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Species-rich communities, such as the microbiota or microbial ecosystems, provide key functions
for human health and climatic resilience. Increasing effort is being dedicated to design experimental
protocols for selecting community-level functions of interest. These experiments typically involve se-
lection acting on populations of communities, each of which is composed of multiple species. Numer-
ical simulations explored the evolutionary dynamics of this complex, multi-scale system. However, a
comprehensive theoretical understanding of the process of artificial selection of communities is still
lacking. Here, we propose a general model for the evolutionary dynamics of communities composed
of a large number of interacting species, described by disordered generalized Lotka-Volterra equa-
tions. Our analytical and numerical results reveal that selection for total community abundance
leads to increased levels of mutualism and interaction diversity. Correspondingly, the interaction
matrix acquires a specific structure that is generic for selection of collective functions. Our approach
moreover allows to disentangle the role of different control parameters in determining the efficiency of
the selection process, and can thus be used as a guidance in optimizing artificial selection protocols.

Artificial selection has been used for millennia to steer plant
and animal characters towards target phenotypes. Recently,
it is attracting a lot of interest as a way to control and tune
ecosystem services and functions, which are emergent prop-
erties of biological communities formed by many different
species [1]. Particularly interesting in this respect are mi-
crobial communities that dispense highly relevant functions,
contributing to human health [2] as well as to global biogeo-
chemical cycles [3]. The widespread application of such an
approach is nonetheless hampered by the large number of pa-
rameters that have potential bearings on the efficiency of the
selection protocol, and that must be critically evaluated in
designing these experiments [4].

Numerical simulations of simplified models have started ex-
ploring how selection for a collective function affects com-
munity composition [5–10]. Alternative experimental designs
and system parameters have thus be shown to affect the ef-
ficiency of the selection process. Given the huge space of
possible experimental choices and of interaction types, a fun-
damental problem is how to asses the robustness of simulation
results and use them to optimize selection protocols.

Thorough studies of communities composed of two-species
helped identifying key processes involved in artificial selec-
tion of communities, and pointed out how competition among
composing species may be overcome in attaining collective
functions [11, 12]. In particular, when community ecology was
modelled by two-species competitive Lotka-Volterra equa-
tions, evolution of a specific community composition relied
essentially on modifications of interspecific interactions [13].

In order to complement these studies, we consider complex
communities composed of a large number of species, and de-
velop analytical methods to address the statistical features
of the evolutionary dynamics of such complex ecosystems.
Approaches from statistical physics have been largely used
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to address the ecology of species-rich communities [14–19].
Generalized Lotka-Volterra equations with random interac-
tions are an important null model for community ecology and
a first step towards more realistic descriptions of the dynam-
ics of complex ecosystems. Here, we propose and analyze a
simplified model that tackles in general terms the effect of
collective-level selection on the structure of interspecific in-
teractions in species-rich communities. We study the evolu-
tion of collective functions in the limit when the ecological
and evolutionary time scales are separated, where novelty is
provided by mutations that affect collective functions. We
derive a general equation describing the change along an evo-
lutionary trajectory of the species interaction matrix. We
show that selection for increased community size imprints a
low-dimensional structure on such matrix, which results in
the emergence of a global mutualistic term akin to collective
cross-feeding. Our analytic results explain the effect of the
number of replicate communities, community richness and di-
versity, nature of ecological interactions and magnitude of the
mutational steps in determining the speed and attainability of
a given target function upon which selection acts. This analy-
sis reveals that community-level selection creates structure in
interactions by progressively evolving a complex, structured
matrix from an initially featureless one.

