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Abstract: General anesthetics work through a variety of molecular mechanisms while 19 

resulting in the common end point of sedation and loss of consciousness. Generally, the 20 

administration of common inhalation anesthetics induces decreases in synaptic excitation 21 

while promoting synaptic inhibition. Animal studies have shown that, during anesthesia, 22 

exogenously induced increases in acetylcholine-mediated effects in the brain can elicit 23 

wakeful-like behavior despite the continued presence of the anesthetic. Less investigated, 24 

however, is the question of whether the brain’s electrophysiological activity is also 25 

restored to pre-anesthetic levels and quality by such interventions.  Here we apply a 26 

computational model of a network composed of excitatory and inhibitory neurons to 27 

simulate the network effects of changes in synaptic inhibition and excitation due to 28 

anesthesia and its reversal by muscarinic receptor-mediated cholinergic effects.  We use 29 

a differential evolution algorithm to fit model parameters to match measures of spiking 30 

activity, neuronal connectivity, and network dynamics recorded in the visual cortex of 31 

rodents during anesthesia with desflurane in vivo. We find that facilitating muscarinic 32 

receptor effects of acetylcholine on top of anesthetic-induced synaptic changes predicts 33 

reversal of the neurons’ spiking activity, functional connectivity, as well as pairwise and 34 

population interactions. Thus, our model results predict a possible neuronal mechanism 35 

for the induced reversal of the effects of anesthesia on post synaptic potentials, consistent 36 

with experimental behavioral observations. 37 

 38 

 39 

 40 
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 42 

Author Summary 43 

Here, we apply a computational model of a network composed of excitatory and inhibitory 44 

neurons to simulate the network effects of changes in synaptic inhibition and excitation 45 

due to anesthesia and we investigate the possibility of its reversal by muscarinic receptor-46 

mediated cholinergic effects.  Specifically, we use a differential evolution algorithm to fit 47 

model parameters to match dynamics recorded in the visual cortex of rodents during 48 

anesthesia with desflurane in vivo. We find that changes of the fitted synaptic parameters 49 

in response to the increasing desflurane concentration matched those established by 50 

neurophysiology. Further, our results demonstrate that the cellular effects induced by 51 

anesthesia can be mitigated by the changes in cellular excitability due to acetylcholine. 52 

 53 

Introduction  54 

Anesthesia is a pharmacological procedure that is used extensively in the medical 55 

profession.  The goal of anesthesia is typically to suppress the patient’s conscious 56 

awareness, stress and pain associated with surgery. Several putative mechanisms have 57 

been proposed as to how anesthetic agents induce loss of awareness or consciousness, 58 

however the variety of effects of different anesthetic agents within the central nervous 59 

system make this an active area of study. Experimental studies implicate the brainstem, 60 

thalamus, and cortex as regions where neuronal activity is heavily modified by general 61 

anesthesia [1,2]. However, the primary target region likely depends on the type of 62 

anesthetic [3].  At the single cell level, common inhalational anesthetics facilitate inhibitory 63 
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transmission and suppress excitatory synaptic transmission [4,5]. However, the extent of 64 

effects on specific synaptic receptors varies across different anesthetics (Fig 1).  65 

 66 

Despite such differences in direct effects of different anesthetic agents, an underlying 67 

implicit hypothesis exists that there is an anesthetic agent-invariant mechanism that 68 

accounts for their final effect, the loss of awareness or consciousness.  Proposed neural 69 

correlates of anesthetic action include modulation of neuronal excitability, increased 70 

network synchrony [6], disrupted brain functional connectivity and deficits in information 71 

integration [7,8]. Integrated Information Theory is one of the leading theories of 72 

consciousness providing a general framework for how attention and awareness can be 73 

attributed to transfer and processing of information within a system [9]. Supporting this 74 

view, experimental studies have shown that information theoretic metrics of brain activity 75 

are reduced during anesthesia associated with suppressed behavioral signs of 76 

consciousness [10]. 77 

 78 

In order to understand the causal mechanisms of anesthetic action, additional 79 

experimental manipulations have been performed to modulate the state of 80 

consciousness. For example, pharmacological, electrical, and optogenetic stimulation of 81 

various brain regions have been performed to counter or reverse the unconscious state 82 

in humans and animals under the continued presence of anesthetic [11–14]. Many of 83 

these investigations utilized nicotinic [15] or muscarinic [16] cholinergic interventions. 84 

Recently, reverse dialysis delivery of the acetylcholine agonist carbachol was used to 85 

successfully reverse the effect of sevoflurane in rats in vivo [17]. Similar effects were 86 
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observed in vitro when bathing cortical slices with cholinergic and noradrenergic agonists 87 

led to a reversal of slow wave oscillations induced by anesthesia [18]. These studies have 88 

shown that various behavioral expressions of the conscious state can be restored by 89 

exogenous interventions that aim to counter the pharmacological effect of anesthetics. 90 

Less investigated, however, is the question of whether the brain’s electrophysiological 91 

activity, particularly in cortical areas that are chiefly responsible for conscious 92 

representations, are also restored to pre-anesthetic levels and quality by such 93 

interventions.  In other words, how do cortical neuronal activity patterns compare before 94 

anesthesia, during anesthesia and after conscious-like behavior is restored by exogenous 95 

stimulation while still in the presence of the anesthetic? 96 

 97 

In the absence of such experimental measurements to date, computer simulations of 98 

anesthetic effects on activity in neuronal network models present a useful and promising 99 

approach. Here we embarked on such an investigation. In this study, we analyzed how 100 

single-cell synaptic effects of anesthetics translate into mesoscale changes in population 101 

dynamics that have been recorded in the visual cortex. We additionally investigated how 102 

these changes may be reversed by cholinergic activation. To do this we simulated an 103 

excitatory-inhibitory (E-I) neuron network consisting of biophysical model neurons with 104 

glutamatergic, GABAergic and cholinergic inputs to model the effects of desflurane, a 105 

common inhalation anesthetic, by varying the effect of excitatory and inhibitory 106 

neurotransmitters in a manner consistent with experimentally observed effects of 107 

desflurane at the synaptic level. To fit the model to experimentally obtained measures of 108 

in vivo visual cortex network firing activity at different concentrations of desflurane, we 109 
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applied a differential evolution algorithm to optimize parameters modulating the effect of 110 

neurotransmitter binding at different receptors. Specifically, we quantified the graded, 111 

concentration-dependent effect of simulated anesthetic on neuronal firing rate 112 

distributions, phase coherence, monosynaptic spike transmission, network functional 113 

connectivity, and information theoretic measures of neuronal interactions, and fit these 114 

measures to corresponding experimentally measured quantities in the rodent visual 115 

cortex in vivo. We then used the model to simulate the presumed effect of cholinergic 116 

activation, without changing parameters for the simulated anesthetic-induced synaptic 117 

alterations, to see if these measures were reversible to near pre-anesthetic levels. Our 118 

model results provide insight into the mechanisms by which distinct neurotransmitter 119 

systems shape network behavior under the combined influence of complex 120 

pharmacological interventions that may affect the state of consciousness.   121 

 122 

 123 
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 124 

Fig 1. Common inhalation anesthetics have similar effects on synaptic 125 
receptors.  Experimental findings show similar effects across inhalation anesthetics on 126 
synaptic receptors [19,20]. Binding to inhibitory GABAA receptors is commonly 127 
potentiated while NMDA receptor activity is commonly inhibited with the magnitude of 128 
effect varying between anesthetics. Activation of muscarinic acetylcholine receptors and 129 
AMPA receptors is inhibited by isoflurane and sevoflurane while desflurane has a biphasic 130 
effect and null effect on muscarinic acetylcholine and AMPA receptors, respectively.  131 
 132 

Results 133 

We constructed a reduced, biophysical, neuron network model to investigate how 134 

synaptic-level changes, mediated by the anesthetic desflurane, affect network-level 135 

dynamics compared to data measured in the visual cortex in vivo, and, separately, how 136 

cholinergic neuromodulatory changes at the cellular level may reverse these anesthetic 137 

effects. The network consisted of excitatory and inhibitory neurons interacting via 138 

synapses mediated by excitatory AMPA and NMDA receptors and inhibitory GABAA 139 

receptors (see Methods section Fig 8). In addition, excitability of excitatory cells was 140 
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modulated by acetylcholine (ACh), implemented via the ACh-dependent slow, 141 

hyperpolarizing K+ M-current.  142 

 143 

We used an evolutionary algorithm (see Methods section, Fig 11) to identify optimal 144 

synaptic connectivity parameter sets (Table 1/Table 2) that most closely match multiple 145 

quantitative measures of network activity recorded under different desflurane 146 

concentrations. This allowed us to objectively find two sets of parameter modifications 147 

that fit model results to the experimental data. Namely, in one set of optimized 148 

parameters, we allowed the algorithm to optimize the inhibitory GABAA connectivity 149 

strength and excitatory NMDA connectivity strength while keeping AMPA connectivity 150 

strength constant as simulated anesthetic concentration was increased (Table 1/Table 2, 151 

