
Abstract

The researchers used a machine-learning classification approach to better understand neurological features associated
with periods of wayfinding uncertainty. The participants (n=30) were asked to complete wayfinding tasks of varying
difficulty in a virtual reality (VR) hospital environment. Time segments when participants experienced navigational
uncertainty were first identified using a combination of objective measurements (frequency of inputs into the VR
controller) and behavioral annotations from two independent observers. Uncertainty time-segments during navigation
were ranked on a scale from 1 (low) to 5 (high). The machine-learning model, a random forest classifier implemented
using scikit-learn in Python, was used to evaluate common spatial patterns of EEG spectral power across the theta,
alpha, and beta bands associated with the researcher-identified uncertainty states. The overall predictive power of the
resulting model was 0.70 in terms of the area under the Receiver Operating Characteristics curve (ROC-AUC). These
findings indicate that EEG data can potentially be used as a metric for identifying navigational uncertainty states,
which may provide greater rigor and efficiency in studies of human responses to architectural design variables and
wayfinding cues.
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ence wayfinding uncertainty and how they resolve those25

uncertainty states.26

Our understanding of exactly what happens in the27

brain during times of wayfinding uncertainty is cur-28

rently very limited. It is well established that naviga-29

tional uncertainty is usually experienced as an undesir-30

able state, associated with discomfort and negative emo-31

tions [3, 4]. In the broader context persistent conditions32

of uncertainty have been linked to the emergence of sub-33

optimal decision strategies, as well as diminished well-34

being and even psychopathology [5, 6, 7, 8, 9, 10, 11].35

[12] found that the type of information source (GPS36

device vs. human informant) influenced the decisions37

that participants made in situations of navigational un-38

certainty. The needs that people have during such con-39

ditions may differ from ordinary navigation; for exam-40

ple, [13] suggested that a wayfinder in uncertain con-41

ditions will eventually enter a “defensive” wayfinding42

mode that involves proceeding cautiously and invest-43

ing excessive mental effort in scanning for conflict-44

ing information. Currently the “defensive wayfinding”45

model remains conceptual and largely informal, and like46

the overall understanding of wayfinding uncertainty it47

needs to be grounded in more empirical research to un-48

Spatial navigation is an essential human skill, criti-
cal for our survival. It allows individuals to use angu-
lar and linear motion as cues to monitor their position 
within a space [1, 2]. This skill is particularly impor-
tant in environments that are complex or novel, such as 
hospital buildings. In these spaces, visitors and patients 
often cannot build on existing experiences or expecta-
tions, and must instead rely on our spatial navigation 
abilities to reach a destination.

The sequence of decisions that comprise human nav-
igation are of ten undertaken under conditions of both 
uncertainty and urgency, and such decisions rarely 
match the rational ideal for optimized path-finding. 
Building users may lack the spatial/cognitive abilities 
to interpret all of the available information about the 
environment with complete accuracy, and they may en-
counter incongruent and conflicting i nformation that 
does not match other sense perceptions. Given the com-
plexity of such facilities and the limitations of human 
cognition, it is unlikely that it will ever be possible 
to completely eliminate experiences of uncertainty and 
the resulting inefficient behaviors in human navigation. 
Thus, it is important to understand how people experi-
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derstand the specific neurological responses that are in-49