MODEL FOR SELECTION OF SPECIES-RICH
COMMUNITIES

We model a population of n communities that undergo cy-
cles of ecological growth, selection and reproduction, as ex-
plained in Fig. 1. The ecological dynamics within a cycle
is described as a function of a continuous time variable t.
Reproduction occurs via monoparental seeding of the next
community generation (’propagule’ reproduction [5, 8]). The
successive cycles, or community generations, are indexed with
a discrete variable τ . Selection is applied by letting the prob-
ability that a community reproduce depend upon a collective
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Figure 1. Structure of the model for the evolution of
species-rich communities. Each community in a population
of n (here, n = 4) communities is represented by a circle and is
composed of a set of individuals (represented by the dots), belong-
ing to different species (represented by colour), initially sampled
by a same metacommunity. The m = 2 communities with largest
total abundance (the number of individuals) are selected for re-
production. Newborn communities are generated by copying the
state (vector of species abundances), but modifying the parame-
ters of the interactions among species, as detailed in the text. In
the course of a community generation, these changes can result in
ecological variation of community composition and of its selected
function.

function, evaluated at t = T , the duration of one generation.
The evolutionary dynamics that we aim to describe consists
in the change of the community composition across multiple
generations. For simplicity, we assume that mutations only
occur in newborn communities, so that within one collective
generation species abundances are only ruled by the ecological
dynamics.

In the following, we first detail the model for the dynamics
of a single community within one generation, and then the
rules for community reproduction and mutation.
Ecological dynamic. Each of the n communities is com-

posed of S species with continuous abundances (Ni)i=1,...,S ,
whose variation is described by the generalized Lotka-Volterra
equations [20]:

dNi
dt

=
Ni
Ki

Ki −Ni −
∑
j 6=i

αijNj

 . (1)

The constants Ki are the carrying capacities and the inter-
action coefficients αij represent the effect of species j on the
growth of species i.
Initial species interactions. Following May’s disorder ap-

proach [21], we choose initial communities with random in-
teractions. Specifically, the coefficients αij are drawn, as in
Bunin, from a normal distribution of parameters:

E(αij) = µ/S

Var(αij) = σ2/S

Corr(αij , αji) = γ.

(2)

Here, µ represents the total interaction strength faced by
one species from all of its partners, whereas σ measures the
diversity of interactions. The parameter γ ∈ [−1, 1] deter-
mines the symmetry of the ecological interactions: competi-
tion and mutualism correspond to γ = 1 whereas exploitative

interactions like predator-prey and parasitic interactions are
characterized by γ = −1.

We initialize communities by sampling interactions in the
region of parameters (µ, σ) where the system has a unique,
stable coexistence equilibrium (see Supplementary Section 1),
that is independent of the initial community composition [15].
The transient dynamic leading to such an attractor depends
however on the initial state of the community, and can have
important evolutionary implications [8]. For this reason, the
duration T of one generation is assumed to be large, so that
the community approaches equilibrium.

Community-level selection and reproduction. Communi-
ties are ranked according to a single collective function. We
will mostly focus on the total community abundance NT =∑
iNi(T ). The m communities that rank best at the end

of one generation are chosen for reproduction, and the rest
discarded (Fig.1). When an offspring community is born, it
acquires the same composition of the parent community. In
the absence of variation in the community parameters, this
guarantees that community functions are perfectly inherited.

Community-level mutations. For evolution by natural se-
lection to occur at the level of communities, there must be
variation in the collective function [22]. In our model, varia-
tion is replenished at each community generation by changes
in the interaction matrix, called ’community-level mutations’.

In order for mutations not to bias a priori the change of
the trait under selection, mutations are defined so that they
do not alter, in expectation, the mean and variance of the
interaction matrix. Single realizations nonetheless differ in
the collective function, producing the variation selection acts
upon. To this purpose, we write the interaction matrix at
generation τ as:

αij(τ) = mean[α(τ)] + std[α(τ)] bij(τ) (3)

where:

mean[α] =
1

S2

∑
ij

αij

std[α] =

√
1

S2

∑
ij

(αij −mean[α])2

are the empirical mean and standard deviation of the ma-
trix α, and the reduced matrix b has empirical mean 0 and
empirical variance 1.

