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Abstract 22 

We propose a novel effective framework for analysis of the shared genetic 23 

background for a set of genetically correlated traits using SNP-level GWAS summary 24 

statistics. This framework called SHAHER is based on the construction of a linear 25 

combination of traits by maximizing the proportion of its genetic variance explained by the 26 

shared genetic factors. SHAHER requires only full GWAS summary statistics and matrices 27 

of genetic and phenotypic correlations between traits as inputs. Our framework allows both 28 

shared and unshared genetic factors to be to effectively analyzed. We tested our framework 29 

using simulation studies, compared it with previous developments, and assessed its 30 

performance using three real datasets: anthropometric traits, psychiatric conditions and lipid 31 

concentrations. SHAHER is versatile and applicable to summary statistics from GWASs 32 

with arbitrary sample sizes and sample overlaps, allows incorporation of different GWAS 33 

models (Cox, linear and logistic) and is computationally fast.  34 
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Introduction 36 

There is a growing interest in studying the shared genetic background between 37 

genetically correlated traits1-5 (see, for example, the number of PubMed search results by 38 

year for keywords related to "shared genetic background"). Studying this shared genetics 39 

between traits can help discover pleiotropic interactions, common genes and pathways, and 40 

identify genetic effects that are unique for each trait.  41 

The problem of the decomposition of the variance of several traits into the 42 

shared/unshared genetic and environment components were first formulated by S. Write in 43 

1921 6. There are widely used classic twin designs to have this problem solved. They are 44 

based on structural equation modelling, in particular, multivariate pathway models assuming 45 

the existence of the genetic influences common for all traits and unique for each trait 7. 46 

These designs are implemented only for the variance decomposition, but not for the 47 

identification of the genetic factors that determine these genetic impacts.  48 

There are several terms for these common and unique genetic impacts. Hereafter we 49 

will call them the 'shared genetic impact' (SGI) and 'unshared genetic impacts' (UGI). The 50 

genetic factors that determine these impacts will be called 'shared genetic factors' (SGF) and 51 

'unshared genetic factors' (UGF), respectively. The heritability of each trait explained by 52 

SGF and UGF will be called 'shared heritability' and 'unshared heritability', respectively. 53 

The application of different methods of multivariate analysis in genome-wide 54 

association studies (GWAS) allows the problem of SGF and UGF identification to be 55 

partially solved 8-13. The multivariate methods involve complicated genetic or/and 56 

phenotypic correlation structures of traits in the analysis. In most cases, this increases the 57 

power of detection of the loci associated with several traits due to pleiotropic effects. If the 58 

detected locus has a pleotropic effect on all studied traits, the locus could potentially be 59 

attributed to SGF, and if not, to UGF. However, a pleiotropic effect of the locus on all 60 

studied traits is necessary but insufficient for inclusion of this locus in SGF (at least effects 61 

should be also collinear between traits, see the model description below). Also, if a locus 62 

belonging in fact to SGF was not identified as having pleotropic effects on all traits due to a 63 

limited statistical power of the analysis, then the locus can be erroneously assigned  to UGF. 64 

Moreover, this approach of SGF identification assumes a manual classification of loci, 65 

which prevents the use of more sophisticated modern in-silico approaches for genetic 66 

analysis, for example, the ones that rely on GWAS summary statistics 14. To our knowledge, 67 
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there is no specific method that could be good for both variance component decomposition 68 

and identification of SGF and UGF. 69 

We had previously developed a method for obtaining genetically independent 70 

phenotypes (GIPs) 2. This method is based on the calculation of the principal components 71 

using genetic rather than phenotypic correlations. We applied this method to genetically 72 

correlated pain phenotypes and aging related phenotypes and showed that the first GIP 73 

component, GIP1, that explains the largest proportion of the genetic variance probably could 74 

be interpreted as SGI 2, 15. This makes GIP promising for identification of loci attributed to 75 