A-Series). In the second set, in addition to varying the above parameters, we allowed 152 

cholinergic effects to vary with simulated anesthetic concentration (Table 1/Table 2, B-153 

Series). The optimization was based on fitting measures of network frequency, mean 154 

phase coherence, and information theoretic measures of integration and complexity, and 155 

the parameter sets were validated using measures of synaptic connection probability and 156 

strength, as well as network functional connectivity (see Methods section, Fig 7). 157 

Optimizations were conducted separately for each anesthetic level, i.e., parameter values 158 

A1/B1 were optimized to data recorded for 0% desflurane concentration, A2/B2 for 2% 159 

desflurane, A3/B3 for 4% desflurane and A4/B4 for 6% desflurane. 160 

In each optimization run we kept the network structure fixed. Particularly, when optimizing 161 

across the A-series/B-series we maintained a single network to guarantee that the cost 162 

or loss function monotonically decreased across generations. To check for robustness, 163 
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we optimized parameters for 10 independent network realizations. For each network 164 

optimization, the initial pool of parameters seeding the search was kept the same. Table 165 

1 reports mean and standard error of obtained parameter values of the 10 optimization 166 

runs. Table 2, on the other hand, represents the single optimized parameter set that was 167 

subsequently used to identify anesthetic effects on the dynamics of the network. 168 

 169 

With synaptic connectivity parameters fixed at their levels corresponding to 6% desflurane 170 

concentration, we then simulated the reversal of the anesthetic effects by increasing AÇh 171 

effects as mediated by the muscarinic receptor dependent M-type K+ current (specifically, 172 

decreasing its conductance gKs; Table 2, AR/BR-Series).  173 

 174 

The synaptic connectivity parameter values determined by the evolutionary algorithm 175 

mirrored experimentally identified effects of desflurane on excitatory and inhibitory 176 

synaptic currents (See Methods section, Fig 11). For example, in the A-series 177 

parameters, there was a decrease in the effects of NMDA receptor-mediated current while 178 

there was an increase in the effect of GABA-mediated current in response to increases 179 

in anesthesia (Table 1/Table 2). A similar trend was obtained in the B-Series with the 180 

added result that decreasing effects of acetylcholine (increasing gKs) correlated to the 181 

effects of increased anesthesia except for the change from B3 to B4. Interestingly, the 182 

optimization predicted that, in the B-Series, to offset the decrease in neuronal excitability 183 

due to decreasing ACh level (i.e., increased gKs) with anesthetic concentration, the 184 

increase in GABAA synaptic efficacy was smaller than that obtained in the A-Series, and 185 
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similarly, the NMDA synaptic efficacy was systematically higher as compared to the A-186 

Series.  187 

 188 

Fig 2 shows example raster plots comparing experimental spike timing data collected 189 

under the varying desflurane concentrations with model results for the optimized A- and 190 

B-Series parameter sets, as well as the simulated ACh-induced reversal of anesthetic 191 

effects.  The model raster plots show similar qualitative trends for increasing simulated 192 

anesthetic concentration as the experimental data, specifically spiking patterns change 193 

from asynchronous with higher spiking frequencies at simulated 0% desflurane 194 

concentration (A1/B1) to a lower frequency, more synchronized firing pattern for 195 

simulated 6% desflurane concentration (A4/B4). Furthermore, the simulated ACh reversal 196 

(AR1/BR1 – AR4/BR4) reverses those trends. 197 

 198 

In the following sections, we analyze how specific characteristics and measures of 199 

network dynamics, including frequency distributions and profiles, mean phase coherence, 200 

information theoretic measures, and excitatory/inhibitory connectivity probability, 201 

computed for the experimental data for progressively increased desflurane levels are 202 

reproduced in the optimized model networks. These measures were then computed for 203 

simulated increasing levels of cholinergic modulation to analyze the recovery of network 204 

dynamics during ACh-induced reversal of anesthetic effects. 205 

 206 

 207 

 208 

 209 
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 210 
 

PNMDA PGABA PAMPA gKs   
 

 
PNMDA      PGABA  PAMPA  gKs  

                                        A-Series ( ±SEM)                                       B-Series( ±SEM) 

A1  1.69	±0.05 3.92±0.51 1.27±0.67 0.98±0.08 B1 1.69	±.0.05  3.92 ±0.51 1.27±0.67  0.98±0.08 

A2 1.41	±0.03 4.32±0.44 1.27 - 0.98 - B2  1.63	±0.07  5.51±0.33 1.27 -    1.07±0.03 

A3 1.22±0.12 8.13±1.21 1.27 - 0.98 - B3 1.47	±0.06  6.35±0.94 1.27 -    1.23±0.02 

A4 1.09±0.09 10.61±1.91 1.27 - 0.98 - B4 1.36	±0.09  8.17±1.41 1.27 -  1.17±0.06 

 211 
 212 
 213 
Table 1. Parameter optimization for simulated anesthetic concentrations when 214 
performed on 10 different network realizations. A/B-series describe optimal values 215 
determined by the differential evolution algorithm fitting network connectivity parameters 216 
obtained when repeating the optimization for 10 total networks.  Optimization includes A-217 
Series, when ACh effects are assumed constant and B-Series, when ACh effects are 218 
allowed to change with anesthetic concentration. The scaling factors Px scale the effects 219 
of synaptic conductances mediated by the x receptor (x = NMDA, GABA and AMPA). A1-220 
A4/B1-B4 denote optimal parameter sets fit to experimental recordings at varying 221 
anesthetic concentrations (0%, 2%, 4%, 6% desflurane, respectively). PAMPA is only fit for 222 
the 0% anesthetic case A1/B1. Error displayed is SEM. 223 
  224 
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 225 
 226  

PNMDA PGABA  PAMPA  gKs  
 

   PNMDA  PGABA  PAMPA   gKs  

                             A-Series                            B-Series 

A1  1.64 4.51 1.19 0.94 B1 1.64  4.51 1.19  0.94 

A2 1.46 5.63 1.19 0.94 B2  1.58  5.32 1.19  1.12 

A3 1.39 6.72 1.19 0.94 B3 1.44  5.81 1.19  1.24 

A4 1.26 7.63 1.19 0.94 B4 1.34  7.51 1.19  1.21 

                A-Series Reversal         B-Series Reversal 

AR1  1.26 7.63 1.19 0.81 BR1 1.34  7.51 1.19 1.01 

AR2 1.26 7.63 1.19 0.67 BR2 1.34  7.51 1.19 0.81 

AR3 1.26 7.63 1.19 0.53 BR3 1.34  7.51 1.19 0.60 

AR4 1.26 7.63 1.19 0.40 BR4 1.34  7.51 1.19 0.40 

 227 

Table 2. Parameter values for simulated anesthetic concentrations and cholinergic 228 
reversal results. Parameters from initial fit used to simulate anesthetic effects and 229 
cholinergic reversal. A/B-series describe optimal values of initial fit determined by the 230 
differential evolution algorithm for network connectivity parameters obtained when ACh 231 
effects are assumed constant (i.e., gKs is constant; A-Series) and when ACh effects are 232 
allowed to change with anesthetic concentration (B-Series).  Px denotes scaled changes 233 
in synaptic conductance’s mediated by the x receptor (x = NMDA, GABA and AMPA) as 234 
described in Table 1. A/B-Series Reversal (AR/BR series) represent simulated anesthetic 235 
reversal, obtained by increasing ACh effects (decreasing gKs from A4/B4 levels) while 236 
keeping all other parameters constant. 237 
  238 

 239 
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 240 

Fig 2. Changes in anesthesia level lead to transitions from high frequency 241 
asynchronous to low frequency synchronous spiking patterns A) Raster plots of 242 
experimentally recorded neuronal activity in response to changes in desflurane levels. 243 
For higher concentrations of desflurane (6%), oscillatory synchronous network activity 244 
can be seen in spiking dynamics. For lower levels of anesthetic, oscillations are not 245 
apparent and asynchronous activity dominates. B) Raster plots for simulated anesthetic 246 
effects in optimized model networks for constant gKs (A series) and the simulated ACh-247 
induced reversal of anesthetic effects (A series reversal). C) Raster plots for simulated 248 
anesthetic effects in optimized networks with changing gKs (B-series) and its reversal (B 249 
series reversal). In both B) and C), simulated anesthetic reversal shows reinstatement of 250 
asynchronous from synchronous spiking patterns.  251 
 252 