We define the mutated interaction matrix as:

αij(τ + 1) = mean[α(τ)] + std[α(τ)] b̂ij(τ) (4)

with:

b̂ij(τ) =
bij(τ) + εηij(τ)√

1 + ε2
, (5)

where η(τ) is a Gaussian random matrix of expected value
0, variance 1 and symmetric correlation γ. Therefore, the
interaction matrices at two successive generations have the
same probability distribution. In the absence of selection,
thus, community function will evolve by neutral drift.

RESULTS

We now present and discuss the salient features of the evo-
lutionary dynamics of the model previously introduced. We
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Figure 2. Changes of species abundance along an evolution-
ary trajectory. Selection for increased total abundance leads to
an increase in the abundances of most species (grey lines), and, as
a consequence, of the average abundance NT /S (blue line). See
Material and Methods for the details of the numerical simulations.

first show numerical results and then addressed them theoret-
ically. The numerics is performed for initially mostly compet-
itive interactions and randomly distributed carrying capaci-
ties, as detailed in the Materials and Methods.

As observed in past numerical studies [5, 6, 23, 24], we find
that in response to selection, communities evolve so as to im-
prove the desired collective function (Fig. 2). Such increase
gradually accelerates, and the ecological dynamics is eventu-
ally pushed in a region where some abundances diverge (This
divergence is a well-known pathology of the Lotka-Volterra
equations that can be corrected by choosing a saturation
stronger than quadratic [25]).

The observed improvement of community function derives
from changes of the interaction matrix α, that also reflect
on its empirical statistics µ(τ) = mean[α(τ)]/S and σ(τ) =

std[α(τ)]/
√
S. As shown in Fig. 3 A, the mean decreases,

indicating that interactions become – on average – progres-
sively more mutualistic. At the same time, their variance
increases, so that interactions within the community become
more diverse.

Analytical results obtained for disordered communities can
help to rationalize these findings. Indeed, for random ma-
trices defined by equation 2, the total population size NT
is purely a function of µ and σ. Thus, one could envision
selection as a process in which the empirical moments of α
change across community generations so as to climb the gra-
dient of the fitness function NT (µ, σ) (reproduced from [15]
in Supplementary Fig. 1). This, however, is not what hap-
pens: the evolutionary trajectory of the community function
NT (µ(τ), σ(τ)) deviates from the gradient-climbing process
predicted for a random matrix with the same moments (Fig.
4). Hence, evolutionary dynamics cannot be described as a
change of global features characterizing the interactions. One
needs to dwell on the evolution of the fine-scale properties of
the interaction matrix.

As we show below, selection imprints a structure on the
interaction matrix α, that can be characterized by its eigen-
values. The spectrum of the initial random interaction ma-
trix is, in the complex plane, a circle of radius σ centered in
the origin [26], plus an isolated positive eigenvalue (blue in

Fig. 3 B) of magnitude µ. The initial effect of selection is
to reduce this value. After some time, however, an isolated
negative eigenvalue λ (green in Fig. 3 B and C) emerges from
the circle and detaches from it linearly in time. Apart from
this isolated component, along an evolutionary trajectory the
matrix retains its randomness, and the circle of eigenvalues
changes only slightly its radius. Selection adds to the random
part a new rank-one term which can be written in terms of
the eigenvectors relative to the isolated eigenvalue λ.

The imprinted structure that emerged along the evolution-
ary trajectory can be visualized by displaying the correspond-
ing entries of α for early and late stages of community evo-
lution (Fig. 5, where species are ordered in terms of their
carrying capacity from larger to smaller). At the beginning,
there is no visible structure, except the diagonal that has zero
entries by construction. After 2000 generations, species who
have become more mutualistic are mostly those that initially
had higher carrying capacity. This is a direct manifestation
of the emergence of the isolated eigenvalue, as we find that its
eigenvectors are correlated to both K and to the equilibrium
abundances N (see Supplementary Fig. 3).

Simulations realized for a number of different parameter
values and for other target functions (Supplementary Section
10) suggest that the phenomena illustrated above are general.

