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Abstract. Large-scale genotype-phenotype screens provide a wealth of data for identifying
molecular alterations associated with a phenotype. Epistatic effects play an important role
in such association studies. For example, siRNA perturbation screens can be used to iden-
tify combinatorial gene-silencing effects. In bacteria, epistasis has practical consequences in
determining antimicrobial resistance as the genetic background of a strain plays an important
role in determining resistance. Recently developed tools scale to human exome-wide screens
for pairwise interactions, but none to date have included the possibility of three-way interac-
tions. Expanding upon recent state-of-the art methods, we make a number of improvements to
the performance on large-scale data, making consideration of three-way interactions possible.
We demonstrate our proposed method, Pint, on both simulated and real data sets, including
antibiotic resistance testing and siRNA perturbation screens. Pint outperforms known meth-
ods in simulated data, and identifies a number of biologically plausible gene effects in both
the antibiotic and siRNA models. For example, we have identified a combination of known
tumor suppressor genes that is predicted (using Pint) to cause a significant increase in cell
proliferation.

Author Summary

In recent years, large-scale genetic datasets have become available for analysis. These large
datasets often stretch the limits of classic computational methods, requiring too much memory
or simply taking a prohibitively long time to run. Due to the enormous number of potential
interactions, each gene or variation in the data is often modeled on its own, without consid-
ering interactions between them. Recently, methods have been developed to solve regression
problems that include these interacting effects. Even the fastest of these cannot include three-
way interactions, however. We improve upon one such method, developing an approach that is
significantly faster than the current state of the art. Moreover, our method scales to three-way
interactions among thousands of genes, while avoiding a number of the limitations of previous
approaches. We analyse large-scale simulated data, antibiotic resistance, and gene-silencing
datasets to demonstrate the accuracy and performance of our approach.

1. Introduction

Epistatic gene interactions have practical implications for personalised medicine, and syn-
thetic lethal interactions in particular can be used in cancer treatment [4]. Discovering these
interactions is currently challenging at a practical scale [35, 25, 14, 16], however. In particular,
there are no methods able to infer three-way effects. For a given number of genes there are
exponentially many potential interactions, complicating computational methods. If we restrict
our attention to pairwise effects, it is possible to experimentally knock out particular combi-
nations of genes to determine their combined effect [13]. This approach does not scale to the
approximately 200 million pairwise combinations possible among human protein coding genes,
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2 LASSO-BASED INTERACTION INFERENCE

however, let alone 1.3 trillion three-way combinations. We instead consider inferring interactions
from large-scale genotype-phenotype data. These include mass knockdown screens, in which a
large number of genes are simultaneously suppressed, and the resulting phenotypic effects are
measured.

We have shown in [16] that a lasso-based approach to inferring interactions from an siRNA
perturbation matrix is a feasible method for large-scale pairwise interaction detection. In this
additive model, we assume fitness is a linear combination of the effects of each gene, and the
effect of every combination of these genes. For the sake of scalability, in [16] we considered only
individual and pairwise effects, and assumed gene suppression was strictly binary. The fitness
difference (compared to no knockdowns) in each experiment is then the sum of individual and
pairwise effects

∑p
i βigi +

∑p
i

∑n
j>i βi,j(gi · gj), where gi = 1 if gene i is knocked down, 0

otherwise. With sufficiently many such mass-knockdowns, we can infer pairwise interactions by
finding the pairs of genes whose effect is not the sum of the effects of each gene individually.

Neither of the previously tested inference methods for this model, glinternet and xyz,
are effective at the genome-scale however. glinternet suffers from prohibitively long running
times,1 and xyz does not accurately predict effects in our larger simulations. Our aim is to fit
a model including all p ≊ 20, 000 human protein-coding genes, with as many as n = 200, 000
siRNAs. Furthermore, we aim to go beyond pairwise interactions to consider three-way effects.

A recently developed method, WHInter [39], is effective at solving lasso regression on much
larger scale data than glinternet. This performance comes as a result of pruning the inter-
actions considered based on the current regularisation parameter, removing interactions that
could not possibly have a non-zero effect. Because doing so does not affect the solution of the
regression problem, we expect comparable accuracy from WHInter and glinternet. Nonethe-
less there are a number of areas in which we can improve upon WHInter. In particular WHInter
does not make use of multi-core CPUs, and considers only pairwise interactions.

We have developed an R-package, Pint, that is able to perform square-root lasso regression
on all pairwise interactions on a one thousand gene screen, using ten thousand siRNAs, in 15
seconds, and all three-way interactions on the same set in under ten minutes. We are also able
to find the largest 2, 000 effects, excluding three-way combinations, on a genome-scale data set
with 19, 000 genes and 6, 700 siRNAs in half an hour using two eight-core CPUs. This is made
possible by taking into account that our input matrix X is both sparse and strictly binary,
parallelising the pruning method from [39], and compressing the active set. To allow three-
way interactions, we extend to a two-step pruning method able to rule out both pairwise and
three-way interactions. Our package, Pint, is available at github.com/bioDS/pint.

Our method is based on an existing fast algorithm [61], which we adapt for use on binary
matrices. We further add parallelised version of the pruning step from [39], expanded to include
three-way interactions. We provide a detailed description of our implementation, followed by
the scalability analysis, below. We also perform a simulation study to compare our method’s
scalability with known methods, and analyze two large-scale experimental data sets.

In the first, an siRNA perturbation screen from [46], we search for both individual genes and
combinations (pairwise or three-way) that have an effect when simultaneously silenced, stopping
after the first 131 effects have been identified. The results include 22 individual, 41 pairwise
and 68 three-way effects. We investigate the biological plausibility of the top five effects, and
find that three out of five are suppressing genes that could be related to cell survival. One
combination in particular involves simultaneously disabling two tumor suppressing genes, and
is predicted to cause a significant increase in cell proliferation.

The second data set is composed of genetic variants identified in the intrinsically antibi-
otic resistant bacteria Pseudomonas aeruginosa. P. aeruginosa is an opportunistic pathogen
found in a variety of environments and is a leading cause of morbidity and mortality in im-
munocompromised individuals or those with cystic fibrosis [23, 37]. P. aeruginosa is known to
acquire adaptive antibiotic resistance in response to long term usage of antibiotics associated

1Fitting interactions in an siRNA screen of 1, 000 genes with ten siRNAs per gene takes several days using
ten cores on an Opteron 6276.
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LASSO-BASED INTERACTION INFERENCE 3

with chronic infections [10, 43, 44]. The genomes included in that data set are from strains that
have been isolated from chronic and acute infections as well as environmental samples. The
minimum inhibitory concentration for the antibiotic Ciprofloxacin has been used as the pheno-
typic marker for this dataset. Ciprofloxacin belongs to the fluoroquinolone class of bactericidal
antibiotics that targets DNA replication and is one of the most widely used antibiotics against
P. aeruginosa [50].

