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Abstract 

Many of the sensations experienced by an organism are caused by their own actions, and accurately anticipating 

both the sensory features and timing of self-generated stimuli is crucial to a variety of behaviors. In the auditory 

cortex, neural responses to self-generated sounds exhibit frequency-specific suppression, suggesting that 

movement-based predictions may be implemented early in sensory processing. Yet it remains unknown whether 

this modulation results from a behaviorally specific and temporally precise prediction, nor is it known whether 

corresponding expectation signals are present locally in the auditory cortex. To address these questions, we 

trained mice to expect the precisely timed acoustic outcome of a forelimb movement using a closed-loop sound-

generating lever. Dense neuronal recordings in the auditory cortex revealed suppression of responses to self-

generated sounds that was specific to the expected acoustic features, specific to a precise time within the 

movement, and specific to the movement that was coupled to sound during training. Predictive suppression was 

concentrated in L2/3 and L5, where deviations from expectation also recruited a population of prediction-error 

neurons that was otherwise unresponsive. Recording in the absence of sound revealed abundant movement 

signals in deep layers that were biased toward neurons tuned to the expected sound, as well as temporal 

expectation signals that were present throughout the cortex and peaked at the time of expected auditory 

feedback. Together, these findings reveal that predictive processing in the mouse auditory cortex is consistent 

with a learned internal model linking a specific action to its temporally precise acoustic outcome, while identifying 

distinct populations of neurons that anticipate expected stimuli and differentially process expected versus 

unexpected outcomes.   
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Introduction 

As animals interact with the world, many of the sensations they encounter are caused by their own actions. 

Accurately anticipating both the sensory features and timing of these self-generated stimuli is crucial to a variety 

of behaviors, such as using auditory input to guide ongoing vocalizations, or determining if footsteps are self-

generated or belong to a predator. The brain’s ability to predict the sensory consequences of actions is thought to 

involve the integration of internally generated motor signals with incoming sensory information using learned 

internal models 1–10. This computation, referred to as predictive processing, is hypothesized to improve sensory 

processing by diminishing neural responses to expected stimuli while enhancing neural responses to new or 

unexpected stimuli, and provides a viable substrate for sensory-guided motor learning 3,11–14. 

A growing body of experimental evidence supports the theory that predictive processing is implemented in the 

sensory cortex, where neural activity is strongly influenced by behavior 5,7,21–23,8,9,15–20. Sensory cortical regions 

receive dense input from motor-related regions that exert a strong influence over spontaneous and stimulus-

evoked activity during movement 2,4,24–27. For example, in the mouse auditory cortex, sound-evoked responses are 

suppressed during movement compared to rest, mediated in part through long-range inputs from the motor 

cortex onto local inhibitory cells 4,22. Importantly, movement-related modulation in the cortex can reflect specific 

expectations. When a movement reliably produces a sound, suppression in the auditory cortex becomes stronger 

for self-generated sounds that match the expected frequency, and neurons respond more strongly when a 

movement produces an unexpected frequency 28–32. Neurons in the mouse visual cortex also respond more 

strongly when a behavior is accompanied by unexpected visual consequences, further supporting the idea that 

prediction may be a fundamental component of cortical sensory processing 24,33–35. 

However, many observations that resemble predictive processing may be interpretable through non-predictive 

mechanisms, such as behavioral-state-dependent gain control of visual cortex tuning curves36. Stimulus-specific 

modulation can also result from short-term reactions to recent stimulus patterns or from longer time-course 

expectations related to an animal’s general behavioral state rather than a specific movement 4,37. If the sensory 

cortex implements specific movement-based predictions, several important features should be present: the 

confinement of predictive suppression to a specific behavior; the capacity to detect changes in stimulus timing 

with within-movement precision; and the local presence of predictive signals that encode the expected timing and 

identity of a sensory outcome. Establishing these principles in a single experimental paradigm is critical to 

determining whether motor-sensory predictions are implemented in the sensory cortex but has been challenging 

because it requires gaining experimental control over the precise sensory consequences of an isolated and 

stereotyped movement.  

To test whether these features of predictive processing are present in the auditory cortex, we developed a simple 

behavioral paradigm in which mice experience consistent auditory feedback while performing a forelimb 

movement that is newly learned, intermittent rather than continuous, and progresses over an ethologically 

relevant timescale of hundreds of milliseconds38. Dense neuronal recordings in the auditory cortex of trained mice 

revealed learned suppression of expected, self-generated sounds that was frequency-specific, temporally precise, 

and restricted to the sound-associated movement. By recording in the absence of sound, we also identified 
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correspondingly precise movement signals that reflected a learned expectation for the identity and timing of the 

expected sound. These signals were distributed across functional groups of neurons with distinct laminar 

patterns, including predictive suppression and prediction error neurons concentrated in L2/3 and L5, movement-

responsive neurons concentrated in L6, and temporally precise expectation neurons distributed across cortical 

layers. Together, these findings illustrate layer-specific predictive processing in the auditory cortex that is 

consistent with a learned internal model linking a specific action to its temporally precise acoustic outcome. 

 

Results 

Frequency-specific suppression of expected self-generated sounds 

We designed a behavioral paradigm in which head-fixed mice learn to push a lever with their forelimb while 

receiving closed-loop auditory feedback (Fig 1A). All movements were mouse initiated, with lever pushes that 

crossed a fixed threshold (~15 mm) resulting in a small water reward when the lever was returned to a resting 

position (Fig 1B). A brief pure tone was delivered at a fixed position early in the outbound phase of each 

movement creating an experimentally controlled and consistent sensory outcome for each lever push. 

Movements that closely followed a previous lever push (< 200ms inter-trial interval) generated a sound but did 

not result in a reward, encouraging a slower rate of trial initiation. No other shaping criteria were applied. Mice 

rapidly learned to make prolonged lever movements that reached the target threshold, lasting an average of 

365ms with a median inter-trial interval of 3.5s (Fig 1C). Across training, mice made thousands of lever pushes 

(referred to as trials) and heard thousands of self-generated sounds at a specific position of their movement.  

Our task was designed so that mice would learn an expectation for the timing and identity of a self-generated 

tone, without relying on the tone to complete the task or signal reward. Consistent with this design, mice heard a 

sound on almost every movement of the lever, while rewards were delivered on a smaller subset of trials on 

which mice crossed both the sound and the reward threshold (Fig 1D). To directly test whether mice developed an 

expectation for the self-generated tone, we measured lever trajectories and licking behavior when the lever-

associated tone was altered (Fig S1A-C) or omitted (Fig S1D-F) on a subset of trials. We observed no consistent 

change in lever movement or licking behavior on trials with deviant acoustic feedback compared to interleaved 

control trials (FIG S1A-F). However, when measuring longitudinally we observed a transient change in the overall 

shape of lever trajectories upon the initiation of deviant auditory feedback, measured as the root-mean-square 

error (RMSE) difference between the average movement lever trajectory for trials just before and just after the 

start of unexpected outcomes (Fig 1E). Since subtle behavioral differences were visible before and after the 

introduction of deviants, but not across interleaved trial types, we conclude that mice do not rely on the tone to 

perform lever reaches but do possess an expectation for the presence and identity of the expected sound.  

We next asked how this learned expectation influences sensory processing in the auditory cortex by comparing 

neural responses to self-generated sounds with expected and unexpected frequencies.  Following behavioral 

training, a 128-channel electrode array was lowered into the auditory cortex, oriented perpendicular to the 

cortical surface (Fig 1A)39. The lever was introduced as normal, and mice began making volitional lever presses 
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while experiencing expected auditory feedback. After collecting auditory cortical responses during lever 

movements that produced expected self-generated sounds, we unexpectedly introduced frequency probe trials, 

where auditory feedback occurred at the correct position but with tones shifted one octave on 50% of randomly 

interleaved trials (Fig 1F). At the end of the recording session, the lever was removed, and mice were presented 

with the same auditory stimuli in a passive listening context to provide baseline sound response properties of all 

recorded neurons. In total, we recorded passive and self-generated sound responses from 928 well-isolated, non-

fast-spiking units across 10 animals. 