volved.50

1.1. Behavioral uncertainty measurement in wayfind-51

ing studies52

Clear uncertainty measurements are needed to rigor-53

ously analyze how uncertainty affects cognitive behav-54

ior [14]. Researchers have taken diverse approaches to55

this topic. For example, [15] used the behavioral pat-56

tern of “looking around” as an indicator of navigational57

uncertainty, and instrumentalized that behavior based58

on participant’s head motions. [16] used a more de-59

tailed “entropy value” to measure navigational uncer-60

tainty states, which the based on the purposefulness of61

physical motions and the extent to which participants62

were looking at near objects vs. far objects. [8] exten-63

sively theorized this concept of entropy, and their work64

has been adopted by various researchers to develop65

measures of uncertainty using behaviors such as walk-66

ing speed, specific eye movements, and other physiolog-67

ical and neurophysiological responses [17, 18, 19, 20].68

The predominant outlook is that wayfinding entropy69

arises when there is conflict between various forms of70

perceptual information and various behavioral options71

[8]. As proposed by Hirsh and colleagues, affective re-72

sponses to uncertainty are linked to four primary mech-73

anisms. First, uncertainty is a challenge that decision-74

makers are constantly seeking to reduce. Second, con-75

flicts between expected outcomes and environmental76

cues contribute to uncertainty states. Third, expertise in77

a domain of endeavor can assist in resolving uncertainty.78

Finally, the experience of uncertainty leads to anxiety,79

which has measurable physiological components. This80

outlook provides a framework within which behaviors81

and measurements associated with uncertainty can be82

clearly defined.83

Researchers have shown that uncertainty increases84

cognitive load, and that it often engages working mem-85

ory resources, increasing vigilance and information-86

gathering [17, 21, 22, 23]. It also appears to pro-87

mote “metacognitive” processing, in which ambiguity88

is overtly recognized and neural responses are activated89

to enhance information processing (i.e., to avoid nega-90

tive consequences) [24]. Spatial navigation is likely a91

good domain in which to explore the cognitive impact92

of uncertainty more generally, given how frequently un-93

certainty arises during wayfinding and the importance94

of these processes to human survival (e.g., [15, 25]).95

1.2. Neural dynamics of uncertainty states during96

wayfinding97

Over the last several decades, scholars have exam-98

ined the neural mechanisms associated with human spa-99

tial navigation [26, 27, 28, 29], though there has not100

been much particular emphasis on experiences of un-101

certainty in this research literature. Many of the re-102

lated studies break down their findings in terms of the103

wayfinding strategies that are employed by participants.104

For example, [26] compared the use of allocentric refer-105

ence frames (focused on external relationships or maps)106

against egocentric reference frames (focused on rela-107

tionships between the environment and self) during nav-108

igational tasks and found that switching between these109

reference frames is mediated by the brain’s retrosple-110

nial complex (RSC) [26, 1]. The RSC has been iden-111

tified as a relevant brain region in many other studies112

of wayfinding, including studies on the passive viewing113

of navigation footage, navigations that occur mentally,114

and navigations in both familiar and new environments115

[30, 31, 32, 33, 34, 35]. The RSC is directly connected116

to the hippocampus as well as the occipital and parietal117

cortices, with indirect links to the middle prefrontal cor-118

tex [36]. These connections make it a strong candidate119

for being regarded as the central region for cognitive120

functions related to spatial orientation [37] during phys-121

ical head rotations.122

Functional magnetic resonance imaging (fMRI) stud-123

ies have also found engagement of the parietal cortex124

during human wayfinding [38, 39]. In fMRI studies the125

activation of both the parahippocampal place area (PPA)126

and the RSC been seen during navigation and even dur-127

ing the passive observation of stimuli related to naviga-128

tion [40, 41, 42, 43, 34, 35]. Many researchers believe129

that during spatial navigation, the PPA encodes the cur-130

rent environment for future recall and recognizability,131

while the RSC aids in orientation within the space and132

movements towards currently unseen navigational tar-133

gets [32]. In this way, [32] asserts, the RSC and PPA134

have corresponding but separate roles in navigational135

tasks.136

Another study observing the involvement of the pari-137

etal, occipital, and motor cortices in spatial navigation138

tasks found an association between theta-band modu-139

lation in the frontal cortex and dominant perturbations140

of the alpha band during navigation when participants141

used an egocentric reference frame. In contrast, allo-142

centric navigation in the same study was associated with143

synchronization of the 12–14 Hz band and desynchro-144

nization of the 8–13 Hz band in the RSC [1]. This prior145

research points toward the brain regions that seem to be146
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crucial for wayfinding and some of the EEG band dy-147

