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Abstract 

Aging is a complex process of systemic degeneration at multiple cellular and tissue 

levels that has a complex mechanism. Individuals age at different rates, and there is a 

high degree of aging heterogeneity. Therefore, it is inaccurate to judge an individual’s 

degree of aging by their chronological age. We performed transcriptome-focused 

multi-omics analyses (including transcriptomics, DNA methylation, proteomics, 

cytokine and telomere analysis, and single-cell transcriptome sequencing) on 139 

healthy individuals aged 23 to 88 years. We systematically analyzed linear and 

non-linear changes in gene expression throughout aging. Genes with similar 

expression trajectories were enriched in similar biological pathways, including the 

PI3K-AKT signaling pathway and the inflammatory response. Through DNA 

methylation detection, we found that the expression of the top genes correlated with 

age was affected by methylation in the gene promoter region. These genes had no 

significant correlation with the expression of downstream proteins, but they were 

enriched in PI3K-AKT-associated proteins. Single-cell transcriptome sequencing 

showed that the expression of these genes did not significantly change in different cell 
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subtypes, which proves that the gene expression changes were caused by internal 

age-related cellular changes rather than cell composition changes. We designed a 

transcriptome age clock and a methylation age clock using a set of 787 genes. Our 

models can accurately predict age with a mean absolute error (MAE) of 5.203 and 

3.28, respectively, which is better than previously established aging models. The 

accuracy of our model was further verified by the detection of telomeres, which can 

identify accelerated aging of individuals. 

 

Keywords: Biological age; RNA-seq; Single-cell RNA-seq; Aging; DNA 

methylation; Proteomics 

 

Aging is a biological process that gradually leads to a decline in physiological 

functions and ultimately leads to organ failure followed by death. In this process, 

individuals tend to age at different rates and in different ways. It is difficult to 

measure the degree of aging based on the time elapsed since birth, known as an 

individual’s chronological age, as this fails to represent the functional status of 

different individuals. In contrast, biological age quantified by biomarkers can provide 

an accurate indication of the aging process. Therefore, biomarkers that can predict the 

age and life expectancy of individuals is an important prerequisite for studying the 

mechanisms of aging.  

At present, an increasing number of researchers use omics methods in the fields of 

aging, including transcriptomics, metabolomics, proteomics, and epigenetics. 

Epigenetic modifications or dynamic changes to the expression products of the 

genome with advancing age are found in multiple omics models. These modifications 

and expression products can constitute an accurate dataset for predicting the age of an 

individual. At present, the most common predictor is based on DNA methylation data, 

proposed by Horvath and known as “epigenetic clocks” (Hannum et al. 2013; Horvath 

2013; Levine et al. 2018), which can estimate age based on DNA methylation 

(DNAm) in specific tissues or predict the age of an individual independently of 
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tissues. The transcriptome is regulated by DNA methylation. At the same time, the 

transcriptome itself is an important regulatory component in the cell life cycle. The 

relationship between transcriptome levels and aging has recently been of great interest 

to researchers. Based on microarray chip data of whole blood samples, an aging clock 

of R2 = 0.6 and mean absolute error (MAE) = 6.24 years was established (Peters et al. 

2015), but the model performed poorly (Fleischer et al. 2018). This was related to the 

limitations of microarray data, including background noise and a limited detection 

range. Recently, with the development of second-generation transcriptome sequencing 

technology, we can obtain more accurate and comprehensive transcript expression 

data through RNA-seq. Transcriptome expression data from RNA-seq on human 

dermal fibroblasts cultured in vitro were used to develop another aging prediction 

model (R2 = 0.81, MAE = 7.7). However, because of the difficulties and uncertainties 

in obtaining and culturing human dermal fibroblasts, this method is not suitable as a 

routine index for clinical diagnosis. Blood samples are mainly collected through 

venipuncture, which is much less invasive, has a wide range of applications, is 

convenient, and is the best source for research on aging markers. The DNA 

methylation clock has been established mainly by whole blood and peripheral blood 

mononuclear cells. At the same time, studies based on plasma proteins in the blood 

have found that 1,379 plasma proteins fluctuate with age, and thus a plasma protein 

aging model (Pearson = 0.97) has been established that performs better than the 

epigenetic clock model (Lehallier et al. 2019). However, compared with RNA-seq, 

proteomics detection still has technical complexity and uncertainty. It has been proven 

that RNA-seq data can accurately predict the transcriptional aging clock of individual 

age. However, there have been no relevant RNA-seq studies on human blood samples 

to date. Thus, we performed this study, aiming to establish a model of biological age 

that can accurately predict the functional status based on the gene expression of 

healthy individuals. 

 

Results 
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Differential genes appear to increase with age 

Aging causes the function of the blood circulatory system to decline and destroys the 

biological processes that maintain health. At present, we still lack an understanding of 

the differences in the incidence and rate of aging of the blood system, especially the 

peripheral blood mononuclear cells (PBMC). Therefore, we selected a population of 

139 relatively healthy individuals (ages 23–88 years old; median, 53 years old) by 

multiple clinical tests (including 12 chronic diseases) (Figure 1A, Extended data 

Table S1). We performed a paired differential gene expression analysis to determine 

when differentially expressed genes (DEGs) appeared and whether they persisted with 

age, 113 samples were transcriptome sequenced. First, we screened 21,024 genes, 

removed genes with low expression levels (read count > 30), and got a total of 13,571 

genes. After that, we grouped all samples into seven groups based on age, the 

20-year-old group (20–29 years old), the 30-year-old group (30–39 years old), the 

40-year-old group (40–49 years old), the 50-year-old group (50–59 years old), the 

60-year-old group (60–69 years old), the 70-year-old group (70–79 years old), and the 

80-year-old group (over 80 years old). All pairwise comparisons took the 20-year-old 

group as the control. The results show that compared with 30- and 40-year-olds, the 

number of DEGs were significantly increased in the 50–80-year-old groups (Figure 

1B), which indicates the progress of gene expression such that a significant change in 

genes will only occur after sufficient time. In the 70-year-old age group, it seems that 

the effect of aging on gene expression changes has declined. This may be partly due 

to the relatively large variance caused by the large age distribution of this group. With 

increasing age, pathways such as focal adhesion, ECM–receptor interaction, and the 

PI3k-Akt signaling pathway was enriched (Figure 1B). As shown in Figure 1C, the 

numbers of upregulated genes in each age group were significantly less than the 

numbers of downregulated genes. In addition, we found not only that the number of 

differential genes was small at the ages of 30 and 40, but also these differential genes 

did not persist. Only SERPINF1 remained downregulated through the entire age group 

(Figure 1C). From the age of 50, a relatively conservative set of core aging 

characteristics gradually became maintained (Figure S1A). For detailed genetic 
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information, see Extended data Table S2. Among them, 43 genes continued to be 

upregulated (Figure 1C). Genes that continued to be upregulated with age were 

mainly related to inflammation, such as the top differential genes inflammasome 

(NLR family CARD domain containing 4, NLRC4) and sialic acid-binding 

immunoglobulin-like lectin 15 (SIGLEC15). NLRC4 forms cytosolic multiprotein 

complexes that sense microbial infections or host cell damage, triggering cytokine 

production and a proinflammatory form of cell death called pyroptosis (Andrade and 

Zamboni 2020). NLRC4 can directly bind to caspase-1 through its CARD-CARD 

domain, resulting in caspase-1 activation with no need for autoproteolysis (Poyet et al. 