SGF. However, this method was not designed specifically for SGI analysis. In addition, no 76 

specific experiments have been performed to validate the approach or to estimate its 77 

statistical properties. 78 

Here, we present a novel general framework for the estimation of shared and unshared 79 

heritability and identification of the shared and unshared genetic factors using the summary 80 

statistics of original traits. The essence of our approach is to find the optimum linear 81 

combination of traits which has the maximum proportion of its genetic variance explained 82 

by the SGF. We validated our framework using simulation studies under different scenarios, 83 

by comparing it with the developed GIP approach, and assessed its performance using three 84 

real datasets: anthropometric indices, psychiatric disorders and conditions, and lipid 85 

concentrations. 86 

 87 

Results 88 

Abbreviations and terms 89 

SHAHER: a framework for the estimation of the shared and unshared heritability of studied 90 

traits and identification of the shared and unshared genetic factors using the summary 91 

statistics of original traits. 92 

SGI: shared genetic impact. 93 

UGI: unshared genetic impact. 94 

SGF (shared genetic factors): genetic factors involved in the control of all studied traits and 95 

whose effects are collinear between all studied traits; SGI is due to SGF.  96 

Shared heritability: the proportion of the trait variance explained by SGF. 97 

SGIT (shared genetic impact trait): a trait defined as a linear combination of original traits 98 

maximizing its shared heritability. 99 

α: the coefficients of an optimum linear combination of original traits for building the SGIT. 100 
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UGF (unshared genetic factors): the residual genetic factors of an original trait after 101 

exclusion of the SGF; UGI is due to UGF. 102 

Unshared heritability: the proportion of the trait variance explained by UGFs. 103 

UGIT (unshared genetic impact trait): an original trait after adjustment for the SGIT. 104 

γ: the coefficients of a linear combination of original traits for building the UGIT. 105 

MaxSH (MAXimization of Shared Heritability): a method for estimating the shared and 106 

unshared heritability of each trait and calculating the coefficients of the linear combination 107 

of the original traits: α, to build the SGIT, and γ, to build the UGITs.  108 

sumCOT (summary-level GWAS for linear Combination of Traits): a method to compute 109 

GWAS summary statistics for the linear combination of the original traits using their 110 

summary statistics. 111 

 112 

Shared heredity model 113 

We adopted a commonly used multivariate pathway model 7 in terms of SGF and 114 

UGF. We call it the 'shared heredity model'. For simplicity, we consider SGF and UGF as 115 

biallelic SNPs and consider a sample of N unrelated individuals measured for K traits and 116 

genotyped for M SNPs. For a standardized normal trait, y (N×1), the traditional polygenic 117 

(null) model takes the form: y = Gβ +ε, where G is an (N×M) matrix of standardized 118 

genotypes; β (M×1) and ε (N×1) are genetic and non-genetic random effects, respectively; 119 

β ~ N(0, h2IM) and ε ~ N(0, (1–h2)IN), where 0 is a null mean vector, h2 is the trait 120 

heritability, and I is an identity matrix of the given dimension. For unrelated individuals, we 121 

expect y ~ N(0, IN).  122 

We propose to divide M SNPs into two non-overlapping SNP sets with sizes M0 and 123 

M1 (M0 + M1 = M). The set of M0 SNPs called 'SGF' includes only those SNPs whose effects 124 

on all traits are collinear. The set of M1 SNPs consists of the other SNPs, which do not have 125 

shared joint influence on all traits at once, this set being called 'UGF'. In accordance with M, 126 

G is divided into two matrices, G0 (N×M0) and G1 (N×M1). To decompose every trait into 127 

components explained by the SGF and UGF, we rewrote the traditional polygenic model in 128 

terms of G0 and G1  129 

�� � ��������
��� �� 	
�

  	  ��������
   

��� �� 

� 

  	    ε� .                                                     �1
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Here, the first and second terms are genetic components explained by SGF and UGF, 130 

respectively, which are assumed independent. In the first term, ���
 is an (M0×1) vector of 131 

non-zero SGF effects, which can be presented as �������
�, where β0 is an (M0×1) non-zero 132 

vector that is the same for all traits, ��~��0, ���
�, and ��

���
� is the heritability of the i-th 133 

trait explained by SGF. Here wi is a non-zero trait-specific multiplier: wi
2 denotes the 134 

proportion of hi
2 explained by SGF; the value of wi can be positive and negative, indicating 135 

the direction of the SGF effect on the i-th trait. ���� is the so-called shared genetic impact 136 

or SGI. In the second term of Model (1), ���
 is an (M1×1) vector of UGF effects, which can 137 

be presented as ��� � ����� 1 � ��
�
��

�, ���~��0, ���
�. In contrast to β0, ���

 are different 138 

for different traits, moreover they are not collinear. For illustrative purposes, we rewrote 139 

Equation (1) as: 140 

�� � �������
	
�

 �����
�

���������
��� �� 	
�

	 �����
� 1 � ��

����
��������������

��� �� 

�

 	  ε� .  