 253 

 254 
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Anesthetic effects on network dynamics and their predicted ACh-induced reversal  255 

Anesthetic and reversal effects on spike frequencies 256 

We first characterized the changes in the mean neuronal spike frequency as well as the 257 

shape of the neuronal spike frequency distributions as a function of anesthetic level in the 258 

optimized model networks (Fig 3 and Fig 4A). We observed that the neurons generally 259 

fired less, in both experimental data and the simulations, as a function of anesthetic 260 

concentration. Also, the spread of neuronal firing frequencies decreased significantly with 261 

increased anesthetic level, with the loss of the right skew observed in the wake cases 262 

(0%, A1 and B1). Spike frequency decreased as a function of desflurane levels for both 263 

parameter series, (A and B series, without and with ACh changes, respectively), with a 264 

similar frequency drop, irrespective of the implemented ACh changes that affect neuronal 265 

excitability in the B series. In predicted ACh-induced reversal, the rightward skew in 266 

frequency distributions was recovered, and the B series showed stronger recovery in 267 

mean spike frequency as compared to the A series. This is because, as mentioned above, 268 

accounting for cholinergic changes on neuronal excitability under desflurane anesthesia 269 

predicts that synaptic changes are less severe. Namely, in the B series, GABAA synaptic 270 

strength was not as high, and NMDA synaptic was not as low compared to the A series.  271 

 272 
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 273 
Fig 3. Firing rate distributions for different levels of anesthetic concentration. A) 274 
Changes in experimentally recorded firing rate distributions under increasing desflurane 275 
concentration (0, 2, 4, and 6%) show increased right skewness for the awake state in 276 
comparison to anesthetic states. The bins were normalized by the total number of spikes 277 
relative to the awake case (0%). B) and C) Firing rate distributions in optimized networks 278 
for A (B) and B (C) series parameter sets. Simulated networks show similar trends in 279 
frequency distributions when compared to experiment. The predicted ACh-induced 280 
reversal shows reinstatement of the right skew. The bins were normalized by the total 281 
number of spikes relative to the awake case A1/B1. Upper/Lower bound show histogram 282 
standard deviation.  283 
 284 

 285 

Anesthetic and reversal effects on network synchrony 286 

In both experimental and simulated results, the common feature was an increase in 287 

network synchronization as a function of increased desflurane levels. Mean phase 288 

coherence (MPC) measures the consistency of the relative phase that neurons fire with 289 

respect to each other thus taking into account non-zero time lag synchrony. For both the 290 
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experimental data and the optimized network simulations, the mean phase coherence 291 

was lowest at the 0% anesthesia case and increased with increasing anesthetic 292 

concentration (Fig 4B). For higher levels of anesthesia, while the simulations and the 293 

experimental data showed increasing MPC, simulated networks exhibited a larger 294 

increase. This could be due to the fact that our model only represents local network 295 

interactions, without incorporating the existence of external inputs that could additionally 296 

desynchronize the network activity.  In the visual cortex, there are non-local network 297 

inputs possibly preventing a high level of synchronization in the locally recorded network 298 

activity.   299 

 300 

The anesthetic reversal with increased levels of ACh (i.e. decreased gKs) led to decreases 301 

in MPC indicating desynchronization in network activity. This is not suprising, as 302 

decreased M-current leads to larger differentiation in neuronal firing rate as a function of 303 

external input and changes in the phase response curves (PRCs), which also promote 304 

desynchronisation for lower gKS  [21].  305 

 306 

Anesthetic and reversal effects on network information metrics  307 

We computed the information theoretic measures network integration (I(X)) and 308 

complexity (C(X)) for both experimental data and simulated network activity. Integration 309 

I(X) is a generalization of mutual information that measures the amount of total entropy 310 

of a system that is accounted for by the interactions among its elements. I(X) is zero when 311 

system elements are statistically independent [22]. Complexity C(X), on the other hand, 312 

measures the total entropy loss due to interaction of system elements, or, equivalently, 313 
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the difference between the sum of the entropies of the individual elements and the entropy 314 

of the entire system.  C(X) is low for systems with independent elements or with highly 315 

synchronous elements. 316 

 317 

To compute the integration and complexity measures, 60 neurons were selected at 318 

random from both the experimental data and the simulated networks. The spike trains 319 

were then binned with 1ms bins to form binary activity vectors. I(X) and C(X) were 320 

computed by taking 3 random intervals of 6s, computing the measure on each set of 321 

intervals and then averaging the measure outcomes across the three sets (see Methods 322 

section for a detailed description). I(X) and C(X) displayed similar changes in both the 323 

experiment and simulations with increasing anesthetic concentration (Fig 4C,D).  Namely, 324 

both measures decreased as a function of the anesthetic level. A difference in trends 325 

between simulation results of the A and B series is evident here, with the A series 326 

exhibiting a significantly more precipitous drop in both measures with increasing 327 

anesthetic level, as compared to the B-series. This again can be explained by the 328 

differences in network connectivity parameters (i.e., NMDA and GABAA synaptic 329 

strengths) obtained for the two series. Specifically, lower NMDA synaptic efficacy and 330 

higher GABA synaptic efficacy leads to effective disconnection of the neurons in the A 331 

series networks, resulting in lower I(X) and C(X) measures. 332 

 333 

Simulated ACh-induced reversal acted to increase both these measures (Fig 4C,D; 334 

AR/BR series).  In the B series reversal, both measures recovered to values greater than 335 

the simulated waking values A1/B1. This was due to the higher NMDA and lower GABAA 336 
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synaptic efficacies that lead to significantly stronger excitatory interactions between the 337 

neurons in the B-series simulations, increasing I(X) and C(X) measures.  338 

 339 

 340 

Fig 4. Characterization of anesthetic effects on network dynamics and their 341 
simulated ACh reversal. Measures of network dynamics computed from experimental 342 
data and optimized model networks as a function of anesthetic concentration and 343 
simulated reversal level: A) Average spike rate B). Mean Phase coherence C) Complexity 344 
C(X) D) Integration I(X). A1-AR4/B1-BR4 (x-axis) denote simulated anesthetic 345 
concentration levels and reversal states obtained in optimized networks with 346 
corresponding parameters listed in Table 2. Black line denotes simulations with A-series 347 
parameter sets (gKs constant) and pink line denotes simulations with B-series parameter 348 
sets (changing gKs).  Blue line (with corresponding axis labels on the top) denotes 349 
measures computed from experimental spiking data at different desflurane 350 
concentrations. All calculations were made for 6s intervals and then averaged over 5 351 
intervals. Error bars are +/-SEM. 352 
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These four measures, average spike rate, MPC, I(X) and C(X), were used in the 353 

evolutionary algorithm to optimize the fit of synaptic parameters to the experimental data 354 

(see Methods section). In the next section, we validate our optimized networks by 355 

comparing additional measures of network connectivity with the experimental data. 356 

 357 

Anesthetic and reversal effects on Network Connectivity  358 

We estimated network excitatory and inhibitory synaptic strengths, as well as network 359 

excitatory and inhibitory connection probabilities, in the optimized networks and 360 

compared them directly to these same measures computed from the experimental data. 361 

These excitatory and inhibitory network connectivity measures were computed using 362 

cross correlogram analysis as described in the Methods section (Fig 10) and based on 363 

previous works [23].  364 

 365 

The optimized networks displayed similar decreases in the strength of excitatory network 366 

connectivity with increased levels of anesthetic as observed in the experimental data (Fig 367 

5A). Both the A-series and B-series  results followed similar trajectories, with the A-series 368 

results reporting somewhat smaller excitatory connectivity strength values. This is due to 369 

the fact that the evolutionary algorithm returned significantly lower NMDA efficacy for the 370 

A-series, compared to the B-series.    On the other hand, excitatory network connectivity 371 

probability is very similar for both parameter series as the structural connectivitiy density 372 

of excitatory synapses  is the same in all model networks (see Methods section).  373 

