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ABSTRACT

To identify and stop active HIV transmission chains new epidemiological techniques are 
needed. Here, we describe the development of a multi-biomarker augmentation to 
phylogenetic inference of the underlying transmission history in a local population. HIV 
biomarkers are measurable biological quantities that have some relationship to the amount of 
time someone has been infected with HIV. To train our model, we used five biomarkers based 
on real data from serological assays, HIV sequence data, and target cell counts in longitudinally 
followed, untreated patients with known infection times. The biomarkers were modeled with a 
mixed effects framework to allow for patient specific variation and general trends, and fit to 
patient data using Markov Chain Monte Carlo (MCMC) methods.  Subsequently, the density of 
the unobserved infection time conditional on observed biomarkers were obtained by 
integrating out the random effects from the model fit. This probabilistic information about 
infection times was incorporated into the likelihood function for the transmission history and 
phylogenetic tree reconstruction, informed by the HIV sequence data. To critically test our 
methodology, we developed a coalescent-based simulation framework that generates 
phylogenies and biomarkers given a specific or general transmission history. Testing on many 
epidemiological scenarios showed that biomarker augmented phylogenetics can reach 90% 
accuracy under idealized situations. Under realistic within-host HIV evolution, involving 
substantial within-host diversification and frequent transmission of multiple lineages, the 
average accuracy was at about 50% in transmission clusters involving 5-50 hosts. Realistic 
biomarker data added on average 16 percentage points over using the phylogeny alone. Using 
more biomarkers improved the performance. Shorter temporal spacing between transmission 
events and increased transmission heterogeneity reduced reconstruction accuracy, but larger 
clusters were not harder to get right. More sequence data per infected host also improved 
accuracy. We show that the method is robust to incomplete sampling, and we evaluate real 
HIV-1 transmission clusters. The technology presented here could allow for better prevention 
programs by providing data for locally informed and tailored strategies. 
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AUTHOR SUMMARY

While phylogenetic methods have been successfully used to infer transmission patterns on 
many scales, substantial uncertainty about the corresponding transmission history has 
remained. Here, we introduce a formal inference framework for the simultaneous use of HIV 
biomarkers and HIV sequences derived from persons who may have infected each other. We 
created a flexible system that can use up to five biomarkers to estimate the time of infection of 
each person, with the appropriate uncertainty given by an empirical probability distribution. 
These time-of-infection distributions were jointly modelled with the HIV phylogenetic tree 
estimation to produce possible transmission histories. We show that adding biomarkers 
substantially limits the possible transmission histories. This makes it possible to identify 
transmission risks, to assess confidence in source attributions, and to make efficient resource 
allocations to prevent further transmissions in local epidemics. 

INTRODUCTION

To effectively control an infectious disease, limited prevention resources must be allocated to 
where they are needed most [1]. Thus, identifying hotspots of transmission would allow for 
efficient resource allocation. Transmission, especially in chronic infections such as HIV, is 
heterogenous in time, place, and person, leading to episodic transmissions and local outbreaks. 
Mapping these events using traditional epidemiological methods is challenging, expensive, and 
slow, and may be inaccurate. For example, several studies have reported that interview-based 
information about sexual contacts where HIV transmission might have taken place was often 
not in agreement with the phylogenetic history of the transmitted virus [2, 3]. Therefore, 
phylogenetic reconstruction, using existing and growing public health databases, provides an 
attractive alternative. 

Reconstructing the history of an epidemic using phylogenetic methods has become a 
substantial domain of phylodynamic research involving many different pathogens [4-11]. The 
primary technical challenge in this domain is that the typical mode in which genetic sequences 
are sampled, either in terms of a study or through a surveillance system, may not be sufficient 
for reconstructing transmission histories. This applies especially for chronic infections where 
the pathogen develops substantial within-host diversity, such as in HIV, HBV, HCV, and some 
bacterial infections [12-16]. This within-host diversity means that when a person infects 
another, there are many alternative phylogenetic lineages that could have been involved, often 
more than one, leading to a non-trivial and non-identical correspondence between the 
transmission history and the pathogen phylogeny [12, 17, 18]. The extent of this problem was 
quantified by Hall and Coljin’s method that counts the exact number of transmission histories 
that are logically consistent with a pathogen phylogeny [19]. For example, a phylogeny from 20 
infected persons (with 1 sequence/person) could have as many as 102 million transmission 
histories that are consistent with that phylogeny—the exact number depends on the observed 
phylogenetic topology. While additional constraints and Bayesian inference can overcome weak 
non-identifiability, it is desirable to have constraints that are both measurable (i.e., empirical) 
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and based on readily available data. While the basic theoretical underpinnings of how the order 
of infection events constrains the set of possible transmission histories for a given phylogeny 
have been understood for several years [20], this knowledge currently is not integrated into 
phylodynamic inference methods. Some software such as SCOTTI [7] are able to include user-
defined infection windows, i.e., a fixed period of time that a host was contagious. 
Unfortunately, for the case of life-long, chronic infections such as HIV, in the absence of 
treatment such a window would be too long to be useful, and typically the actual start of 
contagiousness is rarely known. 

HIV biomarkers offer an alternative to infection windows, instead estimating when a host was 
infected [21]. Here, we introduce the use of HIV biomarkers to augment phylogenetic 
reconstruction and narrow down the possible transmission histories among epidemiologically 
linked hosts. Some such biomarkers are always available in clinical and public health databases, 
including HIV pol sequences, CD4 cell counts, and viral load measurements, and sometimes 
quantitative serological assay test results. In addition, there may be information about previous 
negative HIV test results and other demographic information that may limit possible time of 
infection. We show that it is possible to enhance transmission history reconstruction by 
modeling multiple biomarkers in a joint biomarker-phylogeny-transmission history framework. 

