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18 Abstract

19 Laboratory mice are widely studied as models of mammalian biology, including the 

20 microbiota. However, much of the taxonomic and functional diversity of the mouse gut 

21 microbiome is missed in current metagenomic studies, because genome databases have not 

22 achieved a balanced representation of the diverse members of this ecosystem. Towards solving 

23 this problem, we used flow cytometry and low-coverage sequencing to capture the genomes of 

24 764 single cells from the stool of three laboratory mice. From these, we generated 298 high-

25 coverage microbial genome assemblies, which we annotated for open reading frames and 

26 phylogenetic placement. These genomes increase the gene catalog and phylogenetic breadth 

27 of the mouse microbiota, adding 135 novel species with the greatest increase in diversity to the 

28 Muribaculaceae and Bacteroidaceae families. This new diversity also improves the read 

29 mapping rate, taxonomic classifier performance, and gene detection rate of mouse stool 

30 metagenomes. The novel microbial functions revealed through our single-cell genomes highlight 

31 previously invisible pathways that may be important for life in the murine gastrointestinal tract.

32

33 Introduction

34 The number of microbial species with at least one genome sequence has grown rapidly 

35 in recent years. The human gut has been a major focus of these efforts[1–5], with metagenome 

36 assembled genomes (MAGs) and innovations in culturing[6–8] capturing genomes for many 

37 species previously absent from databases built primarily through isolate sequencing.

38 Mice are a model system for host-associated microbiota. They are heavily utilized in 

39 biomedical research as well as basic science investigations of community assembly and 

40 resilience. However, the species present in wild and laboratory mouse stool are heavily under-
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41 represented in genome databases in comparison to human-associated microbiota[9].  This gap 

42 can create a biased picture of the functional and taxonomic landscape of shotgun metagenomic 

43 studies carried out in mice, since most bioinformatics methods rely on available reference data. 

44 Several research groups have actively sought to address this problem, both by focusing on 

45 mouse-specific bacterial strains that were previously unculturable[10] and by performing co-

46 assembly of large-scale metagenomic datasets from a broad variety of mouse facilities[11].

47 This study aims to increase the number of mouse gut species with a sequenced genome 

48 using microbial single-cell genomics (SCG). Our workflow leverages fluorescence-activated cell 

49 sorting (FACS), whole genome amplification with WGA-X, shotgun sequencing and de novo 

50 assembly of genomes from individual microbial cells from two laboratory mouse strains[12]. By 

51 annotating the taxonomy and encoded functions of 298 quality-controlled, single-cell genomes, 

52 we revealed previously invisible pathways and phylogenetic breadth, increasing the power of 

53 metagenomic analysis tools. These results demonstrate the utility of SCG for characterizing 

54 host-associated microbiomes and provide a resource towards a better understanding of the 

55 mouse gut as a model system.

56 Results 

57 The biological material used for this study came from fecal pellets of three mice of two 

58 different strains - two wild-type C57BL/6N mice and a transgenic CD4-dnTβRII (DNR) mouse 

59 prone to developing intestinal inflammation[13]. These two strains’ intestinal microbiota have 

60 been previously studied within the lab[14], which allowed us to evaluate how the single-cell 

61 genomes we produced change previous interpretations of shotgun metagenomic data.

62 Using stool from these mice, we performed FACS followed by whole genome 

63 amplification with WGA-X. Cell sorting was based on the fluorescence of nucleic acids stain 

64 SYTO-9 (Thermo Fisher Scientific) and light scatter signals using a previously established gate 
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65 for individual prokaryotic cells[12]. To assess the general structure of the microbiomes, we first 

66 performed low-coverage sequencing and assembly of 738 cells (median 765,918 reads/sample 

67 [342,424 - 2,670,861]) (Methods). We filtered the resulting single-cell amplified genomes (SAGs) 

68 to exclude assemblies with total length below 20,000 basepairs (bp) or suspected to be 

69 contaminated (determined by nucleotide tetramer principal components analysis[15]), producing 

70 697 SAGs that vary in quality and completeness (Fig 1). Compared to the earlier, multiple 

71 displacement amplification (MDA) technique[16], the WGA-X approach has been shown to 

72 improve the amplification of single-cell DNA, especially for microorganisms with high GC-

73 content genomes[12],  and we indeed observed a wide range of GC% across the assemblies 

74 (Fig 1E).