namics that may occur during navigational tasks. How-148

ever, there has been almost no research linking specific149

patterns that may occur in these brain regions to differ-150

ent wayfinding activities/sub-states such as periods of151

certainty vs. uncertainty.152

1.3. Purpose of the current study153

The present study was conducted to improve our un-154

derstanding of neural features that may distinguish be-155

tween wayfinding certainty vs. uncertainty states. We156

first annotated the wayfinding states (from video clips of157

participants in a VR hospital environment) using obser-158

vational/behavioral data, and then we used a machine-159

learning approach to determine if those annotated states160

could be predicted from the participants’ EEG data.161

While there have been some similar recent efforts [44]162

in using an EEG classification approach to detect “atten-163

tion states” during wayfinding, we are not aware of any164

other studies that have used continuous neural measures165

to identify wayfinding uncertainty.166

We used a VR approach in this study to improve167

the ease of data-collection and to help reduce poten-168

tial confounding variables that might impact the EEG169

signals and/or the ability to conduct trials (i.e., motion170

artifacts or potential conflicts with other individuals in171

the hallways) [45]. Virtual reality is a commonly used172

tool in wayfinding studies [46, 47, 48, 49, 50, 51, 52].173

While the use of VR must be considered a limitation in174

terms of generalizing to real-world environments, prior175

research has shown that there is a strong overlap in neu-176

ral responses between VR wayfinding and real-world177

wayfinding [53]. The use of VR also allows for a pre-178

cise control of environmental design factors and precise179

tracking of participant behaviors [54, 55, 56], and is180

supported in wayfinding research [57].181

The VR environment that we developed was based182

on actual hospital design documents. The reason for183

using a hospital environment in the study is that these184

facilities are large, complex, and unfamiliar for many185

visitors [58, 59]. The population that has to navigate186

through these complicated buildings typically includes187

a large number of first-time and infrequent visitors, as188

well as individuals who may be in a state that impairs189

their judgment, perception, or mobility (from sickness,190

anxiety, injury, etc.). Difficulties in wayfinding due to191

inadequate design features have been shown to be a sig-192

nificant source of stress for hospital patients as well as193

a significant burden on hospital employees and an ob-194

stacle to operational efficiency [60, 58, 61, 62]. While195

responses to specific architectural design features were196

not compared in the current study, future work using our197

Figure 1: Schematic overview of decoding uncertainty during the
wayfinding tasks. The certainty and uncertainty periods were first
annotated by the researchers based on a rigorous screening process,
described in detail in section 2.4 and Appendix B. We then extracted
the common spatial pattern features from three EEG frequency bands
(theta, alpha, and beta) for the annotated time epochs, and used a Ran-
dom Forest classifier to identify EEG features associated with the cer-
tainty vs. uncertainty states. To evaluate classification performance,
we split the EEG recordings of each subject into k-folds without shuf-
fling. For each cross-validation (CV) iteration, we used one fold from
each subject as the validation set and the other folds as the training
set. This data-splitting approach is less sensitive to cross-subject dif-
ferences since the training set consists of multi-subject recordings.

approach may contribute to improved interior designs198

and more comfortable wayfinding experiences.199

2. Materials and Methods200

2.1. Participants201

Thirty-four healthy adult participants were recruited.202

Data from 4 of the participants was excluded from the203

study due to the presence of extensive line-noise ar-204

tifacts and event-logging problems. We analyzed the205

EEG data from the remaining 30 participants (9 report-206

ing as female and 21 as male; Mage = 26.5, SD = 6.2,207

Range 20–41). After receiving verbal and written expla-208

nations of the study requirements, all participants pro-209

vided written informed consent. The study procedures210

were approved by the Institutional Review Board for211

Human Participant Research (IRB) at Cornell Univer-212

sity.213

2.2. Procedure214

The hospital environment and wayfinding tasks in215

this study were designed and implemented using Epic216
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Games’ Unreal Engine. We used the Blueprints Vi-217