MATERIALS AND METHODS

Methodological Overview
A transmission history is defined as who infected whom and when those transmission(s) 
occurred. While HIV transmissions can occur in many different contact networks [22], in this 
work we will consider 5-50 individual hosts that have transmitted HIV in different time 
intervals. When attempting to reconstruct a local transmission history, one can divide the 
available information into three levels, information from the sampling times, information from 
the genetic sequences, and information about the infection times (Fig 1). If only the sampling 
times were known, then the virus phylogeny and transmission history would be almost 
completely unconstrained. Adding sequence data limits the set of possible transmission 
histories by revealing temporal evolutionary relationships among sampled pathogens, which 
constrains the transmission history to some extent, but still leaves a wide variety of 
possibilities. With the additional information about the host’s infection times, the transmission 
tree is still not fully constrained, but there are many fewer possibilities than with sequences 
alone. In the example in Fig 1 (right panel), we can be quite certain that the red individual is the 
first infection in the cluster, but the order of the other two infections is not certain. In this 
particular case, there are nine possible transmissions among three persons, out of which all are 
plausible given the phylogeny. (There are 12 possible transmission histories if one includes the 
order of transmissions if one host infects both others, while only considering who-infected-
whom in whatever order gives 9 possible transmission directions.) When including the 
probability density functions for the infection times, however, the number of plausible 
transmission trees is reduced to three. On the other hand, the phylogeny does constrain the 
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infection times somewhat; for example, the red and green individuals could not have both been 
infected before their coalescence time.

Multiple Biomarker Model
HIV biomarkers are measurable biological quantities that have some relationship to the amount 
of time someone has been infected with HIV. Based on the values of a set of biomarkers, we 
can infer a probability distribution for the amount of time that that person has been infected 
using a mixed effects Multiple Biomarker Model (MBM). Our model extends the previous model 
by Giardina et al 2019 [21], adding two additional biomarkers (bringing the total to five) and 
allowing inference when not all biomarker measurements are available. We also scaled the 
biomarker values such that the input values to the model are all at the same order of 
magnitude and used a prior distribution that more closely reflects the expected amount of time 
between infection and diagnosis. 

The mixed effects model is of the form 𝑌𝑘
𝑖𝑗 = 𝑓𝑘(𝑆𝑖𝑗 ― 𝐼𝑖, 𝛽𝑘

𝑖 ) + 𝜖𝑘
𝑖𝑗, where 𝑌𝑘

𝑖𝑗 is the measured 
value of the 𝑘th biomarker at the 𝑗th timepoint for the 𝑖th individual, 𝑓^𝑘 is the function that 
predicts the value of a biomarker based on time after infection, 𝑆𝑖𝑗 is the time of the 𝑗th sample 
for the 𝑖th individual, 𝐼𝑖 is the infection time of the 𝑖th individual, 𝛽𝑘

𝑖  are the function parameters 
for the 𝑘th biomarker for the 𝑖th individual, and 𝜖𝑘

𝑖𝑗 is the biological and measurement noise.

We modeled five biomarkers: BED, the IgG capture BED enzyme immunoassay [23]; LAg, 
Limiting Antigen Avidity assay [24]; pol polymorphism count, the number of multi-state 
nucleotide characters in pol direct population sequences [25, 26]; pol NGS diversity, HIV 
diversity estimated from next-generation sequencing of pol on the Illumina platform [27]; and 
CD4 cell count, the number of CD4 positive T cells in 1 ml plasma. As shown in Fig 2, BED and 
LAg are modeled as log10 values, normalized with an internal test standard, starting at low 
concentrations that rise asymptotically over time since infection as in Skar et al [28], with LAg 
typically rising faster than BED. Both the pol polymorphism count and the pol NGS diversity (of 
3rd codon positions) increase approximately linearly at the timescales that we are interested in. 
The CD4 cell count is modelled as the square root in order to make the time series trend more 
linear. 

We used a Markov Chain Monte Carlo (MCMC) sampler implemented in rjags [29] to sample 
from the posterior distributions of the infection times. The prior distribution for the infection 
times was a Gamma distribution with mean 2 years and standard deviation 1.5 years, chosen to 
be qualitatively similar to the distributions for time between infection and diagnosis found in 
Giardina et al. 2019 [21]. We created a flexible system that can use any number or combination 
of biomarkers (including no biomarkers, which would recover the prior distribution). 

Biomarker Training Data and Validation
The training data for our multiple biomarker model came from 30 longitudinally followed 
Swedish HIV-infected persons with well-defined times of infection. Biomarker data from these 
patients have been previously used: pol polymorphism, BED, and CD4 counts were used in 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472340


Giardina et al [21]; and pol NGS diversity in Puller et al [27]. In this study we added LAg for a 
total of five biomarkers. The 30 patients were selected to have: 1) a previous negative test and 
first positive test that were no more than 6 months apart or a known primary HIV infection 
time, 2) at least three follow up measurements over a long time period (2-5 years), and 3) been 
treatment naïve for that time period. The biomarker data were measured on stored biobank 
samples because the inclusion criteria are difficult to fulfill as modern clinical practice is to put 
patients on antiviral treatment immediately after HIV diagnosis. The full model was trained 
using all measurements from all 30 patients, using 5×104 iterations of model adaptation, 3×105 
iterations of burn-in, and 1×106 samples. 

To validate our MBM, we performed a leave one out cross validation using one set of biomarker 
measurements from each of the 30 patients as testing data while using all measurements from 
the other 29 patients as training data. The MBM was also used to simulate realistic biomarker 
values for testing purposes: We first found the maximum likelihood values of the model 
parameters (trained on all 30 patients), then used those values to simulate new random effects 
trajectories for the expected values of each of the biomarkers over time, and, finally, simulated 
new biomarker values by adding Gaussian noise to the expected values. 