This set contains over 170, 000 SNVs, too many for our method to include all possible three-
way interactions. Three-way interactions can be included if we remove columns with less than
30 entries, reducing the matrix to ≈ 76, 000 columns. This ignores over half of the SNVs present
however, so we instead limit the search to individual and pairwise combinations of variants, and
determine the first 50 effects that are discovered. Among these, 13 of the 16 non-synonymous
variants were identified as having possible contributions to Ciprofloxacin resistance.

2. Materials and Methods

Throughout the paper we refer to fitness landscapes, and focus on fitness values as our
phenotype of interest, but would like to note that the theory can be applied for any (binary)
genotype-phenotype mapping and any phenotype. Let a fitness landscape be a mapping f : P →
R from the genotype space to fitness values. Furthermore, suppose genotypes are strictly binary,
P ∈ {0, 1}p, where 1 indicates the presence of a particular mutation (or variant), 0 indicates its
absence, and p is the number of genes. The complete fitness landscape then describes the effects
of all combinations of mutations [5]. For example, the two gene space P = {0, 1}2 contains the
wild-type 00, two single mutants 01 and 10, and the double mutant 11. The fitness landscape
f : {0, 1}2 → R in this case can be written as

f(0, 0) = β0

f(1, 0) = β0 + β1

f(0, 1) = β0 + β2

f(1, 1) = β0 + β1 + β2 + β1,2

for parameters βi ∈ R. β0 is called the bias, β1 and β2 main effects, and β1,2 the pairwise
interaction. This pairwise interaction is exactly the classic definition of epistasis in quantitative
genetics [17]. In generalising to higher-order interactions, we follow the definitions of Otwinowski
and Nemenman [42]. For p ≥ 3 genes, the complete fitness landscape f is:

(1) f(x1, . . . , xp) = β0 +
∑
i

xiβi +
∑
i<j

xixjβi,j +
∑

i<j<k

xixjxkβi,j,k + . . .

While including all possible interactions quickly becomes computationally and statistically in-
tractable for large p, we can model the interactions up to a point. Ignoring interactions of order
four and higher we obtain an approximation of the fitness landscape:

(2) f(x1, . . . , xp) ≈ β0 +
∑
i

xiβi +
∑
i<j

xixjβi,j +
∑

i<j<k

xixjxkβi,j,k

The remainder of this section describes the regression model we use to estimate these effects,
the algorithms we use to efficiently solve it, and finally the data sets on which we apply it.

2.1. Regression Model. Given as input a matrix X ∈ {0, 1}n×p and a vector Y ∈ Rn, where
columns of X are genes or variants of interest, rows are samples from the genotype space, and
entries yi of Y are the fitness values corresponding to the ith row of X, our goal is to estimate
the parameters β0, βi, βi,j , βi,j,k of the fitness landscape model in Equation (2), such that for
any row xi of X, f(xi) ≊ yi.

To do this we construct a matrix X∗ ∈ {0, 1}n×pint , where pint =
(
p
1

)
+

(
p
2

)
+

(
p
3

)
, containing

a column for each gene, pair of genes, and triplet of genes. Specifically, to construct X∗ we
extend X by adding the following columns. For every pair of columns i, j and triplet i, j, k we
add an interaction columns Xi,j,k by taking the element-wise product of the columns Xi and
Xj , or Xi, Xj , and Xk (Figure 1).
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4 LASSO-BASED INTERACTION INFERENCE

Figure 1. Creation of three-way interaction effect columns

Given the interaction matrix X∗ ∈ {0, 1}n×pint we estimate effects by solving the square-root
lasso, as defined in [57], by minimising the difference between the predicted and actual fitness
values, subject to regularisation.

β̂ = arg min
β∈Rpint

∥y −X∗β∥2 + λ∥β∥1

2.2. Cyclic Linear Regression. Our approach to lasso regression is based on a cyclic coordi-
nate descent algorithm from [21], as described in [61]. This method begins with βj = 0 for all j
and updates the beta values sequentially, with each update attempting to minimize the current
total error. Here this total error is the difference between the effects we have estimated and the
fitness we observe. Where yi is the ith element of Y, βj is the jth element of β, and xij is the
entry in the matrix X∗ at column j of row i, the error is the following:

(3)

n∑
i=1

|ri|

where the residuals, ri, are the following:

(4) ri = yi −
pint∑
j=1

xij · βj

The error affected by a single beta value can then be minimized, using lasso regularisation,
by updating βk as follows:

(5) βk ←

{
max(0, βk +

∑n
i=1(xik(yi−ri))

|Xk| − λ) for βk +
∑n

i=1(xik(yi−ri))
|Xk| > 0

min(0, βk +
∑n

i=1(xik(yi−ri))
|Xk| + λ) for βk +

∑n
i=1(xik(yi−ri))

|Xk| < 0

We adjust this to instead solve the square-root lasso ([6]) using Equation (6).

(6) βk ←

{
max(0, βk +

∑n
i=1(xik(yi−ri))

Emse
− λ) for βk +

∑n
i=1(xik(yi−ri))

Emse
> 0

min(0, βk +
∑n

i=1(xik(yi−ri))
Emse

+ λ) for βk +
∑n

i=1(xik(yi−ri))
Emse

< 0

where

Emse = ∥Y −Xβ∥2

We cyclically update each βk until the solution converges for a particular λ, reduce the value of
λ, and repeat. To reach the genome-scale we avoid unnecessarily considering most interactions
(Section 2.4), compress the matrix (Section 2.5), and parallelise the process (Section 2.6).
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LASSO-BASED INTERACTION INFERENCE 5

2.3. Choosing Lambda. The lasso penalty requires a regularisation parameter λ, which ef-
fectively decides how large an effect has to be before it will be included in the model. This can
range from allowing all values (λ = 0) to allowing none (λ → ∞). Choosing the correct value
of λ is essential if we want to include only the significant effects and avoid over-fitting noise.
For the standard lasso this is typically done by choosing an initial value sufficiently large that
all beta values will be zero and gradually reducing λ, fitting the model for each value until a
stopping point chosen with K-fold cross-validation [20]. Cross-validation requires fitting each
λ value K times, however, significantly increasing the running time. The square root lasso
performs well with an easily calculated λ value, independent of the standard deviation of noise
[6]. We use this lower limit of λ = 1.1× 1√

n
ϕ−1(0.952×p), where ϕ is the probability density function

of the standard normal distribution and p is the number of columns of the X∗ matrix. Note
that Belloni, Chernozhukov, and Wang [6] actually use the penalty λ

n , whereas we use λ directly
as in Tian, Loftus, and Taylor [57]. To reach the same minimum value as in [6], our equation
differs from theirs by a factor of n.

2.4. Pruning. We implement the branch pruning (Equation (7)) and working set (Algorithm 1)
algorithms from WHInter [39] to avoid considering unnecessary effects at each value of λ.

