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Abstract 14 

We developed an analysis pipeline that can extract microbial sequences from Spatial Transcriptomic data and 15 

assign taxonomic labels to them, generating a spatial microbial abundance matrix in addition to the default 16 

host expression one, enabling simultaneous analysis of host expression and microbial distribution. We applied 17 

it on both human and murine intestinal datasets and validated the spatial microbial abundance information 18 

with alternative assays. Finally, we present a few biological insights that can be gained from this novel data. In 19 

summary, this proof of concept work demonstrated the feasibility of Spatial Meta-transcriptomic analysis, and 20 

pave the way for future experimental optimization. 21 

Background 22 

Spatial transcriptomic sequencing has revolutionized the biological research field. This class of technologies 23 

combine the strength of two pillars of modern biological research, sequencing and imaging. It generally works 24 

by capturing the messenger RNA from a permeabilized tissue slice, and label these RNA molecules with 2D 25 

spatial barcodes [1, 2]. Complex tissues such as the brain and tumor saw most utilization [3-9]. In the 26 

intestines and other organs, microbes live alongside or within close proximity to host cells and meta-genomic 27 

sequencing has long been employed to study the complex microbial composition on various host body sites. 28 

These studies, usually referred as microbiome study, have greatly improved our understanding of the human 29 

biology, microbes were fund in never-thought before places [10, 11] and showed intriguing dynamics [12]. 30 

However, these microbiome studies generally lacked spatial resolution and attempts at addressing this 31 

limitation is just emerging [13, 14]. Inspired by a recent study about COVID19 where virus sequences were 32 
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recovered from host single cell transcriptomic data and analyzed alongside host data, we wanted to see if it is 33 

possible to capture microbial sequences in spatial transcriptomic sequencing and present our proof of 34 

concept work here. 35 

Results & Discussion 36 

We performed spatial transcriptomic sequencing, using the Visium kit from 10X Genomics, on both human 37 

and murine intestinal samples, where microbial presence is well-known. The human samples included 38 

dissected colon samples from two colorectal cancer patients, samples from the tumor sites and histologically 39 

normal sites distant from the tumor were included. The murine samples came from both small intestine and 40 

large intestine, and cross-sectional slices from 3 mice were put in a single window (Fig. 1A). Each window was 41 

sequenced to at least 85k reads per covered spots, and the captured RNAs were on average 11k per spots, 42 

similar to that of published results [1]. 43 

We developed an analysis pipeline to extract microbial information from the ST data. In short, unmapped 44 

reads were aligned against the NCBI NT database and the mapped reads in this round were subsequently 45 

assigned tax IDs. For reads coming from the same UMI (Unique Molecular Identifier) group, a common 46 

ancestor was called and assign to that UMI. The end result is a spatial species abundance matrix produced 47 

alongside the spatial host gene expression matrix generated via the standard spatial transcriptomics analysis. 48 

The percentage of microbial sequences against total reads varied across different samples, ranging from 49 

7.32 x 10^-7 in human samples to 2.26 x 10^-3 in murine ones. The Visium kit used poly T to capture 50 

messenger RNA and in theory microbial sequences without polyA tail would be depleted. While this is indeed 51 

the case, some spurious random priming did occur and sequences without polyA were still captured. This is in 52 

line with report from the RNA-velocity paper[15-17], where immature messenger RNA, which lacked polyA 53 

tail, account for about 25% of the data in 10X Genomics Chromium single cell platform, which uses polyA 54 

capture. Furthermore, ribosomal RNAs are the most abundant RNA category in a cell, account for more than 55 

80% of total RNA. Ribosomal RNA is also the molecular marker of choice for microbial taxonomy. Accordingly, 56 

the majority of the microbial sequences recovered in SMT were from ribosomal RNAs (Fig. 1D). For these 57 

reasons, the microbial signals obtained from our Spatial Meta-Transcripotomic (SMT) analysis was unlikely to 58 

be merely artifacts.  59 

For comparison, we applied our microbial sequence extraction method on single cell sequencing data 60 

derived from un-sorted intestinal samples and the microbial signal thus produced were very likely drenched in 61 

noise as it was relatively evenly spread across different cell types (Fig S1A). This may have to do with the fact 62 

that only intra-cellular bacteria can be captured in these conditions and these bacteria were rare and that the 63 

gentle digestive environment inside a droplet was ineffective for most microbes. 64 
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To further evaluate the extent of contaminating microbial sequences during experiments versus true organ 65 

resident microbial signals. We plotted the microbial abundance of all spots, regardless of whether it’s covered 66 

by tissue or not (Fig 1A). For both human and mouse, the luminal side of the intestines harbored more 67 

microbial signal as is expected. The human tumor tissue also contained higher abundance of microbes and 68 

also more microbes penetration deeper into the tissue, as would be expected from the compromised barrier 69 

function in tumor. These clear and expected patterns gave validation to our SMT methods as noise signal 70 

would show up relatively randomly across the capture slide.  71 

To compare results with alternative methods, for the mice samples, we visualized slices close in proximity 72 

from the same embedded sample by Florescent In Situ Hybridization (FISH) with the bacterial probe EUB338 73 