Joint Inference of Transmission History and Phylogeny
The MBM-derived posterior distributions of the infection times were incorporated into the 
likelihood function for the transmission history and phylogenetic tree. The general form of the 
likelihood function remains the same as in Klinkenberg et al 2017 [6]:

Pr(𝐼, 𝑀, 𝑃, 𝜃|𝑆, 𝐺) ∝ Pr(𝑆, 𝐺|𝐼, 𝑀, 𝑃, 𝜃) ∙ Pr (𝐼, 𝑀, 𝑃, θ),

with unobserved infection times 𝐼, infectors 𝑀, phylogeny 𝑃, parameters 𝜃, observed sampling 
times 𝑆, and genetic sequences 𝐺. This likelihood function can be split up into four terms for the 
likelihood of the sequences, the phylogenetic tree, the difference between the infection and 
sampling times, and the transmission tree as well as a term for the prior distributions of the 
parameters:

Pr(𝐼, 𝑀, 𝑃, 𝜃| 𝑆, 𝐺) ∝ Pr(𝐺| 𝑃, 𝜃) ∙ Pr(𝑃| 𝑆, 𝐼,𝑀,𝜃) ∙ Pr(𝑆|𝐼,𝜃) ∙ Pr(𝐼,𝑀|𝜃) ∙ Pr(𝜃)

Given the distributions, we performed the transmission history and phylogenetic inference 
using a modified version of the R package phybreak [6]. We refer to our modified version as 
biophybreak (https://github.com/MolEvolEpid/biophybreak). We modified a version of 
phybreak updated by the original author, with the most notable change since the publication of 
Klinkenberg et al 2017 [6] being the inclusion of the possibility of a wide transmission 
bottleneck. This modification is important to model realistic HIV transmission where >1 
phylogenetic lineage often is transmitted [30]. The primary modification that we introduced 
here (in biophybreak) is the way in which the likelihood for the interval between infection and 
sampling is calculated. In the original version of phybreak, the length of that interval is a 
Gamma distribution with a user specified shape and mean that is estimated as a model 
parameter, with the same parameters for every individual. Our modification allows any non-
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parametric distribution to be used for this likelihood as well as allow each individual to have 
their own distribution. Specifically, we used the posterior distribution of the infection age 
obtained from the MBM for each individual. Additionally, we added the Generalized Time 
Reversible (GTR) substitution model, which has been shown to be the most realistic HIV 
evolutionary model [31] (instead of the Jukes-Cantor model used in the original phybreak 
package). However, this comes at a computational cost of about four times longer MCMC 
iteration steps. The third modification we made allows a custom “generation function”, i.e., the 
function that specifies how likely an individual is to infect another individual based on how long 
they have been infected. This was motivated by the observation that a higher viral load, seen in 
the acute infection stage, results in a higher risk of transmission [32]. Since it is difficult to know 
exactly what the shape of the generation function should be, but it is known that approximately 
half of transmissions are from recently (within six months) infected individuals [33], we used a 
step function that is three times higher in the first six months, resulting in a fairly conservative 
improper prior distribution, which is fine in this case since only the relative values of the 
distribution are important. As with the infection time distributions, we allow any function to be 
used, e.g., modifying transmission probability before and after diagnosis, as described in the 
next section. 

General Simulation Experimental Design
In order to test our methodology and determine which types of transmission histories that may 
more or less difficult to correctly infer, we performed a variety of simulations. We varied the 
number of individuals, the frequency of infection events in the transmission history (temporal 
spacing), the heterogeneity of the number of transmissions per individual (standard deviation 
of the network degree), the level of information about infection time we get from the 
biomarkers, and the mutation model used in the simulation and inference (mutation 
parameters according to the HIV-1 pol or env gene). 

For the simulation sets that use randomly generated transmission histories, we first specified 
the number of individuals, then the amount of time from the first to the last infection, taking 
into account the number of individuals and temporal spacing. The infection times were then 
generated using a continuous uniform random variable between the first and last infections, 
with the option to have a minimum amount of time between any two infection times, which we 
set to 0.05 years. Next, sampling times were given to each individual. Infectors (transmission 
donors) were chosen such that the resulting transmission tree had a transmission 
heterogeneity close to the desired value. To facilitate this, weights were assigned to each 
individual for how likely they were to be a donor, with the variation in weights depending on 
the target amount of transmission heterogeneity. The weights from the generation functions 
were also taken into account at this time. Note that since the infection times were chosen 
before the infectors rather than having the new infection times chosen from each infector’s 
generation function, the generation function was implicitly changed in a non-trivial way. 
Therefore, we also allowed biophybreak to use a penalty for transmission after diagnosis, which 
may be justified when all patients are successfully and continuously treated after diagnosis [34]. 
Hence, the weights of the potential infectors can be modified by a factor depending on whether 
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they have been sampled yet. As in the case of the generation function, this post-sampling 
transmission penalty is implicitly changed by the way the infection times are chosen.

Given a transmission history, we created the phylogeny with a coalescence simulator that used 
a within-host model of linearly increasing effective population size 𝑁(𝑡) = 𝛼 + 𝛽𝑡, where 𝛼 is 
the effective population size at the time of infection and 𝛽 is the growth rate of the effective 
population size per generation [17, 35], with a generation assumed to be 1.5 days [36]. Unless 
otherwise noted, we used 𝛼 = 5 and 𝛽 = 5. Finally, sequences were generated with SeqGen 
[37] using known absolute and relative substitution rate parameters from either the HIV-1 
envelope gene (env) or polymerase gene (pol). 

