commands. Samples with <2000 136 

reads were also removed. Taxonomic annotations were assigned to the representative sequences of 137 

each OTU using the HOMD database. For the factor groups containing samples with unknown 138 

metadata, the unknown sample was removed from the group before the downstream analyses. 139 

3. Diversity measures in R 140 

The merged OTU table was exported into BIOM format. Further analyses were carried out in R 141 

(version 4.1.0) with custom scripts as detailed below. Samples with >2,000 reads were retained and 142 

processed with four normalisations: 1) Rarefying samples to 5,000 (Rarefaction, RAR); 2) Samples 143 

were rarefied to 5,000 and converted to relative abundance (Rarefied Total-sum Scaling, RRA); 3) 144 

Samples were converted to relative abundance directly (Total-sum scaling, TSS); 4) As described by 145 

Romano et al. [36], zeros were added to data through the count zero multiplicative approach using 146 

the cmultRepl function of the zCompostions package [37] in R (Centred Log-ratio, CLR). 147 

 148 

The alpha-diversity of all samples grouped by studies were calculated in the form of Chao1, Shannon, 149 

and Simpson’s diversity indices. The beta-diversity was assessed at different taxonomic levels, 150 

including OTU, species, genus, family, order, class, and phylum level. For the OTU level, the beta-151 

diversity of data processed with the first three normalisations were determined using the weighted 152 

UniFrac distances and Bray-Curtis dissimilarities. Euclidean distances were calculated for all 153 

normalisations. At the other levels, Bray-Curtis dissimilarity was used for the first three 154 

normalisations, while Euclidean distances were combined with all the normalisations. Permutational 155 

multivariate analysis of variance (PERMANOVA) using the adonis2 function of vegan package [38] 156 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.471511doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.471511
http://creativecommons.org/licenses/by-nc/4.0/


 7 

with 999 permutations was conducted to investigate the statistical differences caused by different 157 

factors, adjusting for study. 158 

4. Defining the core microbiome 159 

The core microbiome was determined based on the abundance-occupancy pattern. Two methods 160 

adapted from Shade and Stopnisek [39] and Wu et al. [13] were used. For the methods adapted from 161 

the study of Shade and Stopnisek [39], samples were rarefied to 5,000. Both Bray-Curtis similarity 162 

and weighted Unifrac distance were used to determine the contribution in the percentage of the 163 

prospective core set to the overall beta diversity. For the method adapted from Wu et al. [13], OTUs 164 

were filtered out with the mean relative abundance (MRA) bigger than 0.1% and the presence in more 165 

than 75% of samples or 100% occupancy in more than 10 studies. To investigate the bacteria-bacteria 166 

interactions in salivary microbial communities, the co-occurrence network was constructed using 167 

pairwise Spearman’s correlation based on relative abundance. The Spearman’s correlation was 168 

calculated using the rcorr function in the Hmisc R package [40] and visualised by Cytoscape v3.8.2 169 

[41]. A correlation with Spearman’s correlation coefficient > 0.5 or < -0.5 and p-value < 0.01 is 170 

considered as statistically robust and shown in the network. 171 

5. Differential abundance analyses 172 

5.1 Random Forest 173 

The normalised abundance of taxa in the phylum, class, order, family, genus, species and OTU level 174 

were classified against each provided metadata categories to determine which factor has the largest 175 

effect on the salivary microbiota. A random forest classifier was created in R using the randomForest 176 

package [42] with default parameters. We used the randomForest (importance = TRUE, proximity = 177 

TRUE) function to generate the classification model for seven categories. For four categories that 178 

have the random forest classifier with average error rate lower that 20%, including hypervariable 179 

region (5.0%), geographic location (10.4%), tobacco usage (12.7%), sample type (13.8%), 180 

differentialt taxa were defined using cross-validation.  Cross-validation was performed by the rfcv() 181 

function for selecting appropriate features. The varImpPlot function was used to show the importance 182 
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of features in the classification. The importance of features and the cross-validation curve were 183 

visualized by using the ggplot2 package [43] in R. 184 

5.2 Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) 185 

ANCOM-BC [44] were performed to identify the taxa with different relative abundance between 186 

Chinese and Western samples. Function ANCOMBC were used with holm-bonferroni false discovery 187 

rate correction and other default parameters. The hypervariable regions used by different studies were 188 

used as the covariate. 189 

6. Functional prediction 190 

Microbial metagenomes were inferred from 16S rRNA gene-based bacterial profiles, and the 191 

functional prediction were conducted based on Kyoto Encyclopedia of Gene and Genomes (KEGG) 192 

database [45] using the default pipeline in Phylogenetic Investigation of Communities by 193 

Reconstruction of Unobserved States 2 (PICRUSt2) (Douglas et al., 2020). The ANCOM-BC analysis 194 

was used to identify the differential abundant KEGG pathways by geographic location, adjusting for 195 

hypervariable regions. At the same time, a random forest model was established for distinguishing 196 

Chinese and Western samples, and the importance of pathways was measured using mean decreased 197 

accuracy. Spearman’s correlation was performed to assess the relationship between the relative 198 

abundance of differential pathways and genera. The significant correlations were visualised using the 199 

corrplot package [46] in R. 200 

7. Comparison between Chinese and Western people on an independent cohort 201 

Saliva samples were collected from 26 participants (aged 20-60 years) recruited for a wine assessment 202 

experiment and consisted of 13 Chinese and 13 Western wine experts (Table 1). The study was 203 

approved by the Office for Research Ethics and Integrity of the University of Melbourne (Ethics ID: 204 

1852616). Each group had six female panellists and seven male panellists. The Western panellists 205 

were defined as people who have lived in Australia for more than ten years. Chinese panellists were 206 

defined as people who were born in China and had lived in Australia for no more than 18 months.  207 

Bacteria genomic DNA was extracted from human saliva using QIAGEN® MagAttract® PowerSoil® 208 

DNA KF Kit [47] and subjected to 16S rRNA amplicon sequencing on the Illumina platform 209 
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following the Earth Microbiome Project protocols (https://earthmicrobiome.org/protocols-and-210 

standards/16s/). The raw data are available in NCBI Sequence Read Archive, with accession number 211 

PRJNA786805. 212 

 213 

The raw sequences were processed using the same pipeline in the meta-analysis as described in 214 

section 2. Additionally, raw sequencing reads were denoised into zero-radios OTUs (zOTUs) by 215 

UNOISE3 pipeline [48], and taxonomically classified by classifiers trained on the full-length 16S 216 

rRNA gene SILVA v138 [49] database and eHOMD v15.22 [35], respectively. The affiliation 217 

between each ZOTUs and the originating OTU was determined using a customised code adapted from 218 

Stopnisek and Shade [50] and available at 219 

https://github.com/XINWEIR/SalivaryMicrobiome_MetaAnalysis. The relative abundance of taxa at 220 

the genus level in this cohort was used as the test set for the random forest model trained using the 221 

genus-level OTU assignment information in the meta-analysis. 222 

 223 

Results 224 

1. Inclusion of studies and sequences 225 

In this study, we extracted the 16S rRNA gene amplicon sequencing data of healthy human saliva 226 

from 47 studies (Figure 1A). We abstracted data from subjects who had no diagnosed disease state, 227 

hereafter named “healthy”. Of course, subjects could have had subclinical diseases or may have 228 

altered health status for undisclosed reasons, but we considered that this would be true of the wider 229 

human population and therefore able to be included in our study. A total of 107,005,868 high quality 230 