 374 

 375 
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 376 

 377 
 378 
Fig 5. Characterization of anesthetic effects on network connectivity and their 379 
simulated ACh reversal. Measures of network connectivity computed from experimental 380 
data and optimized model networks as a function of anesthetic concentration and 381 
simulated reversal level: A) network excitatory connectivity strength, B) network inhibitory 382 
connectivity strength, C) network excitatory connectivity probability, D) network inhibitory 383 
connectivity probability. A1-AR4/B1-BR4 (x-axis) denote simulated anesthetic 384 
concentration levels and reversal states obtained in optimized networks with 385 
corresponding parameters listed in Table 2. Blue line (with corresponding axis labels on 386 
the top) denotes measures computed from experimental data, black (pink) line denotes 387 
measures computed from A-series (B-series) network simulations. In these measures, 388 
the presence of a significant connection was determined through cross correlogram 389 
analysis as described in Methods section. Error bars of +/-SEM. 390 
 391 
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The experimental data, as well as simulation results for both the A and B series networks, 392 

showed decreases in inhibitory network connectivity strength and probability as a function 393 

of anesthetic concentration. This seems a counterintuitive result since GABAA  synaptic 394 

efficacies increase with desflurane level, and were explicitly modeled as such in our 395 

networks. However, this result may be a consequence of decreases in excitatory network 396 

synaptic strength and connectivity probability. Namely, inhibitory cells receive less 397 

excitatory drive, subsequently firing fewer spikes and, thus, limiting their effect on 398 

postsynaptic targets.   399 

 400 

Additionally,  we observed that the strength of network inhibitory connectivity in the A-401 

series networks was generally stronger than in the B-series networks. This observation 402 

agrees with the fact that the GABAA conductance is higher in the A-series parameters 403 

than in the B-series. Counterintuitively, network inhibitory connectivity probability was 404 

lower  and more variable in the A-series networks compared to the B-series networks.  405 

 406 

Effects of ACh-induced anesthetic reversal on network functional connectivity  407 

The results discussed above report trends observed for measures of average network 408 

activity, such as frequency, mean phase coherence, integration and complexity, as well 409 

as network connectivity strength and probability. And while ACh-induced reversal 410 

reinstated these network-level measures, the measures do not account for recovery of 411 

functional connectivity in the network which would contribute to information processing. 412 

In this section, we investigate how ACh reversal affects the relative frequency profile of 413 

individual neurons with respect to other neurons in the network and also look at effects of 414 
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reversal on the cellular-level functional connectivity. These measures specifically assess 415 

whether the internal dynamic structure of network activity is reinstated during the ACh 416 

reversal.  417 

 418 

To accomplish this, we first compared the firing rate of each neuron (or unit) in the 419 

experimental data and in the optimized networks at each level of anesthetic concentration 420 

to its firing rate in the waking state (Fig 6 and S1 Fig). In the figure panels, the x-axis 421 

represents firing frequency of individual cells for different anesthetic levels and the y-axis 422 

represents the firing frequency for the same cells in the non-anesthetic (0% or A1/B1) 423 

conditions. For the experimental data mutliple units can be potentially detected on a single 424 

electrode. This led to potential ambiguity in neurons assigned across anesthetic levels. 425 

To address the, neuron identity was based on firing rate in the 0% case. Namely, for units 426 

recorded on each electrode, the fastest firing units for 0% anesthesia were given the 427 

same ID as the fastest firing units in the 6% case. The results showing an overall linear 428 

relationship (Fig 6 and S1 Fig) indicates preservation of relative frequency ordering 429 

between the neurons. Deflection of the slope of the linear relationship towards vertical 430 

indicates the decrease in absolute firing frequency observed for different anesthetic 431 

levels. 432 

 433 

We observed that, generally, in both experiments and simulation results the relative 434 

frequency of the neurons was preserved, i.e. neurons that fired at higher frequencies as 435 

compared to other cells in non-anesthetic conditions retained higher firing frequencies at 436 

the different anesthetic levels, albeit absolute frequencies decreased. Conversely, 437 
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neurons that maintained lower firing frequencies (relative to other cells) in the non-438 

anesthetic state continued firing at lower relative frequencies in the anesthetic conditions. 439 

Qualitatively similar results were observed for A-series networks (Fig 6) and B-series 440 

networks (S1 Fig). 441 

 442 

Importantly, during the simulated ACh-induced reversal (AR-series in Fig 6C; BR-series 443 

in S1 Fig), the relative relationship between firing frequencies of neurons remained the 444 

same, with individual cell frequencies increasing back towards their non-anesthetic values  445 

as evidenced by the slope of the linear relationship for higher reversal states tending 446 

towards one. This result suggests that individual cells return to roughly the same firing 447 

rates during ACh-induced reversal as they exhibited in the simulated waking state. 448 

 449 

To explore detailed changes in cellular-level functional connectivity in the optimized 450 

networks, we created functional adjacency matrices from the estimated pairwise 451 

excitatory connectivity strengths at all simulated anesthetic and reversal conditions, 452 

measured via identification of the peak/trough of the spiking cross correlogram as 453 

described in the Methods section. We then calculated the cosine similarities between the 454 

created functional adjacency matrices obtained for each anesthetic and reversal level (Fig 455 

7). A cosine similarity of 1 indicates that the functional adjacency matrices are identical, 456 

whereas cosine similarity of zero indicates that they are uncorrelated. 457 
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  458 

Fig 6. Effects of anesthetic concentration and simulated ACh-induced reversal on 459 
relative profiles of neuronal firing frequency. Each panel depicts the firing frequency 460 
of each neuron in a given anesthetic/reversal state (x-axis) compared to its firing 461 
frequency in the non-anesthetic condition (0% desflurane or A1) (y-axis)  A) Units 462 
recorded in the experimental data; B,C) Neurons in A series optimized networks and 463 
reversal.  464 
 465 

 466 

 467 

 468 
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The analysis was performed on all measured excitatory connections (Fig 7B, D) 469 

independently of whether their strengths passed the significance test, and separately, 470 

considering only connections that were deemed significant (thresholded, all other 471 

connections were set to zero, Fig 7A, C). 472 

 473 

We observed that the functional adjacency matrices became less correlated with each 474 

other with increasing anesthetic levels. However, ACh reversal resulted in a significant 475 

increase in the correlation between the baseline non-anesthetic adjacency matrix (A1 or 476 

B1) and the fully reversed functional adjacency matrix (AR4 and BR4). This trend was 477 

observed when all connections were considered as well as when only significant 478 

(thresholded) connections were included, indicating that the cellular-level dynamic activity 479 

structure was largely recovered with ACh-induced reversal. 480 

 481 

In summary, our model results showed that multiple measures of network connectivity 482 

(Figs 5 and 7)  increased with ACh-induced simulated reversal suggesting that increases 483 

in cellular excitability, mediated by muscarinic effects of ACh, can reinstate network 484 

dynamics dictated by synaptic connectivity.  485 
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 486 

Fig 7.  Effects of anesthetic concentration and ACh-induced reversal on the 487 
similarity between cellular functional connectivity.   Cosine similarity was computed 488 
for every pairwise combination of cellular functional connectivity matrices obtained for 489 
different simulated anesthetic level (A, B - series) and reversal state (AR, BR -series). A-490 
D) Cosine similarities of functional connectivity matrices consisting of (A, C) only 491 
significant (as detailed in the Methods section) connections and (B, D) all connections in 492 
A- and B-series network simulations. Increased similarity between AR4 and A1 (and BR4 493 
and B1) shows reinstatement of functional connectivity that was degraded with simulated 494 
anesthetic concentrations.   495 
 496 

 497 

 498 

 499 

 500 
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Discussion 501 

The goal of this investigation was to simulate the multisynaptic effects of an anesthetic 502 

and the modulating effect of muscarinic ACh receptor activation in a neuronal network 503 

model. We first examined if excitatory and inhibitory synaptic changes typically produced 504 

by the inhalational anesthetic desflurane led to neural network behavior similar to 505 

experimentally observed neuron activity as characterized by various measures including 506 

population firing rate, phase coherence, monosynaptic spike transmission, and the 507 

information theoretic measures integration and complexity.  Second, we investigated if an 508 

exogenously induced increase in the level of ACh acting on muscarinic receptors could 509 

reverse the effect of the anesthetic as suggested by prior behavioral experiments. 510 

 511 

Simulation of the anesthetic effect 512 

We simulated the effect of anesthetic desflurane on the neuronal network by reducing the 513 

response of excitatory synapses and facilitating that of inhibitory synapses. General 514 

anesthetics commonly potentiate GABAergic synaptic receptor transmission through 515 

modification of inhibitory post synaptic potential (IPSP) amplitude and duration, as well 516 

as through inhibition of glutamatergic receptor excitatory post synaptic potential (EPSP) 517 

amplitude and duration. The relative strength of these effects depends on the class of 518 

anesthetic [4,20].  Desflurane inhibits binding at NMDA receptors while potentiating 519 

postsynaptic inhibition at GABAA receptors. Some anesthetics, but not desflurane, also 520 

suppress AMPA receptors. The effect of anesthetics on nicotinic and muscarinic 521 

receptors is more diverse.  Some anesthetics also modify the activity of cholinergic 522 

neurons projecting to the cortex [17]. Regarding its electrophysiological effects, 523 
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desflurane has been shown to decrease average spike rate, excitatory and inhibitory 524 

monosynaptic transmission, and population measures of neuronal interactions in the 525 

cortex [8,24]. These changes in neuronal activity observed in vivo have not been directly 526 

linked to the corresponding synaptic effects observed in vitro. 527 

 528 

In our study we found that potentiation of inhibitory GABAergic and inhibition of excitatory 529 

glutamatergic NMDA synaptic receptors do indeed lead to graded decreases in 530 

population activity and increases in synchronization, as quantified by firing rate and mean 531 

phase coherence, as well as measured decreases in integration and complexity.  532 