75

76 Fig 1. Quality metrics of low-coverage SAG assemblies. A faceted plot containing 

77 histograms of quality metrics used to describe the assembled SAGs. The facets display the 

78 following metrics: A) total number of contigs, B) their total assembled lengths (in number of 

79 nucleotide basepairs), C) the length of the longest contig in each assembly (in number of 

80 nucleotide basepairs), D) CheckM estimated completeness (as percentage), and E) GC content. 

81 Tukey five-number summaries (minimum, 25% quantile, median, 75% quantile, maximum) are 

82 overlaid on each metric’s panel.

83

84 We next selected two samples, one of each strain, for further sequencing towards 

85 obtaining high-coverage SAGs. To prioritize cells that would produce high-quality data and 

86 increase the taxonomic diversity of mouse gut genomes, we performed phylogenetic placement 

87 of the low-coverage SAGs with GTDB-Tk[17], successfully placing 448 SAGs within the GTDB 

88 genome tree of life[18] (release 86). We then selected the 150 SAGs from each sample that 

89 maximize phylogenetic diversity and excluded SAGs with low probability of high genome 

90 recovery (Methods). Further sequencing and assembly of DNA from the corresponding cells 
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91 produced 298 high-coverage SAGs after quality control. As expected, these show significant 

92 improvements in relevant quality metrics when compared to corresponding low-coverage 

93 assemblies (S1 Fig). All subsequent analyses use the high-coverage SAGs.

94

95 To evaluate whether the SAGs increased the diversity of sequenced mouse microbiota, 

96 we placed them on the GTDB tree and quantified the additional branch length added by SAGs 

97 compared to the total branch length from previously sequenced microbial samples. Evaluating 

98 this metric across clades, we observed that our SAGs primarily increase the phylogenetic 

99 diversity of the Muribaculaceae and Bacteroidaceae families (Fig 2). Despite the fact that GTDB 

100 includes MAGs from uncultured microbes, this study adds substantial new diversity to the tree, 

101 with 135 out of 298 SAGs having no hit in the GTDB with FastANI similarity above 97%.

102

103 Fig 2. SAGs increase phylogenetic diversity and contain distinct genomic features. The 

104 central part of this circular figure contains a heat tree reflecting the number of SAG assemblies 

105 placed at different sub-branches of the GTDB v86 bacterial genome tree (represented by node 

106 size), and percentage phylogenetic gain achieved by the insertion of the new genome 

107 assemblies (represented by color scale). The outer rings of the figure contain additional 

108 genomic feature information inferred about the successfully placed SAG assemblies. The 

109 additional markings denote predicted CRISPR-Cas system type (ring of single point symbols) 

110 and the number of genes contributing to predicted biosynthetic gene clusters (outermost ring of 

111 colored polygons).

112

113

114  Next, we investigated the gene content of the SAGs. We annotated open reading 

115 frames in all SAGs, dereplicated these, and analyzed their functional potential using annotations 

116 from clusters of orthologous groups (COGs)[19].  Gene sequences were evaluated for percent 
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117 nucleotide identity to all sequences in a previously published mouse stool metagenome-derived 

118 gene catalog (4) and labeled as novel if they have no matches above 95% nucleotide identity. 

119 Overall, 53.7% of SAG genes were novel and 46.3% overlapped with the mouse catalog, which 

120 compares to 10% overlap with a human gene catalog and <0.1% for a marine catalog (Fig 3), 

121 highlighting the functional differences of microbes across these environments. Novel SAG 

122 genes were enriched for COG categories M (Cell wall/membrane/envelope biogenesis), L 

123 (Replication, recombination and repair), C (Energy production and conversion) and R (General 

124 function prediction only). This enrichment was determined by Annotation Enrichment 

125 Analysis[20], a method that aims to reduce the bias towards highly annotated functional 

126 categories and utilize the hierarchical structure in a given functional ontology. While these 

127 annotation categories provide a rather broad summary of the functions distinct to this gene set, 

128 they generally suggest that sequencing more members of the microbiota would expand our 

129 understanding of both internal housekeeping functions (categories L and R), but also functions 

130 more pertinent for translational applications within category M, which contains potential 

131 candidates for studying interactions with the host immune system. Thus, our SAG gene catalog 

132 expands the representation of putative functions present in mouse gut microbes, with 

133 surprisingly large gains given the number of genomes sequenced for this study.