16S rRNA sequences were obtained. After removing all samples below 2,000 reads, 2206 samples 231 

with 909 features were retained. The retained samples included studies from 15 countries (Table S2). 232 

Most studies were conducted in three geographic regions: North America, Europe, and China (Figure 233 

1B). Most sequences included in this meta-analysis were generated from the hypervariable region 234 

“V3-V4” and “V4”. Samples from studies targeted at “V1-V2” or the “V4-V5'' region were classified 235 

as “others” (Figure 1C; Table S3). Similarly, saliva samples collected by unconventional methods like 236 
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“swab” were also classified as “others”. People who recorded a smoking habit, whether they smoke e-237 

cigarettes or tobacco, were categorised as smokers. Similarly, people who drink alcohol, regardless of 238 

the frequency or the type of alcohol consumed, were classified as drinkers. The given age was treated 239 

as a categorical factor, classifying into “18-30”, “31-55”, and “56+”. The samples without associated 240 

information to a particular category or classified as “others” were excluded for downstream analyses 241 

related to the impact of this category. For example, the following analyses measuring the effect of 242 

hypervariable region on microbial profiles included only comparisons between the V3-V4 and V4 243 

region (Figure 1C). 244 

2. Intrinsic and lifestyle factors have a significant effect on the host salivary microbiome 245 

Large variability between studies was observed in the number of reads, taxonomic profile, and alpha 246 

diversity (Figure 2; Figure S1). Phylum Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria were 247 

dominated among all studies, while their proportion varies (Figure 2A). When studies were grouped 248 

by the geographic locations they originated from (coloured in Figure 2B, C, D), there is generally no 249 

difference between their intra-community diversity, represented by Shannon, Chao1, and Simpson 250 

indices. Only one study conducted in Qatar showed relatively lower Chao 1 index and higher 251 

Simpson’s diversity indices than studies from other locations. However, it is hard to decide whether 252 

such variation is caused by the geographic location or other technical variations. 253 

 254 

Because of the large disparity of methodologies amongst the studies used in our global analysis, we 255 

applied several different strategies for normalisation as described in Methods. When investigating the 256 

influences of different categories using permutational multivariate analysis of variance 257 

(PERMANOVA) tests, these normalising methods were combined as appropriate with different 258 

distance metrics, including Bray-Curtis, weighted UniFrac, and Euclidean distance. Overall, the effect 259 

of rarefaction (RAR), total-sum scaling (TSS), and the rarefied relative abundance transformation 260 

(RRA) were very similar in the result of PERMANOVA (Figure 3A-D; Table S4). Meanwhile, the 261 

centred log-ratio transformation (CLR) enlarged the variance induced by an unwanted technical 262 

factor, namely the amplified hypervariable region, at all taxonomic levels. 263 
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 264 

The beta-diversity analyses showed that all metadata categories measured have a significant (p<0.001) 265 

effect on the bacterial profile of human saliva at all taxonomic levels, adjusted for the study effect 266 

(Table S4). However, only limited variation among samples has been explained by these factors (R2 < 267 

10%). In contrast, “study” accounts for around 35% of the variability between samples. At the OTU 268 

level, the combination of weighted UniFrac distance and the total-sum scaling (TSS) transformed data 269 

best minimised the variability raised by different hypervariable regions (Figure 3D).  The results of 270 

the unconstrained principal coordinate analysis (PCoA) are in agreement with the results of 271 

PERMANOVA. When using Bray-Curtis dissimilarity and Euclidean distance, the samples separated 272 

distinctly according to the hypervariable regions in PCoA plots, whereas the plot constructed using 273 

the weighted UniFrac revealed the clusters formed by the samples from different geographic locations 274 

(Figure S2). A distinct separation of samples from three main geographic locations (Figure 3F), with 275 

more than half (58.0%) of the variance explained by the first two dimensions, using weighted UniFrac 276 

distance. In contrast, the differences between locations were confounded by which hypervariable 277 

regions were sequenced in the PCoA plot for Bray-Curtis dissimilarity (Figure 3E). The results 278 

suggest that host intrinsic and lifestyle factors significantly influence the microbial profile in human 279 

saliva, regardless of the variation induced by technical factors. 280 

3. A core microbiome is defined from saliva from healthy humans 281 

Despite the large intra- and inter-study variability, many OTUs still showed a consistently high 282 

presence and relative abundance across studies (Figure S3). These persistent OTUs detected across 283 

studies with different protocols could be functionally important for the salivary microbiome of healthy 284 

adults. We wanted to identify the most widespread microbial taxa within a specific population that 285 

allows us to better understand the broad structure of microbiomes and their potential functional 286 

consequences [12]. The abundance and occurrence frequency of taxa are two important criteria used 287 

to define the “core salivary microbiome”. Conventionally, thresholds on these two parameters filter all 288 

taxa detected, and taxa that meet both criteria can be classified as the core salivary microbiome [13]. 289 

Recently, a more standardised procedure based on abundance-occupancy distribution was proposed 290 
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[39]. We employed both strategies to define the core salivary microbiome to identify the microbial 291 

features with high persistence and robustness in human saliva. Considering the sequences involved in 292 

this meta-analysis were collected from studies targeted at different hypervariable regions, close-293 

referenced clustering at 97% identity were used to cluster sequences into OTUs. In addition, taxa 294 

defined at 100% sequence identity may increase the redundancy in the dataset [39]. Therefore, the 295 

core salivary microbiome was defined using the clustered OTUs at 97% identity. To begin, the core 296 

OTUs were determined by filtering all OTUs based on mean relative abundance and occurrence 297 

frequency using the criteria described in the Methods [13]. In total, 11.6% of all OTUs (105 OTUs) 298 

were included as Core 1 (Figure 4A: MRA + OCC; Table S5). Meanwhile, according to the method 299 

proposed by Shade and Stopnisek [39], OTUs were ranked depending on their occupancy across 300 

studies, and the contribution of top-ranked OTUs to beta-diversity was expressed by Bray-Curtis 301 

similarity and weighted UniFrac distance. Two groups of the core microbiome were prioritised by 302 

these two indices, to give different inclusions in the core, consisting of the top 69 OTUs (using 303 

weighted UniFrac; Figure 4A: BC) and 94 OTUs (using Bray-Curtis; Figure 4A: wUF) OTUs (Figure 304 

S4). 305 

 306 

Overall, sixty-eight OTUs were shared across all three methods (Figure 4A), accounting for 7.5% of 307 

all OTUs detected and 72.5% of all 16S rRNA gene sequences after clustering and filtering (Figure 308 

4B, C). Firmicutes account for nearly half (46.4 %) of all core OTUs, while only one OTU belongs 309 

to Saccharibacteria. The mean relative abundance (MRA) of each OTU in sub-groups classified by 310 

different factors was also measured (Figure 4D). On average, the core OTUs were highly prevalent 311 