sual Scripting system to construct the architectural en-218

vironment, which was then rendered to the participants219

through an HTC Vive Pro head-mounted display. A220

non-invasive EEG cap was used to record electrical221

brain activity at 512 Hz for 128 channels, through the222

Actiview System (BioSemi Inc., Amsterdam, Nether-223

lands) with Ag/AgCl active electrodes. The VR envi-224

ronments, EEG data, and experiment event marker data225

were timestamped, streamed, recorded, and synchro-226

nized using the Lab Streaming Layer [63].227

Sessions were conducted for one participant at a time.228

During each session, after providing consent the partic-229

ipant was carefully fitted with the physiological sensors230

by trained research team members. To establish resting-231

state data, the participant was asked to sit quietly fac-232

ing a blank computer monitor for one minute, and then233

to sit quietly with eyes closed for one minute. Once234

the resting-state data were collected, the participant was235

fitted with the VR headset and entered the virtual en-236

vironment. An initial five-minute “free” period in the237

VR allowed the participant to become familiar with the238

navigational tools and to explore the platform.239

During the following experiment, the same ten navi-240

gational tasks were assigned to each participant. These241

involved standard hospital visitor wayfinding experi-242

ences, such as locating a specific patient room (see243

Appendix A for a full description of the navigational244

tasks). To promote greater immersion, each task-series245

began with the presentation of a written scenario, ask-246

ing the participant to imagine themselves in a mod-247

erately stressful medical situation. The total time for248

the whole experiment for each participant was around249

120–150 minutes, including the EEG set-up, learning250

the VR controls, completing wayfinding tasks, and short251

breaks between the tasks.252

2.3. EEG data pre-processing253

The EEG data were pre-processed following [52].254

The EEGLAB software package [64] was used for anal-255

ysis. Raw data were imported at 512 Hz and down-256

sampled to 128 Hz. The data were then filtered be-257

tween 0.1 and 50 Hz and run through the PREP Pipeline258

[65], which removes 60 Hz line noise and applies a ro-259

bust re-referencing method to minimize the bias intro-260

duced by referencing using noisy channels. Bad chan-261

nels were removed if they presented a flatline for at least262

5 seconds and if the correlation with other channels was263

less than 0.70 [66, 67]. Time windows that exceeded264

15 standard deviations were adjusted using artifact sub-265

space reconstruction [68], based on spherical spline in-266

terpolation from neighboring channels. The data were267

then re-referenced to the average of all 128 channels.268

Rank-adjusted Independent Component Analysis (ICA)269

was also used to identify artifactual components via270

the ICLabel toolbox [69], in order to automatically re-271

move “Muscle” and “Eye” associated components with272

a threshold of 0.70. The ICs were further inspected vi-273

sually by the researchers to remove artifact-laden com-274

ponents.275

2.4. Identifying wayfinding uncertainty epochs276

To identify periods of uncertainty during the wayfind-277

ing tasks, we first segmented the VR scenes into 5-278

second video clips. The video clips were parsed based279

on the frequency of joystick button presses, which can280

serve as a measure of frequent routing changes and/or281

reviews of the environment. The clips were then also282

independently labelled by two human annotators, fol-283

lowing the protocol detailed in Appendix B. This anno-284

tation involved rating the uncertainty level in each clip285

on a scale from 1 (lowest) to 5 (highest), using behav-286

ioral cues such as head movements (“looking around”)287

and changes/reversals in direction. Overall, we obtained288

1270 annotated video epochs representing participant289

wayfinding periods. After the annotation, we performed290

a two-step cleaning process to select the most represen-291

tative video clips and remove ambiguous classifications.292

For the first step, we removed the video clips in which293

participants were not engaged in wayfinding activities,294

for example if they were standing in an elevator or were295

encountering technical issues (these clips were given a296

wayfinding uncertainty rating of “0” by the annotators297

to mark them for exclusion). A total of 324 video clips298

were excluded at this phase. In the second step, we re-299

moved video clips which failed to reflect the extreme300

certainty (uncertainty score = 1) or uncertainty (uncer-301

tainty score ≥ 4) states. An additional 564 clips were302

removed during this process, which left us with a final303

evaluation set of 382 video epochs that were deemed to304

have reliable uncertainty ratings.305

2.5. Machine learning model306

Figure 1 shows the schematic overview of how uncer-307

tainty was analyzed in relation to the EEG data. After308

the video clips were given a behavioral uncertainty rat-309

ing by the annotators, we filtered the associated EEG310

recordings for those time periods to extract the theta311

(4–8 Hz), alpha (8–12 Hz) and beta (12–30 Hz) bands,312

across the entire brain. After bandpass filtering, the313

EEG signals were decomposed using the Common Spa-314

tial Patterns (CSP) algorithm [70]. CSP is a super-315

vised decomposition approach, which requires “ground316
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Figure 2: (a) Consistency between two annotators. There is a good
consistency between the ratings from two annotators (Pearson’s P
value: 0.77). (b) Correlation between human-annotated uncertainty
scores and BPR. We observed a negative correlation between BPR
and human-annotated uncertainty score (Pearson’s P value: -0.64).
We show the least-squares fitted linear line with the shaded area indi-
cating 95% confidence bound. Marker size represents the number of
epochs.