 141 

Overview of the SHAHER framework 142 

  143 

Figure 1. Flowchart of the SHAHER framework. Details are given in the text. 144 
 145 

For analyses of the SGI and UGI on a set of correlated traits, we propose an effective 146 

multi-stage framework named SHAHER (see Figure 1). The concept of the framework is 147 
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first to partition the genetic basis of each original trait into two components: one shared by 148 

all the original traits and one shared not by all the original traits, and then to identify the 149 

SNPs that contribute to these genetic components. To do this, we propose to construct new 150 

traits: (1) an SGIT as a linear combination of original traits, which has the maximum 151 

possible heritability explained by the SGF, and (2) UGITs as linear combinations of the 152 

original traits, which are obtained by adjusting the original traits for the SGIT. This means 153 

that the genetic basis of the UGITs is predominantly determined by the UGF.  154 

Our framework requires matrices of phenotypic correlations (Uphen) between the 155 

original traits, the matrices of genetic correlations (Ugen) between the original traits, the 156 

heritabilities of the original traits and GWAS summary statistics of the original traits as 157 

inputs. It is worth noting that Uphen, Ugen and heritabilities could be estimated using GWAS 158 

summary statistics of the original traits, for example, by the LD score regression method 16. 159 

SHAHER starts with a preliminary stage, which verifies the presence of SGI in a given 160 

set of traits. This is achieved by checking the following requirements for Ugen: it must be 161 

positive definite; the absolute values of its elements must be significantly more than a given 162 

threshold, and the rank of the correlation matrix derived from Ugen by rounding its elements 163 

to extremal correlation values, either -1 or 1, must be equal to one. If the requirements are 164 

met, we turn to the basic stages of SHAHER. 165 

The MaxSH stage. To determine the α and γ coefficients for the linear combinations of 166 

the original traits to build the SGIT and UGITs, we developed the MaxSH method, which is 167 

based on the correlation component model given below. This model partitions the 168 

phenotypic correlation matrix, Uphen, into environmental and genetic components, Uenv and 169 

Ugen, respectively, the latter being further subdivided into two components caused by the 170 

SGF and UGF:  171 

����� � �������������������
������� ���������

	 �� � �������� � �����������������
������������� ���������

���� � �  ���������
��� �� 	
�

	 �� � ��������� � �����������������
��� �� 

�

                                   �2
 

Here W is a diagonal matrix, whose i-th diagonal element is wi; Uunsh is a matrix of genetic 172 

correlations explained by UGF; H2 is a diagonal matrix, whose i-th diagonal element is hi
2, 173 

and 1 is a (k×1) vector of units. Using this model, MaxSH solves several tasks.  174 
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First of all, using only the genetic correlation matrix, Ugen, we estimate the proportion 175 

of heritability of every trait explained by SGF (W). To do this, we minimize the difference 176 

between Ugen and the auxiliary matrix V. This matrix is built using formula (2), with the 177 

identity matrix used instead of Uunsh,. The second task is to determine the α-coefficients, 178 

which is solved by maximizing the shared heritability of the SGIT. This task is analytically 179 

solved as 180 

" � �
����

�
�
� �� 

� ��������
�� �� 

 .                                                      

It requires Uphen, H
2 and W as input data.  181 

After determining the α-coefficients and building the SGIT, we build a UGIT for every 182 

trait using the residual regression equation UGITi = yi – SGIT*ci, where ci is the impact of 183 

the SGIT on the i-th original trait, defined as  184 

#� � #$%������ , &��'
 �	
��
�⁄ . 185 

Here covgen denotes a genetic covariance. Note that we should use genetic rather than 186 

phenotypic covariances, as our goal is to adjust only the genetic components of the original 187 

traits. 188 

Since the SGIT is the linear combination of the original traits, the UGITs are linear 189 

combinations of the original traits, too. The coefficients of these linear combinations called 190 

the γ-coefficients form the matrix of the γ-coefficients Γ � �� � α#�
, where the i-th 191 

column of Γ corresponds to linear combination coefficients for building the i-th UGIT.  192 

 193 

The sumCOT stage. This stage is aimed at obtaining GWAS summary statistics for 194 

the SGIT and UGITs using the previously determined α and γ coefficients, GWAS summary 195 

statistics (Z-scores, allele frequencies and sample sizes for each SNP) for the original traits 196 

and the matrix of phenotypic correlations. The method can use Z scores obtained from any 197 

regression model and allows for varying sample sizes and sample overlap between traits. 198 

This sample overlap is incorporated into the estimation of the matrix of phenotypic 199 

correlations. In short, the SNP effects for combined trait are calculated by summing effect 200 

estimates from the individual trait GWASes, each multiplied by their corresponding linear 201 

coefficient (α or γ), and standardized by the expected variance. The standard errors of the 202 