(73.2% ± 3.4% of cumulative relative abundance) in saliva samples across different levels in 312 

subgroups classified by age, gender, geographic locations, hypervariable regions, sample type, 313 

smoking, and drinking habits. The core OTUs were clustered into four main groups based on their 314 

distribution pattern in sub-groups (Figure 4E). The eight OTUs affiliated to Cluster 1 showed overall 315 

high abundance in all sub-groups. Cluster 2 consists of core OTUs with a slightly lower mean relative 316 

abundance than Cluster 1 and higher intra-group variability. Notably, although having a higher MRA 317 

than some members of Cluster 1, “476_9291” was still classified as Cluster 2. The reason could be its 318 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.471511doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.471511
http://creativecommons.org/licenses/by-nc/4.0/


 13 

biased presence in sub-groups. For example, the relative abundance of “476_9291” is higher in 319 

samples from China than other two locations. The other two clusters contain OTUs with lower MRA 320 

than Cluster 1 and 2, while variations can still be observed within sub-groups. 321 

 322 

Bacteria-bacteria interactions play an important role in shaping microbiota. Therefore, co-occurrence 323 

network analysis could be a useful approach for finding the most important part of the microbial 324 

community. We applied a network analysis built by Spearman’s correlations to investigate whether 325 

the core OTUs defined were also important to the structure of the co-occurrence pattern. A correlation 326 

with Spearman’s correlation coefficient >0.5 or < -0.5 and p-value < 0.01 is considered statistically 327 

robust [51, 52]. The resulting co-occurrence network contains 293 nodes and 1,424 significant 328 

correlations (edges) (Figure S5). Small modules with less than seven nodes were not displayed. 329 

Although most core OTUs have relatively low connectivity, they tend to associate with each other 330 

rather than with rare OTUs. Nine OTUs were identified as potential “hub” OTUs based on their 331 

centrality and the number of links in the network (Figure S5, 6). Because of the central position in the 332 

network, the hub taxa are regarded as the key contributor to community stability. Two core OTUs 333 

were also identified as hub taxa in the network, which are “122BU057” (Megasphaera 334 

micronuciformis) and “524_3631” (Veillonella atypica). Compared to other “hub” taxa, they showed 335 

lower connectivity and relatively high betweenness centrality (Figure S6). 336 

4. Geographic location is the host factor with the largest impact on bacterial composition 337 

To investigate which metadata category has the largest impact on the salivary microbiome, we 338 

established random forest models to link the seven categories described above and a new category, 339 

study, with the salivary microbiota data at seven taxonomic levels (OTU, phylum, class, order, family, 340 

genus, and species). The effect of four normalisation methods was compared using the error rate 341 

generated by random forest classification. In total, 224 random forest models were constructed 342 

(Figure 5A). Among four normalisation methods, total-sum scaling produced the models that were, on 343 

average, the most accurate. Generally, the random forest models built with microbial communities at 344 

OTU levels have the lowest error rate (mean = 13.0%), while the models constructed at phylum levels 345 
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have the highest (mean =26.8%). The model built with the hypervariable region used for sequencing 346 

was also the category that showed the lowest error rate (Figure 3G). Geographic locations 347 

demonstrated the second important impact on the bacterial communities, with the lowest error rate 348 

among biological factors. The random forest model constructed by the other two categories, sample 349 

type and tobacco usage, also showed a relatively lower error rate than other categories. Study 350 

constructed the models with high error rates at phylum (44.3% ± 2.5%) and class level (29.3% ± 351 

2.1%). However, the error rate of models built with study rapidly dropped with the increase of 352 

taxonomic levels, reaching 10.5% ± 5.1% at OTU level. Gender and age range led to poorly 353 

performing models. 354 

 355 

We wanted to determine whether the defined core microbiome could be used as biomarkers to 356 

differentiate people categorised by intrinsic and lifestyle factors. The random forest models showed 357 

high accuracy at OTU level were used (i.e., geographic location and smoking factors). The differential 358 

OTUs induced by hypervariable regions and sample types were also analysed to exclude the influence 359 

of technical factors. We further performed ten-fold cross-validation five times to measure the 360 

importance of OTUs used to train the model. All OTUs before the point that the cross-validation error 361 

curve starts to stabilise were defined as important OTUs.  In total, we defined 59, 57, 34 and 70 362 

important OTUs as biomarkers to differentiate samples according to geographic location, smoking 363 

habit, hypervariable region, and sample type, respectively (Figure S7). Of these, 28, 10, 13 and 22 364 

biomarkers were also classified as “core” (Figure 5B; Figure S8). Although 31 core OTUs showed the 365 

importance in discriminating samples according to geographic location and smoking, nearly half of 366 

them (15 OTUs) had the possibility of being confounded by technical factors (Figure 5B). After 367 

excluding the OTUs that could be influenced by other factors, core OTU “322AK152” (Bergeyella 368 

sp.HMT_322) was the OTU with the highest contribution to the classification of samples from three 369 

geographic locations. Meanwhile, “122BU057” (Megasphaera micronuciformis) showed the highest 370 

importance among the core differential OTUs specific to smoking, followed by “524_3631” 371 

(Veillonella atypica). We were surprised to find that these two OTUs were the only two OTUs that 372 

were defined as hub taxa in the co-occurrence network analysis (Figure S6). 373 
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5. The salivary microbiota as biomarkers to differentiate Chinese and Western 374 

We further analysed the changes caused by geographic locations in higher taxonomic hierarchies, 375 

where many differences have been revealed. Of particular interest were taxa under 376 

phylum Synergistetes and Spirochaetes, Class Mollicutes and Betaproteobacteria, 377 

Family Clostridiales, and genus Prevotella. Interestingly, many taxa showed a higher relative 378 

abundance in the Chinese samples, both compared to North American samples and compared to 379 

European samples (Figure 6A). It suggested that the variance induced by geographic locations may be 380 

dominated by the differences between samples from Chinese and Western people. Therefore, we 381 

combined samples from North America and Europe into a single group, “Western.” Compared to the 382 

Chinese grouping, the Western group has significantly lower within-sample diversity (alpha-diversity) 383 

(Wilcoxon rank-sum test, p < 0.001; Figure 6B, C). Next, we examined the differences between 384 

Chinese and Western in the salivary microbiota at the genus and species level (Table S6, S7). Besides 385 

establishing a random forest model, we also identified differential taxa using ANCOM-BC, adjusting 386 

for the hypervariable region. We found 48 genera identified as significantly different by both methods 387 

(Figure 6D, Table S6). Among them, Arachnia, Filifactor, Ottowia, Neisseria, Aggregatibacter, one 388 

genus from Gracilibacteria, one genus from Clostridiales, and three other genera belonging to the 389 

family Peptostreptococcaceae were strongly (standardized effect size>10, mean decreased 390 

accuracy >10) enriched in Chinese samples. 391 

Meanwhile, Prevotella, Scardovia, Bergeyell, Veillonella, Oribacterium, and one genus belonging to 392 

the family Erysipelotrichaceae were strongly (standardized effect size>7 mean decreased 393 

accuracy >10) enriched in Western samples. 394 

 395 

Finally, we performed the functional prediction-based 16S rRNA gene profiles to investigate whether 396 

differences in the salivary microbiota between Chinese and Western affect its function. Two methods, 397 

