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Abstract

Fatty infiltration in pancreas leading to steatosis is a major risk factor in pancreas

transplantation. Hematoxylin and eosin (H and E) is one of the common histological staining

techniques that provides information on the tissue cytoarchitecture. Adipose (fat) cells

accumulation in pancreas has been shown to impact beta cell survival, its endocrine function and

pancreatic steatosis and can cause non-alcoholic fatty pancreas disease (NAFPD). The current

automated tools (E.g. Adiposoft) available for fat analysis are suited for white adipose tissue

which is homogeneous and easier to segment unlike heterogeneous tissues such as pancreas

where fat cells continue to play critical physiopathological functions. The currently, available

pancreas segmentation tool focuses on endocrine islet segmentation based on cell nuclei

detection for diagnosis of pancretic cancer. In the current study, we present a fat quantifying

tool, Fatquant, which identifies fat cells in heterogeneous H and E tissue sections with reference

to diameter of fat cell. Using histological images of pancreas from a publicly available database,

we observed an intersection over union of 0.797 to 0.966 for manual versus fatquant based

machine analysis.

Keywords

Adipose or fat cells, Hematoxylin and Eosin, image processing, tissue segmentation, pancreas,

liver

Author Summary

We have developed an automated tool, Fatquant, for identification of fat cells based on its

diameter in complex hematoxylin and eosin tissue sections such as pancreas which can aid the

pathologist for diagnosis of fatty pancreas and related metabolic conditions. Fatquant is unique

as current fat automated tools (adiposoft, adipocount) works well for homogeneous white
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adipose tissue but not for other tissue samples. The currently available pancreas analysis tool are

mostly suited for segmentation of endocrine -cell based on cell nuclei detection, extracting

colour features and cannot estimate fat cell infiltration in pancreas.

Graphical Abstract

Currently available fat quantification tools like adiposoft can analyze homogenous adipose tissue

(left) with intersection over union (IoU) of 0.935 and 0.954 with adiposoft and fatquant,

respectively. While in heterogenous tissue (e.g. pancreas on right) which contains adipose (fat

cells), acinar cells, adiposoft fails to detect fat cells  with IoU=0 while fatquant had IoU=0.797.

1. Introduction

The accumulation of fats especially in the abdominal area causes insulin resistance leading to

deposition of fats (steatosis) in the pancreas, inflammation and finally fibrosis leading to non-

alcoholic fatty pancreatic disease (NAFPD). Accumulation of pancreatic fat may lead to

pancreatitis, diabetes mellitus or pancreatic cancer (Paul and Shihaz 2020). Pancreatic steatosis

can be diagnosed on ultrasound, computed tomography (CT) scan or magnetic resonance

imaging (MRI) but pancreatic biopsy remains best method to detect pancreatic fat concentration

(Tariq et al 2016, Paul and Shihaz 2020). The consequence of pancreatic fat infiltration might

provoke a decrease in endocrine (β‐cell) number and function, leading to more rapid progression

to diabetes (Yu and Wang 2017). Sudies suggest NAFPD as an early marker of glucometabolic

disturbance (Yu and Wang 2017). Pancreas transplantation is the only way to treat type 1
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diabetes (T1D) but fat infiltration in pancreas remains a risk factor that can affect the clinical

outcome (Verma and Papalois 2011, Dholakia et al 2017). Fatty pancreas has a prevalence of

35% and may be contributing factor for the malignancy and the metabolic syndrome (Lesmana et

al 2015). The histological and MRI tools exhibit good agreement in detecting fat in pancreas

(Fukui et al 2019, Virostko 2020) but the latter cannot show fat accumulation at the cellular level

and is expensive. Decrease in fat content in liver and pancreas was associated with non-diabetic

blood glucose control in people with type 2 diabetes (Taylor et al 2018).

Hematoxylin and eosin (H & E) is a widely used histological tissue staining technique for

medical diagnosis and scientific research. Hematoxylin stains cell nuclei blue while eosin stains

the cytoplasm and connective tissue pink thus allowing microscopic differentiation of tissue

cytoarchitecture in sections. The analysis involves manual examination by pathologist to

ascertain presence/absence of disease markers and or grading of disease progression which is

semi-quantitative and subjective in nature (Gurcan et al 2009).