Across the entire neural population, the average strength of neural responses to the lever-associated frequency 

and probe frequency heard in the passive condition were comparable (Fig 1G, ranksum, p = 0.79). When the same 

tones were generated by the mouse’s lever movement, neural responses to the expected and probe frequencies 

were both suppressed, but suppression was strongest for the expected self-generated frequency (Fig 1G). To 

specifically quantify the activity of neurons that were sound responsive, subsequent analyses included only 

neurons that responded to a given frequency in at least one of the active or passive conditions. Peri-stimulus time 

histograms (PSTHs) of these sound-responsive populations revealed that neural responses to the expected 

frequency were diminished by 62% compared to passive listening (Fig 1G, 5.2 Hz vs 13.6 Hz), while neural 

responses to the unexpected frequency displayed weaker suppression of 41% (Fig 1G, 8.5 Hz vs 14.2 Hz). These 

coarse population-level analyses indicate the presence of at least two forms of movement-related suppression 

within the cortex: a generic suppression that applies to all sounds and a predictive component that is specific to 

the expected sound frequency28. 

To determine the degree to which movement-related modulation of sound-evoked responses varied across the 

neural population, we calculated a radial modulation index for each neuron and for each of the expected and 

unexpected frequencies (Fig 1H). Negative modulation indices indicate neurons with weaker responses when the 

sound is self-generated compared to the same sound heard passively, whereas positive modulation indices 

indicate neurons that respond more strongly to self-generated sounds. Consistent with population-level PSTHs, 

most neurons were suppressed for both frequencies (Fig 1I). However, average modulation was more negative for 

the expected frequency (-0.36) than for the probe frequency (-0.17) across all neurons (Fig 3I), and in 9 out of 10 

animals (Fig 1J). Average sound-evoked responses to the expected frequency were suppressed relative to the 

passive condition beginning with the first lever movement in a session and persisting throughout exposure to 

frequency deviants (Fig S2A,B), while neural responses to frequency deviants remained less suppressed 

throughout the experiment, which in some cases lasted up to 30 minutes and included hundreds of frequency 

deviants (Fig S2C). In a subset of mice, we presented a broad set of frequency deviants at half-octave intervals 

relative to the expected frequency and found that predictive suppression formed a notch that was specific to the 

frequency with which each mouse had been trained (Fig S2D). This notch was not present for mice prior to 

movement-sound coupling (Fig S2E), or at the end of one training session (Fig S2F,G), further highlighting that 

suppression of self-generated sounds in the auditory cortex is concentrated at a specific sound frequency learned 

over days of linked motor-sensory experience.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472457doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472457


5 
 

These experiments show that neural responses in the auditory cortex are suppressed for a self-generated sound 

that is irrelevant to a mouse’s behavior. But self-generated sounds are not always uninformative, and task 

relevance and reward association are known to enhance neural responses rather than suppress them40,41. We 

therefore asked whether predictive suppression was a core phenotype that always accompanied self-generated 

sounds, even those that are actively used to guide behavior. We trained a separate cohort of mice on a task 

variant where the sound played later in the movement (at the reward threshold), reasoning that this subtle 

change in the timing of the self-generated sound could make mice rely more strongly on the sound to guide their 

behavior (Fig 2A). Mice trained with the tone at the reward threshold experienced stronger empirical coupling 

between sound and reward than did mice trained to hear the tone early in their movement (Fig 2B). Consistent 

with this tighter coupling between sound and reward, these mice relied on the tone to guide their ongoing 

behavior, exhibiting extended reaches, prolonged lever trajectories, and delayed licking behavior when they 

experienced deviant sound frequency trials relative to interleaved control trials (Fig 2C,D). Mice reacted similarly 

when sounds were omitted (Fig S1G-L) and truncated their movements early when sounds were played early (Fig 

S1M-O), showing a bidirectional reliance on the sound to guide ongoing behavior. Despite this, neural recordings 

from mice trained on this alternative version of the task revealed that the modulation of auditory cortical 

responses to expected and unexpected self-generated tones was similar across the two training paradigms, with 

responses to expected sounds more strongly suppressed than responses to unexpected sounds (Fig 2E-H).  These 

data indicate that the predictive suppression of expected self-generated sounds is a conserved phenotype that 

arises due to coupled motor-sensory experience regardless of behavioral relevance or reward association. 

Together, these findings reveal that mice trained to push a sound-generating lever develop a behavioral 

expectation for predictable self-generated sounds, and that expected sounds are subject to suppression in the 

auditory cortex that is stronger than sounds of an unexpected frequency. This frequency-specific suppression was 

learned, stable, and reflected movement-sound experience during training rather than tone relevance or reward 

association. 

Predictive suppression in auditory cortex is implemented at a specific time during a specific movement 

These neural data reflect a commonly observed phenomenon – that expected sounds experience suppression 

relative to unexpected sounds in the auditory cortex – and also show that this modulation is stable over time and 

is linked to motor-sensory experience during training rather than tone relevance or reward association. These 

properties align with the implementation of a movement-based prediction in auditory cortex 3,14, but a critical 

outstanding question is whether this frequency-specific modulation is organized temporally around a specific 

movement. The separable and prolonged movements in our lever paradigm enabled us to measure the time-

course of neural modulation within and around individual movements.  

We first asked whether frequency-specific suppression is restricted to periods of lever movement or represents a 

slower modulation related to the mouse’s general behavioral state. In a separate group of mice trained on our 

standard lever task, we recorded neural responses to lever-generated sounds while playing randomly timed lever-

associated and probe frequency tones in the background, uncoupled from behavior (Fig 3A). By chance, many of 

these background tones occurred just prior to a lever movement, providing an opportunity to explore the time 
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course over which frequency-specific suppression is applied before and during behavior. Neural responses to 

background tones heard prior to the onset of lever movements displayed minimal modulation compared to 

passively heard tones for both the lever-associated and probe frequencies (Fig 3B). Predictive suppression of the 

expected frequency emerged during the lever press, with neural responses to the expected frequency more 

strongly suppressed than neural responses to the unexpected frequency (Fig. 3B). These data show that both 

general suppression and frequency-specific suppression are implemented only within the temporal confines of 

individual lever movements, despite the fact that lever movements often occur within seconds of one another.  

Having established that frequency-specific suppression was not present prior to movement onset, we next asked 

whether this suppression displayed temporal specificity within the time course of each lever press. In a separate 

group of mice trained on our standard lever task, we recorded neural responses to self-generated sounds played 

at unexpected positions on a small fraction of trials. This allowed us to measure the strength of frequency-specific 

suppression at three separate points within the movement for each animal: the expected position, late in the 

outbound phase, and the middle of the return phase (Fig3C). Consistent with our standard frequency-probe 

experiments, we observed strong frequency-specific suppression when sounds occurred at the expected position 

early in movement (Fig 3D). The strength of this frequency-specific suppression diminished as sounds were played 

farther from the expected position. Sounds played late in the outbound phase, delayed on average by 80ms, 

displayed weaker frequency-specific suppression, and sounds played during lever return displayed no significant 

difference between the modulation of the two sounds (Fig3D, 188ms average delay). These data show that 

frequency-specific suppression has temporal specificity on the scale of 10s to 100s of milliseconds, revealing a 

previously unknown level of precision that matches the ethologically relevant time scale for error detection 38,42,43.  

Finally, we tested whether this expectation-based modulation is specific to the movement that was paired to 

sound during training, or whether it generalized to other movements, especially those that are temporally 

proximal to the sound-associated movement. We trained mice on our standard sound-generating lever task and 

then performed neural recordings while delivering tones triggered by licking movements in addition to the lever 

(Fig 3E). This paradigm allowed us to present tones, including the lever-associated frequency, during two unique 

movements that occurred within hundreds of milliseconds of one another. In contrast to the frequency-specific, 

predictive suppression observed during lever movements, there was no frequency-specific suppression to tone-

evoked responses during licking (Fig 3F). The lack of predictive suppression for tones heard during licking 

highlights the exclusive relationship of predictive suppression to the trained movement even over short time 

scales and confirms the temporal-specificity of the lever-based prediction. 

Together, these data establish that the frequency-specific modulation of expected, self-generated sounds results 

from a movement-based prediction implemented over short time scales at a specific time-point during a specific 

movement.  

Movement signals in auditory cortex reflect expectations for the frequency and timing of self-generated sounds 

Our results show that auditory cortical responses to expected, self-generated sounds experience a pattern of 

predictive modulation that is learned, stable, and implemented with sub-movement specificity around an 
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individual physical action. There are multiple lines of evidence suggesting that the implementation of this 

prediction might happen locally. Frequency-specific suppression of self-generated sounds is absent in the sensory 

thalamus 28,29, the auditory cortex receives long-range input from motor-related structures that are known to be 

involved in modulating auditory cortical activity during behavior 4,28, and representations of orofacial movements 

have been found in some cortical layers 44. Despite the known motor-related modulation of auditory cortex, it 

remains unknown how prevalent movement signals are in the auditory cortex, and whether they are specific 

enough to encode an expectation for the timing and acoustics of a self-generated sound.  