We performed the transmission history and phylogenic inference with biophybreak using 2×105 
MCMC samples after 5×104 iterations of burn-in unless otherwise noted. We used an effective 
sample size (ESS) of 200 for the model parameters ensure proper mixing of the MCMC chains. 
We used two different measurements of model performance. The first, which we call accuracy, 
is simply the proportion of individuals in a cluster for which the infector with the highest 
posterior support was in fact the true infector. For some tests, we also used the mean of the 
posterior support values for the true infector, which we call the true posterior probability.

Effect of Biomarker Information
To test the potential of improved transmission history inference using real biomarkers, we used 
a transmission tree with fixed infection times and 15 individuals, mean temporal spacing of 0.5 
years, and transmission heterogeneity of about 1.24, generating 100 different transmission 
histories per tree with different sets of sampling times for each history. For each individual in 
each history, the time between infection and sampling is determined by independent Gamma 
distributed random variables with mean 2 years and standard deviation 1.5 years. Sequences 
were generated for each phylogeny using both the env and pol mutation parameters. We 
simulated biomarker values for all of the infection ages at the time of sampling, then ran the 
multiple biomarker model to infer the infection time distributions. In order to assess the effect 
of the amount of biomarker information, we ran transmission history inference with the 
infection age distributions using 2, 3, or 5 biomarkers as well as infection age distributions 
representing no or uninformative biomarkers and near perfect infection age information that 
effectively provided fixed infection times. In the no biomarker case, the infection age 
distribution was a continuous uniform distribution with minimum 0 and maximum 11 years. In 
the fixed infection time case we used a Gamma distribution with mean equal to the true 
infection age and standard deviation equal to 0.005 years. 

Effects of Transmission Cluster Attributes
To test the effect of various attributes of the transmission cluster itself, one variable at a time, 
we investigated 1) the number of individuals, ranging from 5 to 50, 2) the temporal spacing, 
ranging from 0.01 years to 2.5 years, and 3) the transmission heterogeneity, ranging from 0 to 
3.74 (the maximum possible for 15 individual clusters). While each attribute was varied, the 
other attributes were held constant, with the non-variable values at 15 individuals, temporal 
spacing of 0.5 years, and transmission heterogeneity around 1 (between 0.8 and 1.2). Both the 
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env and pol mutation models were used for each history. In all trials, we used simulated 
infection age distributions using all five biomarkers. We used two subsets of trials, one with 
more realistic HIV values and one corresponding to an idealized situation. For the realistic 
values, we again used 𝛼 = 5 and 𝛽 = 5 for the within-host model, two years between infection 
and sampling, and independent biomarkers for each individual in a given transmission cluster. 
For the idealized situation, we used 𝛼 = 0 and 𝛽 = 0.1 (resulting in a short pre-transmission 
interval [12, 18] where the phylogeny closely resembles the transmission tree), one year 
between infection and sampling, and fixed biomarkers for all individuals. 

We also tested how different attributes of the transmission clusters may interact with each 
other, possibly affecting the difficulty of inference. To do this, we simulated histories with all 
combinations of different values for each attribute. These simulated clusters had 10, 15, 20, or 
40 individuals, temporal spacing of 0.1, 0.5, 1, or 2 years, transmission heterogeneity near 0, 
0.5, 1, 1.7, 2.3, or 3, with both substitution models (env and pol) and all five levels of biomarker 
information used with each cluster.

Effect of Multiple Sequences per Individual
To test whether additional sequence data per patient can help counteract the inference 
problems inherent with wide transmission bottlenecks, we simulated 200 transmission histories 
with 3 individuals with temporal spacing of 0.5 years, including both the serial infection case 
and the case where the first individual infects the other two. We simulated phylogenies on each 
transmission history with 4 sampled sequences per individual taken two years after the time of 
infection, and 𝛼 = 5, 𝛽 = 5. Next, we generated subsampled phylogenies, keeping only 1 
sequence per individual for each tree. Finally, inference was performed on both the full and 
subsampled datasets using 1×106

 iterations of MCMC after 4×104
 iterations of burn-in, with 

some runs concluding sooner if the target ESS is reached early.

Effect of Incomplete Sampling of Transmission Clusters
To assess the impact of violating the assumption of complete sampling, we ran the inference 
method on both complete and incomplete simulated transmission histories. We used four 
different basic transmission histories with the amount of transmission heterogeneity varying 
from none to moderately high, with the infectors, infection times, and sampling times fixed 
within each of the four trees, while the phylogenies and sequences for each replicate were 
generated independently. The phylogenies were generated using the coalescent simulation 
with two different values of 𝛼, corresponding to wide (𝛼 =  5) and complete (𝛼 =  0) 
transmission bottlenecks, while 𝛽 remained at 5. In each case, transmission history inference 
was performed on both the complete transmission history as well as that same transmission 
history with the data from the individual that infected the most other individuals removed (in 
the no transmission heterogeneity case, the sixth individual is removed). In both cases, there 
was no penalty for transmission after diagnosis. Accuracy is defined as before except that in the 
incomplete sampling case, we considered the inference to be “accurate” when the true 
infector’s infector is chosen when the true infector is not sampled. In addition to the overall 
accuracy, we also looked at the accuracy of the individuals whose true infector is not sampled 
on their own. 
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Real HIV Transmission Cluster Data
We demonstrate the application of the inference method on data from 4 real transmission 
clusters involving 4-14 patients in the larger Swedish HIV epidemic that are believed to be at 
least close to fully sampled [17, 38, 39]. These data included sequence data from pol drug 
resistance testing, biomarkers BED, CD4, and pol polymorphisms, as well as first positive test 
dates for all patients, and some patients had a previous negative test date. 

We first used the MBM to infer the distributions of the infection times for all individuals. The 
previous negative tests were accounted for by assuming that individuals could not have been 
infected more than two months before the most recent negative test, then scaled the prior 
distribution between earliest possible infection time and the diagnosis date, taking into account 
that patients without regularly scheduled tests are typically infected closer to the first positive 
test than the last negative test [28]. With the numeric distributions for the infection times, we 
used biophybreak with 2×106 MCMC iterations (5×104 iterations of burn-in) on each 
transmission cluster. 