2001; Broz et al. 2010). SIGLEC15 is overexpressed in various cancers and is a novel 

antitumor target comparable to programmed cell death 1 ligand 1 (PD-L1) (Wang et 

al. 2019; Li et al. 2020). After the age of 50, 294 genes continued to be 

downregulated (Figure 1C & Figure S1B), among which phosphodiesterase 4D 

(PDE4D) is a newly discovered candidate target for Alzheimer’s disease, a 

neurodegenerative disease closely related to age. PDE4D has been found to be related 

to the cognitive function of the dorsolateral prefrontal cortex (dlPFC) of primates. As 

the dlPFC ages, the expression of PDE4D will decrease. Age-related loss of PDE4D 

may thus contribute to the specific vulnerability of the frontal cortex to degeneration 

in Alzheimer’s disease and may play a critical role in normal cAMP regulation (Datta 

et al. 2020; Leslie et al. 2020) (Figure 1D). 

Sex is also an important factor in the aging process. In proteomic studies, it was found 

that aging across cohorts and sexes in the proteome maintains a high degree of 

consistency. In our study, the analysis of differential gene expression between sexes 

in each age group showed that the number of differential genes caused by sex is also 

numerous (Figure S1C). However, the DEGs are generally very different (Figure 1D 

and Figure 1E), only in the 60-year-old group was there a large overlap between the 

two. At the same time, according to the weighted gene coexpression network analysis 

(WGCNA) results (prior to carrying out trend analysis, COMBAT was used to adjust 

for differences between RNA-Seq Batch 1, Batch 2 and Batch 3) (Figure 1F & Figure 

S1D), the age-related modules (such as the MEred and MEyellow modules) are highly 
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correlated with sex. Similar results have been seen in other studies, genomic 

differences between the sexes increase after age 65, with men having higher innate 

and pro-inflammatory activity and lower adaptive activity (Márquez et al. 

2020). Two-thirds of the proteins that changed with age were observed to also change 

with sex (895 of 1,379 proteins) in plasma proteomics (Lehallier et al. 2019). 

Therefore, sex differences will affect our observations herein on the transcriptome of 

the aging process. Finally, through correlation analysis (Figure 1G), the genes that 

were conservatively upregulated in aging were positively correlated from ages 23 to 

88, while the downregulated genes were negatively correlated with age. 

 

 

Figure 1. Pairwise differential expression across ages. 
A Schematic of the experiment. Blood samples were collected from males (n = 62, 24–88 years 

old) and females (n = 77, 23–88 years old), the PBMC and plasma were separated, and six omics 

tests were performed. B With the 20-year-old group as the control, the number of differential 

genes for each age group compared in pairs are shown: blue, red, and green represent the total 

differential genes, the upregulated differential genes, and the downregulated differential genes, 

respectively. The DEGs enrichment pathways (database source: KEGG). C Ridge map showing 

the density distribution of the differential genes, and three Venn diagrams showing the distribution 

of the total differential genes in the six age groups (30, 40, 50, 60, 70, and 80 years old). The 
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difference is upregulated. The distribution of genes in four age groups and the distribution of the 

downregulated differential genes in four age groups (50, 60, 70, and 80 years old). D Volcano map 

of conservatively different genes between ages (based on the logFC and p-values of the 

20-year-old vs. 80-year-old age groups, logFC > 2, p < 0.05). E Volcano map of conservatively 

different genes between sexes (based on the logFC and p-values of the 80-year-old group, logFC > 

2, p < 0.05). F Weighted gene coexpression network analysis (WGCNA) and age and sex 

correlation analysis, showing, respectively, the correlation coefficient (Pearson) and correlation 

p-value. G Differential genes shared between the four age groups (50, 60, 70, and 80 years old) 

shown in a correlation diagram of the top 20 differential genes. 
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Figure S1. A Venn diagram for comparison of upregulated genes in the seven age groups. B Venn 

diagram of downregulated differential genes in the seven age groups. C Venn diagrams of age and 

sex differential genes. D Age-related modules in WGCNA, including 40 non-gray modules. 

 

Gene expression changes with age 

Paired DEG comparisons are inherently limited, and our data can be used to check 

and observe gene expression dynamics throughout the life cycle. We first searched for 

genes with common expression trajectories throughout the life cycle. We visualized 

13,571 genes as z-score changes throughout the life cycle, and their overall 

performance showed obvious fluctuations (Figure 2A). To reduce the complexity of 

the data, we used unsupervised hierarchical clustering to group genes with similar 

trajectories (Figure 2B), and so identified eight trajectory clusters. These clusters 

changed with age and their size ranged from 860 to 2,296 genes (Figure 2C). In 

addition to the linear mode (cluster 1 and 7), some non-linear trajectories could also 

be seen (Figure 2C). By correlation (Spearman’s) analysis of gene expression with 

age in individual patients, 3,956 genes out of 13,571 were significantly correlated 

with age (p < 0.05), of which 2,667 were positively correlated and 1,289 were 

negatively correlated (Extended data Table S2). In cluster 1, 963 genes were 

significantly associated with age, all of which were positive; in cluster 7, 695 genes 

were significantly associated with age, all of which were negative. Eight clusters were 

examined for patterns of functional enrichment. In the Kyoto Encyclopedia of Gene 

and Genomes (KEGG) pathways, seven clusters were enriched for specific biological 

pathways (q < 0.05; Figure 2C), which indicates that the biological processes are 

precisely regulated during the life process. For example, PI3K-AKT continues to 

decline with age (cluster 7), and the cluster also contains anti-inflammatory factors 

such as IL4 (Figure 2D, Extended data Table S3). In addition, clusters 3, 4, and 5 

show similar trajectories, which we termed “N-type fluctuating trajectories”. The top 

three enriched pathways were all enriched for Herpes simplex virus 1 infection. No 

related infections were observed on clinical examination of the patients. In general, 

most genes changed in a non-linear manner throughout the life cycle. 
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Figure 2. Dynamic analysis of aging gene expression at all ages. 
A Heatmap of gene fluctuation trajectories. Unsupervised hierarchical clustering was used to 

group genes with similar trajectories. B Hierarchical clustering dendrogram. The eight identified 

clusters are represented by blue boxes. C The gene trajectories of the eight identified clusters. The 

thick line represents the average trajectory of each cluster, and the number of genes in each cluster 

and the most important enrichment pathway are also marked. The Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database was used for enrichment. D The enrichment pathways of cluster 1 

and cluster 7, showing a linear relationship (database source: KEGG). 