Additionally, we were able to recover changes in functional network connectivity which 533 

matched changes seen in literature [25,26]. The simulation results were robust; although 534 

some of the measures (frequency, MPC, I(X) and C(X)) were used for optimization of 535 

model parameters via the differential evolution algorithm, the results held for a wide range 536 

of non-fitted measures within physiologically reasonable limits. Moreover, the parameter 537 

fits obtained for increasing levels of anesthetic matched in their relative magnitudes to the 538 

reported anesthetic induced changes in synaptic efficacy. 539 

  540 

Understanding the mechanism of anesthesia through computational modeling 541 

The cellular mechanism of anesthetic action with respect to loss of awareness has been 542 

a subject of intense investigation. Computational models are actively used to make 543 

progress in this area of research. Because differing classes of anesthetics elicit different 544 

effects on synaptic receptor subtypes, many modeling approaches aim to determine how 545 

nuanced changes in receptor binding and synaptic activity lead to changes in neural or 546 
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electroencephalographic activity.  For example, in mean field models, GABAergic and 547 

glutamatergic synaptic changes are attributed to a single parameter that maps to different 548 

concentrations of general anesthesia [27]. Other modelling approaches seek to 549 

understand the mechanism of specific anesthetic agents; for example, the effects of 550 

propofol have been studied through the modeling of both GABAA and GABAB 551 

amplitude/duration and the effects on cortical synchrony and EEG rhythms [18,28]. 552 

Enflurane and isoflurane are other commonly modeled anesthetics where the roles of 553 

both glutamatergic receptor binding and GABAergic effects are taken into consideration 554 

[28–30]. Anesthetic action effected through post synaptic potential (PSP) changes, from 555 

a modelling perspective, is a relativity robust explanation supported by its effectiveness 556 

across modelling paradigms. These include “mean field” models as well as networks of 557 

“integrate and fire”,  “Izhikevich “and “HH” neurons, which all show reduced activity and 558 

changes to population synchrony when modeling anesthetic effects on synaptic receptors 559 

[30–32]. 560 

 561 

Our study is distinguished from former computational models of anesthetic effects by the 562 

independent consideration of the effects on NMDAR and GABAR through PSP changes, 563 

as well as of cholinergic influence through changes in the muscarinic M-current. We also 564 

used a more biologically realistic log-normal distribution for synaptic weights [33].  565 

Because we had access to experimental spike data, we were able to directly fit our model 566 

to empirical data at graded levels of anesthesia and then test our hypothesis regarding 567 

cholinergic anesthesia reversal. 568 

 569 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472343doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472343
http://creativecommons.org/licenses/by/4.0/


 570 

Anesthetic effects on spike synchrony  571 

A common brain signature of general anesthesia is the loss of global functional 572 

connectivity between specialized regions of the cortex while local populations show 573 

increases in neural synchrony [25,34,35].  Cellular and network mechanisms leading to 574 

neural synchrony have been studied extensively in the field of computational 575 

neuroscience [36–38]. A  set of possible network wide mechanisms are the  PING 576 

(pyramidal interneuron network gamma) class of mechanisms, where stable, 577 

synchronous activity patterns emerge when inhibition periodically shuts down excitation 578 

in the network [39–43]. The propensity of neural network synchrony can also depend on 579 

intrinsic cellular excitability properties, an example being changes from Type 1 to Type 2 580 

membrane excitability. Type 1 and Type 2 neural excitability describe the well-581 

characterized differences in spike generation dynamics that can occur generally between 582 

different types of neurons, and can occur in the same neuron under different 583 

pharmacological conditions, such as changing ACh levels. Type 2 dynamics originate 584 

from increased competition between depolarizing and hyperpolarizing currents as 585 

compared to Type 1 [44]. These differences exemplify themselves in the onset and 586 

steepness of firing frequency-input (i-f) curves and the shape of phase response curves 587 

(PRCs) which in turn determine synchronizability of the networks.  Neurons exhibiting 588 

Type 1 excitability respond more rapidly with higher firing frequency changes to changing 589 

stimulus magnitude as compared to Type 2 cells,  and also decreased propensity to 590 

synchronize stemming from the shape of their PRC curves [21,45,46]. 591 

 592 
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Thus, as also discussed below, ACh can play a double edged role in affecting network 593 

synchrony. On one hand, decreasing levels of ACh during increased anesthesia levels 594 

can promote synchrony, as it has been shown that activation of the K+ M-current 595 

mediates the transition from Type 1 to Type 2 membrane excitability [43], while on the 596 

other hand, the increase of ACh-mediated effects during reversal can offset the 597 

decreasing synaptic efficacies with higher cellular responses (increasing steepness of i-f 598 

curve).  In our modelling results on ACh mediated reversal, we show that we can evoke 599 

a transition between high frequency asynchronous population behavior to low frequency 600 

synchronous activity via both mechanisms: by potentiation of IPSP and inhibition of 601 

EPSP, and ACh-mediated modulation of cell excitability. This demonstrates that it is 602 

possible for the population synchronization observed in response to anesthesia to 603 

develop in response to changes in psp alone or to concurrently active cellular 604 

mechanisms.  605 

 606 

Predicting anesthesia reversal by ACh 607 

Prior experimental studies demonstrated that the behavioral expression of the anesthetic 608 

state can be reversed by stimulating the cholinergic system of the brain by various means 609 

in vivo and in vitro in both humans and animals [15,17,18,47]. To date, no modelling study 610 

has attempted to simulate the reversal of neuronal effects of anesthesia by modulating 611 

the interaction between cholinergic and other synaptic effects. In this work we 612 

demonstrated that ACh acting via blocking the muscarinic slow potassium current can 613 

reverse the general anesthetic effect on spiking dynamics and population activity, via 614 

mechanisms described above. Specifically, we showed that decreasing the influence of 615 
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the M-current under simulated anesthesia leads to an increase in firing rate and neural 616 

interaction measures, showing a population wide reversal of anesthesia-induced synaptic 617 

changes. This finding suggests a possible cellular mechanism for the induced reversal of 618 

anesthesia effects on PSPs consistent with experimental studies [11,16]. 619 

  620 

To simulate the overall effect of elevated ACh in the network, we chose to alter the 621 

muscarinic receptor-mediated pathway.  The role of muscarinic ACh receptors in affecting 622 

the state of the animal depends largely on the type of general anesthetic used. Desflurane 623 

exerts a nonlinear effect on muscarinic ACh receptor activation in a concentration-624 

dependent manner [7]. We also showed that the addition of decreasing acetylcholine 625 

influence via the muscarinic pathway during anesthesia (B series) leads to similar reversal 626 

endpoints to those with altering NMDA and GABA synaptic changes alone (A series).  627 

The choice to model changes in anesthetic ACh influence (B series) in addition to synaptic 628 

changes alone (A series) was made to generalize the effects of common inhalational 629 

anesthestics which can affect both the cholinergic as well as the glutamatergic and 630 

GABAergic pathways (Fig 1). By considering solely the effect of changes on IPSPs via 631 

GABAR and EPSPs through NMDAR we show that not only can changes in population 632 

activity (firing rate, synchronization and entropy), be accomplished without changes in 633 

cholinergic influence but that increasing cholinergic influence alone can reverse these 634 

effects. This demonstrates that cortical cholinergic presence has the potential to mitigate 635 

the general effects of inhalational anesthesia. In many cases, however, such as for the 636 

effects of desflurane, inhalational anesthesia can affect muscarinic and nicotinic ACh 637 

receptor binding and for this reason we decided to model the cooperative effects from 638 
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changes in synaptic EPSP/IPSP and cellular excitability changes via the M-current. In the 639 

case of cholinergic reversal, however, this confounded the role of ACh, as the changes 640 

in ACh due to anesthesia could be argued to be trivially reversed in the reversal states.   641 