RESULTS

An improved multi-biomarker model for estimation of HIV-1 time of transmission
Using the 30-patient training data, we modeled five biomarkers as linear-asymptotic trends for 
BED and LAg, and linear for pol polymorphism count, pol NGS diversity, and CD4 cell count (Fig 
2). The biomarkers were combined into a mixed effects modeling framework to allow for 
patient specific variation and general trends. As expected, a shorter time between infection and 
sampling typically resulted in a posterior distribution with lower standard deviations, and 
longer time between infection and sampling resulted in more uncertainty about the time of 
infection.

Including all five biomarkers, we were able to substantially improve the performance over the 
previous 3-biomarker model (pol polymorphisms + CD4 + BED) used in Giardina et al [21], with 
more than 2-fold reductions in mean bias, mean absolute error (MAE), and root mean square 
error (RMSE) when comparing the medians of the inferred distributions in a cross-validation to 
the true values (Table 1). We also evaluated the performance of our modified 3-biomarker 
model (pol polymorphisms + CD4 + BED) as well as a 2-biomarker model (pol polymorphisms + 
CD4), which is of practical interest because pol polymorphism count and CD4 cell counts almost 
always exist in HIV-1 clinical databases. Our new 2- and 3-biomarker models also improved over 
the previous 3-biomarker model. 

Table 1. Biomarker model performance
Model Mean Bias MAE RMSE
3 Biomarkers, 2019 -0.68 1.01 1.38
5 Biomarkers, 2021 -0.19 0.33 0.47
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3 Biomarkers, 2021 -0.23 0.43 0.58
2 Biomarkers, 2021 -0.36 0.49 0.70

Table Footnote: All values are in years relative to actual time of infection. The 2019 model is 
from Giardina et al [21], shown for comparison; the 2021 models are those developed in this 
study. 5 biomarkers = BED, LAg, pol polymorphisms, pol NGS diversity, and CD4 cell count; 3 
biomarkers = BED, pol polymorphisms, and CD4 cell count; 2 biomarkers = pol polymorphisms 
and CD4 cell count. 

Biomarker information significantly improves transmission reconstruction
To investigate the accuracy of adding different numbers of biomarkers to a coalescent-based 
transmission model, we investigated 1,000 simulations with varying times between infection 
and sampling, and sampling different, possible phylogenies on a fixed transmission tree with 
moderate values for transmission heterogeneity and temporal spacing (Fig 3). In these 
simulations we used only one sequence per host as that is the standard in clinical and public 
health databases. Note, however, that our phylogenetic framework models within-host 
diversity, which can be seen in the reconstructions involving multiple transmitted lineages and 
super-spreader activity. 

Adding real biomarker information about time of infection significantly improves the accuracy 
in reconstructing transmission histories (Fig 4). We compared adding 2, 3, or 5 biomarkers, as 
well as fixed infection times, to phylogenetic information only from HIV-1 transmissions in a 
coalescent-based modeling system. This is a non-trivial problem because virus phylogenies from 
epidemiologically linked patients cannot be assumed to be identical to the transmission history 
among the patients [12, 17]. Here, we investigated the overall expected probability to infer the 
correct donor in each transmission among 15 patients. While the use of sequence data and 
phylogenetic reconstruction is much better than a random guess at 1/N, increasing from 6.7% 
expected accuracy to 30% with no biomarkers, we improved the transmission history inference 
over the phylogeny alone by on average 12 percentage points using the broadly available 2 
biomarkers pol polymorphisms and CD4 cell counts (p < 1×10-9, Wilcoxon signed rank test with 
Bonferroni multiple testing correction). Adding the 3-biomarker model improved the accuracy 
by >13 percentage points (p < 4×10-10) and adding all 5 biomarkers by 16 percentage points (p < 
4×10-12). We investigated the theoretical limit of using biomarker data to our transmission 
history inference by adding effectively fixed infection times, which reached on average a 29 
percentage point accuracy improvement over the phylogeny alone. All improvements in 
accuracy were achieved by an increase in the model posterior prediction score (Fig S1).

Overall, the env gene performed somewhat better than pol in the combined biomarker-
phylogenetic inference of the transmission history. Part of the explanation likely lies in the fact 
that env evolves faster, thus accumulating more information about genealogical relationships, 
making the phylogenetic component more robust as previously shown [40, 41].  

Shorter temporal spacing and increased transmission heterogeneity reduce reconstruction 
accuracy, but larger clusters are not harder to get right

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472340


Heterogeneity in the number of transmitted lineages (phylogenetically separate virus variants), 
time between infection and onward transmission, time between infection and sampling, and in 
the number of onward infections a host causes (transmission degree) are all known to occur in 
real transmission histories. Therefore, using 5 biomarkers, we modeled all of these factors, as 
well as different sizes of transmission clusters, and assess their effects on the accuracy of 
transmission history inference. These scenarios cover a wide range of fully sampled, possible, 
realistic HIV-1 transmission histories (Fig 3).

Under realistic HIV-1 evolutionary within-host parameters (𝛼 = 5, 𝛽 = 5), where about half of 
transmissions result in >1 transmitted lineage and within-host diversification is substantial [30], 
transmission history inference is expected to be quite challenging. For comparison, if only single 
lineages were transmitted and within-host diversification was very limited (𝛼 = 0, 𝛽 = 0.1), the 
overall accuracy reaches about 90% when infections were not close in time and transmission 
degree was 1 or less (Fig 5A). With realistic HIV-1 parameters, the overall accuracy was about 
50% (Fig 5B). 