To complement the current manual assessment, several digital tools have been developed such as 

Adiposoft (Galarraga et al 2012), and AdipoCount (Zhi et al 2018). However, they cannot

efficiently identify fat cells in complex tissues such as pancreas or liver as white adipose tissue is

generally homogeneous (Figure 1) making tissue segmentation relatively easier (Glastonbury et

al 2020). Such tool developed based on nuclear displacement and lipid droplet size analysis

exists for automated analysis of fat cell infiltration (steatosis) in H and E liver images (Nativ et al

2014). Unlike liver tissue, where fats accumulate in hepatocytes, in pancreas fat infiltration and

deposition occurs both in acinar and islet cells (Catanzaro et al 2016). The ratio of accumulated

pancreatic fat area relative to exocrine gland (acinar and duct tissue) area was significantly

increased in obese mice model (Matsuda et al 2014).

Usually, these algorithms involve splitting the image into various color channels with the red

channel binarized using automatic thresholding method to separate the bright pink fat areas from
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dark purple-bluish cell nuclei. Subsequently, a watershed algorithm is applied to fillup missing

fat cell membrane and improves cell count (Galarraga et al 2012, Zhi et al 2018). The output of

these processes includes the labels and statistical analysis of individual cells. These tools have

been successfully applied to white adipose tissue, however, other organs like liver, pancreas,

lungs have been challenging due to heterogeneous cell types (Figure 2).

Figure 1-Homogenous adipose tissue Figure 2-Heterogenous pancreatic

tissue with adipose and acinar cells

Pancreas is a heterogenous tissue and manual analysis of regions is a tedious process that lacks

reproducibility (Apaolaza et al 2021). The existing methods of pancreatic islet segmentation

depends on cell nuclei detection, then a classifier is applied to recognize different cell types but

is based on assumption that islets have high density cells (Floros et al 2009, Rechsteiner et al

2014). Recent studies have utilized a supervised learning framework for islet segmentation in H

& E stained pancreatic images to partition images into superpixels and extract color-texture

features, process them, and finally a linear support vector machine is trained and applied to

segment testing images (Huang et al 2016). Moreover, QuPath software allows identification of

endocrine islet cells in immunofluorescent images of pancreas tissue (Apaolaza et al 2021), but

these tools does not allow quantification of adipose (fat) cells in pancreatic images. In the current

study, we have developed an automated tool, Fatquant, in which the fat cells were identified in

processed images by calculating the diagonal of a square circumscribed by circle.
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2. Materials and Methods

The H and E images for the analysis were downloaded from a publicly accessible Genotype-

Tissue Expression (GTEx) Portal (Broad Institute, Cambridge, MA, USA) using the Histology

Viewer tool (Consortium 2015). The GTEx tissue image library contains high-resolution

histology images for various tissue types from several postmortem donors. Spherical or oval

white spaces were categorized as fat (adipose) cells while large and irregular white spaces were

grouped as artifacts. A sample size of ten pancreas histology images were analyzed from slide

IDs GTEX-11DXZ-0826, GTEX-1122O-0726, GTEX-1117F-1726, GTEX-117YW-0926,

GTEX-13PVQ-2026, GTEX-13FHP-1926 and GTEX-11WQC-0926. The images have

magnification of 20x (0.4942 mpp—microns per pixel) (Badea and Stanescu 2020). The sample

images were taken using the Snapshot tool of Aperio ImageScope software. The source code was

written in Python version 3.8.0 (Python Software Foundation, Beaverton, Oregon, USA) with

Core i7 3rd Generation CPU, 8 GB RAM and Intel HD graphics 4000 GPU.

2.1. Data and code availability

All the images, annotations along with relevant data code can be found at the following GitHub

repository: https://github.com/anniedhempe/Fatquant. The procedure to run this tool is

mentioned in the Readme file.

2.2. Image processing
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Figure 3: Flowchart depicting the image processing.

The procedure for image processing is briefly demonstrated in the flow chart shown in Figure 3.

The steps used are elaborated below.

Figure 4 Figure 5

Figure 4 is a sample raw image of dimension 1716 x 905 pixels from whole slide GTEX-

11DXZ-0826. Analysis on this image is referred while explaining the image processing steps.