The pruning algorithm determines whether any interaction with a particular effect i can be
non-zero at the current λ, and if not removes all such interactions i, j. Effects that may have a
sufficiently large interaction are instead included in the working set. We give a brief overview
of this algorithm here, and refer the reader to [39] for further details.

For the square-root lasso penalty we keep track of ω = ∥r∥2 at each iteration, where r =
Y −Xβ. For a particular column index x in X∗, we further define:

ρx = the residuals, the last time the column Xx was included in the working set.

πx = max
j∈(max(l),p]

(X∗
x ·Xj · ρx)

where l is either the index of a single column of X, or the set {i, j} for the interaction column
X∗

x = Xi ◦Xj . The upper bound η(x) for any interaction with the column X∗
x is then:

(7) η(x) = α · πx + max
r∈{r+,r−}

|X∗
x · r − ρx · α|

where:

r+i =

{
ri, if ri > 0.

0, otherwise.

r−i =

{
ri, if ri < 0.

0, otherwise.

αx =

∣∣∣∣∣x · r · ρx∥ρx∥22

∣∣∣∣∣
According to the Karush-Kuhn-Tucker conditions for the square-root lasso, no effect can have

a value less than |λ ·ω| [57]. We can therefore ignore any interactions whose effect has an upper
bound below |λ · ω|. The working set contains the columns that have not been ruled out.

This fast step allows us to rule out most effects without even calculating them. Many inter-
actions even among these columns will still never be updated at the current value of λ however.
As in [39] we further reduce the problem by calculating the active set, the subset of the working
set that will be updated in the current iteration. To do so, we iterate through the entire working
set one time, calculating all interactions and updating ρ and π for each, and adding those that
are significant enough to the active set (Algorithms 1 and 3).
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6 LASSO-BASED INTERACTION INFERENCE

2.4.1. Active-set for Pairwise Interactions. For each pair i, j of effects that have not been ruled
out, we need the sum of their row’s residuals r ·Xi ·Xj . As in [39], rather than taking all the
columns and reading through both to find the places they overlap we store the matrix in both
column and row major versions and read through only the first column Xi. All interactions are
found by reading the row k for each non-zero entry in Xi. Since the matrix is stored in a sparse
format, we find all pairwise interactions with Xi in O(

∑p
j=i+1 |Xi ◦Xj |) operations. This is

further improved in our implementation by calculating a reduced row-major version of X, X ′,
containing only the effects present in the working set. Once the active set has been calculated,
we solve the regression problem for the current λ with Algorithm 2. In Pint we solve the main
effects βi alone first, followed by pairwise effects βi,j (and finally three-way effects βi,j,k). This
ensures pairwise effects are only used to explain variance that cannot be fit using main effects.
Similarly, three-way effects should only be introduced where pairwise effects are inadequate.

W ← ∅;
for i ∈ 1 . . . p do

for a ∈ 1 . . . n | X ′
a,i ̸= 0 do

sumi ← sumi + ra;

for j ∈ i + 1 . . . p | X ′
a,j ̸= 0 do

sumi,j ← sumi,j + ra;

end

end

γ ← |sumi|;
if sumi > λ · ω then

W ←W ∪ {{i}};
end

for j ∈ i + 1 . . . p do
γ ← max(γ, |sumi,j |);
if |sumi,j | > λ · ω then

W ←W ∪ {{i, j}};
end

end

πi ← γ;

ρi ← r;

end
return W

Algorithm 1: Identify Active Set (WHInter version, pairwise interactions only).
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LASSO-BASED INTERACTION INFERENCE 7

while not converged do
for k ∈ 1 . . . pint do

∆βk ←
∑n

i=1(xik(yi−ri))
Emse

;

if |βk + ∆βk| > λ then
β′
k ← βk;

βk ← βk + ∆βk;

if βk > 0 then
βk ← βk − λ;

end

else
if βk < 0 then

βk ← βk + λ;

end

end

for i ∈ 1 . . . n do
ri ← ri + xi,j · (βk − β′

k);

end

end

end

end
Algorithm 2: Sequential Cyclic Sub-problem Algorithm.

2.4.2. Active-set for Three-way Interactions. WHInter’s pruning algorithm (Algorithm 1) can
be extended to three way interactions with a second-level pruning step while updating the active
set (Algorithm 3). The three-way active set W can then be solved as before using Algorithm 2.
Since η(x) requires the column X∗

x, to be calculated, and we are now using interaction columns
x = {i, j}, we keep a cache of every interaction X∗

i,j calculated so far and re-use them. For
sufficiently small λ this may become the majority of X∗, so we compress these columns using
Simple-8b (Section 2.5). The upper bound η({i, j}) may be re-used and should also be cached.
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8 LASSO-BASED INTERACTION INFERENCE

W ← ∅;
for i ∈ 1 . . . p do

sumi ← sumi + ra;

for a ∈ 1..n | X ′
a,i ̸= 0 do

for j ∈ i + 1 . . . p | X ′
a,j ̸= 0 do

sumi,j ← sumi,j + ra;

if η({i, j}) > λ · ω then
for k ∈ j + 1 . . . p | X ′

a,k ̸= 0 do

sumi,j,k ← sumi,j,k + ra;

end

end

end

end

γ ← |sumi|;
if sumi > λ · ω then

W ←W ∪ {{i}};
end

for j ∈ i + 1 . . . p do
γ ← max(γ, |sumi,j |);
if sumi,j > λ · ω then

W ←W ∪ {{i, j}};
end

γ∗ ← 0;

for k ∈ j + 1 . . . p do
γ∗ ← max(γ∗, |sumi,j,k|);
if sumi,j,k > λ · ω then

W ←W ∪ {{i, j, k}};
end

πi,j ← γ∗;
ρi,j ← r∗;

end

γ ← max(γ, γ∗);
end

πi ← γ;

ρi ← r;

end
return W

Algorithm 3: Identify Active Set (Pint version, three-way interactions)

2.5. Compression. In our method (Algorithm 3), the input matrix X is accessed frequently,
iterating through both rows and columns. Because the matrix is not prohibitively large, we
store it as both a column and row-major uncompressed sparse matrix. The active set, on the
other hand, can be as large as X∗. We considerably increase the number of possible non-zero
effects by storing this only as a set of Simple-8b compressed columns (Figure 2 (c)). Because
we read the columns sequentially, we replace each entry with the offset from the previous entry.
This reduces the average entry to a relatively small number, rather than the mean of the entire
column. These small integers can then be efficiently compressed with any of a range of integer
compression techniques (Figure 2), a subject that has been heavily developed for Information
Retrieval. We compare a number of such methods, including the Simple-8b algorithm from [53]
(which we implement and use in our package) in Appendix A.
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LASSO-BASED INTERACTION INFERENCE 9

Encode each column with Simple-8b

(a) (b) (c)

Figure 2. Matrix Compression. Given a full matrix (a), we reduce it to the
indices of non-zero entries (b), then the compressed difference between these (c).
Arrows represent transitions between different representations.