 

The correlation between DNA methylation and gene expression 

The level of genomic DNA methylation is highly correlated with age. “Epigenetic 

clocks” (Horvath 2013) have been established that can estimate the age based on 

DNAm, either in specific tissues or independently of tissues. These can predict the 

age and life expectancy of the individual (Levine et al. 2018). However, it is not yet 

known whether these sites regulate the downstream transcriptome, and whether the 

changes observed in transcription levels with age are related to changes in upstream 

DNA methylation. In this study, Infinium Methylation EPIC Bead Chip (850K) 

methylation sequencing was performed on PBMC of 49 healthy individuals aged 

23–88. We divided the age distribution into four groups, the 20–35 age group (young, 

Y), the 40–55 age group (middle, M), the 60–75 age group (young old, YO), and the 

80–88 (aged, A) age group. As we did for the transcriptome data, we first performed a 
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paired differential locus analysis to determine when the differential loci appeared and 

whether they persisted with age. As shown in Figure 3A and Figure S2, the Y and M 

groups had fewer different sites (8,805), while there were more than 30,000 different 

sites in the YO and A groups. These differential sites were mostly concentrated in 

twelve top sites on the chromosome. In the M, YO, and A groups, there were 750 sites 

with elevated methylation levels and 529 sites with downregulated levels, which were 

conserved between the M, YO, and A groups. These sites correlated with the results 

of the transcription composition pair comparison (Figure 3B). We found 18 genes 

with changes to both the DNA methylation and transcription levels (Figure 3C). 

These methylation sites were located both in promoter regions and within the bodies 

of genes. One of these genes, FLT1, encoding the cell surface receptor for VEGFA, 

VEGFB, and PGF, plays an important role in the regulation of angiogenesis, cell 

survival, cell migration, macrophage function, chemotaxis, and cancer cell invasion. It 

can promote the proliferation, survival, and angiogenesis of skin cells in adulthood 

(Luttun et al. 2002; Fischer et al. 2008; Stefater et al. 2013). Another, FLRT2, 

functions in cell adhesion, cell migration, and axon guidance, and mediates cell 

adhesion by interacting with ADGRL3 and possibly other latrophilins expressed on 

the surface of adjacent cells (Seiradake et al. 2014). In general, however, the number 

of genes found with changes to both the DNA methylation and transcription levels 

was extremely small. 

Next, as for the transcriptome data, we searched for sites with common methylation 

trajectories throughout the life cycle. We first removed sites located on the sex 

chromosomes and sites that failed to be annotated to a gene, and then visualized the β 

values of 150,827 sites located in promoter regions as z-score changes throughout the 

life cycle, and their overall trajectories (Figure 3D). There were 14 trajectory clusters, 

which varied with age, ranging in size from 8,164 to 10,740 sites. Cluster 2 and 

cluster 14 were in a linear pattern. We correlated the genes contained in these sites 

with clusters 1 and 7 from the transcriptome data, which resulted in 787 genes (Figure 

3E, Extended data Table S4). Methylation of the promoter region of genes inhibits 

gene expression, and so the expression trend of these genes with aging may be caused 
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by DNA methylation in the upstream promoter region. We visualized the β values and 

expression levels of the 787 genes according to the trajectory, and we found that there 

was indeed an opposite trend in the DNA methylation and transcription levels. The 

most enriched pathway of the genes with an upward trend was oxidative 

phosphorylation (from the KEGG database), and the top pathway of the genes with a 

downward trend was gastric cancer. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472382doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472382


Figure 3. Association analysis of DNA methylation and aging-related gene 
expression. 
A Manhattan chart showing the information of the differential methylation sites between different 

ages, with the log10 conversion of the difference analysis p-value on the y axis and the 

chromosome position of each CpG on the x axis. B Venn diagram of conservative differential 

genes (RNA-UP, RNA-DOWN) and conservative differential sites (DNAm-UP, DNAm-DOWN), 

a total of 18 common genes. C Heatmap of the 18 differential genes obtained in Fig B, the left 

side shows the normalized heatmap of the methylation β values of the 18 differential genes in 49 

samples, and the right side shows the 18 differential genes in the paired differential genes. The 

heatmap on the right shows logFC in the comparisons. D The CpG sites trajectory of 14 unbiased 

clusters. The thick line represents the average trajectory of each cluster, and the number of probes 

in each cluster is also marked. E Venn diagram of the gene expression trajectories of cluster 1 

(RNA-UP) and cluster 7 (RNA-DOWN) and the methylation site fluctuation trajectories of cluster 

2 (DNAm-DOWN), and cluster 14 (DNAm-UP). F Heatmap of the 787 genes obtained in Fig E in 

the four methylation groups (Y, M, YO, and A, normalized by β value z-scores) and seven 

transcriptome samples (20, 30, 40, 50, 60, 70, and 80 years old; where FPKM performed z-score 

normalization). 

 

 

Figure S2. Distribution of differential methylation sites on chromosomes (groups M and Y, YO 

and Y, and A and Y). 

 

The correlation between plasma protein and gene expression 

A metachronous symbiosis experiment proved that the plasma of young mice can 

reverse the aging of various tissues and organs of old mice through the blood 

circulation system (Loffredo et al. 2013; Katsimpardi et al. 2014; Baht et al. 2015; 

Huang et al. 2018). These results indicate that plasma protein is a key regulatory 

factor in the aging process. Determining the key proteins in the plasma could help us 

understand the mechanisms of aging. In the proteomics experiment, 24 samples from 

the cohort were included. Group Y included 12 cases from the 20–30 age group (6 
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men and 6 women), and Group A included 12 cases from the 80–90 age group (6 men 

and 6 women). As shown in Figure 4A, with a threshold of fold change (FC) > 1.5 

and p < 0.05, a total of 103 differential proteins were obtained, of which 52 were 

upregulated and 51 were downregulated. As for the transcriptome data, the 

downregulated proteins were also enriched for the PI3K-AKT signaling pathway 

(Figure 4B), including IGF1 and CSF1. This pathway also plays an important 

regulatory role in the entire protein network (Figure 4C). IGF1 is known to be related 

to longevity, while CSF1 is a cytokine that plays an important role in the regulation of 

the survival, proliferation, and differentiation of hematopoietic precursor cells, 

especially monocytes. It promotes the release of proinflammatory chemokines, 

thereby playing an important role in innate immunity and inflammation. The resulting 

differential proteins were compared with the linearly related genes, and we found that 

there was not much overlap. Six genes (ACTR1A, CST3, LGALS1, LGALS3, OAF, and 

RHOG) were upregulated at both transcriptomic and proteomic levels, while one gene 

(SRC) was downregulated at both transcriptomic and proteomic levels (Figure 4D). 