truth” as input. The CSP algorithm finds spatial fil-317

ters that maximize the differences in variance between318

two classes. This algorithm identifies the informative319

EEG patterns that are correlated to the wayfinding un-320

certainty states and we chose it for use in our analysis321

because CSP can effectively separate signal from noise.322

These input conditions were based on the researcher’s323

classification of uncertainty states during the wayfind-324

ing tasks. The CSP transformation steps were imple-325

mented using the MEG+EEG Analysis and Visualiza-326

tion (MNE) tools implemented in Python [71]. After327

CSP transformation, we selected the top 20 CSPs from328

each frequency band based on the absolute deviation of329

their eigenvalues from 0.5. We used the average power330

of the CSP patterns to represent the neural activity and331

applied a log transform to standardize the band features.332

The features from the three bands were concatenated to333

construct a feature vector, which was fed into a machine334

learning model for classification purposes. Our goal is335

to predict the uncertainty state for each EEG epoch by336

only looking at the corresponding feature vector. We337

then trained a random Forest Classifier algorithm with338

100 trees to predict the human-annotated uncertainty339

level. The classification model was implemented us-340

ing scikit-learn in Python. Given the imbalanced class341

distribution, we measured the model’s performance in342

terms of the area under the Receiver Operating Charac-343

teristics curve (ROC).344

To develop the machine-learning model, we sepa-345

rated the training and validation sets using a cross-346

validation scheme as detailed in Figure 1. The EEG347

signals of each participant were uniformly split into five348

k-folds, following the chronological order of the time349

series. In each cross-validation iteration, we used 4 of350

the folds from each participant to train the model, and351

1 fold from each participant for validation. As a result,352

both the training and validation sets included recordings353

from the entire group of participants, which greatly re-354

duces the impact of cross-subject differences. The val-355

idation set consisted of a continuous, unshuffled EEG356

block from each subject to maintain the chronologi-357

cal order and minimize information leakage caused by358

shuffling data [72, 73, 74].359

To further identify important features in the classifi-360

cation of uncertainty vs. certainty states, we measured361

the total impurity reduction contributed by each CSP.362

The impurity reduction is the criterion to grow deci-363

sion trees and it can be efficiently calculated to quantify364

the importance of features in a Random Forest classi-365

fier (ensemble of decision tree). Starting from using the366

single attribute that achieved the highest feature impor-367

tance score, we sequentially added new attributes to the368

subset based on their importance. With this selection369

approach, we were able to remove redundant CSPs and370

find the optimal subset to detect the human uncertainty371

state during the wayfinding tasks.372

3. Results373

3.1. Observational annotations of wayfinding uncer-374

tainty375

As shown in Figure 2(a), there was a high consis-376

tency between two annotators, with a Pearson’s corre-377

lation coefficient of 0.77. Figure 2(b) shows the relation378

between human-annotated uncertainty scores and BPR.379

We observed that high uncertainty scores are associated380

with low BPR, where participants struggled to find the381
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Figure 3: Receiver operating characteristic (ROC) curves for predict-
ing human-annotated uncertainty scores. We show the ROC curves
over 5-fold cross-validation (CV) and achieved an average area-under-
the-curve score of 0.70 for uncertainty decoding. The shaded area in-
dicates the standard deviation.