 642 

In this study, we used measures of synaptic functional connectivity, computed from 643 

average pairwise correlations of neuron spiking, to quantify changes in overall network 644 

behavior in both anesthesia and reversal conditions. We showed that the cosine similarity 645 

in the functional connectivity matrix increased for the full reversal state when compared 646 

to the high anesthetic state. This means that specific neuron to neuron functional 647 

connectivity was highly correlated between the awake and reversal states but not the 648 

anesthesia states.  This suggests that the functional topology of a network can be 649 

reversed through a different receptor pathway than is used to achieve the state of 650 

anesthesia.  Likewise, the population measures of integration and complexity were 651 

increased by the cholinergic decrease in M-current. In fact, prior experimental studies 652 

showed that muscarinic receptor activation could reverse isoflurane-induced changes in 653 

electroencephalogram cross entropy [16]– a quantity related to brain functional 654 

complexity presumed to be associated with the conscious state [16,48]. 655 

 656 

In the past, anesthesia reversal has been achieved by a variety of drugs and methods of 657 

administration in experimental studies. For example, microinjection of nicotine into  the 658 

thalamus led to the recovery of the righting reflex in rodents anesthetized by sevoflurane 659 

[15], and a similar reversal from isoflurane was observed in response to microinjection of 660 

histamine into the basal forebrain [49]. Unlike general anesthesia, however, the 661 
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mechanisms for induced reversal may be specific to the type of anesthetic agent used. 662 

An example of this can be seen when comparing the effects of the GABAA antagonist, 663 

gabazine, on the effects of propofol as well as ketamine [50]. The application of gabazine 664 

led to wake-like responses when rats were sedated with propofol, which acts through 665 

potentiation of GABAA receptors, but gabazine was ineffective when used during 666 

administration of ketamine, which has been known to act through modulation of NMDA 667 

receptors. These previous studies suggest that the phenomena of induced reversal can 668 

be demonstrated in controlled rodent studies, but a similar effect has been suggested in 669 

human studies [51]. Another example is the clinical case where a patient’s use of Ritalin, 670 

a central nervous system stimulant, required an increase of general anesthetic dose for 671 

sedation [52]. In rodents, Ritalin was found to cause emergence from sedation induced 672 

by isoflurane [53]. 673 

 674 

Our results predicting cholinergic recovery of neuronal population dynamics, inter-675 

neuronal functional connectivity and complexity lends support to the evidence that the 676 

brain state altered by anesthesia is at least partially reversible. In clinical use, the effects 677 

of anesthesia can linger after the drug is no longer administered [54]. For this reason, 678 

there are both translational and phenomenological motivations to investigate induced 679 

recovery from anesthesia. Our study gives insight into the synaptic and network 680 

mechanisms by which central nervous system changes caused by anesthesia can be 681 

mitigated by the administration of a functional agonist.  682 

 683 

 684 
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 685 

Limitations and directions for future work 686 

We recognize a few limitations of this study. First, our model was based on random 687 

connectivity between E and I cells instead of on a detailed representation of a specific 688 

neural circuit. Other modeling studies included thalamocortical interactions [55,56] or a 689 

cortical macro structure aimed at understanding how a multilayer architecture can 690 

influence the effects of anesthesia-induced changes in synaptic strength [55,57–59]. We 691 

argue that, for a first approximation, a generic random model is sufficient because little is 692 

known about the identity of brain regions that are responsible for mediating the anesthetic 693 

action, particularly with respect to the suppression of consciousness. We compared our 694 

model predictions to data obtained from visual cortex, which may not be the primary site 695 

of anesthetic action to suppress consciousness. It can be argued, however, that the 696 

experimentally observed changes in neural firing rates, coherence, connectivity, 697 

complexity, and other related measures are probably sufficiently general to describe the 698 

mechanism of synaptically induced network effects we intend to understand.  Of course, 699 

to understand the full effect of anesthesia on the observed behavior of a live animal may 700 

require the modeling of additional effects in multiple brain regions including widespread 701 

cortical areas, thalamus, subcortical and brainstem arousal centers, to mention a few. 702 

Although other models of anesthetic mechanism have incorporated thalamocortical 703 

interactions [55,58], none have simulated anesthetic reversal and still fall short of 704 

modeling corresponding behavioral effects.  Additionally, general anesthetics have 705 

secondary effects on voltage-gated and ligand-gated channels, two-pore potassium 706 

channels, and other targets that were not represented in our model [4,7,20]. Inclusion of 707 
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these additional effects could provide a more nuanced simulation with potentially closer 708 

fit to experimental data. Despite the missing details, the success of our simulations 709 

suggests that our model likely captured the essential mechanistic elements of anesthetic 710 

action and its reversal. 711 

 712 

Conclusion 713 

In summary, we demonstrated that experimentally observed changes in neural activity 714 

and functional connectivity caused by desflurane could be computationally reproduced by 715 

modulating synaptic efficacy according to the known synaptic effects of the anesthetic. 716 

Additionally, we showed that by modulating the M-current alone, the effect of anesthesia 717 

on neural activity and functional connectivity in the network could be at least partially 718 

reversed. In the future, more comprehensive models that take into account cortical 719 

architecture, thalamocortical interactions and a broader array of cellular mechanisms will 720 

help to fully understand the complex roles of synaptic modulation in producing the 721 

observed neuronal network and behavioral effects of anesthesia.  722 

 723 

Methods 724 

Experimental Data 725 

Experimental results were based on the analysis of data collected in  previous studies; 726 

for an in depth description refer to the original study [60].  Briefly, rats were surgically 727 

implanted with a multishank, 64 contact microelectrode array in the visual cortex (V1).  728 

After a post-surgery recovery period, they were placed in a cylindrical anesthesia 729 

chamber for administration of inhalation anesthetic. Desflurane was applied in the 730 

sequence of 8, 6, 4, 2, and 0% inhaled concentrations for 45 to 50 min at each level. 731 
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Neural activity was recorded during the duration of the experiment and subsequently 732 

processed to extract multiunit spiking information. For this study, we analyzed unit spiking 733 

activity collected during the 0, 2, 4 and 6% desflurane exposure sessions. 734 

 735 

Neuron Modeling 736 

Excitatory and inhibitory neurons are modeled using the Hodgkin-Huxley formalism  [61] 737 

with parameters selected based on a model that emulated properties of both cortical 738 

pyramidal neurons and inhibitory interneurons [62,63]. The neuron model contained 739 

sodium, delayed rectifier potassium, slow M-Type potassium and leak currents as 740 

described in the following equations: 741 

 742 
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	 (8) 751 

𝜏D(𝑉) = 75	 (9) 752 

 753 

In the above, V is the membrane voltage while m, n, h and z represent the unitless gating 754 

variables of the ionic current conductances.  Isyn is the synaptic current input to the cell 755 

from other neurons in the network and has units of 𝜇𝐴/𝑐𝑚C. Inoise is a noise input consisting 756 

of randomly occurring brief current pulses with average frequency of 0.1 Hz, a duration 757 

of 2 ms and strength of 4 𝜇𝐴/𝑐𝑚C. This noise input was sufficiently strong to generate an 758 

action potential in the absence of any other inputs. IDC is a biasing constant current input 759 

of -0.77 𝜇𝐴/𝑐𝑚C. ENa, EK and EL are the reversal potentials for sodium, potassium, and 760 

leak currents, respectively, set to ENa = 55 mV, EK = −90 mV, EL = −60 mV.  761 

This neuron model, with the slow M-type K+ current, was developed to model the 762 

muscarinic-receptor effects of acetylcholine in cortical pyramidal neurons [44]. The 763 

properties of this neuron model when gKs = 0 mS/cm2 describe a neuron under high levels 764 

of acetylcholine while gKs = 1.5 mS/cm2 represents a low acetylcholine state.  765 
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 766 

Fig 8. Network structure is populated by lognormal distributed random connection 767 
strengths A) Synaptic strengths in model networks varied according to a lognormal 768 
distribution with a minority of connections being mediated by strong synaptic strengths, 769 
while weak synaptic strengths constitute majority of connections B) Simulated network 770 
consists of 200 inhibitory and 800 excitatory cells connected randomly with 10% 771 
probability. Connection color reflects the log of synaptic strength. C, D) Postsynaptic 772 
potential time courses in response to synaptic currents mediated by different receptors. 773 
Excitatory currents are modeled with both AMPA and NMDA mediated currents.  Bottom 774 
panel shows timing of presynaptic spikes, for simplicity both inhibitory and excitatory 775 
presynaptic neurons are shown with the same spike times. 776 
 777 

 778 

 779 

 780 
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Network Design 781 

We constructed E-I networks with 800 excitatory and 200 inhibitory neurons (Fig 8B). 782 