 
Figure 4. Association analysis of plasma protein and aging-related gene expression. 
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A Differential protein volcano diagram between the 20-year-old group (Y group) and the 

80-year-old group (A group) (fold change > 1.3, q-value < 0.05). B The downregulated 

differential protein enrichment pathways (database source: KEGG). C We performed protein 

network interaction analysis on 138 differential proteins in STRING, put the output through 

Cytoscape software, and marked the proteins with the top 23 combined scores in green and yellow. 

D Venn diagram of gene expression trajectory cluster 1 (RNA-UP) and cluster 7 (RNA-DOWN) 

and the differential proteins (Protein-DOWN, and Protein-UP). 

 

Single cell sequencing 

An important question in bulk RNA transcriptomics is whether the observed changes 

in gene expression are caused by internal changes in the cells because of age, or by 

changes in cell composition. Using 10X single-cell sequencing technology, we 

performed single-cell transcriptome analysis of PBMCs from six young people aged 

20–29 years and six elderly people aged 80–88 years. We sequenced 127,707 cells 

with an average of 10,642 cells per sample (Extended Data Table S5). We combined 

single-cell transcriptional profiles collected from the different samples for 

UMAP-based cell cluster analysis and annotated specific genetic markers for the 

resulting cell types. A total of 18 different cell clusters were identified (Figure 5A, 

Figure S3A, and Figure S3B). We then performed UMAP clustering on samples A 

and Y (Fig. 5B), calculated the relative percentages of the 18 major cell types in each 

person’s PBMC based on the single-cell RNA-seq (scRNA-seq) data (Fig. 5C), and 

quantified the percentage changes in cell types driven by aging (Fig. 5D). We found 

that the proportions of CD8+ T cells, T helper cells, B cells, and erythrocytes were 

significantly decreased in the older samples (p < 0.05), while the proportions of 

effector CD8+ memory T cells were significantly increased. This is basically 

consistent with the results of other studies14. The decline of B cells, T cells, and CD8+ 

T cells with age leads to the decline of T cell functions and B cell functions, and 

ultimately leads to the decline of human immune function. On the other hand, CD8+ 

memory T cells, which are associated with cytotoxicity and chronic inflammatory 

responses, increased. 

The level of humoral immunity in the elderly was elevated. Through the detection of 

cytokines, we found that various inflammatory factors involved in humoral immunity 
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were elevated in the elderly (Figure S3C), including TNF-α and IL6. On the other 

hand, GO enrichment analysis of the differential genes showed that CD8+ T cells, T 

helper cells, B cells and effector CD8+ memory T cells in four clusters were enriched 

in cell adhesion molecule binding (p < 0.05), and CD8+ memory T cells in four 

clusters were enriched in erythrocyte enrichment to antigen binding (p < 0.05) (Fig. 

5E). Then we determined whether the top age-related genes in the batch RNA-seq 

were widely expressed in a single cell type or in multiple cell types. By comparing the 

18 cell clusters with the 787 genes in the gene cluster (|logFC| > 0, q < 0.05), and the 

differences between the genes in the 18 clusters (|logFC| > 0.1, q < 0.05), we found 

that the 787 genes rarely differed from those in the 18 clusters (Fig. 5F, Extended data 

Table S6). This proves that the gene expression changes observed are caused by 

internal changes to the cells induced by age, rather than changes in the cell 

composition. 
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Figure 5. Characterization of immune cells in individuals across two conditions. 

A Identification of cell subpopulations from all analyzed samples. Samples from Y (n = 6) and A 

(n = 6), a total of 12 samples, showing 18 clusters with their own labels. Each point corresponds to 

a cell, colored according to the cell type. B UMAP projections of group A and group Y. Each 

point corresponds to a cell, colored according to the cell type. C The average proportion of each 

cell type from the 12 samples. D The proportion of each cell type in each sample was stained by 

the source donor. The x-axis corresponds to the grouping of samples (A, n = 6; Y, n = 6). The 

exact p-values on both sides that pass the Wilcoxon rank sum test are shown. Minimum whisker, 

25th − 1.5 × inter-quartile range (IQR) or the lowest value within; minimum box, 25th percentile; 
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center, median; maximum box, 75th percentile; maximum whisker, 75th percentile + 1.5 × IQR or 

greatest value within. E Differential gene analysis (p < 0.05, logFC > 0.1) was performed on 

group A and group Y of five cell subpopulations of clusters 2, 6, 7, 8, and 9. The top 20 enriched 

biological processes were obtained by GO analysis of the differential genes. The dot color 

indicates the statistical significance of enrichment (p), and the dot size indicates the percentage of 

genes annotated for each term. F Raised and lowered genes from the 18 clusters compared with 

the 787 genes, genetic variations from which to choose 18 clusters (|logFC| > 0.1, p < 0.05). 

Groups are shown in proportion. 
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Figure S3 A Lattice heatmap of 18 cluster specific TOP1 marker genes. B Lattice heatmap of 18 

cluster specific TOP2 marker genes. C Young age group compared with old age group for the 

levels of 26 kinds of cytokines (t-test; *, p < 0.05; **, p < 0.01; ***, p < 0.001). 

 

Aging prediction model based on the transcriptome 

We then built a model based on the above results that predicts the actual age based on 

the number of expressed genes in healthy individuals. We used a penalty regression 

model (elastic net) to regress the previously obtained z-score values of the 787 genes 

and the ages of the 113 samples. The elastic net regression model automatically 

selected 46 genes (penalty terms, α = 0.92, λ = 1). We called these 46 genes the 

“transcriptome clock” because their weighted average (formed by regression 

coefficients) is equivalent to a clock marking biological age. To predict the accuracy 

of the model, we used the Pearson correlation coefficient between the predicted age 

and the actual age, the MAE, and the regression coefficient R2 for linear regression of 

the predicted age and the actual age. From this we can see that the age prediction 

model performs very well (age correlation = 0.95, MAE = 5.203, R2 = 0.9) (Figure 6A, 

Extended data Table S7). The accuracy of this model is significantly better than 

Fleischer’s transcriptome data based on human dermal fibroblasts (R2 = 0.81, MAE = 

7.7) (Fleischer et al. 2018). In addition, we also used these 787 sites to establish our 

own methylation age prediction model (Figure S4A, Extended data Table S8). A total 

of 34 genes were selected, and the model also performed very well (α = 1, λ = 0.94, 

age correlation = 0.99, MAE = 3.28, R2 = 0.97), better than Horvath’s methylation 

age model (age correlation = 0.96, MAD (Mean Absolute Deviation) = 3.6 years) 

(Horvath 2013). 