ANCOM-BC, and random forest model were used to identify which pathways were differential 398 

between Chinese and Western. The result of ANCOM-BC indicated that 69 pathways related to 399 

metabolism were differentially abundant between the two groups. The random forest classification 400 
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model established using KEGG pathways demonstrated an error rate of 10.01% and revealed 46 401 

differential pathways. Among them, thirty pathways belonging to nine upper pathways (level 2) were 402 

simultaneously defined by two methods as differing in abundance between Chinese and Western 403 

(Figure 6E, Table S8). A variety of pathways was in higher abundance in Chinese samples. The 404 

enrichment of these pathways in Chinese samples was mainly associated with the increased 405 

abundance of Neisseria and Lautropia and the depleted abundance of Prevotella, Veillonella, 406 

and Atopobium. Notably, three lipid metabolism pathways enriched in Chinese samples, including 407 

“Ether lipid metabolism” (ko00565), “alpha-Linolenic acid metabolism” (ko00592), and “Linoleic 408 

acid metabolism” (ko00591), have the highest standardised effect size (W statistics, Table S8). The 409 

enrichment of these pathways related to lipid metabolism has been positively associated with the 410 

higher abundance of Neisseria in Chinese. Neisseria may have also contributed to the pathway 411 

“Carotenoid biosynthesis” (ko00906). Another metabolic pathway related to the metabolism of 412 

terpenoids and polyketides, “Sesquiterpenoid and triterpenoid biosynthesis” (ko00909), showed a 413 

positive correlation with a genus belong to Peptostreptococcaceae. In contrast, only one pathway 414 

named “Flavone and flavonol biosynthesis” (ko00944) was enriched in the saliva samples from 415 

Western. A strong positive correlation has been demonstrated between this pathway and the increased 416 

abundance of Veillonella in the samples from the Western grouping. 417 

6. Validation of the core in an independent Australian cohort 418 

To validate the prevalence of the core OTUs in human saliva, we collected saliva samples from 13 419 

Chinese and 13 Western participants in Melbourne and sequenced the extracted DNA with 515F-420 

806R primers. In total, 841,188 high-quality 16S rRNA sequences were obtained, which clustered into 421 

397 OTUs with 97% identity to the HOMD database. Among them, the core OTUs we defined in the 422 

meta-analysis showed high relative abundance (78.3 ± 6.9%) in all collected samples. To increase the 423 

accuracy of the OTU assignment, we denoised the sequencing reads using the UNOISE3 pipeline and 424 

generated ZOTUs with 100% sequence identity. After re-clustering the core OTUs defined in the 425 

meta-analysis to ZOTUs, we observed that 59 of the identified OTUs in this independent dataset 426 

consisted of 87 ZOTUs, and thus made up close to 80% of the relative abundance (Figure 7A). 427 
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Although some sequences belonging to the same ZOTU are clustered to different OTUs, all the core 428 

OTUs contain at least one highly abundant ZOTU. The taxonomic profiles of the global core 429 

annotated by the HOMD database and the ZOTUs annotated by the SILVA database were very 430 

similar at the genus level (Figure 8A). 431 

 432 

We wanted to verify the observed differences between the OTUs in saliva samples from Chinese and 433 

Western people in this independent dataset. Although two groups did not differ significantly when 434 

considering the Shannon diversity index (Wilcoxon rank-sum test, p = 0.073; Figure 8B), the Chinese 435 

group showed a higher Chao 1 Index than the Western group (Wilcoxon rank-sum test, p < 0.001; 436 

Figure 8C), which is in agreeance with the result of the meta-analysis. Meanwhile, no significant 437 

differences were observed between the two groups by beta-diversity analyses (Bray-Curtis and 438 

weighted uniFrac distance, Table S9). We used the random forest classification model constructed 439 

using the genus level profile of the large-scale dataset to predict the Chinese and Western samples in 440 

this independent study. This dataset's genus-level relative abundance table was prepared from both the 441 

OTU table with 97% identity to HOMD v15.1 database (Figure 8D) and the ZOTU table annotated by 442 

the HOMD v15.22 database (Figure 8E). The accuracy of both predictions was relatively low, with 443 

57.7% for the OTU table and 50% for the ZOTU table. Interestingly, most Western samples were 444 

correctly classified, while most samples from Chinese participants were classified as being ‘Western’ 445 

in this analysis. 446 

 447 

Discussion 448 

There is ample knowledge on the disease-affected salivary microbiota, yet our perspectives to the 449 

bacteria present in healthy humans remains limited. Our systematic selection of studies, together with 450 

the re-analysis of the 16S rRNA amplicon sequencing data from 47 studies offers a comprehensive 451 

description of the salivary microbiome presented in adults without diagnosed disease. Our study has 452 

defined the core members of salivary bacterial communities across 2211 samples from 47 studies and 453 

has used metadata captured in these studies to investigate the role of different intrinsic and extrinsic 454 
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factors on the occurrence of these core. It is clear that core members differ between geographic 455 

locations of collected saliva, and our analysis shows that Chinese participants are different from 456 

Western participants (encompassing European and North American studies). A prediction of the 457 

pathways enriched in each collective indicates that bacterial metabolic pathways are likely to 458 

influence the aroma and flavour perception of foods. These results show that despite the core 459 

microbial members of saliva being common across humans, there are differences, likely due to diet. 460 

We suggest that the aroma and flavour of foods and beverages are likely to be differently affected in 461 

healthy humans across the globe, meaning that preference and consumption of different foods is likely 462 

to be prioritised. These results have important consequences for food and beverage design, 463 

composition, and dietary advice across the globe. 464 

  465 

Based on the abundance-occupancy pattern, the definition of core microbiome highlighted the 466 

persistent and conserved microbial communities in human saliva across the globe. Here, we compared 467 

two approaches adapted from two studies (references) to defining the core. The method adapted from 468 

the study of Wu et al. [13] is a relatively conventional strategy that has been chosen by many other 469 

studies investigating different ecosystems, such as soil [53], compost [54], wastewater treatment 470 

plants [55], and human’s intestinal system [56]. The thresholds were simply setting on each taxon’s 471 

mean relative abundance and occupancy across all samples. For studies aimed to determine the spatial 472 

or temporal core microbiome, additional thresholds will be added on the prevalence of taxa within 473 

sub-groups. However, the thresholds used by different studies are usually arbitrary. Some studies have 474 

even adopted only abundance or occupancy alone as criteria for defining the core. Therefore, a 475 

generalised approach for defining the core microbial members from diverse datasets based on 476 

abundance-occupancy was also applied in this study [39]. Rather than over space or time, we 477 

determined the occupancy of OTUs according to their detection over study. When evaluating the 478 

contribution of top-ranked OTUs in occupancy to the beta-diversity of the community, we further 479 

used weighted Unifrac due to its effectiveness in minimising the biases induced by the selection of 480 

hypervariable regions.  481 
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The resulting core members identified by these methods have a lot in common. A majority of the core 482 

OTUs defined by Shade's method is also included in the cores defined by Wu's method, suggesting 483 

the recently developed multi-step approach is effective in determining taxa with high prevalence. The 484 

general high relative abundance of the core across different sub-groups emphasised the utility of this 485 

pipeline in identifying the persistent members across diverse datasets. Most of the core salivary 486 

microbiota we defined had been proposed in previous studies as prevalent bacteria in the human oral 487 

cavity that persistently span across different individuals [11, 57-59]. The dominant genus of the core 488 

we defined, Streptococcus, Neisseria, and Prevotella, were concluded as core human salivary 489 

microbiome by a recent study based on the MG-RAST data [60]. Ten OTUs belonging to genus 490 