right direction and make movements. On the other hand,382

high BPR is associated with decisive movement which383

indicates low uncertainty score.384

3.2. Classification performance385

Figure 3 shows the ROC for each cross-validation386

fold, where the mean ROC and standard deviation are387

indicated for the all trials. We achieved an average area-388

under-the-curve score of 0.70. The classification perfor-389

mance is higher than the chance level (0.5), which indi-390

cates the successful distinction between certainty and391

uncertainty states during the hospital wayfinding task.392

Since we extracted all the features from EEG, our re-393

sults shows that the participants’ uncertainty states can394

be decoded from noninvasive brain recordings.395

3.3. Feature visualization through CSPs396

To better understand the informative indicators for397

uncertainty decoding, we interpret the model predic-398

tion using Shapley Additive Explanations (SHAP, [75]).399

Figure 4(a) presents 4 consecutive screen shots of400

a video clip, where the participant swung head and401

showed little intention to make a movement. This video402

clip received an average uncertainty score of 4.5 from403

the raters (i.e., very high uncertainty). With SHAP, we404

visualize the dominating factors which contribute to the405

model prediction. In Figure 4(b), red CSPs push the406

model to reach a high uncertainty prediction, whereas407

blue CSPs contributes more to a low uncertainty predic-408

tion. Overall, the red CSPs have a higher impact (in-409

dicated by the length of red/blue bars), which leads to410

a correct prediction of the current epoch as as a mo-411

ment of uncertainty. Figure 5 is similar to Figure 4412

but presents an epoch of decisive movement, which re-413

ceived the lowest uncertainty score (1) from both anno-414

tators.415

In Figure 4(b), an increase in alpha power in parietal-416

left (Fig.4(b) i) regions and frontal-right (Fig.4(b) ii) re-417

gions is associated with high uncertainty scores during418

wayfinding. A CSP pattern with lower theta band-power419

in right-frontal region (Fig.4(b) iii) contributes to the420

classification model prediction for the high-uncertainty421

class (red line). The opposite patterns were observed422

for the low-certainty class (blue line): there was alpha423

power suppression in left-parietal regions (Fig.4(b) iv),424

and high theta power in occipital and right-frontal re-425

gions (Fig.4(b) v).426

In the example of Figure 4b, the EEG patterns as-427

sociated with this epoch were classified as a “high un-428

certainty” because of the largest weights (red-blue line)429

in those patterns with increased alpha power in left-430

parietal and right-frontal regions (Fig.4(b) i and ii),431

with concurrent decreased theta power in frontal regions432

(Fig.4(b) iii).433

Figure 5(b) shows an example of a low uncertainty434

navigation epoch, as classified by the EEG CSP band-435

power features random forest model. This sample436

shows a pronounced theta power decrease in frontal and437

pre-frontal regions (Fig.5(b) ii), predictive of low navi-438

gation uncertainty (blue line). The most significant CSP439

component in alpha power for low-uncertaintly (blue440

line) in this example shows low weighting in frontal re-441

gions, and high weighting for occipital areas (Fig.5(b)442

iii), which stands in contrast to the largest contributing443

alpha power CSP in Figure 4(b) (ii).444

Higher theta power in parietal areas has been ob-445

served in salient landmark-based wayfinding scenarios446

in virtual reality [50]. Increased theta power in the447

retrosplineal cortex has also been found when partici-448

pants rotate their head searching for navigational cues in449

VR environments, compared to translational movement450

[37]. Studies in VR maze learning have also found that451

there are more prevalent theta episodes when a maze452

becomes more difficult; suggesting that increased theta453

activity is indicative of general demands of the task,454

but not necessarily associated with immediate cognitive455

demands [76]. In addition. Theta power increase has456

been positively correlated to increased task difficulty in457

frontal regions [1, 77, 78].458