2.6. Parallelisation. The three components of the algorithm, pruning, active set calculation,
and solving the sub-problem, can all be done in parallel. Pruning and active-set calculation
are trivially parallelisable, and performance scales well as long as each thread is given a large
separate chunk of work. In practice this means dividing the matrix into several continuous
chunks for the pruning step, one for each thread. For the active set calculation we calculate
all two and three way interactions with a particular column on the same thread. As well as
keeping each threads workload sufficiently large, this means cached interaction columns and
upper bounds can be kept thread-local.

The sub-problem (Algorithm 2) can also be parallelised, and performs well when the active
set is sufficiently large and shuffled before each iteration [11]. Parallelising updates to a small
active set can significantly harm performance however. In practice this presents a number of
difficulties. The active set contains only the columns that would be non-zero at the current
value of λ, and this is initially high, with the active set containing very few elements. It is
therefore not worth parallelising until λ reaches a value where sufficiently many non-zero effects
are allowed. In our testing we often reached the final value, λ = 1.1× 1√

n
ϕ−1(0.952×p), before this

occurred.
Furthermore, as λ decreases calculating the active set quickly dominates the running time.

While not parallelising the sub-problem calculation theoretically limits the best-case perfor-
mance of our method, it is a minor limitation in practice. We therefore keep this component
single-threaded in our implementation in Pint.

We demonstrate the parallel scalability using a simulated data set of n = 8, 000 rows and
p = 4, 000 columns, running Pint until the first 500 pairwise or main effects have been found
and recording the median running-time out of five runs. As we see in Figure 3, performance
scales up to an 8× speed-up using 32 threads on 16 cores across two CPUs, which is typical for
a highly parallel task running on CPU(s) with shared memory [32].
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Figure 3. Running time on an increasing number of threads. Note that per-
formance initially decreases with only a small number of threads on a second
NUMA node. Tests were performed using two Intel Xeon Gold 6244 CPUs
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2.7. Approximate Hierarchy. We include an approximate method to enforce a strong hier-
archy by only allowing interactions between positions that have at some point had non-zero
main effects. This is done by ignoring all interactions i, j, where one of i or j has a main effect
strength of zero. In practice, this amounts to replacing the pruning step in Section 2.4 with
one that simply includes main effects the first time they are assigned a non-zero value.

Doing so significantly reduces both the running time and memory use. We demonstrate this
with a test case from the simulated data set, where n = 4, 000, p = 2, 000, containing 500
pairwise effects, each of which is composed of two main effects. Running to the lower limit for λ
without the approximate hierarchy constraint takes 42.5 seconds using eight SMT threads across
four cores, with peak memory use of 6.87 GB. Adding the approximate hierarchy constraint,
running time reduces to 9.98 seconds, and peak memory use to 2.32 GB. Since the running time
and memory use depend on the number of main effects rather than p, these differences will only
increase with larger values of p.

To measure the effect this has on accuracy, we run until 100 effects have been found on
simulated data sets of n = 4, 000, p = 8, 000. These contain 40 main effects and 200 pairwise
effects (see Section 2.10.1 for details). Note that no effort is made to enforce a hierarchy in the
simulation, the components of pairwise effects are chosen randomly. Among predicted pairwise
effects we notice a slight drop in recall, and a smaller increase in precision (Fig. 4). This drop in
recall may be acceptable in cases where the running time or memory use of the unconstrained
method are prohibitive.
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Figure 4. (a) Precision, and (b) recall with and without the approximate hier-
archy constraint. ‘Hierarchy’ is with, ‘Plain’ is without. Only pairwise predicted
effects are included.

2.8. Identifying Identical Columns. We include an option to ignore identical columns in the
interaction matrix X∗. These may be either direct columns of the input matrix X or interaction
columns. We do so by computing the 128-bit hash of the column’s non-zero entry positions using
XXHASH [12]. All newly-considered columns have their hashes compared to those of previous
columns, duplicates are placed on a list of known-duplicate columns and never included in the
active set. This avoids spreading out an effect across multiple identical columns. Note that
for non-binary matrices columns will be considered identical when the indices of their non-zero
entries are the same, even if these entries differ.

2.9. Non-binary Matrices. Real values may optionally be included in the matrix X ∈ Rn×p,
rather than strictly binary X ∈ {0, 1}n×p, at the expense of running time. When real-value
inputs are used, we maintain a vector Vk of the values for each column of the input matrix Xk.
In working set calculations, we substitute vjxi,j , or vjvkxi,l where l is an interaction between
j and k. In pruning we avoid actually calculating these values, instead we consider an upper
bound on the possible interactions. We store the largest value in each column k as V max

k , and
the largest value overall as V max

all . The largest possible interaction with column k is then:

(8) η(x) = α · πx + max
r∈{r+,r−}

||V max
all ||V max

k |X∗
x · r − ρx · α|
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for pairwise interactions, substituting |V max
all | for |V max

all |2 in three-way interactions.
For large values of V max

all or V max
k this may include considerably more effects in the active set

than if X were binary. In both the active-set calculation and the final regression step, we use
the real value vjxi,j in place of the binary value xi,j .

2.10. Data. We prepared one simulated and two experimental data sets to evaluate our method
and test the scalability of our implementation. The first is the InfectX siRNA perturbation
screen [54] in which siRNAs are applied to an infected human cell line. We predict off-target
effects across the entire exome, and use these for our analysis. The second data set contains
single nucleotide variants (SNVs) from 259 isolates of Pseudomonas aeruginosa, and associated
minimum inhibitory concentration (MIC) of Ciprofloxacin.

2.10.1. Simulated Data. To evaluate the accuracy of our method Pint, we use benchmarks
similar to Elmes et al. [16]. To begin with, we take simulated a simulated matrix X ∈ {0, 1}n×p

resembling siRNA off-target predictions for n siRNAs across p genes. We randomly assign
effects to some of the silencing of some individual and pairwise combinations of the p genes to
produce effects βi, and βi,j . Our simulations differ from [16] in that we do nothing to ensure
our pairwise effects are composed of existing main effects (i.e. we do not enforce a hierarchy).
Taking the cumulative silencing effects

∑
iXiβi +

∑
i,j XiXjβi,j , we add random noise from a

normal distribution to produce a response vector Y , ensuring a signal-to-noise ration of 5.
We simulate three data sets, one with n = 1, 000 siRNAs and p = 100 genes, one with

n = 8, 000 siRNAs and p = 4, 000 genes, and one with n = 1, 000 siRNAs and p = 20, 000 genes.
The first represents an ideal scenario, with 10 siRNAs per gene at an easily tractable scale. The
second is the largest set we are able to run with glinternet, and has only two siRNAs per
gene. The third represents the worst case, where p ≫ n. Each simulation in the p = 100 set
contains 10 main effects and 50 pairwise effects. The p = 4, 000 simulations contain 40 main
effects and 200 pairwise effects. The wide p = 20, 000 simulations contain 100 main and 500
pairwise effects.