The shorter the temporal spacing of transmission events, the harder it was to infer the correct 
transmission history. Although biomarkers improved the reconstruction accuracy even at very 
short temporal spacing of only a few days, raising the accuracy over a random guess at 1/N, 
meaningful accuracy started when the temporal spacing was above a few months. This is 
because biomarker posterior distributions will greatly overlap when times between 
transmission are short, making it difficult to order the events in time. With short times between 
many infections, there was also little time to accumulate mutations that would inform the 
phylogenetic reconstruction. 

Higher degrees of transmission heterogeneity, like in panel 4 in Fig 3, on average also lead to 
more difficult transmission history inference. At degree levels above 2.5, the average accuracy 
decreased from about 50% to 25%. Compared to the overall performances and limits in Fig 4, 
this reduction was as severe as not having any biomarkers, and clearly constitutes a very 
difficult to resolve epidemiological situation. The most difficult cases were those where there 
were short temporal spacing and high transmission heterogeneity. Thus, super-spreader activity 
can cause particularly difficult to reconstruct epidemiological scenarios where biomarkers may 
not always help to resolve the transmission history.

Most combinations of attributes showed only small amounts of interaction effects. The most 
notable exception was the temporal spacing and biomarker information level, which had a 
combined effect on the quality of inference when marginalizing over the other three variables 
(Fig S2). With short temporal spacing, the biomarker information offered only small 
improvements. Having near perfect information about the infection times (the fixed infection 
time case), however, would allow a very large improvement. As the temporal spacing increases, 
the improvement with better biomarker information increased as well, while also approaching 
the fixed infection time case. This is because as the temporal spacing increases, the infection 
time distributions become more separated, allowing greater certainty about the infection 
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order. In this way, longer temporal spacing helps both in terms of making the phylogeny more 
informative and helping the biomarkers to allow more separation.

Promisingly, transmission histories involving more hosts were on average not harder to 
reconstruct at fixed levels of transmission heterogeneity and temporal spacing (Fig 5). This is 
encouraging for real-time applications that follow the growth of a public health database 
because it cannot be known beforehand how many persons that eventually will be part of a 
transmission cluster. Also encouraging was that env and pol performed similar in these 
simulations, as public health databases typically store pol, but not env, sequences from drug 
resistance testing. 

Additional sequences from hosts improve overall transmission reconstruction
Beyond simply having more data, the conceptual motivation for using >1 sequence/host is that 
it should increase the chance that the sampled lineages from a recipient will coalesce with at 
least one of the sampled lineages from the donor rather than earlier in the transmission history 
(Fig S3). Although the computational burden increased when adding more sequence data per 
infected host, the accuracy in the transmission history reconstruction did indeed improve. 
Using 4 sequences instead of 1 sequence per host in 3-person transmission histories showed a 
7.4 percentage point (12.2%) improvement in accuracy (on average 0.073 posterior probability 
(14.9%) improvement; p < 2.5×10-7, Wilcoxon signed rank test) (Fig S4). While encouraging for 
future analyses with richer sequence data, further development of computational efficiency will 
be needed to exploit this enhancement. 

The overall accuracy is not significantly affected by incomplete sampling
While the “first” person’s donor will always be missing, and recipients that have not infected 
anybody may also be irrelevant to the transmission-history-reconstruction-problem, the 
problem of missing intermediary links is always a possibility. Thus, in real-life situations it is 
never known if the sample is complete or not, i.e., one cannot be sure that all relevant donors 
have been sampled. Therefore, we investigated the situation when an intermediary donor was 
missing in transmission histories with 10 hosts, using trees with four levels of transmission 
heterogeneity (Fig S5). When missing, we defined accurate donor identification as the missing 
donor’s donor. 

The differences in accuracy between the completely and incompletely sampled transmission 
histories were in general relatively small (Fig 6). In terms of the overall accuracy of the 
inference, the absolute difference in mean accuracy between the completely and incompletely 
sampled transmission clusters was less than 2.6 percentage points for any combination of 
bottleneck size and transmission heterogeneity (all raw p-values > 0.05, Wilcoxon signed-rank 
tests). 

Focusing on the accuracy of assigning the donor to the recipients infected by the unsampled 
donor, naturally, was the most challenging. Three out of the eight combinations of bottleneck 
size and transmission heterogeneity showed moderate drops in accuracy, as well as significant 
p-values while the other five had only small and insignificant differences. The three situations 
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with moderate differences were the low and high transmission heterogeneity cases with 
complete bottlenecks and the high transmission heterogeneity case with the wide bottleneck, 
with the differences in accuracy at 20.0, 11.2, and 8.4 percentage points, respectively (raw p-
values at 0.002, 0.015, and 0.046, Wilcoxon signed-rank test).

Although there were some cases where the accuracy of inference for individuals infected by an 
unsampled individual was lower, since most differences are small and the overall accuracy 
remained at the same level, these results demonstrate that it is appropriate to apply this 
method even when the assumption of fully sampled transmission clusters is violated.