134

135 Fig 3. A gene catalog derived from SAGs shows subsantial novelty when compared 

136 against other microbiome gene catalogs. Euler plots reflect the shared and unique counts of 

137 genes when comparing the set of non-redundant genes from this study’s data against previously 

138 published gene catalogs derived from metagenomic sequencing efforts in A) mice, B) humans, 

139 and C) marine samples.

140

141 To expand beyond COG annotations for two important groups of genes, we performed 

142 additional annotation of enzymes involved in secondary metabolism and CRISPR associated 
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143 (Cas) proteins along with their CRISPR arrays. Overall, 3,257 putative secondary metabolism 

144 gene clusters were found across the 298 SAGs sequenced at high coverage. The most 

145 prevalent predicted cluster types were the broad categories of saccharide, fatty acid, and 

146 NRPS-like, whereas the more nuanced product types were detected much more rarely.

147 CRISPR-cas types were determined in 88 genomes, of which 22 genomes had 2 CRISPR 

148 complexes. An additional 28 genomes had Cas operons, but no proximal CRISPR array. 

149 The distributions of biosynthetic gene clusters (BGCs) and CRISPR-Cas systems in our 

150 SAGs support the phylogenetic novelty of several clades characterized in this study. We 

151 quantified the presence of BGCs and CRISPR-cas types in relation to the phylogenetic 

152 placement of the contributing genome (outer ring of Fig 3). In this trimmed genome subtree, the 

153 newly sequenced Prevotella SAGs form a distinct, relatively flat phylogenetic subcluster, 

154 distinguished by unique CRISPR-Cas subtype patterns and presence of NRPS-like predicted 

155 BGCs. A closely related subset of SAGs assigned to the genus CAG-486 within the 

156 Muribaculaceae family accounts for a high proportion of identified aryl polyene BGCs, 

157 suggesting similar adaptations to oxidative stress[21]. Thus, the new taxonomic diversity we 

158 captured is mirrored by gene functional profiles that differ from related genomes. 

159 Finally, we investigated to what degree our SAGs improve the sensitivity and resolution 

160 of metagenomic analysis using 236 shotgun metagenome samples from laboratory mouse stool, 

161 as well as metagenomes from wild mouse stool (N=10), human stool (N=274), and marine 

162 environments (N=20, subset of full data) (accessions listed in S2 Table). Focusing on taxonomic 

163 classifiers, we created custom mapping references for sourmash[22] and MIDAS[9], which 

164 represent two common approaches: kmer-based versus marker gene-based. We compared 

165 taxonomic coverage and prevalence estimates with each tool using the database distributed 

166 with the software, a database composed only of SAGs, and the two combined. For both tools, 

167 the combined database generally improved the taxonomic classification of mouse microbiome 

168 samples, with the exception of the wild mouse microbiome testing scenario, which only showed 
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169 improvement with FDR < 0.1 when using sourmash and not MIDAS. Interestingly the addition of 

170 SAGs also improved classification rates to a limited degree with human microbiome samples 

171 (not statistically significant), but not marine samples. The results of non-parametric testing of the 

172 performance of pairs of databases for each dataset and tool type can be found in S3 Table, with 

173 highlighted rows showing cases of significant performance improvement in a number of murine 

174 shotgun microbiome datasets. Ridgeline plots graphically portray these performance differences 

175 in greater detail (S4 Fig, S5 Fig). These results show that the novel phylogenetic diversity we 

176 captured with SAGs has a positive effect on our ability to taxonomically profile shotgun 

177 metagenomes from the mammalian gut.

178

179

180 Discussion

181 To our knowledge, this study is the first to generate single-cell genome assemblies from 

182 mammal-associated microbiota with the WGA-X approach. The draft genomes that we 

183 assembled increase the phylogenetic diversity of mouse gut microbiota in public databases. Our 

184 SAGs add a particularly large number of genomes (58 assemblies) to the recently proposed 

185 candidate family Muribaculaceae within the Bacteroidales, previously referred to in the literature 

186 as S24-7 and Ca. Homeothermaceae[23][24]. This family has been reported as a taxon of 

187 interest in multiple studies[25–27] but has so far only been characterized via 16S markers and 