Next, we introduce a theoretical framework to explain how
the phenomena illustrated above by numerical simulation
emerge and why they should be expected to hold generically.
Analytical results, illustrated here for asymmetric interac-
tions (γ = 0) and detailed in Material and Methods and Sup-
plementary Information, moreover allow us to disentangle the
respective role of all the system’s parameters in determining
the efficiency of the artificial selection process.

Given a community with interaction matrix α(τ) and equi-
librium N(τ) at a given generation τ , we aim to characterize
the interaction matrix α(τ + 1) of the selected offspring com-
munity – that providing the largest total abundance at equi-
librium. Mutations of α(τ) are, for ε� 1, equivalent to small
random perturbations of the carrying capacities, so linear re-
sponse theory provides the corresponding change induced on
the equilibrium abundances. The total abundance of each of
the n communities is therefore modified by a random con-
tribution that we can fully characterize. By singling out the
largest contribution, i.e. the largest among several indepen-
dent random variables [27], we show in the SM that selection
induces the following change in total abundance NT (τ):

NT (τ + 1) = NT (τ) +Mn(τ)
εσ(τ)√
S
‖v(τ)‖‖N(τ)‖, (6)

where v(τ) is a nonlinear function of the interaction matrix
α(τ): v?(τ) = (I? + α?(τ)>)−11? (the asterisk indicates that
only extant species are considered) and vi = 0 for extinct
species. This vector also measures how the total abundance
at equilibrium varies upon changing the carrying capacities:
v(τ) = ∂NT

∂K (τ). The random variable Mn(τ) (drawn indepen-
dently at each generation) follows the statistic of the maxi-
mum value of n Gaussian variables, with expected value Mn

(see the distribution of Mn in Supplementary Fig. 2).
Equation 6 implies that the total community abundance

increases on average along an evolutionary trajectory, as the
product of the norms is always positive and Mn has a pos-
itive expected value for n > 1. However, when the number
of communities is too small, it can also transiently decrease,
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Figure 3. Changes of the statistics of the interaction matrix along an evolutionary trajectory. The interaction matrix α of
the best community evolves so that the average interaction strength decreases linearly in time (A, cyan), while its variance increases (A,
red). Such changes correspond to a modification in structure, manifest in the spectrum of its eigenvalues. The change of their real part
across community generations (B) reveals the appearance of an isolated negative real eigenvalue (green) as well as the decrease of the
eigenvalue associated to µ (blue). A zoom of the spectrum in the complex plane (C) at generation τ = 1900 represented by the dotted
line in (B) reveals that, apart from the emergence of this mutualistic collective mode, the matrix retains its initial random structure
characterized by a circular law for the eigenvalues.

Figure 4. Purely random interactions cannot explain the
evolution of total community abundance. Variation of
the interaction moments µ(τ), σ(τ), and of the total abundance
log(NT (τ)) (red line) along an evolutionary trajectory. The abun-
dance of a random interaction matrix (equation 2) with moments
µ, σ (surface) is plotted for comparison. The white line is the
predicted total abundance if the matrix of moments µ(τ), σ(τ)
was completely random, indicating that along the trajectory the
matrix becomes progressively structured.

Figure 5. Evolution of the interaction matrix. Coefficients of
the interaction matrix α with rows and columns sorted by decreas-
ing carrying capacities at generations 1 (left) and 2000 (right) for
the same simulation as Fig. 2. Only the species that have positive
abundance at generation 2000 are shown.

thus breaking the alignment between selection and commu-
nity response.

Changes in total abundance are ultimately based on the
evolution of the interaction matrix. As detailed in the SI, its
change across one collective generation can be decomposed
in a directional term – contributing to the evolution of NT –
and its complement Bij , that acts as a random fluctuation.
The interaction between any two species i and j thus evolves
according to:

αij(τ + 1) = αij(τ)− εσ(τ)√
S

(
Mn(τ)

vi(τ)

‖v(τ)‖
Nj(τ)

‖N(τ)‖
+Bij

)
.

(7)
This expression has a simple interpretation: among the ran-

dom mutations of the interaction matrix, only matter those
in the special direction associated to the target function NT .
The selected community is hence the one having the largest
random Gaussian contribution associated to such direction.