To further verify the accuracy of the model, we tested the telomere length of the 

relevant samples. Telomere length is currently recognized as a marker of aging. In the 

five age groups of 30, 40, 50, 60, and 70 years old, we selected three people whose 

predicted age was greater than their actual age (rapid aging), and three whose 

predicted age was less than their actual age (slow aging), and performed DNA 

detection of the telomere lengths. The results were very surprising. Because of the 

problem of sample size, there was no significant difference between the two age 
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groups (Figure 6B). It can be seen that the telomere length of the slow-aging group is 

relatively larger than that of the fast-aging group. If all the samples are combined, we 

can see that the telomere length of the population whose predicted age is less than 

their actual age is significantly higher than that of the population whose predicted age 

is greater than their actual age (p = 0.0245) (Figure 6C). In the methylation age model, 

because of the small number of samples, we only detected the telomere length of eight 

samples, showing similar trends, but not significant (p = 0.1232) (Figure S4B). These 

results show that our model can be accurate and can predict the accelerated aging of 

individuals.  

To assess whether these findings are representative of the general population, we 

decided to validate our results using sequencing data from other cohorts. However, 

unfortunately, no public data that matched our data with both the same sequencing 

platform (DNBSEQ) and the same sample type (PBMCs) could be found in the public 

database (GEO). We ultimately compared our results with transcriptomic data of three 

independent cohorts from China, USA, and Europe, of which all the sequences were 

obtained from PBMCs. The total sample size of the three cohorts was 91 with 

participants ranging in age from 18 to 90 years old, although some patients had the 

chronic diseases of coronary heart disease and Alzheimer’s disease. Although there 

was a large overlap between data from these independent cohorts and our data, and 

80% of the data could be covered by data from the other three independent cohorts, 

because of the sequencing platform (GSE153100: Illumina NovaSeq 6000; 

GSE153104: Illumina HiSeq 2500; GSE166780: HiSeq X 10), differences in 

sequencing depth and regional ethnicity resulted in many independent genes among 

the four datasets (Figure S4C). In the validation, we constructed a 46-gene signature 

with multiple genes missing in these three cohorts, which led to our inaccurate 

prediction results. So, we tried to re-run the 766 genes in these three cohorts that 

overlapped with the 787 genes we screened to observe the labeling differences under 

the same method by performing elastic network regression analysis, and we still chose 

the same conditions as before (penalty terms, α = 0.92, λ = 1) to obtain a 49-gene 

signature (Figure 6D). We compared the 49-gene signature with our previous 46-gene 
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signature, and we found that only three genes were common; moreover, the prediction 

model for this data did not perform very well for age prediction (age correlation = 

0.83, MAE = 7.39, R2 = 0.69). This is associated with the distribution of the data, with 

most of the samples existing in the 60– 90 age range and only five samples distributed 

in the 18–45 age range, which led to a decrease in the accuracy of the model. Also, 

there was a huge batch effect between the three datasets (Figure S4D), and although 

we used COMBAT to remove the batch effect, this also resulted in the data itself 

being altered, which is another of the reasons that it was difficult to use this data for 

model testing. 

 

Figure 6. The aging clock models. 

A Cross-validation of 113 transcriptome samples based on 787 genes to predict age. Each point 

represents a transcriptome sample, showing the best-fit line between the predicted age and the true 

age, and the shading shows the 95% confidence interval of the line determined by resampling. The 

text at the bottom of each panel shows the performance indicators of goodness of fit such as the 

MAE and the R2 Pearson correlation coefficient of the best fit line. B Detection of the relative 

telomere length of individuals with high predictive age and individuals with low predictive age in 

each age group in the transcriptome aging clock (two-tailed t-test). C Comparison of relative 

telomere length between high and low predicted age groups (two-tailed t-test). D Comparison of 

the 46-gene signature based on our data with the 49-gene signature based on data from three 

independent cohorts. E Cross-validation of 91 transcriptome samples based on three independent 

cohorts to predict age. Each point represents a transcriptome sample, showing the best-fit line 

between the predicted age and the true age, and the shading shows the 95% confidence interval of 
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the line determined by resampling. The text at the bottom of each panel shows the performance 

indicators of goodness of fit, such as the MAE and the R2 Pearson correlation coefficient of the 

best fit line. 

 

 

Figure S4 A Cross-validation of 49 DNA methylation samples based on 787 genes to predict age. 

Each point represents a transcriptome sample, showing the best-fit line between the predicted age 

and the true age, and the shading shows the 95% confidence interval of the line determined by 

resampling. The text at the bottom of each panel shows the MAE, the R2 of the best fit line, the 

Pearson correlation coefficient, and other performance indicators of goodness of fit. B Detection 

of the relative telomere length of some individuals with high predictive age and individuals with 

low predictive age in the methylation aging clock (two-tailed t-test). C Comparison of three 

independent cohorts and our sequencing data. D PCA analysis of the three cohorts. 
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Discussion 

Our research spans the transcriptome of PBMCs, DNA methylation, a partial plasma 

proteome, and single-cell RNA-seq time-resolved information throughout the human 

adult life cycle. Previous studies have found that men and women age differently. In 

plasma proteomics, two-thirds of the proteins that change with age also change with 

sex (895 of 1,379 proteins) (Lehallier et al. 2019). In our research, we found that the 

differential genes between the sexes also differed with age. 

By analyzing the aging transcriptome, we have determined the fluctuations during 

human life. These changes are the result of expression clusters moving in different 

patterns. We have provided two linearly correlated waves of the aging transcriptome 

(Figure 2C), with little overlap between the two key biological pathways. The 

correlation analysis between these two clusters and DNA methylation showed that the 

linear fluctuation of most genes with aging was regulated by DNA methylation in the 

promoter region of the related genes. However, in relation to the proteomics, we 

found that few differential proteins were regulated by the transcriptome, which may 

be related to the low detection efficiency of the protein sequencing. We only obtained 

1,377 proteins, of which only 103 were differential proteins. We ended up with 787 

genes that fluctuate with age. Single cell transcriptome sequencing showed that the 

gene expression changes were caused by internal cellular changes induced by age 

rather than changes to the cellular composition. 

Finally, we built a regression model from the transcriptome data that allowed us to 

accurately predict the age of an individual. The mean absolute error in predicting age 

to five years is better than previous methods used to predict age based on genomic 

biomarkers. The application of this predictive approach in longitudinal studies raises 

the possibility of developing tools for monitoring and predicting aging and related 

diseases and provides tools for evaluating interventions to reverse aging.  