(Fig 1B). The FISH result was in agreement with SMT with bacteria presence concentrated in the intestinal 74 

lumen. Of the three slices shown in the same window, the general bacteria abundance varies and 75 

corresponds well with SMT result. In another word, the intestine piece with most bacteria as shown by FISH is 76 

the one with most bacteria sequences in SMT result. These variances could be due to variance in processing 77 

individual sample and in difference in exact sample origin in the gut, i.e., more distal or proximal. All these 78 

observations lend credibility to SMT approach.   79 

After the assessment of contamination, we continued to evaluate the biases in the microbial signals 80 

collected in SMT. Because during the Visium process, the host tissue slides were permeabilized to release its 81 

RNA and this process is far from ideal for microbial sequence capture. This brought up the question if certain 82 

microbial species would be more amicable to this condition and the final result would present a biased 83 

picture of the true microbiome. We also cautioned that if the capture efficiency of microbial sequences were 84 

so low as to make the result subject to great fluctuation that will also make the result unreliable. To answer 85 

these questions, we extracted RNAs from corresponding tissue slices and performed total RNA sequencing, in 86 

which polyA based enrichment is not used and only host ribosomal RNA is depleted. Similar to our SMT 87 

pipeline, we processed the bulk total RNA-Seq data to generate microbial abundances, one abundance profile 88 

for on slice. To compare with bulk sequencing data, we then combined the SMT’s per spot abundance profiles 89 

for one window into pseudo-bulk ones and first evaluated the correlation between host genes and then 90 

microbial abundances at family level (Fig. 1C). The results showed that the host gene correlation was at 0.91 91 

with p value 2.2 x 10^-16 and that the microbial abundance reached 0.83 with p value of 2.7 x 10^-7, 92 

comparable to host gene levels and thus validating SMT approach. 93 

Due to its RNA-Seq nature, our SMT methodology captures Fungi and viral sequences as well as bacteria 94 

ones. Zoonotic viruses generally have mRNA that resemble their hosts and interestingly we can identify one 95 

such virus infection case in great spatial detail in one of our human CRC datasets. In one out of the two 96 

patients examined, viral sequences reaching as high as 3.4% were seen in some spots at the tumor site. This 97 

virus, identified as Cytomegalovirus, is known to infect fibroblast, and a deconvolution of the infected spots, 98 
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which were all 55μm in diameter and thus contained many cells, showed them to be mostly fibroblast (Fig 2A). 99 

We next asked what the immediate consequence of viral infection was on these fibroblasts. To answer this, 100 

infected spots were compared to un-infected fibroblast rich spots. Interestingly, among the differentially 101 

expressed genes recovered, interferon related genes were not found, potentially due to the immune-102 

compromised nature of the tumor micro-environment. Still, some known genes were found, including HLA-E 103 

which is know to be up-regulated by cytomegalovirus infection, IL32 and TNIP, both upregulated and involved 104 

in host defense (Fig 2B).   105 

The local cellular response to infection shown above is a good testament to SMT’s capability in 106 

investigating microbe-host interaction. Compared to other methods in this context, FISH based for example, 107 

SMT’s strength comes in its taxonomical resolution and systemic nature.  For a demonstration, we used the 108 

murine dataset as it included multiple individual animals and covered complete cross-section of the intestines. 109 

We asked, which host genes and which microbes showed great spatial correlation. Due to the sparse nature 110 

of the microbial signals and to lesser degree, some of the host genes, we first smoothed both categories of 111 

signals (Fig. S2A, Methods). Then spatial correlation analysis was performed and revealed a number of 112 

interesting interactions (Fig 2C for small intestine, Fig S2B for large intestine). Among the most significant, the 113 

bacteria Porphyromonas showed high correlation with a series of immune defense related genes such as Saa1 114 

in the small intestine, while Helicobacter correlated with Dmnt1 in the large intestine, and consistently, 115 

Helicobacter also correlated with Saa1(Fig 2B, Fig S2B). We can also highlight individual interactions by 116 

plotting the intensities of involved host gene and microbe on the slice and directly visualize the extent of the 117 

interaction, whole sections of intestines in this particular case (Fig 2DE, Fig S2C). 118 