To investigate the properties of movement signals in the auditory cortex, a group of animals trained on the 

standard behavioral task also experienced a small fraction of trials where sound was omitted in addition to timing 

and frequency deviant trials (Fig 4A, see methods). These trials provided an opportunity to analyze activity in the 

auditory cortex that was related strictly to movement and expectation, and we began by identifying all neurons 

that had significant responses in a 50ms window surrounding different time points throughout the movement 

(See Methods). We found a large population of neurons that were active during movement in the absence of 

auditory feedback (36%, Fig S4A) and plotted their average activity aligned to the time of expected sound onset 

(Fig 4B). Average population activity began to ramp up roughly 200ms prior to movement onset and peaked 

almost exactly at the time of the expected tone, with activity then decaying for roughly 400ms, which 

corresponded roughly to the time of the movement duration (Fig S4B,C). To ensure that the peak we observed at 

the time of expected auditory feedback was not an artifact of aligning neural activity to the time of the expected 

sound, we aligned the activity of the same neural pool to different positions within the movement and found that 

peak average firing always corresponded to the time of the expected sound (Fig 4D).  

Having identified neurons active during lever movement in the absence of sound in the auditory cortex, we 

examined movement-related activity across individual neurons. For each neuron, we determined the onset time 

and peak time of movement-related activity, as well as the magnitude of movement-related signal strength (z-

score) (Fig 4E). Like the average population response, many individual neurons began responding about 300-

400ms prior to the time of sound, with other neurons initiating their responses throughout the course of the 

movement (Fig 4F). The peaks of movement-related activity for individual neurons were not homogenous but 

instead were concentrated around the time of the expected sound (Fig 4G), and neurons with activity peaks 

around the time of the expected tone also had the largest movement-related changes in firing rate (Fig 4H, Fig 

S4D). This tight alignment of movement signal timing and strength with the time of expected sound makes a 

strong case that these neurons function as an expectation signal in the auditory cortex. To confirm that this 

pattern constitutes a learned expectation for the timing of the expected tone, we performed an identical analysis 

in a cohort of mice trained to push a lever in the absence of sound (See FigS2E). These mice made lever 

movements of similar magnitude and duration and had a similar fraction of auditory cortex neurons active during 

their reaches (Fig S4A,B). In contrast to mice trained with a sound-generating lever, the peaks of movement 

signals in mice trained on a silent lever were distributed more homogenously throughout the lever movement, 

while the magnitudes of movement-related signals were weaker on average without a clear temporal 

organization (Fig 4F-H. These findings indicate that experience with a sound-generating movement shapes 
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movement-related signals in the auditory cortex to become concentrated at the time of an expected self-

generated sound. 

We next asked whether movement-related signals in the auditory cortex also reflected an expectation for the 

specific acoustic features of a self-generated sound. We segregated the movement-responsive neurons described 

above into groups based on their frequency tuning. Although we found roughly equal numbers of neurons with 

movement-related activity that were tuned to the expected frequency and probe frequency (Fig 4I), the 

magnitude of movement-related activity was significantly stronger for neurons that were tuned to the expected 

frequency (Fig 4J). To confirm that these results were consistent with our larger data set that focused on 

frequency deviants and lacked omission trials, we identified neurons with movement-related signals specifically in 

the time just prior to the self-generated tone (Fig S4A-C). As in our omission data set, we found that a similar 

fraction of neurons tuned to the expected or unexpected sound contained movement responses (Fig 4K), and that 

neurons tuned to the expected sound experienced the strongest movement signals (Fig 4L). 

Taken together, these data show that movement-related activity in the auditory cortex – observable when 

acoustic feedback is omitted – reflects a learned expectation for the timing and frequency of a self-generated 

sounds. These activity patterns, present in average population activity as well as many individual neurons, signal 

expectation at a level of specificity commensurate with the temporally precise modulation of self-generated 

sounds observed during lever movements. 

Distinct laminar patterns of expectation signals, sound representations, and violation signals  

Average neural activity patterns in the auditory cortex reveal signals related to movement, expectation, and 

sound during the generation and processing of self-generated sounds, but with substantial heterogeneity across 

the recorded population. In the cerebral cortex, depth from the pial surface is a principal organizing feature, with 

neurons in different layers possessing distinct intrinsic properties, gene expression, and local and long-range 

projection patterns. To determine whether predictive signals displayed organization within the auditory cortex, 

we investigated the distribution of movement, expectation, and sound signals across cortical layers.  

First, we measured the properties of movement-related neurons throughout the cortical column by assigning 

each neuron a putative cortical depth relative to consistently observed current source density features (Fig 5A, 

See Methods). Neurons with movement-related activity were distributed across cortical layers but were most 

abundant in L6, which contained the largest number and fraction of movement-responsive neurons (Fig 5B). 

Plotting the onset time and peak time of each neuron’s activity by cortical depth showed that the earliest 

movement signals were found deep in the cortex (Fig 5C), where the onset and peak of movement signals tiled a 

broad range of times over the course of movement (Fig 5C,D). In contrast, more superficial neurons typically 

became active shortly before the time of expected sound and peaked shortly thereafter (Fig 5C,D). Measuring the 

intersection of movement signal timing and response strength revealed that L6 contained many weak movement-

related signals positioned throughout the duration of the movement in addition to strong signals centered on the 

time of expected sound (Fig 5E). Neurons outside of L6 had movement signals with a similar range of amplitudes, 

but which were more closely aligned to the time of expected sound (Fig 5E, f-test, L6 vs non_L6 p = 0.003). The 
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preponderance of signals throughout the time-course of movement in deep auditory cortex is consistent with L6 

neurons encoding orofacial behaviors and with anatomical connections from motor-related regions onto L6 

excitatory neurons 2,44. The abundance of strong movement signals aligned to the time of expected sound, which 

dominate movement responses in more superficial layers, suggest that aspects of movement related to expected 

auditory outcomes are transmitted broadly across cortical lamina.  

We next examined the laminar distribution of sound-evoked responses by comparing the magnitude of 

suppression of the expected versus the probe frequency at different cortical depths. Frequency-specific 

suppression was strongly concentrated in L5 and, despite having a smaller sample size, in L2/3 (Fig 5F-J). In both 

L2/3 and L5, the magnitude of neural responses to probe frequencies were minimally suppressed, while neural 

responses to the expected frequency were strongly suppressed. In contrast to L2/3 and L5, the average level of 

movement-based modulation was comparable for both expected and unexpected tones in L4 and L6 (Fig 5F-J). 

While sound responses in L4 neurons were strongly suppressed, neurons in L6 on average experienced minimal 

suppression and had the largest average sound-evoked firing rates in the cortex (Fig 5F,G; Fig S5).   

The laminar distributions of movement signals and responses to expected and unexpected sounds reflect a 

division of labor where different aspects of predictive computation are concentrated in distinct layers.  

Predictive processing signals are carried by distinct functional groups in auditory cortex 

Finally, we asked how signals related to predictive processing were distributed across individual neurons in the 

auditory cortex. We started with a manual analysis focusing on neurons that, in spite of population-level 

suppression during movement, retained a significant response to at least one of the self-generated sounds 

(expected frequency or probe frequency). A large population of neurons, concentrated in L6, responded 

ubiquitously to both the expected and probe sounds whether they were self-generated or heard passively (8%, Fig 

6A,E,F). A smaller group of neurons, also strongly represented in L6, responded to both sound frequencies but 

only during movement (4%, Fig 6B,E,F), displaying a movement-enhanced phenotype that was in contrast to the 

average phenomenon of suppression observed during movement (see Fig. 1I) and consistent with the presence of 

movement-related signals in deep layers of auditory cortex (see Fig. 5B-E). 

We next focused on neurons that were responsive to only one of the two self-generated sounds. Many neurons, 

especially in L2/3 and L5, responded to the unexpected tone when it was heard passively and when it was self-

generated (9%, Fig 6C,E). In contrast, far fewer  neurons responded to the expected tone in both behavioral 

conditions (2%, Fig 6F). This near absence of neurons that respond to the expected tone in the passive condition 

and retain a response when it is self-generated mirrors the larger core phenotype of strong movement-related 

suppression applied to a single, expected frequency. Finally, we identified a large population of neurons that 

responded only to the unexpected frequency tone and only when it was heard during movement (10%, Fig 6D,E). 