SNP effect are calculated using variance-covariance arithmetic, taking into account the 203 

phenotypic covariance between GWAS results to adjust for the sample overlap. Effective 204 
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sample sizes are then estimated based on the median Z statistic and allele frequencies by 205 

solving Equation (1) in 17.  206 

At the final stage, SHAHER checks for the correctness of the output. In particular, we 207 

anticipate that UGITs do not have a shared genetic basis. This is verified by applying 208 

MaxSH to the matrix of correlations between UGITs.  209 

To summarize, our framework estimates shared and unshared heritabilities for each of 210 

the studied original traits and produces GWAS summary statistics for the SGIT and UGITs 211 

as outputs.  212 

The full details and mathematical formulae of SHAHER are in Supplementary 213 

Methods. 214 

Simulation study 215 

To assess the MaxSH performance, we conducted simulation studies. We (1) assessed 216 

the accuracy of w estimates (using Δ� metrics estimated as )!��!���

!�

*�

, where w0 and west 217 

are modeled and estimated w, respectively) with respect to the loss function given in Fig. 3, 218 

(2) assessed the proportion of the shared heritability to the total heritability of the SGIT (the 219 

Q-value) with respect to the loss function, and (3) compared the analytically predicted 220 

total/shared heritabilities of two traits: SGIT and the first component, GIP1, obtained by GIP 221 

method 2. The Q-value can be interpreted as the specificity metrics of the SGIT: the closer 222 

the Q-value to 1, the lower the share of unshared heritability in the total heritability of the 223 

SGIT. The simulation scenarios were based on six varying parameters that describe the 224 

properties of the genetic and phenotypic correlation matrices. Under each scenario, we 225 

considered two situations, where all traits have the same w2 and different w2's. To distinguish 226 

between these situations, we will hereinafter write either ‘w2’ or ‘different w2's’.  In total, we 227 

performed 10,000 iterations of simulations for each of 288 scenarios.  228 

The results are presented in Supplementary Figures S1-18. For all scenarios, there are 229 

few general patterns: (1) the higher simulated w values, the higher the accuracy of the w 230 

estimates, (2) the accuracy of the w estimates and the Q-value increase with an increasing in 231 

the number, K, of traits, (3) for all scenarios with w2>0.8, Δ� was very low (<0.025) and the 232 

Q-value was more than 90%. 233 

For all scenarios with three traits, the accuracy of the w estimates was in general low: 234 

Δ� was not higher than 0.7 for scenarios with w2=0.2 and 0.3, although at w2 equal to or 235 

higher than 0.4 Δ� was less than 0.2. The Q-value was higher than 60% for almost all 236 
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scenarios with w2≥0.4. In almost all cases, the total and shared heritabilities of the SGIT 237 

were higher than the corresponding heritabilities of GIP1, except for the scenarios with 238 

h2=0.8.  239 

For the scenarios with four and five traits, the accuracy of w estimates was higher: 240 

Δ�<0.15 for w2≥0.4 and Δ�<0.05 for w2≥0.5. For the scenarios with w2≥0.5, the Q-value 241 

was more than 70% for four traits and more than 80% for five traits. Again, the total and 242 

shared heritabilities of the SGIT were higher than the corresponding heritabilities of GIP1 243 

under all scenarios, except for the scenarios with h2=0.8. In the scenarios with h2=0.8,  the 244 

total and shared heritabilities of the SGIT were higher than those of the GIP1 at w2≥0.5.  245 

In summary, the performance of MaxSH was suitable at w2≥0.5 and when the number 246 

of traits being higher than or equal to four. In the case of small w or three traits, the results of 247 

MaxSH should be interpreted with caution.  248 

Real data assessment 249 

We applied SHAHER to three datasets: anthropometric (five traits), psychometric 250 

(four traits) and lipid traits (three traits). We should note that the performance of SHAHER 251 

applied to three traits is limited (see simulation results), yet still passable, although the 252 

results should be interpreted with caution. We present SHAHER results for anthropometric 253 

traits in the main text as an example. The full results for the psychometric and lipid traits are 254 

presented in Supplementary Results. 255 

At the first step, we confirmed that SGI exists for five traits. At the second step, we 256 

determined the α and γ coefficients and their CI (see Supplementary Table 1a). At the third 257 

step, we applied sumCOT and obtained GWAS results for the SGIT and UGITs (see 258 

Supplementary Table 2a for heritability estimates and LD score regression intercepts). 259 