188 MAGs. Only one recent paper has successfully isolated members of this family in culture[24]. 

189 Another taxon with large numbers of newly placed SAGs (120 assemblies), though small 

190 phylogenetic gain (4.27%), is the genus Prevotella, which contains Gram-negative obligate 

191 anaerobes with potential links to mucosal inflammation susceptibility[28]. Hence, our SAGs add 

192 genomes for important taxonomic groups in the mouse microbiota.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.13.472402doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472402
http://creativecommons.org/licenses/by/4.0/


9

193 SAGs also increase our knowledge of the functional potential of microbes in the mouse 

194 gut. Gain in functional novelty includes a large number of COGs that were enriched and 

195 depleted compared to open reading frames previously observed in mouse stool samples. When 

196 summarising these differentially detected functional categories, four are particularly enriched:  

197 energy production and conversion (C), replication and repair (L), cell wall/membrane/envelope 

198 biogenesis (M), and the unspecific category (R) - general function prediction only. Previously 

199 unobserved sequences classified under the M category could be of interest when mining for 

200 new antigenic proteins, whereas genes placed in the unspecific R category could be further 

201 experimentally probed to shed light on microbial “dark matter”.

202 Our annotations of SAGs for secondary metabolism genes and CRISPR systems aim to 

203 highlight the capacity of this sequencing approach to more faithfully reflect intra-genome 

204 structure. When analyzed in the context of phylogenetic relationships between SAGs, the 

205 results of CRISPR-Cas type identification show SAGs placed in the Prevotella genus have both 

206 Type I and Type III systems, whereas this is relatively uncommon in our data outside this clade. 

207 This suggests that these microbes have a more sophisticated defense repertoire that allows for 

208 targeting of both DNA and RNA[30].

209 Looking at secondary metabolism, we see that the most widely represented gene 

210 clusters are for saccharide and fatty acid biosynthesis. The remaining categories are sparsely 

211 observed. An interesting clustering occurs for the resorcinol group which appears primarily to be 

212 present in genomes from the Bacteroidaceae family. This cluster type originates mainly from 

213 genomes found in the DNR mouse microbiome (34 resorcinol clusters predicted, vs only 6 from 

214 WT). The particular gene that is considered by the predictive tool AntiSMASH as a signature 

215 gene for the resorcinol annotation is DarB (KEGG orthology ID of K00648), which falls under the 

216 fatty acid biosynthesis KEGG pathway. The literature provides limited insight into what 

217 microbiome activities resorcinol biosynthesis could be relevant to, however, some reported 

218 associations of the more specific chemical family of dialkylresorcinols include anti-inflammatory, 
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219 anti-proliferative, and antibiotic activities[31]. Interestingly, a dialkylresorcinol compound has 

220 been used to attenuate the effects of experimentally induced intestinal inflammation[32], which 

221 has potential implications for the observed higher prevalence of dialkylresorcinol-producing 

222 genomes in the inflammation-prone DNR mouse strain.

223 Considering the relatively modest costs of this sequencing experiment, we were 

224 surprised to find that the new sequences significantly helped with metagenomic read 

225 recruitment even in unrelated mouse lines and wild mouse samples, which have been shown to 

226 have more diverse microbiomes than their laboratory counterparts[33]. This corroborates prior 

227 reports demonstrating the value of SAG genomes as reference material for the interpretation of  

228 marine[34,35] and soil[12,36] microbiome omics data. The lack of improvement of the 

229 taxonomic classifiers on marine metagenomic data with mouse microbiome SAGs agree with 

230 our findings of novel genes, confirming the lack of highly similar genomes between these two 

231 environments.

232 Despite single-cell sequencing being a promising approach for increasing the 

233 representation of unculturable mouse symbionts in the tree of life, certain caveats still exist. For 

234 example, although the individual SAG assemblies have acceptable quality metrics, there is a 

235 limit to the completeness that can be achieved when operating with short read sequencing data. 

236 Long repetitive segments continue to pose an obstacle to assemblers that attempt to span 

237 ambiguous regions of the genome. Whole genome amplification, while drastically improved by 

238 the WGA-X process, is still not uniform across the genome, thus requiring a relatively deep 

239 sequencing of SAGs in order to access under-amplified regions. Despite these limitations, we 

240 expect that the taxonomic and functional novelty revealed in this study will encourage others to 

241 leverage single-cell genomics technologies.