These neurons were particularly abundant in L2/3 and L5 and signal a specific mismatch between expectation and 

experience. In contrast, very few neurons responded only to the expected tone heard during movement (3%, Fig 

6F), revealing a striking asymmetry in the way individual neurons respond to expected and unexpected self-

generated sounds. 
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Our analysis of individual neuron and population-level activity has been largely hypothesis-driven and has 

uncovered a variety of neural signals related to the implementation and outcome of movement-based predictions 

in auditory cortex. These include strong frequency-specific suppression of sound responses in L2/3 and L5, general 

movement-evoked suppression particularly in L4 and L6, neurons in L2/3 and L5 that are active only following a 

violation of expectation, and both general and specific movement signals. We conclude our study by performing 

machine-learning based clustering of neurons based on their movement- and sound-related activity to determine 

whether predictive processing signals are identified with an unbiased analysis method and to gain insight into 

their distribution across individual neurons. We characterized each neuron by creating a vector of activity 

variables that encompassed baseline, sound-evoked, and movement-evoked activity (Fig. 7A, see Methods). We 

applied a k-medoids clustering algorithm45 to separate neurons into discrete groups based on similar response 

features and we visualized the clustering results by plotting each neuron in a low-dimensional projection of our 

feature space, color coded by cluster identity (Fig 7B).  

The clustering output, visualized as sorted neural response heatmaps and aggregate response patterns for each 

group, identified populations of functionally similar neurons that accounted for many of the signals observed 

during our manual analysis (Fig 7C,D). First, we identified two populations of neurons concentrated in L2/3 and L5 

that reflect the predictive processing of self-generated sounds without displaying any movement-related signals. 

One group was comprised of generally sound-responsive neurons that experienced preferential suppression of 

expected, self-generated sounds (Cluster 2). The other group consisted of prediction-error neurons, which 

responded only to self-generated sounds that violated frequency expectations (Cluster 1). A third group of sound-

responsive but not movement-responsive neurons, dispersed across cortical depths, displayed complete 

movement-based suppression of sound responses regardless of frequency (Cluster 6). Movement signals leading 

up to the self-generated sound were distributed across 4 clusters, including a group of neurons concentrated in L6 

that displayed strong responses to both sound frequencies in both the self-generated and passive conditions 

(Cluster 4), a group that displayed enhanced responses to self-generated sounds regardless of frequency (Cluster 

5), and a group that experienced abrupt suppression following the onset of self-generated sounds (Cluster 7).  

Because our primary dataset doesn’t allow us to observe movement signals in the absence of sound, we 

performed an identical clustering analysis on our dataset that included sound omissions in addition to frequency 

deviations (Fig S7A). Despite being a smaller dataset and employing a different probing strategy, clustering yielded 

many functional groups that were virtually identical to those observed in our primary data set (Fig S7C,D), 

including predictive suppression neurons and prediction error neurons in L2/3 and L5 (Cluster S6,7,8). This dataset 

allowed us to include the activity of neurons at the time of the expected sound on omission trials, which provided 

added resolution of movement-responsive populations. As above, a group of neurons in deep layers displayed 

both pre-sound movement signals and sound responses (Cluster S6), and the inclusion of omission trials shows 

that these neurons lack a specific peak at sound time in the absence of sound. Two groups of movement-

responsive neurons were not responsive to passive sounds, ramped up their firing during lever movements, and 

exhibited a peak at the time of expected sound regardless of the presence or absence of auditory feedback 

(Cluster S5,9). These populations were distributed across cortical depths and distinguished by the strength of their 
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movement-related activity, with the smaller group (3% of neural population) displaying particularly strong and 

temporally precise activity at the time of expected sound (Cluster S9).  

These unbiased clustering analyses recapitulate the core findings from our manual analysis: that expected and 

unexpected sounds are processed differently in L2/3 and L5 due to separate groups of predictive suppression and 

prediction error neurons; that there are abundant movement signals in deep layers of the auditory cortex; and 

that a smaller population of neurons distributed across cortical depths has strong movement-related responses 

centered precisely at the time of expected sound. Together, our experiments reveal a consistent and structured 

functional organization of movement, expectation, sound, and error signals during the implementation of precise 

movement-based predictions in the auditory cortex. 

Discussion 

Our results show that frequency-specific suppression in the auditory cortex arises from a stable, learned, and 

specific movement-based prediction that is implemented over short time scales with within-movement temporal 

specificity. This suppression is applied to expected sounds regardless of their behavioral relevance, is 

concentrated in L2/3 and L5 and is preceded by the onset of learned movement signals that encode an 

expectation for the frequency and timing of an expected sound. Examining the distribution of movement and 

sound signals across individual neurons revealed predictive suppression and prediction error neurons in L2/3 and 

L5, general movement-related signals in L6, and expectation neurons distributed across cortical layers that 

precisely mark the time of expected sounds. The confluence of movement, sound, expectation, and error signals 

in the auditory cortex reveals the implementation of precise movement-based predictions that may enable 

animals to identify deviant acoustic feedback and, when appropriate, adjust subsequent behavior5.  

Multiple lines of evidence in our study indicate that frequency-specific suppression in the auditory cortex is driven 

by a learned motor-sensory prediction rather than short-term adaptation, arousal, or general movement-based 

suppression2,22,37,46,47. Because the expected and unexpected frequency tones were interleaved with equal 

likelihood during electrophysiology, our experimental design precluded frequency-specific suppression caused by 

short time-scale effects like stimulus-specific adaptation37,46. Instead, suppression was only visible after multiple 

days of training, and was present immediately at behavior onset and stable over tens of minutes in trained mice. 

Importantly, we observed comparable levels of frequency-specific suppression even during a task variant where 

the tone is highly predictive of reward and mice actively rely on the tone to guide their ongoing behavior. 

Together, these findings show that frequency-specific suppression of self-generated sounds is a stable, learned, 

and intrinsic outcome of motor-sensory predictions.  

Although the phenomenon of frequency-specific suppression has been studied using augmented reality 

paradigms in the past, previous experimental designs have not been able to establish that this modulation is 

directly linked to individual movements or to identify expectation signals linking movement and sound. Prior 

behavioral paradigms have lacked a continuous readout of a prolonged and isolated movement (e.g. licking or 

button pressing) while others have coupled self-generated sounds onto a more abstract readout of a continuous 

behavior such as locomotion velocity6,28,29. Our experimental paradigm allowed us to present a self-generated 
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sound at an arbitrary time within a continuous behavior, to finely adjust the timing of self-generated sounds 

within the movement time-course, and to monitor in real time two distinct but temporally proximal behaviors. 

While not technologically groundbreaking, this approach was transformative in allowing us to test the specificity 

of movement-based predictions along multiple dimensions (stimulus, timing, and movement) in a single 

behavioral paradigm. We found that the suppression of expected, self-generated sounds was only engaged during 

sound-producing movements, was specific to the movement coupled to sound during training, and had within-

movement temporal specificity on the order of tens to hundreds of milliseconds. These predictions possess a 

degree of movement and temporal specificity consistent with the requirements of ethologically relevant error 

detection and matches the dysfluency that accompanies delayed auditory feedback in humans and songbirds42,43. 

Our experimental paradigm also allowed us to examine the time-course of non-sound information in the auditory 

cortex. Movement-related modulation of sensory cortex has been widely reported, and some types of modulation 

are influenced by direct transmission of motor information to the auditory cortex 4,15,17,19,21,22. Recently, motor 

signals themselves have been observed in auditory cortex neurons during orofacial movements44. However, little 

was known about the prevalence of movement signals in the auditory cortex, and whether movement signals are 

able to encode predictive information about the sensory outcomes of movement. By recording neural activity on 

interleaved sound omission trials, we were able to observe movement-specific movement-related expectation 

signals in auditory cortex neurons. Roughly one third of auditory cortex neurons were responsive at some point 

during lever movement, both in mice trained with acoustic feedback and mice trained to perform the same task 

but in silence. However, mice trained to expect a self-generated sound had movement responses that were larger 

and peaked at the time of the expected sound, with the strongest responding neurons having peaks most closely 

aligned to the time of the expected sound. Meanwhile, movement signals in mice trained to push a quiet lever 

were weak and distributed homogenously throughout movement. In addition to this temporal expectation, 

neurons tuned to the frequency of the expected self-generated sound had stronger movement-responses than 

neurons tuned to other frequencies. Taken together, these movement-related signals reveal the presence of 

learned expectations in the auditory cortex that were specific for both timing and stimulus identity. The exact 

origin of these movement signals is not known, but they could arrive via one or more of the motor cortex, the 

basal ganglia, or the higher-order thalamus, which processes both movement and sensory information2,4,24,44,48–51. 