Neurons were connected randomly with 10% probability. Synaptic strengths followed a 783 

log normal distribution, as suggested to occur in cortical networks (Fig 8A) [33] .The 784 

distribution was defined by parameters 𝜇 = −20.0, 𝜃 = 9.4, and characterized by the 785 

equation:  786 

																																																	𝑃𝐷𝐹*,E(𝑋) =
1

𝑥𝜃√2𝜋
	P	𝑒7

(FG H7I),
CJ, 	Q																																													(10	)		 787 

 788 

 𝜇 and 𝜃 are defined such that they are the mean and standard deviation of the logarithm 789 

of x if the logarithm of x was normally distributed. This connectivity distribution was chosen 790 

such that ~0.2% of excitatory connections would elicit an action potential in a post-791 

synaptic cell in the absence of other inputs for our parameter values representing the 792 

wake state. The value of 0.2% was determined by experimental data in which cross 793 

correlogram analysis showed a 0.2%  “strong” connection probability among a local 794 

population of neurons [8].  795 

 796 

Synaptic currents mediated by AMPA, NMDA and GABAA receptors were included in the 797 

network such that excitatory synaptic currents were given by   𝐼.HK = 𝐼LMNL + 𝐼!M0L and 798 

inhibitory synaptic currents by 𝐼-+B = 𝐼OLPL. All synaptic currents were modeled with a 799 

double exponential function of the form  800 
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where X indicates the receptor type (AMPA, NMDA or GABAA), tspike is the time of the 802 

presynaptic spike and glog is the synaptic conductance drawn from the lognormal 803 

distribution. Reversal potential 𝐸H was set at −75 mV for inhibitory synapses and 0 mV for 804 

excitatory synapses.  The term go will be used to refer to 	𝐵H	𝑉?.<	𝑔FQR	.Time constants 𝜏TU 805 

and 𝜏TV governed the fast rise and slow decay of the synaptic current and were set as 806 

follows:   807 

𝑡WXYWV = 𝑡ZX[WV = 𝑡\W]W3V = 0.2	𝑚𝑠	 (12) 808 

𝑡WXYWU = 3.0	𝑚𝑠	, 𝑡ZX[WU = 	200.0	𝑚𝑠, 		𝑡\W]W3U = 5.5	𝑚𝑠	 (13) 809 

The NMDA synaptic conductance was additionally gated by the post-synaptic voltage 810 

[64,65] described by the additional pre-factor 𝐵H: 811 

𝐵WXYW = 𝐵\W]W3 = 1 (14) 812 

𝐵ZX[W(𝑉) =
1

1 + 𝑒7
5:9?
$.<=

(15) 813 

 814 

Fig 8C, D illustrates time courses of the synaptic currents. Additionally, to account for 815 

event-to-event variability, a variability pre-factor 	𝑉?.<, randomly chosen uniformly from 816 

[0.5, 1], modulated the synaptic current induced by each pre-synaptic spike.  Finally, the 817 

scaling factors 𝑃S simulated anesthetic effects on synaptic conductances. Values of 𝑃S for 818 

each receptor type were optimized to fit multiple measures of network dynamics for each 819 

level of anesthesia. Values are listed in Tables 1 and 2 that show average parameter 820 
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values for optimizations performed on ten different network realizations, and the specific 821 

parameter values used for the presented analysis of results, respectively.  822 

 823 

Measures and Metrics 824 

We use several different measures to quantify the changes between network states and 825 

dynamics under different levels of anesthesia observed in the experimental data and 826 

simulated in the neural network models. 827 

 828 

Integration and Interaction Complexity 829 

We computed the information theoretic measures Complexity C(X) and Integration I(X)  830 

to quantify changes in the entropy of the network [22]. I(X) is a generalization of mutual 831 

information that measures the amount of total entropy of a system that is accounted for 832 

by the interactions among its elements. I(X) is zero when system elements are statistically 833 

independent [22]. C(X) measures the total entropy loss due to interaction of system 834 

elements, or, equivalently, the difference between the sum of the entropies of the 835 

individual elements and the entropy of the entire system.  C(X) is low for systems with 836 

independent elements or with highly synchronous elements.  837 

To compute these measures, the total spiking activity from an experimental recording or 838 

a network simulation was partitioned into patterns by binning spike trains into 1 ms time 839 

bins and constructing vectors for each time bin containing a 1 at the neuron index if the 840 

neuron spiked within that time bin and a 0 if there was no spike (columns in Fig 9). The 841 

set X of unique vectors, representing patterns of spiking activity within a bin, that occurred 842 
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across the data set were identified. Additionally, discretized spike vectors 𝑋- , 𝑖 = 1,… ,𝑁, 843 

were constructed for each cell (rows in Fig 9).  844 

 845 

Integration was computed as  846 

𝐼(𝑋) =W𝐻(𝑋-)
!

-^9

− 𝐻(𝑋)	 (16) 847 

 848 

where 𝐻(𝑋-) = −∑ 𝑝(𝑙𝑜𝑔𝑝((  is the entropy based on the probability of a spike occurring 849 

in the 𝑖3B cell, and  𝐻(𝑋) = −∑ 𝑝_𝑙𝑜𝑔𝑝__  is the entropy based on the probability of 850 

occurrence of a spike pattern vector. 851 

Complexity was computed as  852 

𝐶(𝑋) = 𝐻(𝑋) −W𝐻(𝑋-|𝑋 − 𝑋-)
!

-^9

(17) 853 

Here,	𝐻(𝑋-) is the entropy of the spike train belonging to neuron i while 𝐻(𝑋) is the entropy 854 

of the set of spike vector for the entire interval.  𝐻(𝑋-|𝑋 − 𝑋-) is the conditional entropy 855 

where 𝑋- is the new spike vectors neglecting the ith unit and is conditioned on the spike 856 

train of the ith unit. The metric is discussed greater detail in original study [22]. 857 

    858 

 859 

 860 
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                861 

Fig 9. Binned spike patterns for complexity and integration measures.  To compute 862 
entropy metrics complexity (C(X)) and integration (I(X)), spike trains were binned in 1 ms 863 
bins. H(X) in equation (16)/(17) is computed according to unique patterns associated with 864 
column vectors (red vectors) while  H(Xi ) is the entropy associated with a single neuron 865 
spike train (blue vector).   866 
 867 

 868 

Mean Phase Coherence 869 

We computed mean phase coherence to quantify the average phase relation between 870 

spike times of pairs of neurons in experimental recordings and network simulation. The 871 

pairwise mean phase coherence is given by  872 

𝜎-,_ =			 _	
1
𝑁	`PexpP𝑖2𝜋

𝑡_,( − 𝑡-,(
𝑡-,(:9 − 𝑡-,(

	QQ

+

(^9

			_ 																									(18) 873 

 874 

 875 
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 876 

where 𝑡_,( is the time of the 𝑘3B spike of the 𝑗3B neuron and 𝑡-,(,	𝑡-:9,( are times of 877 

successive spikes of the 𝑖3B neuron. Network mean phase coherence is the average of 878 

𝜎-,_ over all pairs of neurons. 879 

 880 

For two neurons 𝑖 and 𝑗, the mean phase coherence is 1 when the spike times of neuron 881 

𝑗 always occur at the same relative phase in the cycle defined by two subsequent spikes 882 

of neuron 𝑖. Conversely, pairwise mean phase coherence is zero when spikes of neuron 883 

𝑗 occur at random phases of the neuron 𝑖 spike cycle for the entire set of neurons 𝑖 spike 884 

times, due to averaging of phases. 885 

 886 

Functional connectivity probability and strength 887 

Functional connectivity probability and strength were determined through cross 888 

correlogram analysis on spike trains [23] between pairs of neurons with minimum average 889 

spike rate of 1 Hz. Since experimental recordings contained on average ~60 eligible units, 890 

these measures for the simulated networks were computed based on spike trains of 60 891 

eligible neurons. For each pair of cells, spike trains were segmented into 40 ms intervals 892 

centered on each spike of the designated “reference” cell of the pair and discretized into 893 

1.3 ms bins. Cross-correlations of discretized segments between the “reference” and 894 

“comparison” cell for every “reference” cell spike were summed to form cross 895 

correlograms (Fig 10).  896 

 897 

 898 
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 899 

 900 

 901 

Fig 10. Cross Correlogram computes coincident spike relations by summing 902 
relative spike times of reference and comparison neurons  A-D)  Cross correlograms 903 
between example pairs of “reference” and “comparison” cells, centered at spike times of 904 
the “reference” cell, from the experimental recordings (left column) and simulated 905 
networks (right column). Significance bands were computed from a jittered data set of 906 
“comparison” cell spike times (gray line = mean of jittered data set, red line = excitatory 907 
significance, blue line = inhibitory significance, see text). A-B) Example cross 908 
correlograms showing significant excitatory connections between cell pairs. C, D) 909 
Example cross correlograms showing significant inhibitory connections between cell 910 
pairs.  911 
 912 
 913 
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Significance of correlations was determined by comparison to a constructed “jittered” 914 

dataset. The jittered data set was formed by randomly “jittering” spike times of the 915 