Our current SMT method generates spatial microbial abundance matrix alongside the spatial host 119 

expression matrix. The underlying spatial transcriptomic methods are rapidly evolving[18], reaching higher 120 

resolution and obtaining more sequences per area, translating to higher sensitivity. SMT too will 121 

correspondingly reap the benefit. Furthermore, by simply capturing more sequences or by using specifically 122 

designed capture oligos, a bacteria specific 16S capture oligo alongside the polyT capture oligo for example, it 123 

may become possible to actually profile the microbial transcriptomes. For tissues where microbes were 124 

abundant such as the intestines, SMT enables the systemic study of host and microbe interaction. In other 125 

more sterile tissues, SMT will shed light on the consequence of microbial presence, for example, how 126 

microbes travel to remote tumor site (as in non-intestinal solid cancers) and help settle the debate on the 127 

whether certain body site is sterile or not, i.e., in-utero fetus[19, 20]. 128 

Conclusions 129 

Our proof of concept work demonstrated the feasibility of Spatial Meta-Transcriptomic sequencing and 130 
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analysis. Our analysis framework already extracted spatial microbial abundance information out of data 131 

generated by currently commercially available kits. We further demonstrated that true signals outweigh 132 

contaminations and that the biases are low. Actually, the FISH result suggested the current SMT method to be 133 

very sensitive. Our work paves the way for future development of this technology, which will further increase 134 

sensitivity of SMT and its taxonomical resolution. Such methods will enable simultaneous analysis of host 135 

expression with resident microbial abundances, and study host and microbial interactions in never-before 136 

seen resolution and doing so in a systematic manner.  137 

Methods 138 

Human/Murine sample collection and processing 139 

We collected samples of pathologically diagnosed with CRC from Rui-jin hospital, Shanghai Jiao Tong 140 

University. Tissue samples were embedded in optimal cutting temperature compound and stored at -80°C. 141 

Before the tissue optimization experiment was performed, the RNA quality was checked (RIN>7.0). The 142 

tumors are resectable and discussion by clinicians. Six-week-old male C57BL/6 mice were ordered from 143 

Shanghai SLAC Laboratory Animal Co., Ltd. Then maintained in SPF experimental animal center of Fudan 144 

University. For antibiotics treatment, six-week-old mice were orally gavaged with 0.5mg/mL vancomycin 145 

(RPI),1mg/mL metronidazole, 1mg/mL ampicillin, 1mg/mL neomycin, 1mg/mL gentamycin dissolved in 146 

1XDPBS for one week. The maximum number of adult mice in a cage is 5. Feces and serum were collected and 147 

stored at −80℃. Tissue samples(intestine and colon) were embedded in optimal cutting temperature 148 

compound and stored at −80℃, the RNA quality was checked（RIN > 7.0）. 149 

Spatial transcriptomics. 150 

Tissues were cut into 10μm sections and processed using the Visium Spatial Gene Expression Kit (10x 151 

Genomics) according to the kit’s instructions. First step, CRC tissue, mice tissue permeabilization condition 152 

was optimized using the Visium Spatial Tissue Optimization Kit, which was 18 min in mice and 28 min in 153 

human found to be maximum fluorescence signal in both tumor and normal regions. In detail, 4 samples from 154 

2 patients were sequenced by ST. Then were stained with H&E and imaged using a Leica DM6000 microscope 155 

under a 20X lens magnification. Next, reverse transcription, second strand synthesis & denaturation, cDNA 156 

amplification & QC, Visium spatial gene expression library construction was following the manufacturer’s 157 

instructions. The resulting complementary DNA library was checked for quality control, then sequenced using 158 

an Illumina NovaSeq 6000 system. 159 

 160 
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Spatial transcriptomic sequencing and data processing 161 

Raw reads from 10x Genomics Visium spatial sequencing were aligned to the human transcriptome GRCh38-162 

3.0.0 reference or mouse transcriptome mm10-3.0.0 reference using 10x Genomics SpaceRanger v.1.0.0 163 

(https://support.10xgenomics.com/spatial-gene-expression/software/downloads/1.0/#spacerangertab) and 164 

exonic reads were used to produce mRNA count matrices for these samples. HE histology images were also 165 

aligned with mRNA capture spots using SpaceRanger.  166 

Spatial meta-transcriptomic analysis 167 

An in-house pipeline was used for pre-processing of bam file generated by SpaceRanger. Unmapped reads 168 

were extracted from bam file and filtered for non-polynucleotide sequence in preparation for subsequent 169 

alignment. After that, unmapped reads were aligned against nt database with blastn 2.10.1+, the blast output 170 

were formatted to preserve query ID, taxID, subject title, alignment length, e-value, identity, coverage as well 171 

as UMI and spatial barcode which were extracted from bam file. Taxa levels from kingdom to species were 172 

called with taxID by querying a taxa table from NIH taxonomy online port. UMI counts of certain taxID in a 173 

single spot were called by counting unique UMI sequences belonging to respective spatial barcode and thus 174 

we could generate a count matrix with taxID and spatial barcode as row names and column names 175 

respectively. 176 

The UMI count matrix were then imported into R to generate a Seurat object (Seurat 4.0.1)[21] with HE 177 

images that had been included in SpaceRanger output directory. Simultaneously, the count matrix and taxa 178 

level info were also used to create a phyloseq object (phyloseq 1.32.0)[22] with an applied taxa level and 179 

integrated into the assay slot of Seurat object.  180 

FISH 181 

OCT tissue slides were fixed with methyl alcohol at -20 °C. Slides were stained using the FISH kit (Guangzhou 182 