242
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243 Materials and Methods

244 Sample acquisition and sequencing 

245 Cells were sequenced from three murine fecal pellets, two from wild-type C57BL/6N 

246 mice and one from an inflammatory bowel disease model CD4-dnTGFBRII (DNR) [13,37] 

247 mouse not exhibiting intestinal pathology at the time of sampling. To preserve the mouse feces, a 

248 cryopreservation “glyTE'' stock (11.11x) was made by mixing 20 mL of 100x Tris-EDTA pH 8.0 

249 (Sigma) with 60 mL deionized water and 100 mL molecular-grade glycerol (Acros Organics). This 

250 mixture was filter-sterilized using a 0.2 micrometer filter. Prior to use, 1x glyTE was made by diluting 

251 with phosphate buffered saline (PBS) at a 10:1 ratio. 1 mL of the 1x glyTE was then aliquoted into 

252 cryotubes. Each fecal pellet was distributed into 3 separate cryotubes to create 3 replicates for each 

253 sample. Each sample was dispersed into the solution by gentle pipetting and allowed to incubate at 

254 room temperature for 1 minute before being placed on dry ice. Samples were stored at -80 C and 

255 shipped on dry ice to the Bigelow Laboratory’s Single Cell Genomics Center for further processing 

256 using a previously described protocol[12]. Low-coverage SAG assemblies were generated to 

257 evaluate microbiome composition. Two samples, one of each murine host genotype, were 

258 selected for high-coverage sequencing. In each sample, cells were prioritized by optimizing for 

259 robust amplification profiles and maximizing the phylogenetic diversity (python code DOI: 

260 10.5281/zenodo.2749707). The criterion used to assess amplification dynamics was computed 

261 as the time needed to reach the inflection point in the amplification curve. Raw reads were 

262 processed into assembled contigs (same procedure as described in [12]), which were further 

263 filtered to yield sufficient quality SAGs, which were assessed by checkM[38] for contamination 

264 and assigned a putative taxonomic lineage. Versions of QC and assembly pipeline 

265 subcomponents were as follows: SPAdes v3.9.0[39], bcl2fastq v2.17.1.14 (Illumina), 

266 Trimmomatic v0.32[40], kmernorm 1.05 (https://sourceforge.net/projects/kmernorm/). This SAG 
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267 generation, sequencing and assembly workflow was previously evaluated for assembly errors 

268 using three bacterial benchmark cultures with diverse genome complexity and GC content (%), 

269 indicating no non-target and undefined bases in the assemblies and average frequencies of 

270 mis-assemblies, indels and mismatches per 100 kbp being 0.9, 1.8, and 4.7[12].

271 All mice were housed and bred in specific pathogen-fee conditions in the Gladstone 

272 animal facility. No animals were euthanized for the purposes of this study. All animal 

273 experiments were conducted with all relevant ethical regulations for animal testing and research 

274 and were done in accordance with guidelines set by the Institutional Animal Care and Use 

275 Committee of the University of California, San Francisco under protocol #AN151865–03A.

276 Computational analyses of phylogenetic placement and predicted 

277 gene function

278 We used pplacer[41] within GTDB-Tk[17] to phylogenetically place the SAGs in the 

279 genome tree that is part of GTDB release 86. The resulting placements were used to calculate 

280 phylogenetic diversity and phylogenetic gain from the SAGs using GenomeTreeTk[42]. The heat 

281 tree visualization was inspired by the approach illustrated in the metacoder[43] R package and 

282 was ultimately generated alongside additional genomic feature annotation via the ggtree[44] and 

283 ggtreeExtra[45] packages.

284 Classification of the CRISPR-Cas system types and subtypes was done by 

285 CRISPRCasTyper v1.2.1[46]. Identification of secondary metabolism gene clusters was 

286 performed with AntiSMASH v5.2[47]. Unless otherwise stated, default settings were used when 

287 invoking these computational tools.

288 Clustering of predicted genes was performed by CD-HIT-EST v4.6.8 [48] (settings: –r 1 

289 –c 0.95 –n 8), and the resulting gene catalog was compared by CD-HIT-EST-2D to previously 

290 published gene catalogs derived from mouse[11], human[49], and marine[50] microbiomes. To 
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291 gauge enrichment of functional categories for novel sequences in our catalog, we annotated the 

292 sequences with EggNOG-mapper v1.0.3 [51] using diamond[52] as the homology search 

293 method and then applied Annotation Enrichment Analysis methodology[20] to assess the 

294 relationship between the number of genes assigned to a COG category and their novelty in 

295 relation to the previously published mouse metagenome catalog[11]. We corrected for multiple 

296 testing using the p.adjust function in base R[53] (v3.6.0), using the Benjamini-Hochberg[54] 

297 method.    