“comparison” cell by [-5,5] ms and then computing the cross correlogram. This was 916 

repeated by 100 times to for the jittered data set. The global confidence band for 917 

excitatory (inhibitory) connectivity was computed by taking the 97% confidence interval 918 

associated with the global peak (trough) of the jittered data set. A significant connection 919 

was determined when the peak (trough) of the original cross correlogram was greater 920 

(less) than 2 times the 97% confidence interval when measured from the mean (blue/red) 921 

[23]. 922 

 923 

Excitatory connectivity strength was determined by taking the difference in the peak 924 

height withing 0 and 5.2 ms (first four bins) and the jittered mean and dividing it by the 925 

jittered standard deviation. The inhibitory strength was computed in a similar manner by 926 

looking at the trough of the cross correlogram within 0 and 5.2 ms.  927 

 928 

Parameter Optimization 929 

Network model parameters were optimized using an evolutionary algorithm to fit 930 

measures of network frequency, mean phase coherence, integration and complexity 931 

computed from the experimental unit spiking data collected during the 0%, 2%,4% and 932 

6% desflurane exposure sessions. The optimized parameters were the synaptic 933 

conductance scaling parameters 𝑃LMNL, 𝑃!M0L, 𝑃OLPL  (A series) and, additionally to those, 934 

the maximal conductance of the M-type K+ current 𝑔%) ( B series).  The algorithm is similar 935 

to typical differential evolution procedures[66,67]. Briefly, from a population of 30 agents 936 
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(parameter sets), at each generation the 10 agents with highest cost function values were 937 

replaced with 10 new parameter sets constructed by an evolutionary algorithm described 938 

below (Fig 11A). The stopping criteria was 100 generations without change in the lowest 939 

cost function (L(X)) value across the population of 30 agents.  940 

 941 

The initial population of 30 parameter sets representing the 0% anesthetic state was 942 

chosen from the 256 parameter sets generated by assigning parameter values from the 943 

following sets: 𝑃LMNL, 𝑃!M0L ∈ {0.5, 1.0, 1.5, 2.0}	,	𝑃OLPL ∈ {2.5, 5.0, 7.5, 10.5}	 and 𝑔%) ∈944 

{0.3, 0.7, 1.1, 1.5}	𝑚𝑆/𝑐𝑚C.	 Model networks with fixed connectivity structure and synaptic 945 

strength 𝑔? values were simulated with each parameter set for 20 s and frequency, mean 946 

phase coherence, integration, and complexity measures were computed based on spiking 947 

activity excluding the initial 1s, to avoid initial transients . The cost or loss function, 𝐿(𝑋), 948 

based on these measures, 𝑥 = frequency, MPC, I(X) and C(X), compared values 949 

computed from simulations, 𝑥)-a, and experimental data, 𝑥.Hb, at 0% anesthetic state as 950 

follows: 951 

                           𝐿(𝑋) = ∑ 𝑚HH ,       𝑚H =	i
H14.7H-/5

H14.
j
C
.                       952 

The 20 lowest cost parameter sets were kept and each parameter value was randomly 953 

varied uniformly by 10% of its value to avoid duplicate values. The final 10 parameter sets 954 

were then constructed using the differential evolution algorithm.  955 

 956 

Similar to typical differential evolution procedures [66,67] we set a cross over probability 957 

CR = 0.8 and a differential weight DW = 2. From the subpopulation of 20 parameter sets, 958 

10 randomly chosen sets, 𝑎( 	(𝑘 = 1,… ,10),	 formed the basis for 10 newly created sets, 959 
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𝑒( 	(𝑘 = 1,… ,10).  For each set 𝑎(, 3 different sets 𝑏( , 𝑐( and 𝒅𝒌 were chosen that were 960 

different from 𝑎( and each other. Then, for each element 𝑖 = 1,… ,4  in the set, a random 961 

number 𝜌- from the uniform distribution [0,1] was chosen. If 𝜌- was less than CR, a new 962 

parameter value 𝑒-( was generated as 𝑒-( = 𝑏-( + 𝐷𝑊p𝑐-( − 𝑑-(q; otherwise  𝑒-( = 𝑎-(.  963 

This was done for each element in the new agent and was repeated until 10 new agents 964 

were created. After this was done the 10 new agents were simulated and then the 30 total 965 

parameters were evaluated for their cost. The 10 with the highest cost (worse fit) were 966 

then rejected and the process was repeated. 967 

 968 

We performed 2 parameter optimizations, A-Series and B-Series, to parse out potentially 969 

different effects of anesthetic modulation on synaptic conductances only (A series) and 970 

of combined modulation on synaptic conductances and cholinergic effects (B series) (Fig 971 

11 B,C). In both scenarios, populations A1/B1 were the result of optimizing 972 

𝑃LMNL, 𝑃!M0L, 𝑃OLPL, 𝑔%) to the experimental 0% anesthetic case. In the A-series, 973 

𝑃!M0L, 𝑃OLPL	were optimized while in the B-series, 𝑃!M0L, 𝑃OLPL, 𝑔%) were optimized to the 974 

2%, 4% and 6% anesthetic cases. Optimizations for the 6% anesthetic case, A4/B4, were 975 

initiated from parameter values constrained by experimental reports of 20% average 976 

decrease in NMDA-mediated synaptic signaling and 40% increase in GABA-ergic 977 

synaptic signaling under desflurane [68,69]. These initial values were randomly varied 978 

uniformly by +/- 5% to generate variability in the event of parameter convergence. In the 979 

optimizations for the 2% and 4% anesthetic cases, A2/B2 and A3/B3, respectively, the 980 

initial population for A2/B2 was A1/B1, and the initial population for A3/B3 was A4/B4.  981 

 982 
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 983 

Fig 11. Parameter search fine-tuned through Differential Evolution algorithm A) 984 
Evolutionary algorithm procedure, differential evolution, was used to optimize model 985 
parameters. For each generation, 10 agents (parameter sets) with the highest cost 986 
function from the population of 30, were chosen for replacement. Algorithm was repeated 987 
until stopping criteria of 100 generations without change in lowest cost function value 988 
across the population was met. B,C) Lowest cost function values across the parameter 989 
set populations at each generation for the A-series (B) and B-series (C) parameter 990 
optimizations. Population A1/B1, A2/B2, A3/B3 and A4/B4 were optimized to 991 
experimental data from the 0%, 2% ,4% and 6% anesthetic cases, respectively. The 992 
optimizations for A1 and B1 were identical. In the A-series (A2-A4), PNDMA, PGABA, were 993 
optimized and in the B-Series (B2-B4), PNDMA, PGABA, gKs were varied 994 
 995 
. 996 
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Simulation of ACh reversal 997 

To validate robustness of the parameter optimization, we ran our optimization for 10 998 

network realizations, keeping the network structure fixed for all anesthetic levels. The 999 

average and error (SEM) for the optimized parameters across these 10 networks is shown 1000 

in Table 1. Table 2 lists the parameter values with the lowest cost function for one of these 1001 

optimization runs that we used in our model analysis. 1002 

 1003 

Simulated cholinergic reversal (AR1-AR4/BR1-BR4) was modeled by decreasing the 1004 

value of gKs from the values in A4/B4 to 0.4 mS/cm2 such that there were 4 values in the 1005 

reversal series. 1006 

 1007 

Simulations 1008 

Custom C++ code was developed for numerical simulations which was run on the 1009 

Greatlakes High Performance Cluster. For the evolutionary algorithm each model 1010 

simulation was run for 20s. The stopping criteria was met when the lowest minimum cost 1011 

remained unchanged for 100 generations. To check the robustness of the current 1012 

parameter set, 10 additional generations were run with model simulations of 80s and an 1013 

increased crossover probability (CR=0.9). We detected no change in the minimum cost 1014 

parameter set.  For the results shown in Figs 3-5 each simulation was simulated for 1015 

150000 ms or 150 s. The length of this runtime was necessary to result in enough spike 1016 

times to calculate metrics based on cross correlograms. Results in Figs 4 and 5 are for 1017 

10 simulation runs in which network connectivity was randomized across runs but 1018 
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maintained for the different simulated anesthetic levels. In this way, each of the 10 1019 

simulation runs corresponds to a unique simulated experiment. On each run the voltage 1020 

and gating variables were subject to random initial conditions independent of the network 1021 

seed. On initialization V was uniformly varied between [-72,-32] mV, n between [0.2,0.6],  1022 

z between [0.2,0.3] and h between [0.2, 0.6] while m was initialized at 0 for all runs. The 1023 

equations were integrated using the 4th order Runge Kutta method.  1024 
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