Regardless of origin, the presence of movement-related signals that are specific to the time and frequency of a 

self-generated sound may reflect an experience-dependent transformation of movement signals from a motor-

centric coordinate frame into sound-centric coordinates24,52. It remains to be established whether motor signals 

arrive at the auditory cortex in sound-centric coordinates or whether they are transformed locally within the 

auditory cortex. 

Finally, our recording paradigm allowed us to establish that movement, expectation, and sound signals were not 

uniformly distributed across cortical layers or individual neurons. Weak movement responses were most 

abundant in L6 and were found in both sound-responsive and non-sound-responsive populations44. Strong 

movement-signals that peaked precisely at the time of expected tone emerged from our unbiased clustering as a 

distinct functional group and were distributed across cortical depths rather than being concentrated in L6. 

Conversely, frequency-specific suppression was strongly concentrated in L2/3 and L5, but not in L6 and L4. Many 
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neurons in L4 and L6 receive strong excitatory input from the primary sensory thalamus which does not display 

frequency-specific suppression28,29,50,53–58, consistent with predictive modulation arising de novo at the level of the 

cortex. The difference in sound responses in L2/3 and L5 were driven by two functional groups of neurons: one 

that exhibited within-neuron frequency-specific suppression of sound responses, and a group of neurons that 

responded specifically to unexpected sounds but were otherwise not driven by sound. These prediction error 

neurons were abundant in L2/3 and L5, making up 14% of all neurons. Visual flow mismatch neurons, a 

conceptually similar functional group, have been observed in L2/3 but not L5 of primary visual cortex3,14,33–35. 

These prediction error signals provide a potential neural substrate for behavioral reactions to deviant acoustic 

consequences and may play a role in auditory-guided motor learning in more complicated behaviors11,59,60. 

Despite the average suppression of expected sounds, 15% of the population still responded to the expected, self-

generated tone in some capacity. Many of these neurons were ubiquitously sound-responsive cells in L6 that 

responded to both sounds in both behavioral conditions. Given that some responses to the expected sound are 

retained and that mice experience suppression even when they actively rely on a tone to guide their behavior, it is 

likely that predictive suppression alters but does not abolish the representation of expected sounds in the 

auditory cortex. Biologically, smaller pools of responsive neurons may represent expected sounds more 

efficiently, and refined representations may increase the amount of information that can be represented by a 

finite neural pool61–65. 

These findings reveal distinct functional groups of auditory cortical neurons with activity patterns reflecting 

movement, expectation, sound, and prediction error. This paves the way for future experiments, aimed at 

understanding predictive modulation at a mechanistic level, that map these functional groups onto biologically 

defined cell types. Our results also set the stage for studying how synaptic connections within auditory-motor 

circuits change with experience to store memories about self-generated sounds, and how these memories are 

recalled during subsequent behavior to inform predictions. Together, our experiments demonstrate that the 

auditory cortex implements precise, movement-based predictions related to self-generated sounds, and provide a 

tractable inroad towards understanding cortical prediction in general29,66–71.  
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Figures 

 

Figure 1. Frequency-specific suppression of self-generated sounds in the mouse auditory cortex. (A) Schematic 

of multi-array recordings during head-fixed lever press paradigm where mice hear closed-loop auditory feedback 

while making rewarded forelimb movements. (B) Schematic of stimulus and reward timing for each lever 

movement. Grey box indicates lever home position. (C) Histogram of reach distances normalized to the position of 

the reward threshold across training sessions (red, early; blue, late) for an example mouse. (D) Movement, sound, 

and reward coupling measured as the fraction of movements that generated sounds (crossed the sound 

threshold), and the fraction of sound-generating movements that generated rewards (obeyed inter-trial-interval 

and reached reward threshold)(N=10 mice). (E) Schematic (top) of introduction of deviant auditory feedback 

(probe) during lever press task, and measurement of lever trajectory RMSE difference between the 30 trials prior 

to the onset of deviants and after the onset of deviants, regardless of trial type. Quantification (bottom) of lever 

trajectory RMSE differences before and after the onset of frequency deviant (orange) or omission (black) trials, 

compared to the average RMSE difference between groups comprised of the same trials, but assigned random 

identities (mean of 1000 permutations).  (F) Schematic of frequency-probe session where mice hear either the 

expected frequency or a probe frequency one octave away on 50% of trials. (G) Heat maps (left) of all neural 

responses (n=928, N=10) to the lever-associated sound (top, cyan) and frequency probe sound (bottom, orange) 

in the active condition (light, left) and passive condition (dark, right). PSTHs (right) of neural response to lever-

associated sound (top, cyan) and frequency probe sound (bottom, orange) in the active condition (light) or passive 

condition (dark) averaged across all recorded neurons responsive to that sound in either the active or passive 

condition. (H) Scatter of individual neural responses to either the expected (cyan) or probe (orange) tone in the 

active condition vs passive condition. Schematic of radial modulation index calculation is overlayed, with a 

highlighted example neuron and its corresponding modulation value. (I) Modulation index of individual neurons 
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comparing active and passive responses to the expected and probe frequencies. (J) Connected points display the 

average neural modulation of expected and probe frequencies for an individual animal. *p<0.05   **p < 0.005   

***p<.0005  
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Figure 2. Frequency-specific suppression is present for self-generated sounds that are important to ongoing 

behavior. (A) Schematic of frequency-probe experiment where mice trained to expect the lever-generated sound 

at the reward threshold experience auditory feedback shifted by one octave on 50% of trials randomly 

interleaved. (B) Movement, sound, and reward coupling measured as the fraction of movements that generated 

sounds (crossed the sound threshold), and the fraction of sound-generating movements that generated rewards 

(obeyed inter-trial-interval and reached reward threshold)(N = 7 mice). (C) Global average lever trajectory +/- 

standard error across mice for interleaved expected-sound trials and frequency-deviant sound (top). 

Quantification (below) of change in movement duration (x-axis, seconds) and maximum lever position (y-axis, 

relative lever position) across interleaved expected and probe trials. (D) Global average pattern of mouse lick rate 

+/- standard error across mice for interleaved expected-sound trials and frequency-deviant sound (top). 

Quantification (below) of change in lick onset (x-axis, seconds) and lick rate (y-axis, Hz) for interleaved expected 

and probe trials. (E) Heat maps (left) of all neural responses (n=928, N=10) to the lever-associated sound (top, 

cyan) and frequency probe sound (bottom, orange) in the active condition (light, left) and passive condition (dark, 

right). PSTHs (right) of neural response to lever-associated sound (top, cyan) and frequency probe sound (bottom, 

orange) in the active condition (light) or passive condition (dark) averaged across all recorded neurons responsive 

to that sound in either the active or passive condition. (F) Modulation index of individual neurons comparing 
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active and passive responses to the expected and probe frequencies.  (G) Connected points display the average 

neural modulation of expected and probe frequencies for an individual animal. (H) Quantification of the average 

difference between the modulation of expected and probe frequencies for individual animals trained on the 

standard behavior (black, data from Fig. 1J) or the reward threshold behavior (gray). *p<0.05   ***p<.0005 
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Figure 3. Frequency-specific suppression is confined to a specific time point within the sound-associated 

movement. (A) Schematic of timing probe experiment, with mice experiencing randomly played background 

tones in addition to standard and frequency-probe lever-generated sounds early in movement (N=4). (B) Average 

modulation of neural responses to lever-associated (cyan) and probe (orange) tones heard during lever 

movement, or during 200ms bins prior to lever movement onset, starting at the time listed on the x-axis. 

Modulation values are calculated relative to passively heard tones at experiment conclusion. (C) Schematic of 

within-movement probe experiment (bottom) where expected and unexpected frequency tones are played at the 

expected position, at a point near the apex of movement, or in the middle of the return phase (N=4). 90% of 

sounds were the expected frequency at the expected position, with the remaining 10% distributed across the 
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other 5 frequency/position combinations. Timing (above) shows the difference between time points, averaged 

across animals. (D) Average modulation of neural response to the expected (cyan) and probe frequency (orange) 

tones at three different time points. Neurons are included at each time point if they have a significant response to 

the corresponding tone at that time point or in the passive condition. (E) Schematic of movement-specificity 

experiment where mouse licking triggers closed-loop generation of the lever-associated frequency or probe 

frequency, randomly interleaved (N=6). (F) Average modulation of the expected and frequency probe sounds in 

this subset of animals when heard at the expected lever position (left) or when triggered by licking (right). 