Streptococcus were included in the “core”, two of which were classified to the cluster with overall the 491 

highest relative abundance across all dimensions. The prevalence of Streptococcus we observed is 492 

consistent with a previous study defining the healthy core from the 454 pyrosequencing results of 493 

three individuals [11]. The most abundant core OTU we found, Streptococcus 494 

oralis subspecies dentisani, has been documented in previous studies as potential oral health-495 

promoting organisms and being highly abundant at various oral niches of healthy humans [61, 62]. 496 

 497 
We further conducted a co-occurrence network analysis to investigate the role of these core 498 

microbiota in shaping the microbial community and found the co-existence between many members 499 

of the core (Figure S5). The presence of the rare OTU that became the hub suggests that although 500 

some taxa are not persistently detected across the community, they may still be important for the 501 

overall structure of the salivary microbiome. It has been proposed that the oral microbiota of healthy 502 

individuals is both homeostatic and dynamic [57]. The core microbial members consistently present in 503 

human saliva identified here may explain the stability of oral microbiota to some extent.  504 

Moreover, we conducted an independent study to verify the prevalence of the core defined from the 505 

published studies. The high relative abundance and occurrence of the original core OTUs in this 506 

independent cohort suggest that the core human salivary microbiome we defined can be applied to 507 

different datasets. After re-clustering the core OTUs to ZOTUs with 100% sequence identity, we may 508 

conclude that the same members constitute the core, even if different taxonomic resolution is applied. 509 
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 510 

Besides the core microbiome, there are “variable” microbiota in human microbial communities, which 511 

vary among individuals because of unique lifestyle and genetic factors [63]. We performed analyses 512 

for beta-diversity of samples (Figure 3) and random forest classifications (Figure 5A), demonstrating 513 

several factors-both technical and physiological-significantly discriminated between sub-populations. 514 

Because of the high heterogeneity between studies in their methodology, large inter-study variability 515 

was the main factor that affected the observed salivary microbiota [64, 65]. As one of the main 516 

technical factors that may induce the variation, the impact of chosen hypervariable regions for 517 

sequencing on driving microbial community structures has been confirmed by our study. In addition, 518 

the selection of different primers for the same region and DNA extraction methods may also lead to 519 

technical variations [66]. However, studies’ choices of primers and DNA extraction protocols are 520 

more diverse than hypervariable regions (Table S2), making it difficult to group them into categories 521 

as simple as for the variable regions. By adjusting the analyses by study, the variability caused by 522 

study-specific technical factors other than hypervariable regions could also be covered. For future 523 

studies, it is important to establish a standardised DNA extraction and sequencing protocol on a global 524 

scale. During the literature search, we found that the inter-study variation may also be attributed to the 525 

criteria of recruiting participants. Although all samples included in this meta-analysis were collected 526 

from the control groups and population without specific diagnosed disease, the definition of 'healthy' 527 

varies. For example, the use of antibiotics was not always considered as an exclusion criterion, and 528 

when included, different time intervals were adopted. However, for this study, we aimed to construct 529 

a microbial community that reflects the salivary microbiota of real-life consumers. Therefore, samples 530 

collected from individuals without known severe systemic diseases were included. 531 

 532 

Besides the influence of variables related to study design, this study has also revealed the importance 533 

of various host intrinsic and lifestyle factors. We observed the change in salivary microbial 534 

composition induced by smoking habits. As a recognised risk factor to oral health, the role of smoking 535 

in shaping the human oral microbiome has received increasing attention [67]. Previous studies have 536 

reported the change of Megasphaera micronuciformis caused by smoking in the microbial profile of 537 
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the human tongue surface [68] and upper gastrointestinal tract [69]. In agreement with these findings, 538 

we identified a core OTU belonging to Megasphaera micronuciformis as a biomarker for reported 539 

smoking. In addition, we found the differential abundance of an OTU belonging to Veillonella atypica 540 

between smokers and non-smokers, which agrees with a study where this species already found to be 541 

increased in the saliva [70]. Another strong determinant of the salivary microbiome we defined was 542 

“sample type”. As we found in this study, the difference between the mouthwash sample and the other 543 

two collection methods is greater than the difference between the stimulated and unstimulated saliva.  544 

Contrary to the result of Jo et al. [29], the OTU belonging to Neisseria flava has not been identified as 545 

differential taxa for the type of saliva. The microbial composition of alcohol drinkers and non-546 

drinkers was also found to be different, while the small sample size acquired hindered our ability to 547 

draw large-scale downstream conclusions. Although the significant differences we observed in 548 

salivary microbiota were also attributed to the gender and age of participants, the variations they 549 

explained are relatively low compared to other factors.  550 

 551 

Geographic location has been identified as the host physiological factor with the largest impact on 552 

salivary microbiota (Figure 5A). Although it only explained limited variability between samples’ 553 

microbial profiles, the observed variations were robust to the heterogeneity induced by different 554 

hypervariable regions used (Figure 3E, F). To date, little is known regarding the influence of 555 

geographic locations on the human salivary microbiome. A comparative study reported the 556 

differences in saliva microbial composition in Alaskans, Africans, and Germans [33].  To our 557 

knowledge, the geographically structured microbial communities have not been observed in healthy 558 

human saliva based on the large-scale dataset used in this study. Our result also demonstrated several 559 

core OTUs that may differentiate saliva samples from North America, Europe, and China. It suggests 560 

that the global prevalent core microbiota is not necessary to be stable across populations. Given the 561 

high abundance and occupancy frequency of the core microbiome, we would expect these taxa to be 562 

effective indicators to predict the geographic background of saliva donors. 563 

 564 
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Due to the sometimes large differences in culture and lifestyle between Western and non-Western 565 

populations, we further grouped our data into Western and Chinese samples. The comparison between 566 

Western and non-Western populations has already been applied to the human gut microbiota, whereas 567 

less is known about the saliva microbiota [71]. Our study found a difference in the abundance of 568 

Veillonella spp between saliva from Western and Chinese people, where Veillonella was generally 569 

higher in Western samples. Such differences may influence the flavone and flavonol biosynthesis 570 

pathways in the oral cavity. Our previous study revealed the Western-born and Chinese-born wine 571 

experts had different responses to the astringency of wine. Since flavonol is a well-known constituent 572 

of wine-related to the bitterness and astringency perception [72], we would hypothesis that the 573 

enrichment of Veillonella in Western may affect their sensitivity to the phenolic compounds in wine. 574 

It has also been suggested that the regular consumption of flavonoid-rich foods, such as oolong tea, 575 

may increase the abundance of Veillonella spp. in human saliva [73]. These influences can potentially 576 

be the bridges that link the differences between Chinese and Western groups in sensory evaluation 577 

and their salivary microbiota together. Because the amplicon sequencing data cannot speak directly to 578 

the functional sequences of the observed difference, shotgun metagenome sequencing will be 579 

necessary to verify the exact association. Prevotella abundance has previously been reported to be 580 

enriched in the gut microbiota of non-Western populations [74], which is opposed to our observation 581 

in saliva. However, there is substantial species-level diversity in Prevotella (Table S7), making it 582 

plausible that different species belonging to Prevotella may respond differently to the geographic 583 

background [75]. 584 

 585 

Although the independent dataset we collected did not show differences between samples taken from 586 