It is also important to verify if the model can be confirmed using histological data 

generated using a different platform; however, thus far we have only found negative 

results. Therefore, we need to wait for data from the same platform to validate our 

results. In conclusion, in this study, 787 age-associated conserved genes were 
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identified. Examination of the functions of these genes individually or in common 

may further reveal the underlying mechanisms of the aging process. Finally, 

age-based transcriptomic profiling of 46 gene expression profiles may capture the rate 

of aging and may help identify individuals who are aging faster than their actual age. 

 

Methods  

Ethics approval and consent to participate  

This study was approved by Medical Ethics Committee of Tongji University 

Affiliated Shanghai East Hospital (2020-069). The participants provided their written 

informed consent to participate in this study. 

 

Research cohort 

The 139 healthy individuals in this study were recruited to the study from Shanghai 

East Hospital (ages 23–88 years old; median, 53 years old). All the participants 

provided written consent. Participants were excluded if they had diabetes, advanced 

liver disease or renal failure, class III/IV congestive heart failure, myocardial 

infarction, unstable angina, stroke, uncontrolled hypertension or hyperglycemia, drug 

or alcohol abuse, had a history or presence of malignant tumors, had active 

autoimmune diseases, had any active infection (including positivity for hepatitis BsAg, 

hepatitis C antibody, or HIV antibody, or a positive PPD test). Three separate cohorts 

(GSE153100, GSE153104, and GSE166780) are available in GEO (Dhanwani et al. 

2020; Wahl et al. 2021; Wang et al. 2021). 

 

Blood sample collection and processing 

Between 7:00–9:00 in the morning, 6 ml of peripheral blood of the subject was drawn 

with a disposable vacuum negative pressure blood collection tube containing EDTA. 

The samples were centrifuged at 1000 × g for 10 min to separate plasma. After 

separating the plasma, the remaining blood cells were added to an equal volume of 

PBS and mixed gently upside down. We added 4 ml of lymphocyte separation 

solution to a 15 ml centrifuge tube and centrifuged it at 400 × g for 25 min. After 
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centrifugation, stratification could be seen. The middle layer was slowly aspirated and 

transferred to a new 15 ml centrifuge tube, 3 ml PBS was added, and the sample was 

centrifuged at 600 × g for 10 min. Then the supernatant was discarded, 3 ml PBS was 

added, and it was centrifuged at 600 × g for 5 min. The supernatant was discarded and 

the cells were aliquoted (they were stored separately for DNA, RNA, and single cell 

sequencing). We added 800 µl Trizol to the RNA sample, whereas for single cell 

sequencing we used 90% FBS and 10% DMSO, and the samples were all stored at 

−80°C. 

 

DNA extraction 

The sample was thawed, then centrifuged at ~11,200 × g for 1 min, and the 

supernatant was discarded. Using a Tiangen kit (Tiangen, Beijing, China), 200 µl of 

GA buffer was added and shaken, then 20 µl of Proteinase K solution was added and 

shaken gently to mix. We added 200 µl of GB buffer and mixed well, then placed at 

70°C for 10 min, and then centrifuged briefly to remove water droplets on the inner 

wall. We then added 200 µl of absolute ethanol and shook to mix. The solution 

obtained in the previous step was added to a CB3 adsorption column placed in the 

collection tube and centrifuged at 11,200 × g for 30 s. The waste liquid was discarded, 

and the adsorption column was put back into the collection tube. About 500 µl of GD 

buffer was added to the adsorption column, it was centrifuged at 11,200 × g for 30 s, 

the waste liquid was discarded, and the adsorption column was returned to the 

collection tube. We added 600 µl of PW rinsing solution to the CB3 adsorption 

column, centrifuged again at 11,200 × g for 30 s, discarded the waste liquid, and put 

the adsorption column back into the collection tube. The previous step was repeated. 

The adsorption column was put back into the collection tube, centrifuged again at 

11,200 × g for 2 min, and the waste liquid was discarded. The CB3 adsorption column 

was then left at room temperature for 5–10 min for the residual rinsing solution in the 

adsorption column to dry. The CB3 adsorption column was then put into a clean 

centrifuge tube, and 50–200 µl ddH2O was added to the middle of the adsorption 

membrane with a pipette. The column was stood at room temperature for 2–5 min, 
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centrifuged at 11,200 × g for 2 min, and the solution was collected into the centrifuge 

tube. The RNA was then quantified with a NanoDrop (NanoDrop Technologies, 

Delaware, USA) and frozen at −80°C.  

 

850K methylation sequencing 

A SMA 400 UV-vis (Merinton, Shanghai, China) DNA/Proteins Analyzer was used to 

determine the purity and crude concentration of the samples. The concentration of the 

sample was measured using a Qubit 3.0 Fluorometer. The integrity of the samples was 

determined by agarose gel electrophoresis. Using a Zymo Research EZ DNA 

Methylation Kit, bisulfite transformation of genomic DNA was conducted to change 

the methylated cytosines and convert unmethylated cytosines into uracil. An Illumina 

Infinium Methylation EPIC Bead Chip Kit was used to detect the DNA transformed 

by bisulfite, and determined the methylation of CpG sites. The chip raw data was 

imported into the R package Champ (V2.12.4) to calculate the raw beta values, and 

the PBC method in the Champ package was used for standardization. Referring to the 

genomic location, different methylation sites were found at the same location in the 

genomes of multiple samples. The two groups of samples were first standardized, then 

the linear regression method was used to detect the different methylation sites, and the 

sites with a p-value < 0.01 were screened as different methylation sites. 

 

RNA extraction 

To prepare the samples, the Trizol lysate was replenished to 1 ml in the sample tube, 

pipetted repeatedly, and let stand for 5 min at room temperature. It was then 

centrifuged at 12,000 × g for 5 min at 4°C. The supernatant was transferred to a 

sterilized 1.5-ml centrifuge tube, 0.3 ml chloroform was added, it was shaken for 15 s 

and then let stand at room temperature for 5 min. The sample was then centrifuged at 

12,000 × g for 10 min at 4°C. After centrifugation, the liquid phase had separated and 

the liquid was divided into three layers: the bottom layer was the organic phase, and 

the middle and upper layers were both phases of water containing RNA. The upper 

aqueous phase was slowly transferred to a new 1.5 ml tube and an equal volume of 
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isopropanol was added, the sample was vigorously mixed upside down and then let 

stand at –20°C for 2 h. The sample was centrifuged at 11,200 × g for 20 min at 4°C, 

and the precipitated RNA formed the pellet. The supernatant was discarded, the RNA 

pellet was resuspended and washed in 1 ml of 75% ethanol by flicking the tube wall, 

and centrifuged at 11,200 × g at 4� for 3 min. The previous step was repeated and 

then the ethanol was carefully discarded and the RNA pellet was dried. The RNA 

precipitate was then dissolved in 25–100 µl DEPC water and the concentration was 

checked. The integrity of the RNA sample was checked with 1% agarose 

electrophoresis and 1 µl was used to measure the OD260/OD280 ratio on a 

spectrophotometer to detect the purity of the sample. The rest of the RNA was stored 

at −80�. 