We simulate a additional sets containing three-way interactions βi,j,k, such that the cumula-
tive effect is

∑
iXiβi +

∑
i,j XiXjβi,j

∑
i,j,k XiXjXkβi,j,k These sets are created with 10 main

effects, 20 pairwise effects, and 20 three-way effects. We create sets where p = 100, and p = 200,
with signal to noise ratios of 2, 4, and 8. In each case n = 10× p.

We attempt to learn the gene silencing effects from the off-target matrix X and the response
Y .

2.10.2. InfectX siRNA Data. To demonstrate our method on real genome-scale data, we use the
mock group from InfectX [46]. This set contains 6, 703 siRNA perturbations (excluding control
wells and pooled siRNAs). Off-target effects are predicted using RIsearch2 [2], which includes
a gene whenever there is a match between the siRNA seed region and some component of an
mRNA for that gene (taken from [26]). We use an energy cut-off of −20 and match the entire
siRNA (rather than only the 3′ UTR) as suggested in [2].

We then form the 6, 703×19, 353 matrix of off-target effects with columns for each gene, and
rows for each siRNA as in [16]. An entry i, j in this matrix is one if and only the predicted
effect of siRNA i on gene j is greater than zero. All other entries are zero. Our fitness vector Y
is the result of B-scoring then Z-scoring the number of cells in the well, to remove systematic
within-plate effects and experimentally introduced cross-plate biases. B-scoring corrects for
biases across the entire plate, Z-scoring then normalises each well’s score with respect to the
rest of it’s plate.

2.10.3. Antibacterial Resistance. SNVs from 259 isolates of Pseudomonas aeruginosa were se-
quenced using Illumina technologies (IPCD isolates on MiSeq and QIMR isolates on HISeq).
SNVs from raw reads were mapped to the reference genome PAO1 using Bowtie2 (v. 2.3.4) [31]
read aligners. Variant reports were then sorted into a table, set up so that each isolate was
represented as a row and the presence / absence of each SNV was along the columns. Only
genomes that had associated MIC values were included. We removed SNVs that occur less than
five times, resulting in a table of 259 rows and 174, 334 columns.
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P. aeruginosa genome sequences were selected from strains for which MIC values (Ciprofloxacin)
were known. 167 genomes were sourced from the publicly available IPCD International Pseu-
domonas Consortium Database [27] and 92 genomes were from QIMR Brisbane Australia [30].
The IPCD data consisted of 2 x 300 bp MiSeq reads whilst the QIMR data was 2 x 150 bp
reads. The MIC values were obtained as a combination of e-test strips [47] and plate-based
assays [48, 49].

3. Results

In this section, we summarize the results of a simulation study we carried out to compare
our method against existing approaches. We also demonstrate our method on two large-scale
experimental data sets. We include these as reasonable examples of cases in which our method
is applicable and validate the results by comparing them with known effects in the String and
NCBI Gene databases [56, 8].

3.1. Simulation Performance. Our method aims to have comparable precision and recall
to the best performing approach known to us [16] while scaling to much larger data sets. we
compare precision and recall with glinternet, the most accurate of the methods tested in
Elmes et al. [16], and WHInter, a recent fast method based on the idea of limited working
sets [39]. We use the simulated data described in Section 2.10.1, and consider only whether a
method is able to correctly identify which effects are present, not whether the predicted effect
strength is correct.

All methods use regularised regression in some form or another, and for a fair comparison
we use the same parameters wherever possible. In each case we instruct the method to stop
after the number of effects found matches the number we simulated, 60 in the small sets, 240 in
the large sets, and 600 in the wide sets. We assume there is no bias β0, and use a convergence
threshold of 1%. Although we give the same parameters, all methods return more non-zero
effects than we request, to varying extents. In particular, glinternet typically gives nearly
double the requested number. To keep the running time manageable we do not use cross-
validation in glinternet. Pint and glinternet were run in parallel everywhere except the
smallest benchmark, using 16 SMT threads across 8 cores on one CPU. Note that a significant
portion of glinternet’s running time is single-threaded, and further increasing the number
of threads has no noticeable impact on performance. The smallest set is not large enough to
benefit from parallelisation in Pint, and is run on a single thread. WHInter’s implementation
is single-threaded. We further compare the running time of each method. Three-way effects are
excluded since neither glinternet nor WHInter are able to produce them.

In the n > p tests we find Pint and WHInter perform comparably in terms of precision and
recall (Figures 5a, 5b, 5d and 5e). This is unsurprising considering both are solving similar
regression problems with the same parameters. glinternet typically has lower precision and
higher recall than the others, which we would expect since it returns significantly more effects
than requested.

In all test cases, we see an improvement in running time compared to WHInter, the fastest
method currently available. Using the larger data sets (Figures 5f and 5i) this is because
our method runs in parallel, whereas WHInter does not, yielding a significant performance
improvement. In the small test cases (Figure 5c) the majority of the used memory fits into
the cache on a single core, and we do not see a large improvement from parallelisation. We
nonetheless find that Pint is faster than WHInter, perhaps due to less efficient cache usage in
the latter.

In the wide dataset benchmarks (Figures 5g to 5i) Pint has marginally higher precision
and recall than WHInter. Since we do not enable the identical column detection described in
Section 2.8, this can only be because Pint uses the square-root lasso penalty, whereas WHInter
uses the classic lasso. glinternet takes prohibitively long and is excluded. While the overall
precision and recall are particularly poor in this test, with precision and recall below 3%, it is
worth noting that the strongest predicted results are more accurate. Considering only the 10
strongest predicted effects in each test, 38 out of 100 effects are correct.
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Figure 5. Searching for interactions with glinternet vs. WHInter vs. Pint.
Figures 5a to 5c p = 100, n = 1, 000. Figures 5d to 5f p = 4, 000, n = 8, 000.
Figures 5g to 5i p = 20, 000, n = 1, 000. Running time is measured using one
thread (c) or 16 (f,i) on one Intel Xeon Gold 6244 CPU, and shown on a log
scale.

3.1.1. Effect Strength. Effect strength is a strong predictor of accuracy. We quantify this using
the simulated three-way effect datasets from Section 2.10.1, finding the first 100 effects in all
cases. Sorting predicted effects by their proposed strength, we find that the strongest effects are
overwhelmingly true positives. Using absolute effect strength |βi| as the predictor and plotting
the receiver operating characteristic curve, we achieve an area under the curve of 0.93 (Fig. 6).
Similar results are reproduced with main, pairwise, and three-way effects separately, which
achieve AUC of 0.95, 0.92, and 0.93 respectively. A predicted effect strength threshold can
therefore be used to decide the trade-off between precision and recall. Moreover, since strong
effects are exactly those that are allowed at a large value of λ, the non-zero effects found in
the earliest iterations are the most likely to be correct. In cases where low recall is permissible,
limiting the number of non-zero effects (and therefore halting the method at a high λ) not only
reduces running time but produces a larger fraction of true positives.
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Figure 6. Receiver operating characteristic curve comparing fraction of re-
ported effects that are true positives as the predicted strength varies.