Application to real transmission clusters
To assess transmission history reconstruction using real data, we applied our method to four 
transmission clusters from the general Swedish HIV-1 epidemic [17, 38, 39]. The data included 
direct population pol gene sequences [25], determined as part of clinical drug resistance 
testing, BED and CD4 T cell counts, occasionally previous negative tests, and date of sampling. 
The sequence data was used for phylogenetic inference as well as a biomarker of within-host 
divergence (pol polymorphisms). Fig 7 shows an inferred chain of four sampled hosts infecting 
each other serially (Fig 7A) and a more complex transmission history involving 13 sampled hosts 
that included super-spreading (Fig 7B). When longer time from infection to transmission 
occured and the biomarker density was narrow, the posterior support for donor assignment 
was high, e.g., the donor of P.85.1480 is assigned to P.85.1368 at 0.99 posterior support, who 
transmitted (at least) two HIV-1 lineages (Fig 7A). Conversely, when there were short time 
intervals between transmissions and biomarker densities overlap, transmission reconstruction 
became more difficult, e.g., the donor of P.85.1173 was more evenly attributed to 3 out of 4 
sampled hosts in the corresponding transmission cluster (Fig 7A), and, similarly, assigning a 
donor to P.24.323 was less certain in the larger cluster (Fig 7B). Because phylogeny, biomarkers, 
and sampling times interact in non-trivial ways, however, relatively large posterior probabilities 
may be assigned to one donor over many others, e.g., in the transmission to P.24.859, P.24.909 
was significantly more likely to be the donor than any other sampled donor in that cluster (Fig 
7B). Fig S6 shows two additional transmission clusters with transmission heterogeneity (degrees 
1 and 1.5), overlapping biomarkers, and both short overall time (6 transmissions in <1 year) and 
longer time (8 transmissions over 8 years). These clusters provide further examples of real 
situations where some donor assignments were easier and others harder. 

DISCUSSION

In this study we have developed a biomarker-enhanced phylogenetic framework to allow for 
more accurate inference of pathogen transmission histories. The biomarker component used 
five real HIV-1 biomarkers from a set of untreated, longitudinally followed HIV-1 infected 
patients. Thus, our results display practical and realistic improvement of the expected accuracy 
in the inference of HIV-1 transmission histories using data that is typically available in a HIV 
surveillance system. We investigated a wide variety of transmission scenarios, including 
heterogeneity in the number of transmitted lineages, in the time between infection and 
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onward transmission, in the time between infection and sampling, in the number of onward 
infections a host causes, and among different sizes of transmission clusters. Overall, we show 
that adding biomarkers to the transmission history inference substantially improved accuracy in 
all the considered scenarios. 

Compared to previous phylodynamic methods that infer transmission history and direction [4-7, 
10], our method includes real biomarker-informed time of transmission and allows for wide 
transmission bottlenecks. Kenah et al previously showed that if the relative order of 
transmissions is known, transmission history inference should improve [20]. Here, we show that 
real HIV biomarkers approach this ideal situation, where using more biomarkers is better than 
fewer, but it is unlikely that we will ever find biomarkers that can resolve all situations. 
Likewise, factors such as within-host diversity of the virus, the fact that HIV transmission largely 
is a random draw of a few variants [17], transmission often involves >1 phylogenetic lineage 
[30], and that within-host evolution involves lineage death and birth [12, 42, 43], together put 
theoretical limits on how accurately we can infer the underlying transmission history from a 
phylogeny. 

While our biomarker-enhanced phylogenetic method generally improved transmission history 
inference, one should not expect such a method to reach 100% accuracy. Here, we show that 
even if the biomarkers could provide perfect transmission times, having realistic levels of 
within-host virus diversity induces substantial uncertainty that limits the average possible 
performance to 40-87% accuracy (95% posterior probability interval) assuming moderate 
temporal spacing and transmission heterogeneity. There are also certain situations that are 
particularly difficult to accurately reconstruct. When transmission histories involve large 
transmission heterogeneity, typically when super-spreader activity has occurred, it becomes 
difficult to reconstruct all transmission events accurately. This is in part because each time the 
super-spreader transmits, a random draw of variants is transmitted and thus the phylogenetic 
ordering of coalescences typically does not follow the transmission order [12, 17]. Furthermore, 
two hosts infected close in time to each other may receive more similar virus than is later 
sampled in the donor, and thus may appear to be linked to each other rather than to the donor. 
This complication is compounded when many transmissions happened over a short time. It is 
possible that prior identification of super-spreader activity can identify when and where in a 
phylogeny these problems exist [44]. 

Another uncertainty is related to the fact that we never have a perfect sample from an ongoing 
epidemic, meaning that, at any time, we have not yet sampled every actual or soon to be 
donor. This is highlighted by the fact that many populations still are far from the WHO/UNAIDS 
90-90-90 goal [45, 46], and even in nations where that goal has been reached it takes on 
average 2 years to detect most infections [47]. However, we show that our biomarker 
enhanced phylogenetic framework can handle missing links quite well, typically identifying a 
missing donor’s donor as the source of the transmission. Also, note that missing individuals that 
have not infected anyone else leave no trace in a phylogeny. Therefore, a missing link refers to 
any unsampled person ancestral to the set of sampled persons. While the existence of missing 
individuals who have not infected any sampled individuals is certainly a concern from a public 
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health perspective, this is not something that can be determined from the available sequence 
or biomarker data without making substantial assumptions about the expected number of new 
individuals infected per host. 

Phylogenetic reconstruction of transmission histories is a powerful and scientifically sound 
method because it is objective, can evaluate alternative hypotheses, and, as we show here, can 
be augmented with additional data. Because HIV infection still causes stigma and legal risks in 
some jurisdictions, however, both research and public health projects that use such 
methodology must be ethically justified on the basis of providing public health benefits [48, 49]. 
Here, we show that phylogenetic methods can be made more accurate by adding biomarker 
data on time of infection. Accuracy is important because it allows public health resources to be 
directed to where they are needed most, and thus will have the largest reduction in disease 
spread [50]. Again, we emphasize that it can never reach 100% certainty, typically much less, 
yet the levels we can reach with the proposed methodology should make public health efforts 
more efficient.  