 

cDNA synthesis, library construction and RNA sequencing 

Temperature-suitable denaturation of the RNA sample was performed to open its 

secondary structure, and then oligo (dT) magnetic beads were used to enrich the 

mRNA. Reagents were added that interrupt the RNA sample, so the mRNA can be 

fragmented. The already configured first-strand synthesis reaction was added to the 

fragmented mRNA, then the first-strand cDNA was synthesized on a PCR machine. 

The second-strand synthesis reaction system was prepared again, and after a certain 

temperature reaction, two-strand cDNA was synthesized. 

The reaction system was configured to repair the ends of the double-stranded cDNA, 

add A bases to the 3′ end, prepare a linker connection reaction system, and react at a 

suitable temperature for a certain period of time so that the linker is connected to the 

cDNA. The PCR reaction system was configured, the reaction program was set, and 

the product was amplified. After denaturing the PCR product into a single-stranded 

product, a DNA circularization reaction system was prepared, the sample was fully 

shaken and mixed, and reacted at a suitable temperature for an appropriate time to 

obtain a single-stranded circular product. The uncircularized linear DNA molecules 

were then digested to form the final library construction. Single-stranded circular 

DNA molecules can be replicated through rolling circles to form a DNA nanosphere 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472382doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472382


(DNB) containing more than 200 copies. Afterwards, the obtained DNBs were added 

to the mesh holes on the chip using high-density DNA nanochip technology. Then, 

using combined probe anchor polymerization technology (cPAS) for sequencing, we 

obtained sequencing read lengths of 50 bp/100 bp/150 bp. In this study, the DNBSEQ 

platform was used to sequence the samples. Before data analysis, reads with low 

quality and high positional base N content were first removed to ensure the reliability 

of the results. Then Bowtie2 was used to align the clean reads to the reference 

sequence (Kim et al. 2015), and the RSEM tool was used to calculate the expression 

level of the gene and transcription sequence (Li and Dewey 2011). Finally, we used 

the RStudio script and the following Bioconductor packages for data visualization and 

analysis: Rtsne, Deseq2, topGO, destination, and org.m.eg.db. For differential gene 

screening, the screening conditions were artificially set as follows: fold change (FC) ≥ 

1 and p-value < 0.05. 

 

Protein extraction and data-independent acquisition (DIA) quantification 

Protein extraction: SDS-free L3 was added to 100 µl of blood sample to make the 

volume up to 1 ml; then a reductive alkylation reaction was conducted. The specific 

steps were as follows: DTT (dithiothreitol) was added to make the final concentration 

10 mM, the sample was placed in a 37�-water bath for the reaction to occur for 30 

min, and then placed at room temperature once the reaction was over. IAM 

(iodoacetamide) was added immediately after the temperature was dropped to room 

temperature to a final concentration of 55 mM, and the reaction was conducted in a 

dark room at room temperature for 30 min. The processed protein solution was then 

enriched by solid phase extraction with a C18 column. A new C18 column was taken 

and the sample was passed through the column with 1 ml of methanol at a flow rate of 

3 drops/s. It was then passed through the column with 1 ml of 0.1% FA at a flow rate 

of 3 drops/s; if the sample volume was less than 1 ml, it was diluted to 1 ml with 

SDS-free L3 and passed through the column, while if the sample volume was greater 

than 1 ml, it could be passed through the column in multiple parts. The sample was 

loaded twice at a flow rate of 1 drop/s, using 1 ml 0.1% FA to pass the column at a 
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flow rate of 3 drops/s, this step was repeated three times in total. Then 800L 75% 

acetonitrile (ACN) was used to slowly elute with a flow rate of 0.5 drop/s, and the 

eluent was freeze-dried before proceeding to the next step. 

Peptide separation: Using the Shimadzu LC-20AD liquid phase system, 20 µg of 

sample was taken after mixing. The separation column used was a 5-µm 20-cm × 

180-µm Gemini C18 column, and the sample was separated in liquid phase using the 

separation column. Then mobile phase A (5% ACN, pH 9.8) was used to redissolve 

the dried peptide sample and load the sample, and then gradient elution was 

performed at a flow rate of 4 µl/min in the following steps: 2% mobile phase B (95% 

ACN, pH 9. 8) elution for 7 min, 2% to 7% mobile phase B for 3 min, 7% to 25% 

mobile phase B for 27 min, 25% to 60% mobile phase B for 2 min, 60% to 80% 

mobile phase B for 1 min, mobile phase B for 3 min, 80% to 2% mobile phase B for 2 

min, and then equilibrated in 2% mobile phase B for 5 min. The elution peak was 

monitored at a wavelength of 214 nm and a component was collected every 3.15 min, 

combined with the chromatographic elution peak figure to obtain ten components, and 

then freeze-dried. 

High pH RP separation: The same amount of peptides were taken from each sample 

and mixed into a tube. The peptide content was 20 µg, the mixed 20 µg of peptides 

were diluted and loaded with 2 ml mobile phase A (containing 5% ACN, pH 9.8). 

Then, the Shimadzu LC-20AB liquid phase system was used, and the separation 

column used for liquid phase separation of the sample was a 5-µm 4.6- × 250-mm 

Gemini C18 column. The sample was then eluted with a flow rate gradient of 1 

ml/min: it was first eluted with 5% mobile phase B (95% ACN, pH 9.8) for 10 min, 

and then eluted with 5% to 35% mobile phase B for 40 min, eluted with 35% to 95% 

mobile phase B for 1 min, and finally mobile phase B was used for continuous elution 

for 3 min, and then the sample was equilibrated with 5% mobile phase B for 10 min at 

room temperature. Then, wavelength detection was conducted at 214 nm. According 

to the elution peak, one component was collected every minute, and then the samples 

were combined according to the elution peak diagram of the chromatogram. Finally, 

components were obtained, and the ten components were drained and frozen. 
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Data-dependent acquisition (DDA) library construction and DIA quantitative 

detection (Nano-LC-MS/MS): First the peptide sample that was freeze-dried in the 

previous step was dissolved with mobile phase A (containing 2% ACN and 0.1% FA) 

and centrifuged at 20,000 × g for 10 min. The supernatant was aspirated and the 

sample was loaded. The UltiMate3000 UHPLC (Thermo Fisher, Sunnyvale, CA, USA) 

was used for preliminary separation of the samples. The sample was added to the trap 

column for enrichment and desalination, and then the trap column was connected in 

series to a self-assembled C18 column (the inner diameter of the adsorption column 

was 150 µm, the particle size of the column material was 1.8 µm, and the column 

length was about 35 cm), and then the column was gradient separated at a flow rate of 

500 nl/min. In the first step, 5% mobile phase B (98% ACN and 0.1% FA) was 

separated for 5 min, then mobile phase B was linearly increased from 5% to 25% for 

90 min. Then, mobile phase B was increased from 25% to 35% for 10 min, then 

mobile phase B was increased from 35% to 80% for 5 min. The sample was 

maintained at 80% mobile phase B for 3 min, and then mobile phase B decreased 

from 80% to 5% for 30 s. Then mobile phase B was maintained at 5% for 6.5 min. 