*p<0.05   **p < 0.005   ***p<.0005 
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Figure 4. Movement signals in the auditory cortex display an expectation for the timing and frequency of self-

generated sounds. (A) Schematic of omission trials occurring in a subset of mice trained on the standard sound-

generating lever task (N5). (B) Average population PSTH of all neurons responsive to any of 6 positions throughout 

movement (see methods), aligned to the time of expected sound. (C) Schematic showing the 6 positions 

throughout movement, corresponding to the time points used to identify movement-responsive neurons. (D) 

PSTHs of entire movement-responsive pool aligned to each of the time points shown with corresponding color in 

(C). (E) Average z-scored response of an individual movement-responsive neuron over a raster plot of action 

potential time across trials, aligned to the time of lever-initiated sound onset. (F) Probability histogram of 

movement-signal onset time on omission trials for individual neurons in standard trained mice (gray) and mice 

trained on the same task but in the absence of sound (blue). Distributions were tested for similarity using the KS 

test and the f-test. (G) Probability histogram of movement-signal peak time on omission trials for individual 

neurons in standard trained mice (gray) and mice trained on the same task but in the absence of sound (blue). (H) 

Intersection of peak time and strength of neuron movement signal (z-score) for standard (gray) and silent-trained 

(blue) mice, with histogram of movement signal strength (right). (I) Venn diagram showing the intersections of 

movement responses and sound responses to the expected and probe frequency tone across the omission 

dataset population. (J) PSTH (top) showing the movement activity on omission trials of neurons responsive to the 

expected sound (cyan), the probe sound (orange), or both sounds (dark cyan). X-axis notch indicates the time of 

expected sound. Quantification (bottom) of neural response rate in the 100ms prior to the expected tone time for 
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each population. (K,L) Same as (I,J), but for neurons in the standard dataset that lacked omission trials. X-axis 

notch (top) indicates the time of sound. *p<0.05   **p < 0.005    

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.472457doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472457


22 
 

 

Figure 5. Laminar pattern of movement, sound, and expectation signals. (A) Schematic showing the calculation 

of relative cortical depth and laminar assignment based on current-source-density (CSD) features (see Methods 

for details). (B) Moving average histogram showing the number (gray) and fraction (black) of neurons responsive 

during lever movement when sound is omitted (see Fig 4A,B).  (C) Onset time of movement responsive neurons 

plotted against cortical depth with moving average line (averaged across 50um). (D) Same as (C) but for 

movement response peak. (E)  Intersection of peak time and z-score strength of neuron movement signals broken 

down by cortical layer. (F,G) Moving average (across 50um) of individual neuron responses to the expected 

frequency sound (F, cyan) or probe frequency sound (G, orange) heard in the active (light) or passive (dark) 

context plotted by neural depth. (H) Moving average of neural modulation to expected and probe sounds across 

cortical depth (overlapping 50um bins). (I,J) Radial modulation comparing neural responses in the active and 

passive condition for expected (cyan) or probe (orange) sounds in individual layers (I) and corresponding 

cumulative distribution histograms of neural modulation for each layer (J). * p < 0.05     **p < 0.005    

***p<0.0005 
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Figure 6. Divergent processing of expected and unexpected self-generated sounds across individual auditory 

cortex neurons. (A-D) Schematic and neural activity of a sample neuron exemplifying cells responsive to all 

sounds across all conditions (A), responsive to both sounds only during movement (B), responsive to a specific 

frequency in both the active and passive context (C), and responsive specifically to either the expected or probe 

frequency during movement (D). Circles in schematic (left) indicate responsiveness across trials (p < 0.05) to a 

given combination of tone identity (expected, probe) and context (movement, passive). Raster plots (bottom 

right) show action potentials across trials for expected (cyan) and probe (orange) frequencies heard in the active 

(light) or passive (dark) condition, and PSTH (top right) show average neural response of the neuron across trials. 

(E-F) Fraction of neurons in each layer responsive to the self-generated probe sound (E) or self-generated 

expected sound (F), with stacked bars representing the fraction of neurons that fit into each of the functional 

groups in A-D.  
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Figure 7. Movement, expectation, sound, and error signals are distributed across distinct functional groups.  (A) 

Schematic (left) of clustering process, where individual neurons are characterized by their responses to different 

task variables and then grouped using k-medoids clustering based on these dimensions (Core dataset, N10, see 

methods). Silhouette test (top right) showing the quality of clustering for different cluster numbers (k-values), and 

elbow test (bottom right) showing the average distance of all data points to group center as a function of cluster 

number. (B) Visualization of cluster groups (k = 7) by plotting each neuron in a low-dimension projection of our 

feature-space generated by UMAP and color coded by cluster identity. (C) Neuron response patterns sorted by 

cluster group (designated by color), shown as the z-scored activity pattern over time to each sound type, and as 

response p-values following sound onset (0-60ms post sound vs 100ms pre-sound) or prior to sound onset for 

movement signals (100ms prior to sound vs 400-500ms prior to sound). (D) Functional characterization of select 

cluster groups. From left to right: PSTHs of average neural response to expected (cyan) and probe frequency 
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(orange) sounds in the active (light) and passive (dark) conditions. Note different Y axis scales. Quantification of 

average response strength across all neurons to each sound type and movement signals as measured in (C). 

Quantification of modulation of each neuron to expected and probe frequency sounds, with neurons included if 

they have a significant response to the given tone in either the active or passive condition. Right, quantification of 

neuron counts by depth (top, black) and fraction of all neurons in each layer (bottom, blue).  
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Methods 

Animals 

All experimental protocols were approved by New York University’s Animal Use and Welfare Committee. Male 

and female wild-type (C57BL/6) mice were purchased from Jackson Laboratories and were subsequently housed 

and bred in an onsite vivarium. We used 2-4 month old mice for our experiments that were kept on a reverse day-

night cycle (12h day, 12 h night).  

Surgeries 

For all surgical procedures, mice were anaesthetized under isolfurane (1-2% in O2) and placed in a stereotaxic 

holder (Kopf), skin was removed over the top of the head, and a Y-shaped titanium headpost (H.E. Parmer) was 

attached to the skull using a transparent adhesive (Metabond). Mice were treated with an analgesic (Meloxicam 

SR) and allowed to recover for 5 days prior to training. Following training and 24 to 48 hours prior to 

electrophysiology, a small craniotomy was made to expose the auditory cortex (~2mm diameter, -2.5mm 

posterior, 4.2 mm left from bregma). Another small craniotomy was made above the right sensory cortex and a 

silver-chloride reference electrode was positioned atop the surface of the brain for use as a ground electrode and 

covered (Metabond). Exposed craniotomies were covered with a silicone elastomer (Kwik-Sil) and the mouse was 

allowed to recover in its home cage, and an additional training session was performed prior to electrophysiology. 

Behavioral Paradigm Design and Data Collection 

We designed a custom head-restrained lever-based behavioral training paradigm where mice push a lever and 

hear closed-loop sounds. A custom-designed lever (7cm long, 3D printed using Formlabs Form2) was mounted to 

the post of a rotary encoder (US Digital) 5cm from the lever handle. A magnet (CMS magnetics) was mounted to 

the bottom of the lever, which was positioned 4cm above a larger static magnet which established the lever 

resting position and provided light and adjustable movement resistance. The lever handle (top) was positioned 

adjacent to a tube (Custom, 3D printed using Formlabs Form2) to hold mice and directly below two plate clamps 

(Altechna) to secure mouse headpost. Lever and mouse apparatus was constructed with Thor-labs components. A 

water tube, controlled by a solenoid valve (The Lee Company), was positioned in front of the mouse and licking 

was measured using a custom-mounted (3D printed using Formlabs Form2) IR-beam emitter and receiver. IR 

signal was titrated and pre-processed using a custom printed circuit board (designed by Melissa Caras and Dan 

Sanes) to generate a binary TTL signal with IR sensitivity controlled by a potentiometer. Digital signals for licking 

and lever movement were collected by a data acquisition card (National Instruments) connected to a computer 

and logged by custom Matlab software (Mathworks, PsychToolBox) and sampled at ~2Khz. Digital inputs of lever 

movements and licking received sufficient processing in real time to track lick onset and important movement 

thresholds, which were used to trigger sound events based on user-defined closed-loop rules. Sound output was 

delivered from the computer to a sound card (RME Fireface UCX), the output of which was routed to an ultrasonic 

speaker (Tucker Davis Technologies) located lateral to the mouse, ~10cm from the mouse’s right ear. We 
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recorded sounds during test experiments using an ultrasonic microphone to confirm that the lever produced 

negligible noise and sounds were delivered at a consistent volume. All training was performed in a sound-

attenuating booth (Gretch-Ken) to minimize background sound and monitored in real-time via IR video. 