SHAHER results are presented in Figure 2. 260 

 261 
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 262 

       Figure 2. Results of the application of SHAHER to anthropometric traits. A) The 263 
heatmap of genetic correlations between the original, SGI and UGI traits. The number, color 264 
strength and size of the squares in the matrix show the values of the correlation coefficients 265 
between the traits. The diagonal elements represent heritabilities. Crossed out values indicate 266 
insignificant correlations. B) Boxplots of –log10(p-value) for the SGIT with respect to the 267 
number of the original traits significantly associated with the locus. Two outliers for loci 268 
with –log10(p-value) > 40 are omitted. The number at the top of the boxplot corresponds to 269 
the number of significant SNPs. C) The heatmap of the numbers of overlapping loci between 270 
traits. The numbers in the cells represent the absolute numbers of overlapping loci. The color 271 
strength and size of the squares in the cells show the relative scaled number of overlapping 272 
loci (on the scale from 0 to 1). The diagonal elements represent the number of loci found for 273 
every trait. D) The heatmap of  the numbers of overlapping gene sets between traits. The 274 
color strength and size of the squares in the cells show the relative scaled number of 275 
overlapping gene sets (on the scale from 0 to 1). The diagonal elements represent the number 276 
of gene sets found for every trait. 277 

 278 
 279 
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Figure 2A demonstrates genetic correlations between all pairs of the original 280 

anthropometric traits, SGIT and UGITs. All the original traits were positively correlated with 281 

r > 0.82. We did not observe any significant genetic correlation between the SGIT and the 282 

UGITs. Moreover, we did not observe additional SGI among UGITs, which was up to 283 

expectation. The heritabilities of the UGITs varied from 0.07 to 0.14.  284 

We revealed a dependence of the SGIT p-value from the number of the original traits 285 

significantly associated with the locus (Figure 2B). It clearly shows that the loci associated 286 

with all the original traits have lower SGIT p-values than the other loci.  287 

Joint clumping of 11 traits (five original traits, five UGITs and SGIT) resulted in 820 288 

genome-wide significantly associated loci (p-value < 5×10-8, Supplementary Table 3a). If a 289 

locus was not significantly associated with any of the original traits, it was considered new. 290 

SGIT was significantly associated with 337 SNPs. We detected no new loci among SGIT 291 

loci. The clumping of UGITs revealed 422 loci, of which 199 were new. At the same time, 292 

the clumping of only original traits allowed 621 loci to be detected, of which 161 could not 293 

be detected by analyzing SGIT or UGITs. Thus, the joint analysis of SGIT and UGITs 294 

increased the number of associated loci by more than 32%. Figure 2C reflects the 295 

overlapping between significantly associated loci for 11 analyzed traits. There is a weak 296 

albeit non-zero overlap between loci for UGITs and SGIT, although the genetic correlation 297 

between them is zero. It could be due to the conservative settings of the clumping procedure, 298 

which tends to clump together closely located loci, and due to some level of  unspecificity of 299 

the SHAHER.  300 

Next, we checked how enriched gene sets overlap between the SGIT, UGITs and 301 

original traits (see Figure 2D). Significant results (FDR<5%) of enriched gene sets and tissue 302 

enrichment analyses are presented in Supplementary Table 4. As expected, the heatmap of 303 

the overlapping gene sets looks similar to the heatmap of genetic correlations and the 304 

heatmap of the overlapping loci. Moreover, there were almost no overlap between SGIT and 305 

any UGIT. For the original traits, the number of enriched gene sets varied a lot: from 4 for 306 

the waist to 825 for the hip circumference. It should be noted that we observed a high 307 

number of enriched gene sets for the BMI UGIT, 1608, which was almost ten times the value 308 

for BMI (192).  309 

Finally, we obtained GIP1 GWAS statistics and calculated the genetic correlations 310 

between the SGIT and GIP1. The genetic correlation was higher than 0.97.  311 

 312 
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Discussion 313 

We developed a new fast and efficient framework, which allows us to decompose the 314 

heritability of each trait from a given set of traits into two components. One of them is 315 

explained by shared genetic factors common to all traits. Another one is explained by 316 

unshared genetic factors specific for each trait. The framework not only decomposes 317 

heritability, but also identifies SNPs associated with the shared and unshared genetic 318 

impacts. To our knowledge, this framework is unparalleled. It has an additional advantage: it 319 

uses GWAS summary statistics obtained for original traits and does not require raw 320 

genotype or phenotype data. 321 

We compared the performances of MaxSH and GIP in identifying the shared genetic 322 

components. GIP calculates the linear combination coefficients via the eigenvalues of the 323 

genetic covariance matrix and can be considered a close approximation to MaxSH. In our 324 

simulations, GIP and MaxSH were similar in almost all scenarios, with MaxSH being 325 

somewhat superior in terms of the power (total heritability) and quality (shared heritability). 326 