3.2. Three-way Effects. In cases where three-way effects are present, we find that including
them in the search improves not only the overall fit, but the accuracy of pairwise predictions.
This makes sense when we consider that the alternative is to attempt to fit the signal produced
by three-way effects to closely matching pairwise effects, which are unlikely to be correct.

To quantify this, we consider the three-way simulations from Section 2.10.1. we run Pint until
100 effects are found on all data sets. Precision and recall were near zero for three-way effects,
since only one out of 99 was a true positive. This results in a slight drop in total precision and
recall when three-way effects are included (Figs. 7c and 7d). There were, however, 11 predicted
three-way effects that were indistinguishable from a true positive. That is to say that the i, j, k
interaction column Xi ·Xj ·Xk is identical to some other column X∗

l , where l is a true effect.
As noted in Section 3.1.1, the small predicted effects are the most unreliable. We therefore

focus on the most promising candidates by considering only those with a predicted strength
greater than the standard deviation of predicted effects within the same set, βi > sd({βk|βk ̸=
0}). Across all ten datasets, the 39 predicted large main effects were the same in both the
pairwise-only and three-way cases, and all were correct. There were 27 common large pairwise
effects, all correct. The pairwise-only case proposes five more large pairwise effects, of which
only one is correct, whereas the three-way case proposes four large three-way effects. While
none of these are correct, they are all indistinguishable from some true effect.

Among large effects, the inclusion of these three-way effects reduced the number of large false
positive pairwise effects proposed (Fig. 7a) with a negligible effect on recall (Fig. 7b).
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Figure 7. Precision and recall of predicted effects using Pint. Data is fit with
single, pairwise, and three-way interactions allowed (3-way), or only single and
pairwise (2-way). (a) Precision of predicted large pairwise effects. (b) Recall,
including main, pairwise, and three-way predictions of predicted large effects.
(c, d) Overall precision and recall including small effects.

3.3. InfectX siRNA Data. We run our lasso model on the InfectX data (Section 2.10.2)
allowing all pairwise and three-way interactions and halting at the end of the iteration once
100 non-zero effects are found. Only the combinations with non-zero predicted effects are then
included in the matrix Z. We then fit the fitness values Y to this matrix using least-squares
regression Y ∼ Zβ, using these unbiased estimates and p-values as our final result. The resulting
fit has an adjusted R-squared of 0.13 and an AIC value of 18, 184.82 We summarise the five
most significant (according the p-value of the fit Y ∼ Z) estimated effects in Table 1.

Lasso Estimate Least Squares Estimate p-value Gene 1 Gene 2 Gene 3
0.16930307 0.1420643 0.0001837726 PLCE1 — —
0.31985354 0.2203255 0.0003231380 ZNF264 TRIM72 —

-0.09300632 -0.1599196 0.0005853407 TTC21A — —
0.14556737 0.1998505 0.0009281197 ANK1 KMT2D ZHX3

-0.16530147 -0.1874086 0.0010551688 RNF213 SYN2 —

Table 1. InfectX most significant proposed effects.

Among these effects, the three-way suppression of ANK1, KMT2D, and ZHX3 is particularly
plausible. KMT2D is a known tumor suppressor, and mutations are common in lymphoma [63,
41]. ZHX3 is a transcriptional repressor, and in particular a failure of ZHX3 expression may be
a cause of hepatocellular carcinoma [62]. Changes and failure to express KMT2D and ZHX3
respectively are associated with cancer development, and a significant increase in cell growth
after suppressing both is consistent with these functions. ANK1 attaches integral membrane
proteins to the cytoskeleton [59], and what role, if any, it plays is unclear.

The pairwise effect suppressing TRIM72 and ZNF264 could plausibly affect cell survival,
as could suppressing PLCE1. PLCE1 is believed to play a role in cell survival and growth,
and its suppression could have a significant effect on its own. It is unclear, however, how its
suppression could have a positive effect on cell count [59]. TRIM72 plays a central role in cell
membrane repair, and its suppression could easily affect fitness. ZNF264 may be involved in
transcriptional regulation, and may have an interacting effect, although there are no known
interactions between ZNF264 and TRIM72 [59].

The remaining two effects are TTC21A on its own, and RNF213 combined with SYN2. These
genes are known to be involved in sperm function, vascular development, and neurotransmitter
regulation respectively [36, 59]. We are not aware of any way in which RNF213 and SYN2
interact, or how either of these effects might affect cell growth or survival.
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3.4. Antibacterial Resistance. As explained in Section 2.10.3, our antibacterial data is pre-
processed to remove variants present in less than five cases. The remaining 174, 334 columns are
included in the model. We then fit the model Y = X2β+ ϵ, where Y is the MIC log2 phenotype
(indicative of Ciprofloxacin resistance). We include all pairwise interactions in X2, and stop
after 50 non-zero effects are found. These effects are included even with a large regularisation
value λ, and are the most likely to be true positives (see Section 3.1.1). Again creating a Z
matrix with only the non-zero columns fitting Y ∼ Z, we get a least-squares estimate with an
Adjusted R-squared of 0.23.

The 50 non-zero effects involve 47 variants with 19 repeats and 16 pairwise effects (Appendix,
Table 2). Of the pairwise effects, two pairs include the non-synonymous variant change that
results in a Leu523Gln change in PA3054. PA3054 encodes a putative carboxypeptidase with
the peptidase M14 domain occurring between bases 24-634. Extracellular degradation of an-
timicrobials has been associated with increased production of M14 carboxypeptidases [55]. All
other pairwise interactions identified involved synonymous variants. The most common of these
was an A to G variant in PA3460, codon 537 Leu, found in 50% of the interactions. PA3460
encodes an acetyltransferase that is able to possibly modify Fluoroquinolones, reducing bac-
terial susceptibility to Ciprofloxacin [51]. The second most common synonymous variant was
another A to G change in PA3709 encoding Ala 340 of a probable major facilitator superfamily
(MFS) transporter protein. Overexpression of efflux pumps that include MFS transporters are
associated with increased resistance to antibiotics [15, 40].