Figure 5 is an altered form of the image in Figure 4 where the valid fat cells are manually tagged

with yellow color (RGB: 255, 255, 0).
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2.2.1. Binary thresholding of input image

Figure 6 Figure 7

The color of fat cells in images from GTEX portal ranges approximately between 225 to 255

grayscale values. There can also be other parts of pancreas which has the same range of color.

But applying binary threshold on an image can help in getting rid of many unwanted parts. The

pixels of an image whose color values are at least equal to the input parameter value of threshold

(e.g. 227) are taken into consideration for further processing and are assigned a new grayscale

value 255. The other pixels are assigned value 0. Figure 6 is a thresholded image of Figure 4

with parameter value 230. Figure 7 is also a thresholded image but of Figure 5 where pixels

representing the tagged fat cells are assigned grayscale value 255 and the rest is assigned value

0.

2.2.2. Segmentation of white pixels from thresholded image

White pixels are initially segmented by combining tile rendering with scanline rendering and

then identifying possible merge of segments in a tile with their immediate neighbors. Tile

rendering has been implemented in this system as it helps in reducing time complexity for

segments covering large area.

Processing time for segmentation was tested with four sizes of square tiles, which were of length

35 pixels (processing time: 24.23 seconds), 50 pixels (processing time: 15.32 seconds), 70 pixels

(processing time: 12.88 seconds) and 100 pixels (processing time: 15.37 seconds). In this

experiment, tile size of 70 pixels was used for analyzing all the images since it took the least
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amount of time.

After an input image is divided into multiple tiles, scanline rendering is performed within each

tile to identify white pixels and form possible segments with their neighbors on left or top. In this

experiment, left neighbors are given first preference. Once scanline rendering is performed till

the last row of a tile then the identified segments are merged on the basis of their vertical

neighbors. Segments which have only diagonal neighbors with another segment and not vertical,

are not merged.

Figure 8 is a diagrammatic representation of segmentation performed on a square tile of length

15 pixels. Figure 8 (a) represents a thresholded image where segmentation is to be performed.

Figure 8 (b) shows six segments created while iterating once till the last row. Figure 8 (c) shows

total segments getting reduced to four due to merging.

Figure 8 (a) Figure 8 (b) Figure 8 (c)

Figure 9 shows segments within tiles and the magnified part is one tile. Figure 10 shows fully

merged segments of the thresholded image and varying colors (non-black) in it represent

different segments.

Figure 9
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Figure 10

2.2.3. Selection and quantification of fats from white segments

The system uses image kernel to select probable valid segments. But before applying kernel, the

system determines the smallest dimension that encompasses all the segments. The kernel's

position is only updated by one pixel (horizontally or vertically) in each iteration so determining

the smallest dimension for traversal reduces the time complexity. This dimension is determined

by identifying positions of first white pixels in thresholded image from every direction (i.e. top,

bottom left and right). These four positions denote maximum coverage of segments in each

direction. Figure 11 is a diagrammatic representation of the method discussed where the Red

colored rectangle represents smallest dimension.

Figure 11

The system uses a square shaped kernel which is supposed to fit inside the boundaries of valid

segments. The side length of that square is determined by input fat diameter values (minimum or

maximum) as these diameters equates to diagonal of that square. Side length of a square, can be

calculated as:

s =d divided by square root of 2.
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, where s = square side length; d = diameter. This square can be assumed as the largest square

that can get inscribed in a circle of given diameter. An elliptical kernel may be a more precise

choice for identifying fats but since square kernel is easier to handle so it has been chosen.

The system refers to a minimum diameter value to select segments where a square kernel having

side length as per this diameter can fit somewhere in their regions. Then the system refers to a

maximum diameter value to discard segments from the selected list where a kernel having side

length as per this diameter can fit somewhere in their regions. This means a segment which has

narrow areas in many of its portions, but has very wide area in one of its portion can also get

discarded if a square kernel as per the maximum diameter can fit in that portion. Figure 12 is a

diagrammatic representation of this process performed on an image of dimension 15 x 15 pixels.

Figure 12 (a) has seven segments with White colored pixels out of which valid segments are to

be selected. Figure 12 (b) has three segments marked with Cyan color which denotes segments

getting selected as per minimum diameter. The kernel size is of length 3 pixels. So, four

segments do not get selected as the square kernel fails to fit inside the boundary of any of these

segments. Figure 12 (c) has only two segments marked with Cyan color which denotes selected

segment getting discarded as per maximum diameter. Here the kernel size is of length 4 pixels.