Chinese and Western participants, the results of random forest classification may lead to some 587 

interesting hypotheses.  The prediction of models revealed that most of the Chinese samples in this 588 

cohort were classified as Western. The donors of these samples were wine experts, of Chinese 589 

ethnicity, born in China and living in Australia for no more than 18 months. Recent studies reported 590 

that immigrants from Asia experience a “Westernization” of gut microbiota induced by dietary 591 

acculturation [74, 75]. We hypothesise that such a phenomenon may also happen in salivary 592 
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microbiota. It may suggest that dietary pattern is a more important determinant than ethnicity in 593 

shaping the salivary microbiota of the participants, leading to variation among different geographic 594 

locations that we observed in the meta-analysis.  595 

 596 

Conclusions 597 

In summary, we have defined a core bacterial community in saliva from healthy humans, and this core 598 

demonstrated both stability and variability among populations. The prevalence of the core members of 599 

the saliva microbiome has been confirmed in an independent cohort. We have revealed the influence 600 

of various host factors, such as geographic locations, incidence of smoking and drinking, on the 601 

salivary microbiome. We also identified microbial and functional biomarkers to differentiate the 602 

Chinese and Western people, underlying the potential relationship between salivary microbiota and 603 

sensory perception. Results in this work will provide foundational information to inform future 604 

studies to understand the similarities and differences in saliva microbial composition, potentially 605 

associating oral to aroma and flavour perception of foods. 606 

 607 

Availability of data and materials 608 

The sequencing data supporting the conclusion of the meta-analysis in this article are available in 609 

publicly accessible databases (full details can be found in Table S2). The sequencing data generated 610 

and/or analysed during the current study are available in the NCBI Bioproject repository, 611 

PRJNA786805 (https://www.ncbi.nlm.nih.gov/bioproject/786805). Original scripts generated during 612 

the current study are available in Github 613 

(https://github.com/XINWEIR/SalivaryMicrobiome_MetaAnalysis). 614 
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Legends-Results 620 

Figure 1. Overview of literature search procedure and metadata of included studies. a) Large-621 

scale literature searching and data filtering process, followed by the number of samples submitted to 622 

the bioinformatic analyses; b) The locations of studies, the scale of symbols that reflect the number of 623 

samples of each study; c) Distribution of metadata categories. 624 

 625 

Figure 2. Summary of taxonomic composition and alpha diversity of included studies. A) The 626 

mean community composition of each study at the phylum level; The alpha-diversity measured by B) 627 

Shannon index; C) Chao 1 index; D) Simpson’s index, the colour of boxes stands for the geographic 628 

location of the studies. The horizontal bars within boxes represent medians. The tops and bottoms of 629 

boxes represent the 75th and 25th percentiles, respectively. 630 

Figure 3. The variability in human salivary microbiota have been explained by different factors. 631 

Among them, hypervariable regions and geographic locations have the largest impact. The effect 632 

of the categories on the clustering of the sample was measured using PERMANOVA at four 633 

taxonomic levels: family (A), Genus (B), species (C) and OTU level (D). The colour indicates the 634 

different combinations of normalisation (TSS, Total-sum scaling; RRA, Rarefied relative abundance; 635 

CLR, Centred log ratio) and indices (BC, Bray-Curtis; EUC, Euclidean; wUF, weighted uniFrac). 636 

Because the results of rarefication (RAR) were very close to TSS and RRA, they were not displayed 637 

in the figures. Principal coordinate analysis (PCoA) with Bray-Curtis (E) and weighted uniFrac (F) 638 

showing the differences between samples from North America, Europe, and China. 639 

Figure 4. The core OTUs defined by abundance-occupancy pattern. A) Venn diagram showing 640 

the interaction between three methods used to define the core. Sixty-eight OTUs were defined as the 641 
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core for all methods. (MRA+OCC: The thresholds were setting on mean relative abundance and 642 

occupancy to define the core; BC: The method adapted from Shade and Stopnisek using Bray-Curtis 643 

similarity; wUF: The method adapted from Shade and Stopnisek using weighted uniFrac distance). B) 644 

Pie chart showing the number of the core (pink) versus other OTUs (blue) identified in percentage. C) 645 

Pie chart showing the relative abundance of the core and other OTUs across all samples. D)  Relative 646 

abundance of 68 core OTUs across subgroups classified by seven categories. E) Heatmap showing the 647 

log-transformed mean relative abundance of each core OTU at each level of different categories. 648 

 649 

Figure 5. Salivary microbiome members which significantly contribute to categorisation of 650 

metadata. Random Forest models showed the impact of categories on salivary microbiome and 651 

the core OTUs contributing to accuracy of these models. A) Error rate (%) for the random forest 652 

classifications conducted with samples grouped by eight different categories. B) Phylogenetic tree 653 

indicates the taxonomic information of 68 core OTUs. The coloured squares between the tree and the 654 

annotation of phylum indicate the OTUs that were defined by the Random Forest model as 655 

"important" for distinguishing between different levels in each category. The bars on the outmost ring 656 

showing the mean relative abundance of each OTU. 657 

Figure 6. Distinct microbial profiles are evident in the saliva samples from Chinese and Western 658 

adults. A) Taxonomic hierarchies show the relative enrichment of taxa in three geographic locations 659 

at phylum through species level. Coloured nodes indicate log2-fold increase in median abundance of 660 

the group in x-axis (pink) or y-axis (blue). Only taxa showed significant changes (false discovery rate-661 

adjusted Wilcoxon rank sum q < 0.05) are displayed. B) and C) Comparison of salivary microbial 662 

alpha diversity between the Chinese and Western samples, calculated by Chao1 (B: p< 0.001, 663 

Wilcoxon rank-sum test) and Shannon index (C: p< 0.001, Wilcoxon rank-sum test). D) Differential 664 

abundant genera identified between saliva from Chinese and Western samples. The panel on the left 665 

indicates the standardised effect sizes (W statistic) estimated via the difference on relative abundance 666 

using ANCOM-BC (taxa enriched in Western samples have a value shifted to right, whereas taxa 667 

enriched in Chinese samples have a value shifted to left); The panel in the middle shows the relative 668 
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abundance of selected genera; the panel on the right indicates the Mean Decrease Accuracy of the 669 

random forest model established. E) Spearman’s correlation coefficients were calculated between 670 

each pairwise comparison of differential genus and KEGG pathway. Only significantly correlated 671 

comparisons (p<0.01, FDR adjusted Spearman’s rank correlation) are displayed. The only Western-672 

enriched pathway is marked in pink. 673 

Figure 7. An independent cohort verifies the definition of core microbiome membership 674 

but cannot classify based on cultural background. A) Alluvial plot showing the affiliation of 675 

ZOTUs to their originating core OTUs defined in the meta-analysis.  B) and C) Comparison of salivary 676 

microbial alpha diversity between the Chinese and Western samples, calculated by Shannon (B: p = 677 

0.073, Wilcoxon rank-sum test) and Chao1 index (C: p< 0.001, Wilcoxon rank-sum test). D) and E) 678 