298 Comparative analyses of metagenomic read recruitment

299 Custom sourmash[22] lowest common ancestor (LCA) databases for the set of GTDB 

300 genomes and SAG assemblies were created using the “sourmash lca index” function, and 

301 metagenomic datasets were then classified with “sourmash lca summarize” using the two 

302 databases separately as well as together to evaluate the effect of combining the data. To create 

303 the relevant databases for MIDAS, we used the built-in database creation script within the 

304 package, as well as an auxiliary step of assigning certain SAG assemblies to pre-existing 

305 genome clusters by computing their Mash[55] distance to extant cluster representatives. 

306 Comparative metagenomic datasets for wild mouse[33], lab mouse[11], human type I 

307 diabetes[56], healthy humans[57], and ocean samples[50] were retrieved from the SRA 

308 (accession IDs in S1 Table) and converted to fastq with NCBI’s fastq-dump utility. Metagenomic 

309 datasets from wild-type and DNR mice previously studied at the Gladstone Institutes[14] can be 

310 found under BioProject PRJNA397886. We used a paired Wilcoxon-rank test to evaluate the 

311 change in total hash recruitment by sourmash for the three pairs of reference database settings 

312 (default vs SAG-only, default vs combination, combination vs SAG-only). We also tested the 

313 difference in the number of species that were assigned more than 5 hashes, as an 

314 approximation for species prevalence. For MIDAS, we evaluated differences in median and 
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315 mean coverage of marker genes, as well as the species prevalence, using the unpaired 

316 Wilcoxon-rank test.

317 Data Availability

318 We submitted sequencing runs for 697 SAGs to SRA under BioProject PRJNA481120. Genome 

319 assemblies and feature annotations are available in a figshare repository (DOI: 

320 10.6084/m9.figshare.c.4454150)
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499 Captions for Supporting Information

500 S1 Fig. Assembly quality improvement with high coverage sequencing. Multiple metrics 

501 are improved when comparing high coverage versus low coverage single cell sequencing data. 

502 Facets show the individual metrics assessed: assembly completeness as determined by 

503 CheckM, total length of the genome assembly, maximum contig length, total number of reads 

504 generated . Numbers over each boxplot represent p-values of paired Mann-Whitney tests.

505 S2 Table. Accessions used for taxonomic classifier performance evaluation. Public data 

506 retrieved from SRA and ENA to test the performance of metagenomic classifiers with custom 

507 reference databases.

508 S3 Table. Results of nonparametric comparisons of taxonomic classifier performance 

509 with varying reference databases. Results of Mann-Whitney tests comparing metagenomic 

510 read recruitment metrics for every combination of reference type (default, single-cell genomes 
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511 only, combined) and test dataset. Two sheets are present in the file, reflecting the results from 

512 two different taxonomic classifiers (sourmash and MIDAS)

513 S4 Fig. Distributions of taxonomic classifier performance metrics when using the 

514 taxonomic classifier sourmash and varying reference databases. Ridgeline plots 

515 representing distributions of 2 metagenomic classifier performance metrics when using 

516 sourmash  - total number of kmer hashes assigned and number of species with more than 5 

517 hashes (an approximation for prevalence). The plots are faceted by dataset, and each line 

518 within the facet reflects one of the three reference database options - default set of genomes 

519 available in GTDB release 86, a custom database with single-cell genomes only, and a 

520 combined database with the GTDB v86 and single-cell genomes.

521 S5 Fig. Distributions of taxonomic classifier performance metrics when using the 

522 taxonomic classifier MIDAS and varying reference databases. Ridgeline plots representing 

523 distributions of 3 metagenomic classifier performance metrics when using MIDAS - mean 

524 coverage of 15 phylogenetically informative marker genes, median coverage of the same 

525 genes, and prevalence (number of samples a species is present in). The plots are faceted by 

526 dataset, and each line within the facet reflects one of the three reference database options - 

527 default MIDAS v1.2 database, a custom database with single-cell genomes only, and a 

528 combined database with the MIDAS v1.2 and single cell genomes.
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