So, a segment which can fit a kernel of length greater than 4 pixels is to be discarded. The

previously selected segment which gets discarded could fit a kernel of length 5 pixels. Figures 13

(a) and (b) are outputs generated from the sample image with minimum (27 pixels) and

maximum (130 pixels) diameter respectively. The identified fats are marked with Cyan color

(RGB: 0, 255, 255).
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Figure 12 (a) Figure 12 (b) Figure 12 (c)

Figure 13 (a) Figure 13 (b)

2.2.4. Removal of fats from boundary

Segments which are identified as fats but also contain pixels from boundary are discarded

because their entire size is not known within the dimension of input image (Figure 14). While

comparing Figure 14 with Figure 13 (b), it can be seen that some segments which contain pixels

from bottom boundary gets discarded.

Some of these segments may even get discarded while selecting segments as per diameter. E.g.

in Figure 13 (b), one big segment which has pixels in boundary gets discarded after considering

maximum diameter area, whereas the segment is present in Figure 13 (a).

Figure 14: Fat cell removed from peripheral boundary.
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Removing fats from boundaries is the final step for tagging fats using machine. If users do not

have manual tagged data of fat cells then they can conclude the experiment after this step.

2.2.5. Analysis of valid fats

The machine tagged fat segments are compared with manually tagged fat segments to check the

validity of our image analysis algorithm. If machine and manually tagged segments have pixels

in common then, those pixels are considered as valid. The accuracy of the output is calculated in

terms of Intersection over Union (IoU). The formula is:

, where TP = True Positive; FP = False Positive; FN = False Negative. TP is the intersection of

machine and manually tagged pixels, FP are the pixels which are tagged by machine but do not

become part of the intersection (i.e. Machine Tagged Area - TP) and FN are the pixels which are

manually tagged but do not become part of the intersection (i.e. Manual Tagged Area - TP).

Figure 15

Figure 15 is the output generated after comparing machine and manual tagged fats. The Light

Green colored pixels (RGB: 127, 255, 127) represents TP, Cyan color represents FN and Yellow

color represents FP. Machine tagged, manual tagged and TP areas are 130,816, 111,300 and

110,429 pixels respectively. Hence as per the parameters used while demonstrating the steps, the

IoU value is 0.838 but it can increase if parameters are changed or a better manual tagged image

is referred.

3. Results
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Fat cell identification on ten sample images of dimension 1716 x 905 pixels was performed using

Adiposoft and Fatquant tools. The outputs are shown below.

Figure 16 (a)-Raw image Figure 16 (b)-Tagged image

Figure 16 (c)-Adiposoft Figure 16 (d)-Fatquant

Figure 17 (a)- Raw image Figure 17 (b)- Tagged image

Figure 17 (c)- Adiposoft Figure 17 (d)-Fatquant
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Figure 18 (a)- Raw image Figure 18 (b)- Tagged image

Figure 18 (c)- Adiposoft Figure 18 (d)-Fatquant

Figure 19 (a)- Raw image Figure 19 (b)- Tagged image

Figure 19 (c)- Adiposoft Figure 19 (d)-Fatquant
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Figure 20 (a)- Raw image Figure 20 (b)- Tagged image

Figure 20 (c)- Adiposoft Figure 20 (d)-Fatquant

Figure 21 (a)- Raw image Figure 21 (b)- Tagged image

Figure 21 (c)- Adiposoft Figure 21 (d)-Fatquant
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Figure 22 (a)- Raw image Figure 22 (b)- Tagged image

Figure 22 (c)- Adiposoft Figure 22 (d)-Fatquant

Figure 23 (a)- Raw image Figure 23 (b)- Tagged image

Figure 23 (c)- Adiposoft Figure 23 (d)-Fatquant
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Figure 24 (a)- Raw image Figure 24 (b)- Tagged image

Figure 24 (c)- Adiposoft Figure 24 (d)-Fatquant

Figure 25 (a)- Raw image Figure 25 (b)- Tagged image

Figure 25 (c)- Adiposoft Figure 25 (d)-Fatquant

Table 1: Parameters used by tools in Figures 16 – 25

Fig-

ures

Sam-

ples

GTEx

slide ID

Adiposoft Fatquant

Mi-

crons

per

Min.

diame-

ter

Max.