Exon) following manufacturer s protocol. Cy3 labelled Probes (EUB338 - GCTGCCTCCCGTAGGAGT) were 183 

hybridized overnight at 37˚C. Sections were washed at room temperature and 60 °C in washing buffer1 for 5 184 

minutes successively, followed by two washed at 37 °C for 5 minutes in washing buffer2. Staining was 185 

visualized with the Leica TCS SP8 confocal microscope at 20X and 63X. The images were edited using Imaris 186 

Cell Imaging Software. 187 

Bulk total RNA-Seq 188 

OCT tissue slides were used for total RNA isolation with TRIzol (Invitrogen) and subjected to RNA sequencing 189 

using Illumina NextSeq 500 system (75-bp paired-end reads). The raw reads were aligned to the mouse 190 
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reference genome (version mm10) and human reference genome (version hg38) using HISAT2 RNA-191 

sequencing alignment software[23]. The alignment files were processed to generate read counts for genes 192 

using SAMtools[24] and HTSeq[25]. Read counts were normalized and transmitted to differential analysis 193 

using R package DESeq2[26]. P values obtained from multiple tests were adjusted using the Benjamini-194 

Hochberg correction. Gene ontology consortium (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 195 

pathway analysis was performed using R package clusterProfiler[27]. 196 

Data & Code Availability 197 

The raw data of mouse study, analysis pipeline and the matrix for both human and mouse will be made 198 

available upon publication. 199 
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 261 

Figure legend 262 

Fig. 1 Spatial meta-transcriptomics demonstrating abundant microbial signal in mouse and human 263 

intestinal samples with appreciable diversity. (A) Feature plot showing abundance of microbial sequences in 264 

mouse small intestine (panel 1), mouse colon (panel2), human colonic normal and tumor samples (panel 3 265 

and 4, with same design, in which normal and tumor samples occupy a single square area), colors indicate 266 

number of microbial sequences in form of Unique Molecular Identifier (UMI). (B) Small intestine slices from 267 

mice was stained with FISH probes against bacterial 16S rRNA. Boxed areas in the top row are magnified 268 

below. Scale bars, 300um (top), 20 μm (bottom). (C) Correlation analysis between SMT and bulk RNA 269 

sequencing data of mouse small intestine. Upper panel demonstrates correlation between microbial 270 

sequence count at family level, bottom panel shows correlation between host gene expression. (D) microbial 271 

read composition, data were normalized by samples. (E) Barplot illustrating composition of microbial 272 

sequences of human (upper) and mouse (bottom) samples at family level. 273 

 274 
Fig. 2 Spatial meta-transcriptomics reveal novel and commonly recognized host-microbe interactions. (A) 275 

Feature plot showing abundance of sequence from genus Cytomegalovirus in human colorectal cancer 276 

sample (left) and module score of fibroblasts (right). (B) Scatter plot of differential expression analysis with 277 

cytomegalovirus enriched spots and cytomegalovirus absent spots that were tagged with high fibroblast score. 278 

Genes with high significance value (<0.001) were presented with red color, genes responsible for antiviral 279 

response in those genes were labeled blue. (C) Dot plot showing colocalized correlation between host gene 280 

expression and genus level microbial abundance in mouse small intestine. (D) Spatial feature plot showing 281 

Porphyromonas enrichment and Saa1 expression. (E) Spatial feature plot showing Helicobacter enrichment 282 

and Dmbt1 expression. 283 

 284 

Fig. S1 Microbiome composition and abundance cross samples. (A) UMAP visualization of the un-sorted 285 

human colorectal sample, showing the formation of 11 main clusters. (B) Microbial signals with high 286 
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abundance (>0.02%) illustrated in U-MAP plot. (C) Microbiome composition cross SMT and bulk RNA seq data 287 

at kingdom level. (D) Microbiome composition in bulk RNA seq data at family level.  288 

 289 
Fig. S2 Host-microbe interaction analysis with SMT data. (A) Feature plot of original UMI count and 290 

smoothed UMI count with same ST data showing appreciable effect of smoothing. (B) Dot plot showing co-291 

localized correlation between host gene expression and genus level microbial abundance in mouse colon. (C) 292 

Spatial feature plot showing Helicobacter enrichment and Saa1 expression. 293 
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