If obtaining genetically independent phenotypes is not the aim, we suggest using SHAHER, 327 

because it is more robust and gives additional metrics like SGI contributions to the 328 

heritability of the original traits.  329 

The framework is computationally effective. The stage using sumCOT is the most 330 

time consuming. However, it takes only several minutes for an average computer to conduct 331 

a GWAS of a linear combination of traits with 6M SNPs using a C++ implementation of the 332 

sumCOT. MaxSH, based on numerical optimization procedures, and the other parts of the 333 

framework take seconds.  334 

The proposed sumCOT method can be applied as an independent tool to address 335 

additional tasks. One of them is making a summary-level adjustment of traits by other traits 336 

using the same scheme as was used for obtaining the UGIT GWAS statistics. This can be 337 

helpful, for example, for ridding the studied trait's genetic component of the genetic 338 

component that was caused by the confounding or unaccounted effects of assortative mating 339 

or family effects, which is quite a problem in GWAS at the biobank scale 15, 18. Another task 340 

is a GWAS for the trait that appears as a linear combination of the original traits. The 341 

sumCOT method is robust to differences in sample sizes used for GWASs of original traits 342 

and is applicable to different GWAS models (Cox, linear or logistic).  343 

The main interest in the application of the SHAHER framework lies in the possibility 344 

of obtaining novel biological insights into a trait’s heritability composition. This can be 345 
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achieved by the application of a huge variety of in-silico follow-up techniques to the SGIT 346 

and UGITs. The SGIT is of interest by itself, but we also emphasize the importance of the 347 

comparison of shared and unshared impacts for each trait. In our real data application, the 348 

most remarkable case is BMI in the set of anthropometric traits (see Figure 3C). We found 349 

246 and 1608 significantly enriched gene sets for the SGIT and UGIT of BMI, respectively, 350 

with negligible overlapping between them of size 56. By analyzing only BMI, we would 351 

have detected only 192 enriched gene sets. By analyzing each of the impacts separately, we 352 

dramatically increased the number of observed unique gene sets (1798 in total for both SGI 353 

and UGI). It means that each sub-phenotype controlled by the SGF and UGF is less 354 

heterogeneous than the original trait. According to the significant gene sets, the UGIT of 355 

BMI (see Supplementary Tables 4) controls some structural changes in body compositions 356 

and bone formation, while the SGIT is involved in some general signaling pathways and 357 

pathways related to nervous system development and probably to general psycho-social 358 

aspects of BMI, obesity and other anthropometric traits 19. 359 

Although SHAHER is effective, it has several limitations. First, when trait-trait 360 

genetic correlations are weak, it is expected that the contributions of these traits to the shared 361 

heritability will be small, too. In this case, MaxSH may overestimate these contributions. 362 

Secondly, the framework is applicable only if the number of traits is no less than three. In the 363 

case of three traits, the performance is limited and the SHAHER results should be interpreted 364 

with caution. We have shown in simulations and real dataset examples that MaxSH works 365 

better at higher numbers of genetically correlated traits being analyzed. However, an 366 

increase in the number of weakly correlated traits leads to a decrease in the proportion of 367 

SNPs associated with all traits simultaneously and to a decrease in the efficiency of the 368 

framework. Thirdly, although the set of SNPs identified by the SGIT GWAS is enriched for 369 

the SGF, each SNP should be interpreted with caution for whether it is shared or not, 370 

because SHAHER has some level of unspecificity. Finally, if any confounding effects were 371 

included in the GWAS of the original traits, these effects are amplified in the SGIT 15. The 372 

confounding effects can be controlled easily using special methods like LD score regression 373 
20, although this method fails to distinguish a polygenic component if the trait was measured 374 

in the sample with the assortative mating or family effects. Thus, we suggest a thorough 375 

check of the original GWAS for the presence of any effects of possible confounders before 376 

proceeding to SHAHER.  377 
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In conclusion, we propose a novel effective framework for analysis of the shared 378 

genetic background for a set of genetically correlated traits using GWAS summary statistics. 379 