diame-

ter

Thresh-

old value

Min.

diameter

Max.

diameter
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pixel

16 1 11DXZ-

0826

0.4942 20 135 230 27 130

17 2 1122O-0

726

0.4942 25 500 228 25 500

18 3 1117F-1

726

0.4942 22 500 228 29 500

19 4 1117F-1

726

0.4942 20 180 233 24 150

20 5 117YW-

0926

0.4942 20 280 231 24 250

21 6 117YW-

0926

0.4942 22 280 229 27 250

22 7 13PVQ-

2026

0.4942 22 250 226 29 200

23 8 13FHP-1

926

0.4942 40 300 228 40 250

24 9 13FHP-1

926

0.4942 22 550 228 22 500

25 10 11WQC-

0926

0.4942 14 200 231 14 200

Table 2: Calculation of accuracy on pancreas sample images

Samples Tool TP (in

pixels)

FP (in pixels) FN (in

pixels)

IoU
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1 Fatquant 110429 20387 871 0.838

Adiposoft 0 0 111300 0

2 Fatquant 81041 5597 468 0.930

Adiposoft 46769 60732 34740 0.329

3 Fatquant 591209 49758 11326 0.906

Adiposoft 571949 14599 30586 0.927

4 Fatquant 72793 13053 5455 0.797

Adiposoft 0 3245 78248 0

5 Fatquant 899818 35098 8576 0.954

Adiposoft 851499 2285 56895 0.935

6 Fatquant 195357 5405 3457 0.957

Adiposoft 0 6674 198814 0

7 Fatquant 81834 146 5830 0.932

Adiposoft 2065 14838 85599 0.020

8 Fatquant 91516 1106 2498 0.962

Adiposoft 0 0 94014 0

9 Fatquant 192031 2780 4020 0.966

Adiposoft 0 15468 196051 0

10 Fatquant 219816 13070 8254 0.912

Adiposoft 134342 64357 93728 0.459

Table 3: Fatquant parameters for liver sample images

Samples Threshold value Min. diameter Max. diameter

000 205 50 150

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.12.13.472341doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472341
http://creativecommons.org/licenses/by/4.0/


21

010 205 28 220

036 211 34 150

058 210 45 200

090 207 40 140

116 207 45 200

120 207 40 200

196 216 40 200

212 203 35 300

319 212 32 100

335 220 31 150

385 218 23 220

421 215 20 130

440 215 30 150

498 208 38 180

515 212 34 220

555 215 42 220

596 215 36 180

610 213 22 180

723 212 32 150

The threshold value, minimum and maximum diameter were chosen to get an optimal output.

Table 4: Calculation of accuracy using Fatquant on liver sample images

Samples TP (in pixels) FP (in pixels) FN (in pixels) IoU

000 27496 5223 97 0.838

010 66999 10834 2419 0.835
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036 21561 3940 129 0.841

058 39343 5233 91 0.881

090 61281 8386 510 0.873

116 50354 9816 607 0.828

120 65042 10587 94 0.859

196 119188 9727 2547 0.907

212 62885 12752 298 0.828

319 20594 6103 511 0.757

335 45856 10862 1614 0.786

385 56330 9776 1268 0.836

421 73060 12052 326 0.855

440 28788 4726 677 0.842

498 63565 12067 1301 0.826

515 96819 12566 1514 0.873

555 69386 12856 1222 0.831

596 21020 4502 528 0.807

610 52206 10069 1852 0.814

723 12971 3286 436 0.777

Additionally, we analyzed liver images (Roy et al 2020) using our fatquant tool with IoU of

0.757 to 0.907 indicating wide applicability of our tool

Image (a) in Figures 16 – 25 are the raw sample images; (b) are manual fat tagged images; (c)

and (d) are outputs from Adiposoft and Fatquant respectively. The parameter values of Adiposoft

and Fatquant (mentioned in Table 1) are not exactly same because the default threshold or edge

detection values used by Adiposoft are unknown to users. Hence for analysis, values have been
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chosen as per optimal output. Pixels being part of fat in (b) are marked with yellow color

whereas pixels identified as fat in (c) and (d) are marked with cyan color.