The prediction of the cultural backgrounds of the samples according to the random forest 679 

classification model constructed using the genus profiles of samples in the meta-analysis. The genus 680 

level profiles of samples processed by D) closed-reference clustering with 97% sequence identity and 681 

E) UNOISE3 denoising with 100% sequence identity were used as the test set. 682 

Legends-Supplementary Figures 683 

Figure S1 Average sequencing depth and rarefaction curve for the complete 16S rRNA dataset. 684 

A) Mean read number of samples from each study. The dash line indicates that all samples below this 685 

depth (depth = 2,000) have been removed. B) The rarefaction curve reflects the increase of sample’s 686 

Shannon index with sequencing depth. The curve was basically stabilised at sequencing depth = 2000. 687 

 688 

Figure S2 The effect of different combinations between normalisations and distance matrices on 689 

reducing the impact of hypervariable regions in the PCoA plot. PCoA plots showing Bray-Curtis 690 

dissimilarity (A-C), weighted uniFrac distance (D-F), Euclidean distance (G-J) under rarefaction 691 

(RAR) (A, D, G), total-sum scaling (TSS) (B, E, H), rarefied relative abundance transformation 692 

(RRA) (C, F, I) and centred log-ratio transformation (J). Percentage of variances explained by the 693 

first two principal coordinates are shown on the axes. 694 
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 695 

Figure S3 Phylogenetic tree showing the presence and absence of top 500 OTUs with highest 696 

mean relative abundance. The colour strips on the innermost ring indicates which phylum the OTUs 697 

belong to. The presence of coloured circles on the 17 rings in the middle indicate that an OTU was 698 

found in a specific level of a sub-group. The grey bars on the outermost layer represent how many 699 

studies that an OTU presented. The scale lines are used to highlight the number of 10, 20 and 40. 700 

 701 

Figure S4 The percentage contribution of the top-ranked OTUs to the beta-diversity of the 702 

dataset. The beta-diversity is calculated for the whole dataset and for only the top-ranked OTUs using 703 

both Bray-Curtis similarity (A) and weighted uniFrac distance (B). The percentage contribution of 704 

top-ranked OTUs is calculated by dividing the beta-diversity among top-ranked OTUs using the beta-705 

diversity of the whole dataset. The dash lines indicate the last points at which the increase on the 706 

contribution is 2%. All OTUs before this point (the point itself was also included) were defined as 707 

“core”. 708 

 709 

Figure S5 Bacterial co-occurrence network verifies the role of identified core salivary 710 

microbiome members. Small modules with less than seven nodes were not displayed. The size of 711 

nodes is proportioned to the connectivity of nodes (node degree). Core OTUs from Figure 4 are 712 

indicated as yellow, while rare OTUs are in green. The edges between nodes represent the strength of 713 

the correlation (Spearman’s correlation coefficient, ρ ≥ 0.5, p < 0.01). The shape of “hub” OTUs are 714 

indicated as squares with the OTU name displayed. 715 

 716 

Figure S6 The Betweenness and Closeness centrality of OTUs involved in the network analysis. 717 

The “hub” OTUs were identified as OTUs with either high connectivity (node degree) or centrality 718 

(betweenness (A) and closeness (B) centrality). The accession number of “hub” OTUs are indicated. 719 

The core OTUs are marked in yellow, while the rare OTUs were coloured in green. 720 

 721 
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Figure S7 The optimal number for defining the biomarker OTUs of four categories. The 722 

contribution of the OTUs used to differentiate the levels in each category on ten-fold cross-validation. 723 

The OTUs were ranked in the order of importance. The dash lines represent the point at which the 724 

curve starts to become overall stable. 725 

 726 

Figure S8 The top important OTUs identified by Random Forest classification model 727 

established by the relative abundance of human salivary microbiota. The differential OTUs 728 

defined were ranked in descending order of their importance (Mean Decrease Accuracy). The colour 729 

of bars reflects the phylum level information of OTUs. The Mean Decrease Accuracy bar of core 730 

OTUs were marked with bolded black borders. 731 

 732 

Legends-Supplementary Tables 733 

Table S1 The terms used for searching in databases, including Medline, EMBASE, and Web of 734 

Science. 735 

 736 

Table S2 Studies included after large-scale literature searches that met all the inclusion criteria. 737 

  738 

Table S3 The full metadata used in this study, including 2206 samples with unique accession 739 

numbers. 740 

  741 

Table S4 The influence of seven factors at seven taxonomic levels on human salivary microbial 742 

communities, measured by PERMANOVA with adonis2 function (permutation = 999). 743 

PERMANOVA models were adjusted for study. 744 

 745 

Table S5 Core OTUs of adults’ saliva microbiome defined by a) method adapted from Wu et al. 746 

(2019) ("1"= yes, "0"=no), b) method adapted from Shade and Stopnisek (2019). 747 

  748 
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Table S6 Genus with differential abundance between samples from Western and Chinese people 749 

identified by both ANCOM-BC and Random Forest model, adjusted for hypervariable regions 750 

sequenced. 751 

  752 

Table S7 Species with differential abundance between samples from Western and Chinese people 753 

identified by both ANCOM-BC and Random Forest model, adjusted for hypervariable regions 754 

sequenced. 755 

 756 

Table S8 KEGG pathways with differential abundance between samples from Western and Chinese 757 

people identified by both ANCOM-BC and Random Forest model, adjusted for hypervariable regions 758 

sequenced. 759 

 760 

Table S9 The differences between Chinese and Western participants in the independent cohort, 761 

measured by PERMANOVA with adonis2 function (permutation = 999). The PERMANOVA model 762 

was adjusted for the gender and age range of participants.763 
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Table 1 Studies included after large-scale literature searches that met all the inclusion criteria. 764 

Study Database Accession Number Location Hypervariable 
Region 

Number of 
Samples Sample Type 

[76] SRA PRJNA323410 India V3-V4 51 Unstimulated 

[77] SRA PRJNA577839 Europe V3-V4 37 Stimulated 

[78] SRA SRP125370 India V3-V4 12 Other 

[79] SRA PRJNA380250 United States V1-V2/V4-V5 4 Unstimulated 

[80] ENA PRJEB9010 Europe V3-V4 70 Stimulated 

[81] SRA PRJNA438728 India V3-V4 30 Mouthwash 

[82] SRA PRJNA321534 United States V4 18 Unstimulated 

[83] SRA PRJNA361501 Europe V3-V4 99 Other 

[84] ENA PRJEB37445 China V3-V4 436 Stimulated 

[57] ENA PRJEB11529 Canada V3-V4 96 Stimulated 

[85] SRA PRJNA609244 Europe V1-V2 13 Unstimulated 

[86] SRA PRJNA503603 China V3-V4 24 Unstimulated 

[87] SRA PRJNA495719 China V3-V4 22 Unstimulated 

[88] ENA PRJEB37299 Europe V4 11 Stimulated 

[89] SRA PRJNA386665 China V4 127 Unstimulated 

[90] SRA PRJNA578492 China V3-V4 14 Unstimulated 

[91] SRA PRJNA326866 Europe V1-V2 20 Unstimulated 

[92] SRA PRJNA484857 China V3-V4 15 Unstimulated 

[93] ENA PRJEB21767 Europe V3-V4 47 Stimulated 
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[94] SRA PRJNA586897 China V3-V4 64 Unstimulated 