Improved HIV surveillance, source attribution, and outbreak response depends on advances in 
HIV prevention, diagnosis, and continuous treatment. Application and further development of 
the technology presented here could allow for better prevention programs focusing on locally 
informed and tailored strategies. 
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FIGURE LEGENDS

Fig 1: Conceptual Model Motivation
The level of information available for inference (top row) limits the possible transmissions 
between hosts (colored boxes). The bottom two rows show examples of inferred transmission 
histories given the different levels of information, with transmissions indicated by dashed 
vertical lines, and phylogenetic trees. The left side of each colored box in the phylogeny 
represents the time of infection, and the horizontal lines are the lineages present in each 
individual over the course of the outbreak, forming the phylogeny. Biomarkers are shown as 
probability densities of time of infection of each host. With all information levels available, 
transmission history inference becomes more constrained and thus improved. 
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Fig 2: HIV Biomarker time trends
Time series plots for each of the five biomarkers used in our modeling for a group of 30 patients 
(colored lines). The best fit line for the fixed part of our mixed effects model is shown for each 
biomarker (bold black lines). The bottom right panel shows examples of the inferred 
distributions of infection age using biomarker values from a recently infected patient, a patient 
who has been infected somewhat longer, and a longer-term infected patient.

Fig 3: Example Transmission Histories
Four different possible transmission histories and phylogenies. As in Fig 1, each host is indicated 
by a colored box and transmissions are indicated by dashed vertical lines. Because transmission 
after diagnosis is not prohibited in these examples, it is possible that the right side of the box 
for some individuals to extend beyond the sampling time, in which case the right side of the box 
is the time of the last transmission and the sampling time is the point of termination of a 
lineage in the interior of the box. Note also that although we only sample one lineage here, the 
model takes within-host diversity into account, and thus can infer which lineage(s) within the 
host’s diversity that was transmitted. The Top Left Panel shows a transmission history with 
moderate temporal spacing (0.5 years) and transmission heterogeneity (near 1). The Top Right 
Panel shows a transmission history with moderate transmission heterogeneity (near 1) and 
short temporal spacing (0.1 years). The Bottom Left Panel shows a transmission history with no 
transmission heterogeneity, leading to a straight transmission chain. The Bottom Right Panel 
shows a transmission history with high transmission heterogeneity involving a super-spreader 
(P.1).

Fig 4: Transmission Inference Improvement with Biomarker Information
Violins show the full distribution of accuracy on simulated data for each level of biomarker 
information and mutation model (genomic region), with the point and line segment in each 
violin representing the mean and 95% bootstrapped interval for the estimate of the mean. The 
gray shaded area in the background represents the region between effectively no information 
about infection times and effectively fixed infection times, with the information level attainable 
with biomarkers falling between these two extremes. The improvement is shown with an arrow 
in percentage points (pp) and p value estimated by a Wilcoxon signed rank test with Bonferroni 
multiple testing correction. 

Fig 5: Individual Transmission Cluster Attribute Effects
Each point represents the accuracy of inference on a single transmission history, with the solid 
lines being the loess lines for each mutation model (env or pol genomic regions). (A) The top 
row shows simulation results from idealized situations with complete transmission bottlenecks, 
low within host diversity, one year between infection and sampling, and fixed biomarkers. (B) 
The bottom row shows results from simulations with realistic HIV parameters in terms of 
transmission bottleneck size variation and within host diversity, two years between infection 
and sampling, and independent biomarkers. 

Fig 6: The Effect of Incomplete Sampling
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Violins show the distribution of means of the posterior probability for true infectors (donors), 
or the true infectors’ infectors if the true infector is unsampled, with the point and line segment 
in each violin representing the mean and 95% bootstrapped interval for the estimate of the 
mean. (Top Row) Overall model performance. (Bottom Row) Model performance for the 
individuals infected by the unsampled individual.

Fig 7: Transmission History Inference on Real HIV Transmission Clusters
Examples of a smaller, simple transmission history (A) and a larger, complex transmission 
history (B) from the Swedish HIV epidemic. The Top Panel in each transmission cluster shows 
the inferred maximum parent credibility tree. The Middle Panel shows the distributions of 
infection times inferred from biomarker values for each individual, using our 3-biomarker 
model applied to data that existed in a public health database. The Bottom Panel shows 
posterior support for each individual to be the donor for each individual, with each colored 
square on the x-axis representing one individual and the height of the colored bars represent 
the posterior support for the corresponding individual to be their infector.

Fig S1 Relationship Between Accuracy and True Posterior Probability
Accuracy and mean true posterior probability values for each of the 1000 trials used while 
testing the effect of biomarker information shown with the 𝑦 = 𝑥 line for comparison. Note 
that since all trials are on clusters with 15 individuals, the accuracy for each trial can only be 
one of sixteen possible values, while the means of the true posterior probability are effectively 
continuous.

Fig S2: Combined Transmission Cluster Attribute Effects
Violins show the distribution of accuracy for each level of biomarker information for each 
amount of temporal spacing, with the point and line segment in each violin representing the 
mean and 95% bootstrapped interval for the estimate of the mean.

Fig S3: Conceptual Motivation for Additional Sequences per Individual
(Top) A transmission history with 4 sampled sequences per individual. (Bottom) The same 
history subsampled to 1 sequence per individual.

Fig S4: Inference with Multiple Sequences
Violins show the distribution of mean true posterior support for 4 and 1 sequence(s) per 
individual for each mutation model, with the point and line segment in each violin representing 
the mean and 95% bootstrapped interval for the estimate of the mean.

Fig S5: Transmission Histories used in Incomplete Sampling Tests
We test the effect of an unsampled individual with four different levels of transmission 
heterogeneity. The 6th individual is removed in the cases of no and low transmission 
heterogeneity, the 5th individual is removed in the case of moderate transmission 
heterogeneity, and the 3rd individual is removed in the case of high transmission heterogeneity.

Fig S6: Additional Real Transmission Clusters
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(Top) Inferred maximum parent credibility trees for each transmission cluster. (Middle) 
Distributions of infection times inferred from biomarker values for each individual. (Bottom) 
Posterior support for each individual to be the donor for each individual, with the height of the 
colored bars represent the posterior support for the corresponding individual to be their 
infector.
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