The framework allows us to obtain novel biological insights into the trait’s genetic impact 380 

composition. By analyzing shared and unshared genetic impacts separately, we increased the 381 

number of identified loci and observed unique gene sets, identified genetic mechanisms 382 

being common for all traits or specific for every trait. Of note, sumCOT can be used as a 383 

stand-alone method for obtaining GWAS results of the linear combination of the traits using 384 

their summary statistics. 385 

 386 

Materials and Methods 387 

Simulation study 388 

Under different scenarios, we designed simulations to assess the performance of 389 

MaxSH. We (1) assessed the accuracy of w estimates, (2) assessed the proportion of SGIT 390 

heritability explained by the SGF to the total heritability of the SGIT (the Q-value), and (3) 391 

compared the analytically predicted total and shared heritabilities of the SGIT and GIP1 with 392 

respect to the loss function. The design of our simulation experiment is shown in Figure 3. 393 

To generate the input for the MaxSH and GIP approaches, we used a six-parameter 394 

simulation model, in which K is the number of traits; W0
2 is a (K×K) diagonal matrix, where 395 

the i-th diagonal element is wi
2 (the proportion of heritability explained by SGF); s is the 396 

proportion of zeros in the matrix Uunsh; d1 is the amplitude of the uniform distribution for 397 

non-zero values of Uunsh and d2 is the amplitude of the uniform distribution for Uenv; H2 is the 398 

diagonal matrix with diagonal elements equal to the trait heritabilities. The parameters 399 

values used are given in Figure 3.  400 
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 401 

 402 

Figure 3. A schematic depicting the overall workflow of a simulation study. All details 403 

are given in the text. 404 

 405 

For each fixed number, K, of the original traits and fixed heritability, hi
2 (i=1,…,K), of 406 

each trait, we simulated Ugen. To do this, we separately modelled two its components caused 407 

by SGF and UGF as �  �� and √� � �������√� � ��, respectively (see the ‘Model’ 408 

box in Figure M1 of Supplementary Methods). Here 1 is a (K×1) vector of units, and Uunsh is 409 

a (K×K) matrix randomly generated using the parameters s and d1 (see Supplementary 410 

Methods). Then we randomly generated the trait-trait correlation matrix Uenv explained by 411 

the environmental factors, by giving the parameter d2 (see Supplementary Methods). Finally, 412 

we modeled a matrix of phenotypic correlations by using Model (2) with regard to simulated 413 

values W0.. 414 

Using simulation data, Uphen, Ugen and H2, we estimated West and calculated its squared 415 

relative difference with the simulated values of W0 (ΔW). We revealed a dependence of ΔW 416 

on the loss function (Loss). The Loss value characterizes the difference between Ugen and the 417 

auxiliary matrix V. 418 
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Then we estimated α in three ways: (1) using MaxSH and W0, (2) using MaxSH and 419 

West, and (3) using the GIP method 2. On the basis of these estimates, we formed three traits 420 

being the linear combinations of the original traits. For these combined traits, we calculated 421 

the total heritability and the heritability explained by SGF. 422 

The simulated experiments were repeated 10,000 times for each set of parameters. 423 

The model parameters and formulas for all calculated values are shown in Figure 3. 424 

 425 

Application to real data 426 

Data sets 427 

We used three publicly available real data sets: anthropometric traits, psychiatric 428 

conditions and lipid concentrations, which contain five, four and three traits respectively.  429 

The group of anthropometric traits consisted of UK Biobank GWAS summary 430 

statistics obtained from the Neale lab (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-431 

thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank) for people of European 432 

ancestry: BMI (N = 336,107), weight (N = 336,227), hip (N = 336,601), waist circumference 433 

(N = 336,639) and whole body fat mass (N = 330,762). 434 

The second dataset reflecting psychometric traits was constructed from GWAS 435 

results provided by the Psychiatric Genomics Consortium 436 

(https://www.med.unc.edu/pgc/download-results/) for bipolar disorder, BIP (N cases = 437 

20,352; N controls = 31,358) 21, major depressive disorder, MDD (N cases = 43,204; N 438 

controls = 95,680; without UK Biobank and 23andMe data) 22 and schizophrenia, SCZ (N 439 

cases = 36,989; N controls = 113,075). Summary statistics for the fourth trait – subjective 440 

well-being (N = 110,935) – were derived from UK Biobank data from the Neale lab. All the 441 

psychometric trait GWASs were conducted using samples of white Europeans. 442 

The last dataset corresponding to lipid traits was formed using GWAS data for 443 