Equation 7 (or its generalization Supplementary equation
22 for γ 6= 0) means that species are not all equivalent in
the face of selection: species whose potential variation con-
tributes more to the function (those with larger vi) and with
larger equilibrium abundance will face a larger decrease in the
interaction strength, as pointed out in Fig. 5.

Equations 6 and 7 apply to any initial interaction matrix
(not only random ones) and allow us to draw general con-
clusions on how speed and direction of evolutionary change
depend on the numerous parameters of the system.

As could be intuited, evolution is faster when selection
screens a larger number of communities, since the expected
value Mn is an increasing function of n. When only one
community is considered, on the other hand, the total abun-
dance and the interaction matrix undergo unbiased stochas-
tic changes (see Supplementary section 7), as M1 is Gaussian
with zero mean. Under these conditions, collective functions
cannot be selected and evolve by community-level drift. How-
ever, increasing the number of communities may not always
be the key to success. The growth ofMn with n, indeed, scales
as
√

log(n), which increases slowly for large n, so that tran-
sition to high community throughput may be of little avail to
speed up evolution.

Other parameters can be changed so as to improve the effi-
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cacy of community selection. The variation of the interaction
matrix, thus of the selected function, across one community
generation occurs on a time scale dt = ε/

√
S. Thus, in our

model evolution has faster pace in communities with a smaller
number of species and for larger mutational steps.

Equation 7 (equation 22 for general γ) are non-linear recur-
sive matrix equations that can’t be exactly solved in general.
A complete solution can however be obtained in the limiting
case of small variability of interactions σ � 1 (see Supple-
mentary section 6). The effect of selection is here simply
to add a global negative term to the dynamics of the aver-
age interaction strength and results in interactions becoming
progressively more mutualistic (Supplementary equation 30).

A phenomenon discovered in random matrix theory and
called BBP phase transition sheds light on the origin of the
structure observed in simulations. Such transition is charac-
terized by the emergence of an isolated eigenvalue λ when a
strong enough rank one term is added to a random matrix.
Fully characterized in random matrices [28], the BBP tran-
sition found applications in computer science, data sciences,
neurosciences and physics [29–33]. An identical phenomenon
takes place in our case, as shown in Fig. 3 C, and leads to
an isolated eigenvalue (with left and right eigenvectors q and
r). Analogous to the BBP phenomenon, the emergence of the
isolated eigenvalue is the consequence of the addition of rank-
one directional contributions in eq. 7 (whereas the random
Gaussian contributions Bij do not modify the initial random
structure). Unlike the BBP transition, however, these contri-
butions change in time, so that the exact moment when the
transition occurs is only predictable when the heterogeneity
of interactions is small.

A full theory can be nonetheless obtained when some com-
munity features can be observed along an evolutionary tra-
jectory. By leveraging the maximum entropy method method
developed in Barbier et al. we can characterize the interaction
matrix from the mean interaction µ, the equilibrium abun-
dances N and the carrying capacity vector K. For large S,
this matrix can be written (see Supplementary section 9):

α̃ij(τ) =
li(τ)Nj(τ)∑

kN
2
k (τ)

+ σ(τ)zij , (8)

where li(τ) = Ki−Ni(τ)−µ(τ)NT (τ)/S and zij is a Gaussian
random matrix of zero mean and unit variance.

Remarkably, this expression provides a very accurate de-
scription of the evolutionary dynamics of the interaction ma-
trix (see Supplementary Fig. 8). In particular, the isolated
eigenvalue and the associated eigenvectors show a perfect
match. Within this framework, the interaction matrix at
evolutionary time τ is indeed the initial one (restricted to
extant species) plus a time-dependent rank-one contribution.
BBP theory therefore implies that the effect of evolutionary
dynamics on the spectrum is to: (i) shrink the circle of eigen-
value (due to σ(τ)zij and whose radius is equal to σ(τ)), (ii)
induce a BBP transition with a lower eigenvalue popping out
when ‖l(τ)‖ > σ(τ)‖N(τ)‖. These theoretical results provide
a quantitative explanation of our numerical findings and sug-
gests that it should be possible to identify the emergence of
the isolated eigenvalue without measuring every pairwise in-
teraction coefficient – something that would be unreasonably
demanding in actual experiments.