From the outputs it can be noted that Adiposoft only shows decent output when adipocytes cover

maximum area of a sample image (e.g. Figures 18 and 20). In a heterogeneous sample image this

tool can tag many non-fat areas as valid fats (e.g. Figures 21, 22 and 24). Moreover, it can even

fail to identify presence of any fat in an image (e.g. Figures 16 and 23). Hence, Fatquant

performs better in the scenarios shown. The tagging of fat cells shown in (b) images are done by

the authors and not collected from any laboratory. Ground truth data of the slides used was not

officially made available by the source.

Figure 26 (a)-sample Figure 26 (b)-tagged Figure 26 (c)-Fatquant

Figure 27 (a)-sample Figure 27 (b)-tagged Figure 27 (c)-Fatquant

Figure 28 (a)-sample Figure 28

(b)-tagged

Figure 28 (c)-Fatquant
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Figure 29 (a)-sample Figure 29 (b)-tagged Figure 29 (c)-Fatquant

Figure 30 (a)-sample Figure 30 (b)-tagged Figure 30

(c)-Fatquant

Figure 31 (a)-sample Figure 31 (b)-tagged Figure 31

(c)-Fatquant

Table 5: Accuracy of machine annotation by Fatquant in Figures 26 – 31

Fig-

ures

GTEx

slide ID

Thresh-

old value

Min.

diameter

Max.

diameter

TP (in

pixels)

FP (in

pixels)

FN (in

pixels)

IoU

26 117YW

-0926

229 20 180 17640 118 102 0.987

27 1117F-1 227 30 200 19321 269 15 0.985
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726

28 117YW

-0926

228 20 200 26095 115 334 0.983

29 111VG-

0926

227 35 100 5692 1312 326 0.776

30 117YW

-0926

236 15 220 18178 499 7042 0.707

31 117YW

-0926

231 10 200 16441 484 7623 0.670

Image (a) in Figures 26 – 31 are the sample images; (b) represents manual tagged and (c)

represents machine tagged areas using Fatquant of images in (a). As per the data mentioned in

Table 5 it can be noted that fat cells available in Figures 26 – 28 are easy to get tagged by this

tool, hence IoU value increases. Whereas the tool does not detect fat cell properly when cell

boundaries are not clearly delineated as seen in Figures 29 – 31, hence IoU value decreases. So

validity analysis performed on sample images with many fat cells similar to that of Figures 26 –

28 will likely show higher accuracy. Manual tagged data shown in (b) images are not collected

from any laboratory website and are rather created by the authors. So, there can be some

variation in ground truth data of these images created by any other source. In the GitHub

repository mentioned, sample images used in Figures 16 – 25 and Figures 26 – 31 are available

in ‘Test_samples’ and ‘Small_samples’ directories respectively.

4. Discussion

Pancreatic fat accumulation has been associated with obesity, impaired b-cell function and may

be an early sign in the development of metabolic syndrome (Dite et al 2020, Sequeira et al 2022,
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Rugivarodom et al 2022). Pancreas is a heterogenous tissue and current tools for fat cell analysis

such as Adiposoft (Galarraga et al 2012), AdipoCount (Zhi et al 2018) are unable to analyze fat

cell infiltration in pancreas. Current automated pancreas tool are largely restricted to

segmentation of the endocrine islet fractions of pancreas and are based on cell nulcei

identification, extracting colour features mostly for pancreatic cancer detection (Huang et al

2016, Vu et al 2019, Yang et al 2021). There are other deep learning based methods for pancreas

segmentation but again this are largely restricted to cancer diagnosis (Huang et al 2021) but

cannot analyze fatty cell infiltration.

We have developed a tool, Fatquant, to identify fat cells in heterogeneous histological tissue

sections that can complement work of pathologist in identification and analysis of fat cells due to

their growing importance in pathophysiological functions and with the availability of whole slide

digitized images it can save significant amount of time. Based on our analysis, Adiposoft shows

decent output when adipocytes cover maximum area of a sample image and label non-fat areas

as valid fat cells in heterogenous tissue sample images. In absence of ground truth images, we

manually annotated fat cells in different pancreas sample images and then compared the output

accuracy using IoU with Fatquant tool annotated results. We observed an IoU of 0.797 to 0.966

exhibiting high degree of similarity between manual versus Fatquant annotation. Our fatquant

tool works well for both homogenous adipose tissue and varied heterogenous tissues like

pancreas, liver suggesting diverse applicability of the tool for analysis of fat cells.
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