There were 34 variants that were characterised as contributing to Ciprofloxacin resistance. Of
these, 16 were non-synonymous changes to proteins that are involved in fluoroquinolone mod-
ification, membrane transport or oxidative stress responses. The majority of non-synonymous
variants occurred in oxidative stress response genes. An increase in reactive oxygen species
(ROS) in response to Ciprofloxacin is well characterised in bacteria [24, 28, 1]. PA5401 encodes
an electron transfer flavoprotein (EFT) domain-containing protein. The variant results in an
Arg36Cys change in the β-subunit of an electron transfer protein whose gene is part of the dgc
operon that is involved in choline metabolism and associated pathogenesis [19]. In eukaryotes,
EFT is known to produce significant amounts of ROS in the presence of its partner enzyme
medium-chain acyl-CoA dehydrogenase (MCAD) [52]. Therefore, non-synonymous variants in
PA5401 could result in changes to pathogenesis or ROS amounts. Our method also identifies
effects for PA0117, pauD2, and gloA1, all of which are involved in glutathione production. Glu-
tamine is a precursor of glutathione; glutamine and ascorbic acid have been found to provide
substantial protection against Ciprofloxacin susceptibility in Escherichia coli [24].

Two genes with non-synonymous variants that were identified are involved in membrane in-
tegrity. The first is PA3173 with a His93Arg variation that encodes a short-chain dehydrogenase
and acts on ubiG and ubiE involved in ubiquinone biosynthesis [29]. ROS accumulation affects
membrane systems due to lipid peroxidation [18]. Ubiquinone is lipid-soluble and, therefore, is
able to act as a mobile redox carrier within the cellular membrane [22]. Increased production
of ubiquinone would reduce membrane damage caused by ROS. The second gene, MviN, with
Leu316Met, is involved in peptidoglycan biosynthesis. Fosfomycin is frequently co-prescribed
with Ciprofloxacin due to the synergistic activity of the two drugs [60]. However, increased
peptidoglycan biosynthesis and cell wall recycling lead to antibiotic resistance [9]. Therefore
the Leu316Met variant in MviN could be linked to increased resistance to combination therapy
of Ciprofloxacin and Fosfomycin.

Overexpression of efflux pumps is a known contributor to increases in MICs for P. aeruginosa.
Identified was a variant Lys329Gln in mexX that encodes a resistance-Nodulation-Cell Division
(RND) multidrug efflux membrane fusion protein MexX precursor.

In total, 13 of the 16 non-synonymous variants have possible contributions to Ciprofloxacin
resistance.
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4. Discussion

Genotype-phenotype data sets have recently become available at a never before seen scale.
In principle, it is possible to infer not only the effect of individual genomic variants within such
data, but of pairwise and higher order combinations of their effects. While this has been shown
to work in theory, and a number of tools have been developed that work on a smaller scale, there
is a shortage of effective methods for human genome-scale data, and no method we are aware
of includes three-way interactions. In this paper we present a lasso regression based method for
such large-scale inference of pairwise and three-way effects.

Our method effectively performs coordinate descent square-root lasso regression on a matrix
containing all pairwise and three-way combinations of the input data. We expand upon the
method used in [39], with a number of improvements. We update the working set in parallel,
resulting in a significant speed improvement. We extend the method from two-way interactions
to three-way, adding pruning of pairwise effects. The active set is compressed with simple-8b,
significantly reducing memory use and improving the running time with a large number of non-
zero effects. We extend the method to include non-binary inputs in the X matrix, introduce an
optional approximate hierarchy constraint that can be used to further reduce running time and
memory use, and add detection of identical columns. Finally, we solve the square-root lasso
instead of the lasso, giving us a well-defined stopping point.

We compared the accuracy and running time of our work to glinternet, the best of the
methods we used previously [16] and WHInter, the fastest running method we are aware of [39].
Our simulations demonstrate comparable accuracy and recall to existing methods, running
approximately three times faster than WHInter and 60 times faster than glinternet in the
largest tests. Considering only the largest effects, our method is able to achieve precision > 30%
even in wide data sets where p ≫ n (Section 3.1). Moreover, the stronger a predicted effect
is the more likely it is to be correct (Fig. 6). We therefore expect focusing on large predicted
effects will achieve reasonable precision even on extremely large datasets.

We also tested our method using two genome-scale real data sets. One is an exome-wide
siRNA perturbation screen (n ≊ 6, 700 siRNAs and p ≊ 19, 000 genes). The other measures
antibacterial resistance with respect to genetic variations in Pseudomonas aeruginosa, and
includes over 15 billion possible pairwise interactions. In both cases our method finds a number
of plausible interactions.

Despite this success, our method and its implementation in Pint have the following limita-
tions. While our method is effective on genome scale data when using only pairwise interactions,
running time limits the use of three-way interactions to smaller sets, or only the strongest inter-
actions (running to completion was only possible with p ≤ 5, 000 in our testing). Furthermore,
the sub-problem given the working set is not solved in parallel. While it is possible to do so,
it is actually harmful to performance unless the working set is very large (i.e. many non-zero
effects are included).

Note that while we consider only pairwise interactions Section 3.4, it is possible to include
three-way effects if we remove columns with less than 30 entries instead. This reduces the input
from 174, 334 to 75, 599 columns, and the first 50 interactions can then be found in approx. 80
hours.

The additive interaction model is also an oversimplification of biology. It remains unclear
to what extent genetic effects be treated as additive, and ignoring interactions among of more
than three items could well be leaving out the most important effects. In this case we may end
up spuriously associating phenotype changes with effects that just happen to be present, rather
than the true, more complicated, interactions (as demonstrated in Section 3.2). Finally, we
cannot distinguish interactions that are present in exactly the same rows of the input matrix.
In the siRNA case, if two distinct pairs of genes are simultaneously suppressed by the same
siRNAs in all cases, whichever is considered first will likely trump the other.

There are hence a number of opportunities to expand upon this work. While we can avoid
including duplicate effects in our model (Section 2.8), we do not detect indistinguishable effects
unless they are considered for inclusion in the working set. Moreover, we do not identify effects
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that are almost, but not quite, identical. Thoroughly accounting for the similarity of effects
would further improve the model. Additionally, we chose the square-root lasso penalty partially
because it has simpler to compute p-values than the lasso [57]. Implementing this would give
unbiased p-values based directly on the lasso results, without requiring a second least squares
fit. This is particularly important since the least squares p-values do not account for the column
selection process, and are likely to be biased [33].

More generally, we could significantly increase the scale of interaction inference methods
by reducing the search space. A more targeted approach estimating distance in 3D space
using Hi-C [7] for example, would drastically reduce the time and space requirements, allowing
higher order interactions to be considered. While we implement an optional approximate weak
hierarchy constrain (Section 2.7), a strong hierarchy would further simplify the problem. It is
worth noting however that these are not reasonable assumptions for all applications. Finally,
the interactions proposed in Section 3.3 may be worth further investigation.

Our method is implemented in C++, and an R package is provided at github.com/bioDS/pint.
Code to reproduce the simulations and benchmarking from Section 3 is provided at

github.com/bioDS/lasso data processing.
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Figure 8. Compression effect on memory use. Note that this is the total peak
memory use of the program, not solely the memory used by the matrix X2. In
both cases n = 10 · p.