After liquid phase separation the peptides need to pass through the nano ESI source 

first, and then enter the Fusion Lumos tandem mass spectrometer after ionization, and 

then the second step of the DDA detection is performed. The main settings were as 

follows: the voltage of the ion source was set to 2 kV; in the primary mass spectrum, 

the scanning range of the primary mass spectrum was 350–1500 m/z; the resolution of 

the mass spectrometer was set to 120,000; and the maximum ion injection time (MIT) 

was 50 ms. In the secondary mass spectrum, the secondary mass spectrum was set to 

HCD fragmentation mode; the fragmentation energy was set to 30; the resolution was 

set to 30,000; the ion implantation time was a maximum of 100 ms; and the dynamic 

rejection time was 30 s. 

The peptides after liquid phase separation were ionized by the nano ESI source, and 

then detected in the DIA mode by a tandem mass spectrometer. A Fusion Lumos 

(Thermo Fisher Scientific, San Jose, CA) instrument was used to collect mass spectral 

data from the samples in DIA mode. The peptides and proteins were quantified by 
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MSSTATS software. After that, the MSSTATS software package was used to 

complete the steps of error correction and normalization in the system for each sample. 

Then according to the set comparison group and linear mixed effect model, the 

differences of different proteins were evaluated. Two conditions, a fold change > 1.5 

and a p-value < 0.05, were used as screening criteria for significantly different 

proteins. 

 

Single cell sequencing 

The frozen single cell samples were placed on a PCR apparatus for cell lysis. The 

reverse transcription system was prepared, and the first cDNA was synthesized by 

SMART amplification. Kapa HiFi Hot Start DNA Polymerase was used to 

pre-amplify the cDNA. Agencourt AMPure XP magnetic beads purified the 

double-stranded cDNA products and an Agilent 2100 BioAnalyzer was used to test 

the quality of the amplified products. The qualified amplification products were 

constructed by the transposable enzyme method, and an Agilent 2100 BioAnalyzer 

was used to detect the fragment size and concentration of the library. After denaturing 

the library into a single chain, the cyclization reaction system was prepared, and the 

single chain ring product was obtained by fully mixing the system for a certain 

temperature reaction time. Enzyme digestion of uncycled linear DNA molecules was 

conducted, followed by quantitative cyclization of libraries using a Qubit Fluorometer. 

Single-stranded circular DNA molecules were replicated by rolling rings to form a 

DNA nanosphere (DNB) containing more than 200 copies. The resulting DNBs were 

added into the mesh holes on the chip using high-density DNA nanochip technology. 

Sequencing was performed using combinatorial probe-anchor-anchor synthesis 

(CPAS). 

The filtered gene expression matrix package (v.3.0.0) was analyzed by R software 

(v.3.5.3) and Seurat 43. Genes expressed at a data ratio of > 0.1% and cells with > 200 

genes detected were selected for further analysis. Low quality cells were removed if 

the following criteria were met: (1) < 800 unique molecular identifiers (UMIs); (2) < 

500 genes; or (3) > 10% of the UMIs were from the mitochondrial genome. After the 
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low-quality cells were removed, the gene expression matrix was normalized by the 

Normalize Data function and 2,000 features with high intercellular variability were 

calculated using the FindVariableFeatures function. To reduce the dimensionality of 

the data set, the runPCA function used the default parameters to scale the linear 

transformation data generated by the scaleData function. Next, elbowPlot (as 

suggested by the Seurat developers), the DimHeatMap, and JackstrawPlot functions 

were used to identify the true dimensions of each dataset. Finally, we used the 

findNeighbors and findClusters functions to cluster the cells, and the runuMap 

function, which is set by default, to perform non-linear dimension reduction. After the 

non-linear dimensional reduction of all cells by UMAP and the projection into a 

two-dimensional space, the cells were clustered together according to common 

characteristics. The findAllMarkers function in Seurat was used to find markers for 

each identified cluster. Clusters were then classified and annotated according to the 

expression of typical markers for a particular cell type. The differential gene 

expression test was performed using the findMarkers function in Seurat, with the 

default parameter “test.Use = Wilcox”, and the Benjamini–Hochberg method was 

used to estimate the rate of false discovery (FDR). The DEGs were filtered with a 

minimum log2(multiple change) of 0.5 and a maximum FDR value of 0.01. 

 

Telomere length detection 

Telomere gene PCR system and reaction process: The reaction process included 

pre-denaturation at 95°C for 10 min, denaturation at 95°C for 15 s, followed by 

extension at 54°C for 2 min, and 23 cycles in the last two steps. 

36B4 internal reference gene PCR system and reaction process: The reaction 

process was pre-denaturation at 95°C for 10 min, denaturation at 95°C for 15 s, 

followed by extension at 58°C for 1 min; the last two steps were 33 cycles. 

Primer sequences: 

Tel-F: 5′-GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT-3′. 

Tel-R: 5′-TCCCGACTATCCCTATCCCTATCCCTATCCCTATC-3′. 

36B4-F: 5′-CAGCAAGTGGGAAGGTGTAATCC-3′. 
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36B4-R: 5′-CCCATTCTATCATCAACGGGTACAA-3′. 

 

Statistical analysis 

Unless noted otherwise, statistical analysis was performed using R, a language and 

environment for statistical computing and graphics. 

 

Age prediction model  

The penalty-regression model (implemented in R-packet glmnet) was used to regress 

the time series by age of 787 genes (transcriptome penalty terms, α = 0.92, λ = 1; 

methylation penalty terms, α = 1, λ = 0.94). 

 

Data access 

Raw sequencing data of RNA-seq, proteomics and Single-cell RNA seq were 

deposited into the CNGB Sequence Archive (CNSA) of the China National 

GeneBank Database (CNGBdb) with accession numbers CNP0002176. The source 

data of methylation are provided in the Extended Data (Extended Data Table S8). 
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