The equations for the evolution of the interaction matrix
can be generalized to other selection targets such as linear

combinations of abundances at equilibrium (see Supplemen-
tary section 10). The emergence of a rank-one structure is
hence not specific to the increase of the total abundance. This
is supported by the fact that the our arguments are valid for
any selection targets depending only on the abundances at
equilibrium.

DISCUSSION

This study is devoted to identifying key and general fea-
tures of the evolutionary dynamics in species-rich communi-
ties under a scheme that is commonly used for artificial selec-
tion of collective functions. We showed that the interaction
matrix evolves in response to selection for total abundance,
and that it results generically in interspecific interactions be-
coming progressively less competitive. We interpret this as
the evolution of facilitation, similar to what was observed in
a two-species model [13]. At the same time as the average
strength of interspecific interactions decreases, they become
more variable. Notably, the evolutionary process imprints a
structure on the interaction matrix. The key to this structure
is an isolated eigenvalue, which emerges as a ’collective mode’
that positively impacts the abundances of all species. In the
analytical description, this corresponds to an order-one per-
turbation of the interaction matrix, that otherwise retains its
original, disordered nature. If we consider the Lotka-Volterra
model as a limit case of the MacArthur equations, which de-
scribe not only species abundance, but also the resources they
consume, the emergent facilitation term can be viewed as an
effective global cross-feeding. This result is not specific to
selection acting on total abundance, but seems to hold for
any function of the abundances at equilibrium. Our finding
resemble phenomena observed in other domains where inter-
actions between degrees of freedom are adjusted dynamically
to lead to a specific collective property, such as a lower ground
state energy in spin-glasses and learning in neural networks
[35–37]. The ubiquity of low-rank perturbations raises the
question of if and when selection can produce the emergence
of more complex structures.

We chose to analyze an idealized model in order to achieve
analytical tractability. Although it can be argued that dis-
ordered models are an oversimplification of real communities,
they provide null expectations for collective properties. More-
over, the actual strength of ecological interactions is unknown
in most microbial communities. Given this state of affairs,
and that not all detailed properties of the interactions are ex-
pected to matter in shaping the general behaviors of ecosys-
tem, the statistical approach appears a valuable method for
identifying general prescriptions relevant even in experiments
[38, 39].

This model may be extended in several meaningful ways.
Instead of modelling species interactions through direct ef-
fects, one could include explicitly the resources that are con-
sumed or exchanged [5, 8, 40]. Given the equivalence of the
Lotka-Volterra and MacArthur models when resource dynam-
ics is much faster than the ecological one, we do not expect
this extension to qualitatively affect the main results of our
work. However, a formulation in terms of resource consump-
tion would connect theoretical results to experiments explor-
ing the metabolic foundations of ecological interactions in mi-
crobial communities [41, 42]. Especially, this may guide the
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choice of more realistic interaction matrices, such as sparse
networks [43, 44], or networks with empirical biases [45].

Even maintaining random direct interactions, the model we
considered could be explored in regimes where the perturba-
tive approach is expected to break down. This would occur for
instance when the ecological dynamics of the community does
not attain an equilibrium because of transients [8], stochastic
demographic fluctuations [17] or chaotic population dynamics
[15, 16, 46]. All these processes may reduce the heritability
of the community function and thus alter the evolutionary
trajectory.