European participants from the Global Lipid Genetics Consortium 444 

(http://csg.sph.umich.edu/willer/public/lipids2013/) for LDL cholesterol (N = 173,082), 445 

triglycerides (N = 177,860) and total cholesterol (N = 187,365). 446 

Summary statistics for the three data sets were integrated and quality controlled by 447 

the GWAS-MAP platform developed by our group 23. The GWAS-MAP database contains 448 

implemented software for quality control of GWAS results, estimation of phenotypic 449 

correlations and LD Score regression (LDSC) 20. 450 
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We conducted the quality control of all data and unified them within the GWAS-451 

MAP platform 23. We filtered all summary statistics by minor allele frequencies ≥ 0.01. 452 

Additionally, we filtered GWAS results for BIP by imputation qualities ≥ 0.9. We did not 453 

apply this filter to the other traits due to the absence of imputation quality in summary 454 

statistics data. Finally, using GWAS-MAP, we performed a correction for genomic control 455 

for all traits (including the original traits, SGIT and UGITs) with an LDSC intercept greater 456 

than 1 20. Thus, we corrected all traits from the psychometric dataset apart from MDD, all 457 

original anthropometric traits and their SGIT and lipid SGIT as their LDSC intercept 458 

exceeded 1 (see Supplementary Tables 2a-c). Moreover, all SNPs with the p-value equal to 0 459 

were excluded from analysis. 460 

Genetic analysis 461 

Pairwise phenotypic correlations between traits were computed using the GWAS-462 

MAP platform described above. The used method is based on correlations between 463 

insignificant z-statistics for independent SNPs as previously described in 9. SNP-based 464 

heritability and genetic correlation coefficients were estimated using the LD Score 465 

regression software 16 embedded in the GWAS-MAP platform. The significance threshold 466 

for genetic correlations was set at 4.5×10-4 (0.05/112, where 112 is the number of pairwise 467 

combinations between all original traits, their SGIT and UGITs in each dataset - between 11, 468 

9 and 7 traits for anthropometry, psychometric and lipid traits respectively). 469 

SHAHER analysis included checking if there was an SGI or not, the application of 470 

MaxSH and conducting SGIT and UGIT GWASs. The threshold for confirming the 471 

existence of an SGI at the first stage was empirically set to 0.2. 472 

For each dataset, we visualized the full genetic correlation matrices using the 473 

corrplot() function from the corrplot R package (v.0.84) 24. We also placed the SNP-based 474 

heritability estimates on the diagonal and crossed out non-significant values. 475 

Finally, we compared the GWAS results obtained for the SGIT by MaxSH and GIP 476 

(the principal component analysis on the matrix of genetic covariances)2.  477 

Gene set and tissue/cell type enrichment analyses 478 

We performed a gene set enrichment analysis and a tissue/cell type enrichment 479 

analysis combined with a gene prioritization using the Data-driven Expression Prioritized 480 

Integration for Complex Traits (DEPICT) tool v.1.1, release 194 25. We selected genome-481 

wide significant SNPs (p-value < 5×10-8) from summary statistics before the genomic 482 
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control and applied the DEPICT software with default parameters 483 

(https://data.broadinstitute.org/mpg/depict/). The MHC region was excluded from analyses.  484 

Next, for the gene set enrichment results, we calculated the number of significant 485 

enriched gene sets (FDR < 5%) and constructed an overlapping matrix, in which each cell 486 

represents the number of overlapping gene sets for each pair of traits. For each pair of traits, 487 

we scaled the number of overlapping gene sets by the minimum number of significant gene 488 

sets for this pair of traits. The resulting matrix was visualized using the corrplot R-package 489 

as descried above.  490 

The number of original traits associated with SGIT loci 491 

We performed a clumping procedure to search for loci associated with each of the 492 

original traits, SGIT and UGITs at a genome-wide significance level of 5×10-8. The 493 

associated locus was defined as a genomic region spanning 500 kb in either direction of the 494 

lead SNP. Those loci that were significantly associated with SGIT, but not with the original 495 

traits, were assumed to be new loci.  496 

We expected that the loci associated with all the original traits used to obtain SGIT 497 

are likely to be SGF. To test this expectation, for each dataset we selected all independent 498 

loci that were significantly associated with at least one of the original traits and calculated 499 

the number of the original traits significantly associated with these loci. For the original 500 

anthropometric and lipid traits, we empirically set the significance threshold at p-value = 501 

1×10-5. For the psychometric traits, it was set at 1×10-3. We then analyzed the SGIT p-values 502 

for the selected loci and constructed boxplots of –log10 for them with regard to the number of 503 

the original traits significantly associated with these loci. 504 

Data Availability 505 

The SHAHER framework is implemented as a set of R/C++ scripts and is freely 506 

available at https://github.com/Sodbo/shared_heredity. 507 
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