[95] SRA SRP113577 China V4-V5 71 Unstimulated 

[96] SRA PRJNA292800 United States V4 28 Unstimulated 

[97] SRA PRJNA602902 United States V3-V4 119 Stimulated 

[98] SRA PRJNA623352 Europe V3-V4 17 Unstimulated 

[99] SRA PRJNA356414 Europe V3-V4 10 Unstimulated 

[100] SRA PRJNA602902 United States V3-V4 40 Stimulated 

[101] SRA PRJNA587625 Qatar V3-V4 73 Unstimulated 

[102] SRA PRJNA612815 Europe 
V1-V3/V3-

V4/V4-V5/V6-
V8 

44 Other 

[103] SRA PRJNA413706 United States V4 30 Stimulated 

[104] SRA PRJNA601054 China V3-V4 27 Unstimulated 

[105] SRA PRJNA321349 United States V3-V4 20 Stimulated 

[106] SRA PRJNA578951 China V3-V4 22 Unstimulated 

[107] SRA PRJNA539937 United States V3-V4 25 Other 

[108] SRA PRJNA421234 New Zealand V3-V4 7 Unstimulated 

[109] Qiita 10823 United States V4 150 Mouthwash 

[110] SRA PRJNA306560 China V4 18 Stimulated 

[110] SRA PRJNA414355 China V3-V4 37 Unstimulated 

[111] SRA PRJNA587078/ China V3-V4 21 Unstimulated 

[112] SRA PRJNA556311 China V3-V4 20 Unstimulated 
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[113] ENA PRJEB18476 Europe V4 11 Stimulated 

[114] SRA PRJNA414682 China V3-V4 20 Unstimulated 

[115] SRA PRJNA634162 United States V4 75 Other 

[116] SRA PRJNA515166 Malaysia V3-V4 72 Unstimulated 

[117] SRA PRJNA542018 China V4 10 Unstimulated 

[118] SRA PRJNA586723 China V3-V4 60 Stimulated and unstimualted 

[119] SRA PRJNA534340 China V3-V4 120 Stimulated and unstimualted 

[120] SRA PRJNA598080 Europe V3-V4 12 Unstimulated 
765 
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Figure 1. Overview of literature search procedure and metadata of included studies. a) Large-scale literature searching and data filtering process, 
followed by the number of samples submitted to the bioinformatic analyses; b) The locations of studies, the scale of symbols that reflect the number of 
samples of each study; c) Distribution of metadata categories. 
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Figure 2. Summary of taxonomic composition and alpha diversity of included studies. A) The mean community composition of each study at the phylum 
level; The alpha-diversity measured by B) Shannon index; C) Chao 1 index; D) Simpson’s index, the colour of boxes stands for the geographic location of the 
studies. The horizontal bars within boxes represent medians. The tops and bottoms of boxes represent the 75th and 25th percentiles, respectively.  
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Figure 3. The variability in human salivary microbiota have been explained by different factors. 
Among them, hypervariable regions and geographic locations have the largest impact. The effect 
of the categories on the clustering of the sample was measured using PERMANOVA at four 
taxonomic levels: family (A), Genus (B), species (C) and OTU level (D). The colour indicates the 
different combinations of normalisation (TSS, Total-sum scaling; RRA, Rarefied relative abundance; 
CLR, Centred log ratio) and indices (BC, Bray-Curtis; EUC, Euclidean; wUF, weighted uniFrac). 
Because the results of rarefication (RAR) were very close to TSS and RRA, they were not displayed 
in the figures. Principal coordinate analysis (PCoA) with Bray-Curtis (E) and weighted uniFrac (F) 
showing the differences between samples from North America, Europe, and China. 
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Figure 4. The core OTUs defined by abundance-occupancy pattern. A) Venn diagram 
showing the interaction between three methods used to define the core. Sixty-eight OTUs 
were defined as the core for all methods. (MRA+OCC: The thresholds were setting on mean 
relative abundance and occupancy to define the core; BC: The method adapted from Shade 
and Stopnisek using Bray-Curtis similarity; wUF: The method adapted from Shade and 
Stopnisek using weighted uniFrac distance). B) Pie chart showing the number of the core 
(pink) versus other OTUs (blue) identified in percentage. C) Pie chart showing the relative 
abundance of the core and other OTUs across all samples. D)  Relative abundance of 68 core 
OTUs across subgroups classified by seven categories. E) Heatmap showing the log-
transformed mean relative abundance of each core OTU at each level of different categories. 
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Figure 5. Salivary microbiome members which significantly contribute to categorisation 
of meta data. Random Forest models showed the impact of categories on salivary 
microbiome and the core OTUs contributing to accuracy of these models. A) Error rate 
(%) for the random forest classifications conducted with samples grouped by eight different 
categories. B) Phylogenetic tree indicates the taxonomic information of 68 core OTUs. The coloured 
squares between the tree and the annotation of phylum indicate the OTUs that were defined by the 
Random Forest model as "important" for distinguishing between different levels in each category. The 
bars on the outmost ring showing the mean relative abundance of each OTU. 
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Figure 6. Distinct microbial profiles are evident in the saliva samples from Chinese and Western 
adults. A) Taxonomic hierarchies show the relative enrichment of taxa in three geographic locations at 
phylum through species level. Coloured nodes indicate log2-fold increase in median abundance of the 
group in x-axis (pink) or y-axis (blue). Only taxa showed significant changes (false discovery rate-adjusted 
Wilcoxon rank sum q < 0.05) are displayed. B) and C) Comparison of salivary microbial alpha diversity 
between the Chinese and Western samples, calculated by Chao1 (B: p< 0.001, Wilcoxon rank-sum test) 
and Shannon index (C: p< 0.001, Wilcoxon rank-sum test). D) Differential abundant genera identified 
between saliva from Chinese and Western samples. The panel on the left indicates the standardised effect 
sizes (W statistic) estimated via the difference on relative abundance using ANCOM-BC (taxa enriched in 
Western samples have a value shifted to right, whereas taxa enriched in Chinese samples have a value 
shifted to left); The panel in the middle shows the relative abundance of selected genera; the panel on the 
right indicates the Mean Decrease Accuracy of the random forest model established. E) Spearman’s 
correlation coefficients were calculated between each pairwise comparison of differential genus and 
KEGG pathway. Only significantly correlated comparisons (p<0.01, FDR adjusted Spearman’s rank 
correlation) are displayed. The only Western-enriched pathway is marked in pink. 
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Figure 7. Validation of the findings in the meta-analysis in an independent cohort. A) Alluvial plot showing the affiliation of ZOTUs to their	
originating	core	OTUs	defined	in	the	meta-analysis.		B) and C) Comparison of salivary microbial alpha diversity between the Chinese and Western samples, 
calculated by Shannon (B: p = 0.073, Wilcoxon rank-sum test) and Chao1 index (C: p< 0.001, Wilcoxon rank-sum test). D) and E) The prediction of the 
cultural backgrounds of the samples according to the random forest classification model constructed using the genus profiles of samples in the meta-analysis. 
The genus level profiles of samples processed by D) closed-reference clustering with 97% sequence identity and E) UNOISE3 denoising with 100% sequence 
identity were used as the test set. 
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