Appendix A. Compression

We can considerably reduce the size of the active set by compressing the columns. Since
we have a sequence of increasing integers we can store only the offset from the previous entry,
keeping the entries small. The resulting sequence of (mostly) small numbers can then be effi-
ciently stored using integer compression methods. We describe the compression method we use
in Appendix A.1 and compare it to other methods in Appendix A.2.

A.1. Simple-8b. Simple-8b is a non-SIMD compression scheme, with performance comparable
to other state of the art methods [53, 38, 58]. While SIMD-based compression schemes can often
offer significantly improved compression and decompression speed [34] [53], their implementation
is architecture dependant. Simple-8b only requires a CPU be able to efficiently handle 64-
bit arithmetic, and does not significantly underperform compared to state-of-the-art SIMD
techniques in our testing (Appendix A.2).

Simple-8b is a 64-bit variation of the Simple-9 encoding scheme [3], and stores a sequence
of integers in a single 64-bit word. The number of integers stored depends on the size of the
largest one, and is indicated by a four bit ‘selector’. The remaining 60 bits are divided into
integers of size 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, or 60, with between 240 (only possible if all
values are zero) and one integer stored. As seen in Figure 8, this considerably reduces the
size of X2 in our test data (two sets from [16], one with p = 100, n = 1, 000, another with
p = 1, 000, n = 10, 000). In the larger p = 1, 000 set, total memory use is reduced by over 85%
compared to storing integers directly. It is worth noting that this compression works well even
for non-sparse sections of the matrix, since the offsets are extremely small. In an extreme case,
we can store up to 240 sequential 1’s in a single 64-bit word.

A.2. Comparing Methods. While Simple-8b allows our implementation to be used on any
64-bit CPU, we could also take advantage of SIMD-based methods where such CPU instructions
are available. To determine whether this is a worthwhile improvement, we compare our Simple-
8b implementation to a number of state of the art alternatives.

Recent work suggests TurboPFor [45] has a particularly high compression ratio [58]. We
therefore compare the best performing methods from TurboPFor against our implementation
of Simple-8b (Figure 9). The tests are performed using an eight-core (16 SMT threads) Intel
Xeon Gold 6244 CPU. To compare these methods, we perform 50 regression iterations on a test
data set of p = 1, 000 genes and n = 10, 000 siRNAs. We examine the total time taken for the
process, as well as the total memory used and time for the regression function alone (excluding
calculating and compressing the interaction matrix).
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Figure 9. Comparison of Compression Methods. (a) Total memory used, com-
pressing the sparse X2 matrix with each method. (b) Total time taken and time
taken (including compressing X2) and time taken for lasso regression alone, us-
ing each method.

We see that both the time to produce the compressed matrix (seen in Figure 9 as the difference
between total time and lasso-only time), and the running time are comparable for all TurboPFor
methods.2 While every TurboPFor method we tested improved the compression ratio compared
to Simple-8b (Figure 9a), we consistently found that the running time was longer (Figure 9b).
It is possible that this is a result of the way the columns are being read in each method.
Using TurboPFor, we compress and decompress entire columns at a time. With our Simple-8b
implementation, we process each 64-bit word separately. This allows us to use the column as
it is being decompressed. Avoiding re-reading the column after decompression also allows the
entries to be evicted from the cache earlier.

While it is also possible to process compressed words as they are read using the tested
TurboPFor methods, there does not appear to be a significant difference in compression that
would justify doing so.

2The compression time is not comparable for all methods. Our Simple-8b implementation compresses columns
in parallel, whereas TurboPFor does not. Columns are decompressed in parallel in both cases
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Appendix B. Antibiotic Results

Lasso Estimate Least Squares Estimate pval SNV 1 SNV 2
-0.024 -1.76 0.01 813809 sub. T C —
-0.013 -5.02 0.02 3789873 sub. T C —
-0.039 -1.68 0.02 4617770 sub. C T —
-0.007 9.71 0.03 5111434 sub. A G —
-0.006 -2.83 0.03 4153211 sub. A G 5719820 sub. A G
0.000 -1.15 0.05 6081497 sub. T C —
-0.007 -2.25 0.06 4271404 sub. T C —
-0.023 -2.25 0.06 63407 sub. T C —
-0.063 -2.25 0.06 184347 sub. T C —
-0.001 -12.62 0.07 137771 sub. A G —
-0.008 -2.76 0.10 3654726 sub. T C 3869317 sub. A G
-0.019 -1.03 0.11 1886446 sub. T C —
-0.045 13.18 0.11 442184 sub. C G —
-0.001 -2.10 0.12 986363 sub. A G —
-0.003 -1.84 0.13 2996864 sub. C T 3869317 sub. A G
-0.030 -1.60 0.16 1810265 sub. A C —
-0.012 0.76 0.20 2033361 sub. A C —
-0.009 -7.03 0.22 3318136 sub. T C —
-0.038 8.19 0.23 176977 sub. A G —
-0.002 2.44 0.24 172758 sub. T C —
-0.009 2.00 0.24 4003269 sub. T C —
-0.034 8.48 0.24 4153211 sub. A G —
-0.008 -6.99 0.28 3419855 sub. T A 4153211 sub. A G
-0.031 -1.25 0.30 4847782 sub. A C —
-0.005 -1.25 0.30 1383522 sub. A G —
-0.005 -1.25 0.30 176977 sub. A G 5133603 sub. A G
-0.004 2.36 0.30 3419855 sub. T A 4920968 sub. C A
-0.040 2.44 0.31 3944454 sub. T A —
-0.004 -0.84 0.40 3195104 sub. T C —
-0.028 -0.42 0.40 2211528 sub. T G —
-0.013 2.14 0.51 313283 sub. A C —
0.000 0.90 0.51 3601029 sub. T C 3869317 sub. A G
-0.005 4.38 0.53 3419855 sub. T A —
-0.010 2.64 0.55 5254860 sub. T C —
-0.016 -0.31 0.69 2093685 sub. A T —
-0.007 1.02 0.73 3869317 sub. A G 4687756 sub. A G
-0.044 -0.59 0.78 4453098 sub. A G —
-0.005 0.24 0.80 3563823 sub. A G —
-0.039 1.21 0.81 4125422 sub. T C —
-0.002 0.57 0.88 3869317 sub. A G 4966957 sub. C T
-0.103 0.21 0.95 3869317 sub. A G —
-0.005 — 1.00 956627 sub. A G —
-0.001 — 1.00 5856921 sub. A G —
-0.002 — 1.00 3869317 sub. A G 4617770 sub. C T
-0.014 — 1.00 3869317 sub. A G 4847782 sub. A C
-0.008 — 1.00 4153211 sub. A G 4453098 sub. A G
-0.046 — 1.00 3869317 sub. A G 4453098 sub. A G
-0.006 — 1.00 4153211 sub. A G 5990479 sub. C G
-0.009 — 1.00 3195104 sub. T C 4153211 sub. A G
-0.046 — 1.00 986363 sub. A G 3869317 sub. A G

Table 2. Predicted top 50 SNV effects.
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