Finally, consistent with the idea that communities are Dar-
winian individuals [47], we chose mutations that would pro-
vide unbiased community-level variation in the target func-
tion. Such assumption allowed us to develop a null model
that is independent of the details of the underlying commu-
nity interactions. Collective-level mutations can be thought
of as the result of multiple changes in species interactions
that occurred during the lifetime of a community. More de-
tailed descriptions of how sequential species-level mutations
give rise to variation of the interaction matrix at the time of
community reproduction – that is when the function is eval-
uated – may prove necessary for specific applications, and
provide additional constraints, as observed for simpler mod-
els [13]. Furthermore, the model could be extended so as to
include mutations of intra-species interactions via changes of
the carrying capacities or speciation events that would in-
crease diversity.

Communities are increasingly conceived as coherent units
that provide collective-level functions, to the point to be at-
tributed the status of ’organisms’ [48, 49]. If this view can
reflect the way ecological interactions produce a given popula-
tion structure [50], it can go as far as identifying communities
as full-fledged evolutionary units. In the latter case, how they
are ’scaffolded’ by physical compartmentalization and the es-
tablishment of community-level lineages, is all-important in
determining the action of natural selection at the level of
communities [51, 52]. We have modelled here the protocol
commonly used in experiments of artificial selection [4, 7].
Considering that the collective level is the true center of in-
terest for this process, moreover, we described mutations only
for their effect on the community-level function under selec-
tion. Nested levels of reproducing units are widespread in
the hierarchy of living beings. Our results might thus be
relevant whenever selection on high-level functions bestows a
structure on the interaction among heterogeneous constituent
units, and contribute to understanding how integration across
levels of organization is achieved.

MATERIALS AND METHODS

Description of the code

Numerical simulations were performed in python using
the code accessible at https://github.com/jules-fbl/LV_

community_selection. All the figures of the paper were ob-
tained with a number of species S = 100, m = 1 selected
community out of n = 10, a mutation strength ε = 0.02, an
initial interaction matrix drawn from a Gaussian distribution
of parameters µ = 3, σ = 0.3 and γ = 0 and random car-
rying capacities drawn uniformly between 0.5 and 1.5. The

collective generation time was chosen to be T = 500 (with the
exception of the first generation where a time T = 5000 was
used in order to avoid the propagation of transient effects).
This time is long enough for the mutated communities to ap-
proach their equilibrium abundances. To integrate the Lotka-
Volterra equations, we used an integration scheme described
in Supplementary section 11. We also imposed an abundance
cut-off Nmin = 10−20 below which species are deemed extinct.

Derivation of recursive equation for the interaction
matrix

We here explain the derivation of equation 7 in the case γ =
0. The complete derivation can be found in Supplementary
section 10.

Let αij be the interaction matrix of a community at genera-

tion τ , of empirical mean and variance µ/S and σ/
√
S and let

N be the associated abundances at equilibrium. After a mu-
tational step, the interaction matrix becomes, at first order
in ε :

α̂ij = αij +
εσ√
S
ηij (9)

with η a Gaussian matrix of expected value zero and variance
1. The mutation of α is equivalent to altering the carrying
capacities by δK = −ε σ√

S
ηN.

We define the perturbation matrix as χij = ∂Ni

∂Kj
. This

matrix measures the effect of a small change in the carrying
capacities on the abundances at equilibrium and is related to
the interaction matrix through the identity χ = (I? + α?)−1

(see Supplementary section 2). Then if N̂ are the equilibrium
abundances associated to the mutated matrix, the variation
δN = N̂−N can be seen as a first order perturbation:

δN = χδK = −ε σ√
S
χηN. (10)

The induced variation δf of the total abundance is:

δf = 1 · δN = −ε σ√
S

∑
ij

(χ>1)iNjηij (11)

For n realizations of matrices (η1, . . . , ηn) (one for each new-
born community), we can find the distribution of the matrix
that maximizes δf by using extreme value statistics (see Sup-
plementary section 3):

ηmax
ij = −Mn

(χ>1)i
‖χ>1‖

Nj
‖N‖

+Bij (12)

with Mn a random variable following the statistic of the max-
imum value of n Gaussian variables and B a Gaussian matrix.

Then, the selected interaction matrix at generation τ + 1
is obtained by putting the expression of ηmax in equation 9.
Defining v = χ>1, we get equation 7.
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