We designed two variants of the lever task which differed only in the position used to trigger sounds. In both task 

variants, water-restricted mice were head-fixed to the behavioral apparatus and presented with the lever and lick-

port after ~10 minutes of quiet acclimation. Mice were then allowed to make outwards lever movements at will. 

For a movement to be considered valid, we required the lever to remain in the home position (~+/- 3mm from 

rest) for >200 ms prior to initiation. Valid movements that reached a reward threshold (~15mm from home 

position) elicited a small water reward (5-10uL) when the lever returned to home position. Auditory feedback in 

the form of a pure tone (50ms duration, ~50dB) was delivered on all trials when the lever crossed a set threshold 

for the first time in a trial. Mice were trained on a single sound frequency, but the trained frequency was shifted 

across mice and ranged between 4 and 16 khz. The reward threshold and early sound threshold were slightly 

different for each mouse depending on their size (+/-2mm), but was consistent across all trials for a mouse after 

the first few sessions. The only difference between the two task variants was the position at which sound 

feedback was triggered. For the standard, early-sound variant, sounds were generated when the lever reached 

1/3 of the distance between the home position boundary and the reward threshold. For the reward-threshold 

variant, sounds were triggered using the same threshold that determined reward. To ensure strong coupling 

between movement and sound, auditory feedback was provided on all trials, regardless of whether mice obeyed 

the home-position requirement and would subsequently receive a reward.  

Behavioral Training and Data Analysis 

Mice received between 19 and 33 sessions of training over roughly two weeks prior to experimentation, with 

either one or two sessions per day. Prior to the first training session, mice were water-restricted for 24 hours. At 

the beginning of the first session the reward threshold was set very low (~4mm), reward volume was very high, 

and a home position time requirement was omitted, enabling the mice to rapidly establish a basic understanding 

of the task. The reward position was typically extended to at least 80% of the final position by the end of the first 

hour of training and reached its final position within 3-4 sessions as the mice improved at the task. At this point, 

the home-time requirement was implemented, and reward threshold remained constant for all remaining 

sessions. Learning trajectory data in Fig1C only includes sessions after final reward threshold was set. To assist in 

training and further differentiate the tone relevance for the two tasks, mice trained with a reward-threshold tone 

received auditory feedback from the onset of the first session, but mice trained with an early-position tone did 

not hear auditory feedback until the final reward threshold was established.  

Lever trajectories and licking were analyzed post-hoc to assess mouse behavioral patterns. For each training 

session, as well as the electrophysiology behavior session, we measured the average lever trajectory of all 

movements that reached the sound threshold, normalized to the distance of the reward threshold. For each 

mouse, we also measured the average maximum lever position and movement duration across lever pushes and 

created a histogram of the maximum lever position of all individual movements. The empirical coupling between 
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movement, sound, and reward was averaged across the last three training sessions for each animal, measured as 

the fraction of movements that generated a sound and the fraction of sounds that were followed by a reward.  

To assess learned expectations for self-generated sounds, we introduced tone deviations on a subset of trials and 

measured changes in these lever properties. Omissions of expected sounds occurred on the training session prior 

to craniotomy, when sounds were omitted on 1 in 15 trials randomly interleaved, beginning after mice had 

performed at least 30 standard trials. For mice trained to expect a reward-threshold tone we also performed a 

second, separate behavior session where tones were played slightly earlier than expected (15%, ~3mm) on 1 in 15 

trials. Deviants were presented at a low rate to probe behavior without disrupting learned expectations prior to 

electrophysiological recording. Behavioral deviations to frequency probes, where sound was played at the correct 

lever position but shifted one octave above or below the expected tone, were measured on electrophysiology day 

at a rate of 1 to 1. Deviant auditory feedback did not alter the requirements for reward. For each probe type, we 

measured the average lever trajectory over time, average movement duration, average maximum lever position, 

average lick onset time, and lick rate (200ms centered around movement end) for the first 30 probe trials and 

compared these values to the same measurements calculated for all interleaved standard trials occurring 

between the first and last probe trial. Only trials that reached the sound-threshold were included in analysis, 

except for during the early-tone probe session, where movement inclusion for standard training was based on the 

distance threshold of the early tone to enable a fair comparison of movement distances. We also measured the 

root-mean-square-error between average lever trajectories for interleaved standard and probe trials, as well as 

between the 30 trials directly preceding deviant tone onset and the 30 trials directly after deviant onset 

regardless of trial type. We compared each RMSE value to the RMSE difference of average trajectories from the 

same trial pool but with shuffled trial identities. The shuffled RMSE value reported here is the average of 1000 

iterations of shuffled RMSE difference calculation.  

Electrophysiological Recording and Analysis 

Following training, behavioral probe experiments, surgical opening of a craniotomy, and one subsequent training 

session, mice were positioned in the behavioral apparatus and a 128-channel electrode (128AxN, Masmanidis Lab) 

was lowered into the auditory cortex orthogonal to the pial surface39. The electrode was connected to a digitizing 

head stage (Intan) and electrode signals were acquired at 30khz, monitored in real time, and stored for offline 

analysis (OpenEphys). The probe was allowed to settle for at least 20 minutes, at which point the lever and lick-

port were introduced and mice were allowed to make lever movements at will as in any other training session. 

After performing at least 30 standard lever movements, we unexpectedly began a probe session in which mice 

heard either the lever-associated sound or a single probe sound one octave away (same duration and intensity) 

on 50% of pseudorandom trials shuffled in batches of 30 tones. Disbursements of rewards was blind to tone 

identity. The standard frequency-probe session was followed by a broader frequency-probe session where lever 

pushes generated tones randomly at half octave intervals around the lever-associated tone. Following probe 

sessions, the lever was removed, and we played the same sounds to the animal in a passive context.  

After recording, electrical signals were processed and the action-potentials of individual neurons were sorted 

using Kilosort2, and manually reviewed in Phy2 based on reported contamination, waveform principal component 
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analysis, and inter-spike interval histograms. Units were only included in analysis if they maintained their baseline 

firing rate for the duration of the experiment (+/- 30%), and demonstrated a non-fast-spiking waveform, 

separated by plotting peak to valley ratio against action potential width (ms). Tone-evoked action potential 

responses were measured in 5ms bins and aligned to sound onset for each neuron for each tone type. Heat maps 

of individual neuronal firing (Fig 1G and Fig 2E) show raw firing rates averaged across all trials with a threshold at 

0 and 30hz for all recorded neurons. In order to study the neural representations of sounds in the cortex, 

subsequent analysis of sound-responses includes all neurons that were responsive (p<0.1) to a given tone in 

either the active or passive condition measured as an increase in firing rate from baseline (average over 100ms 

prior to stimulus) during the sound response window (10-60ms post stimulus) across trials. We used this inclusion 

criteria because we wanted to capture a broad range of neurons likely to be involved in processing cortical sounds 

which need not be limited to classically strongly sound-responsive neurons.72 Tone-evoked responses were 

visualized by calculating the average firing rate in 5ms bins over time and subtracting baseline activity (average 

firing rate in the 100ms window prior to sound onset). Tone-evoked responses were quantified by comparing the 

driven firing rate (10-60ms after sound onset) to the baseline firing rate (100ms window prior to sound onset). To 

measure the movement-based modulation of each neuron’s responses to the lever-associated or probe tone, we 

compared the neural sound response in our analysis window to the same sound in the active and passive 

condition using a radial modulation index. Radial modulation was calculated as the theta value resulting from a 

cartesian to polar transformation of the response strength in the active condition compared to the response 

strength in the passive condition. Theta values were converted to a scale of +/- 2 and rotated such that a value of 

0 corresponded to equal responses across the two conditions. These neuronal modulation values are calculated 

and displayed just for the pool of neurons responsive to a given sound, and were averaged across all cells, or 

within an animal. We followed a similar procedure for each probe tones when there was more than one probe 

frequency in a given experiment. To assess the stability of neural responses to a sound throughout an entire 

experiment, we measured the average population response of all sound-responsive neurons on each trial. We 

then measured the average modulation for quartiles of trials for the expected tone during standard training and 

independently for both the expected and unexpected sound during the probe section. The above analyses were 

performed in parallel for separate pools of mice trained on the two task variants. 

Experimental Variants and Specific Analyses 

In a subset of animals, we performed electrophysiological recording of mice that had been trained on an identical 

version of the lever task but without sound feedback (7-10 sessions). On experiment day mice first performed 

silent lever pushes for 20-50 trials, then we performed a broad frequency probe (see above), followed by a 

session of standard training with a single tone heard early in every movement, followed by a post-training broad 

frequency probe. These data were used to assess both movement responses and sound responses prior to 

movement-sound coupling. 

In the experimental variant focused on background sounds, mice received identical training on the early-tone task 

variant, but the normal frequency-probe experiment was accompanied by the delivery of the lever-associated and 

probe tone played randomly using intervals between 0.5 and 1.5s in the background. Background sounds were 
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also introduced on the 5 sessions prior to electrophysiology to acclimate the mice to this disruptive experience. 

The probe session was followed by lever removal and passive replay of the two sounds. Analysis of lever-

generated tones was performed as described above for standard frequency-probe experiments. Neural responses 

to background tones were analyzed for each frequency if they fell within 0 to 200ms, or 200 to 400ms, or 400 to 

600ms prior to lever movement onset, and if there was no licking or lever movements in the 500ms prior to the 

tone. Neural responses were compared to passive tones to generate a modulation value. In the experimental 

variant focused on time deviants within the lever movement, mice were again trained on the standard early-tone 

behavior prior to electrophysiology. During recording, mice experience the expected frequency and a probe 

frequency at three different positions that were identical within and across mice: the expected position, the 

reward threshold, and halfway through the return phase. 90% of tones occurred at the expected position and 

frequency, and with the remaining 10% distributed across the other 5 position and frequency combinations. 

Reward delivery was unaffected by changes in sound position, and a tone only played on the return phase if a 

given movement reached the reward threshold. This created a small number of omission trials which were used 

to assess movement signals in the absence of sound. Neural responses to lever sounds. Neural responses to 

sounds at different time points were compared to passively heard tones at the end of the experiments, with 

neurons contributing to modulation values if they responded (p<0.1) to that tone type or the same frequency 

heard in the passive condition. 

In the experimental variant focused on movement specificity, we delivered sounds during licking in a subset of 

animals only during electrophysiology experiments. Directly following the broad lever-initiated frequency-probe, 

we randomly delivered the same set of tones at half-octave intervals but triggered by individual mouse licks that 

occurred naturally during behavior, especially in the seconds right after movement termination. During the 

session of licking-initiated sounds, the lever continued to generate random half-octave interval tones. We 

performed a normal calculation of neural sound responses and modulation compared to passively heard tones for 

licking-evoked sounds that occurred outside of lever movement.  

Laminar assignment of neural identity was performed for all experiments based on consistent features of our 

observed current source density (example in Fig5A). Current source density analysis following passively heard 

tones at the end of each experiment was performed independently for each probe shank, with each shank treated 

as a composite of three different linear arrays73. Each feature was assigned a consistent neural depth across 

animals to generate a consistent depth and laminar scale across animals. The mapping of CSD features to 

numerical depths and putative layers is an estimate based on our observed empirical depths, CSD analysis in other 

experiments, and studies of laminar architecture in the auditory cortex74–76. While numerical depths are inferred, 

neurons are correctly ordered with respect to one another and to key CSD features. For averages of neural 

features across depth, we performed a moving average across 50um centered on each cortical depth (5um bins).  

Neural representations of self-generated sounds were determined by measuring the responsiveness of each 

recorded neuron to the expected and unexpected tone in both the active and passive condition (p<0.05). We 

categorized neurons as responsive to both sounds in all conditions, both sounds but only during movement, 

specific to a frequency regardless of behavioral context, or specific to a given tone only during movement. 
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Importantly, the first two groups of neurons (all sounds, movement sounds) are the same population of neurons 

across both tone types, but frequency-driven neurons and neurons responsive specifically to self-generated 

sounds are different groups of neurons for the expected sound and unexpected sound. 

Movement responses in the auditory cortex were measured on omission trials (see above) that reached at least 

66% of the distance to reward threshold. A broad pool of movement-activated neurons was identified by 

measuring responsiveness (p<0.01) in the 100ms before or after each of 3 positions during movement (15%, 50%, 

80% of reward threshold) on both the outbound and return phase of movements, using a consistent baseline 400-

500ms prior to movement onset. Movement signals for all responsive neurons were visualized relative to the time 

of expected sound position in all figures, except in Fig 4C,D where average neural firing is shown aligned to each 

of the six time points used to identify responsive neurons. For each of these neurons, we z-scored average neural 

firing during lever movements based on the average and standard-deviation of neural firing rate across trials in 

the baseline window (500 to 400ms prior to sound). If a neuron reached a threshold of 2.5 standard deviations 

above baseline, we calculated a time of peak firing as well as an onset time measured as the crossing of 0.5 

standard deviations prior to the peak. We also measured the fraction of neurons that were sound-responsive at 

each cortical depth by comparing the number of responsive neurons in a 50um window around each cortical 

depth (5um bins) compared to the total count of neurons in the same window. Movement responses for the core 

dataset (early-tone training and frequency-deviant probes) were calculated for the 100ms prior to sound onset 

compared to the same baseline window (400-500ms prior to sound).  

Clustering Analysis 

For unbiased clustering analysis we logged parameters characterizing the activity of each neuron in our core 

dataset to each of our behavioral and sound variables: Expected Frequency sound heard actively and passively, 

probe frequency-sound heard actively and passively, and movement signals in the time prior to sound onset. 

Neural response to each variable was measured both as z-scored neural activity level, and as a baseline 

subtracted response rate (Sound response: 0-60ms vs 100ms prior; Movement: 100ms prior to sound onset vs 

400-500ms prior). Each of the 10 dimensions was pre-processed prior to  clustering, comprised of log 

normalization, thresholding of outliers to a boundary value, and then centering the distribution between -1 and 1. 

We then performed k-medoids clustering45 on the processed dataset, a variant of k-means clustering that uses 

individual datapoints as group centers and is more robust to outliers. We performed clustering analysis for 3-30 

clusters, performing the elbow test and silhouette test to measure the quality of clustering and determine the 

appropriate number of clusters (7 for core dataset). To insure that the functional properties of our groups were 

not driven by cluster number, we looked qualitatively at cluster output groups at a variety of k values and found 

similar functional populations, albeit split or merged across different numbers of groups. Similarly, we performed 

clustering after using an alternate pre-processing approach where neuron values within each dimension were 

ordered and then fit to a normal distribution, which yielded similar clustering results. Cluster results were mapped 

onto a 2-dimensional representation of the data generated using UMAP for visualization77.  

Neurons were sorted by cluster, and by average activity within cluster, and visualized using Z-scored neural 

activity over time to each stimulus type and probability response values to each variable. We then characterized 
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select groups by plotting PSTHs, response graphs, modulation graphs, and laminar plots including all neurons in a 

given group. Response graphs reflect the baseline-subtracted responses that went into clustering, modulation 

graph includes only neurons that are response to a given tone in either the active or passive condition, and depth 

plots show both the number of cells by depth and the fraction of cells in each layer. 

We additionally clustered neural activity in the dataset that included omission probes in addition to frequency 

probes. Clustering was performed with identical dimensions and pre-processing, except that movement activity 

was measured at two time points: prior to the time of expected sound, and just after the time of expected sound 

(0-60ms post expected onset vs 100ms prior). Clustering was robust to small differences in cluster number and 

pre-processing, and cluster analysis determined a k value of 10 groups. Results were visualized similarly but 

included the additional movement time point following the time of expected auditory feedback.  

Statistical Analysis 

Throughout, animal values are denoted by a capital N while cell values are denoted by a lowercase n. Unless 

otherwise reported, all error bars denote standard deviation, and all statistical comparisons were performed using 

a two sided, non-paired, non-parametric rank sum test. Additionally, all neural percentages reported use a 

denominator of all neurons, or all neurons in a given depth rather than a smaller denominator comprising just 

sound-responsive neurons. For broad frequency-probe experiments, modulation of neurons to the expected tone 

were compared to modulation of neurons to all probe tones pooled together. For statistical analysis of RMSE 

differences for interleaved and pre vs post comparisons, we performed a paired Wilcoxon test between the 

empirical RMSE values for each condition compared to the average of 1000 RMSE values generated by random 

trial assignment. Statistical comparison of laminar distributions were performed using a Kolmogorov-Smirnov test, 

and distributions of movement response properties were compared using both the Kolmogorov-Smirnov test and 

the f-test. The relationship between movement signal strength and timing was performed using linear regression 

and correlation coefficient analysis with all p and R values reported.  
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