Alpha power suppression has been observed when459
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Figure 4: (a) Screenshots from a video clip in which the participant swung around with little intention for movement. The epoch received a 4.5
(very high) average uncertainty score from the raters. (b) Model prediction and interpretation of EEG data using Shapley Additive Explanations.
The Random Forest model successfully classified the epoch as “uncertainty” by predicting an uncertainty score (0.54) higher than the baseline (0.5).
The model prediction is driven by various CSP patterns from different bands. The factors contributing to high uncertainty prediction are shown
in red, whereas those contributing to low uncertainty are in blue (red factors push the model prediction to the right, indicating higher uncertainty,
while blue factors push the model prediction to the left). The CSP brain plots indicate that theta and alpha bands contributed most significantly to
the classification of this epoch.

participants maintained orientation in active transla-460

tional navigation tasks [37]. During tunnel turns in461

VR, alpha suppression was found in visual cortex ar-462

eas for egocentric-reference frame participants; while463

this suppression was stronger for egocentric reference-464

frame participants, also found in inferior parietal and465

retrosplineal areas [26]. Desynchronization in parietal-466

region alpha band appears most prominent before stim-467

ulus turns [79], while alpha power increases in right468

parietal areas during maintained spatial navigation [80].469

Alpha suppression is associated with increased visual470

processing and attentional processing [81] during mo-471

bile active navigation.472

3.4. Intrepretation of classification473

Our results indicate that a small subset of CSP fea-474

tures can achieve a reasonably high performance in475

identifying wayfinding uncertainty states. Figure 6(a)476

shows the feature selection process, where we included477

the most relevant CSPs from each EEG band. The clas-478

sification performance was plotted as a function of the479

CSP count in the subset, with the pie plots showing480

which frequency band the CSPs were extracted from.481

Using only 7 CSPs, we achieved a mean ROC-AUC482

score of 0.69 for predicting the wayfinding uncertainty483

level in each video clip, which is only 0.01 lower than484

was achieved by using the entire set of CSP features.485

Even more interestingly, these top 7 features only con-486

sist of CSPs from the theta and alpha bands, indicating487

that the beta band may have a limited role in the charac-488

terization of human wayfinding uncertainty states.489

We further visualized the exact CSP patterns that are490

important for the wayfinding classification task. Dif-491

ferent from the SHAP analysis which provides expla-492

nation for each epoch, Figure 6(b) visualizes feature493

importance from the group level. Specifically, we are494

interested in the CSP patterns that lead to high clas-495

sification performance. Figure 6(b) shows the CSP496

patterns that separate the human-annotated uncertainty497

score extremes (i.e., uncertainty score of ≥4 vs. uncer-498

tainty score of 1) for the 5-s video clips. We observe499

again that the theta band and the frontal channels have500

most distinct variance between the certainty vs. uncer-501

tainty classes. In the alpha band the frontal and parieto-502

occipital locations had the most significant variation, as503

observed with extremes in CSP weighting in these re-504

gions. In the theta band, patterns in frontal and parietal505

locations were also observed. These group-level weight506

distributions for the most discriminant CSP patterns be-507

tween 5-s epochs of time where a participant navigated508
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Figure 5: (a) Screenshot of a video clip in which the participant performed decisive movement. The uncertainty score from the raters for this clip
was 1 (indicating very low levels of wayfinding uncertainty). (b) Model prediction and interpretation of the EEG data using Shapley Additive
Explanations. The Random Forest model successfully classified this epoch as “certainty” by predicting an uncertainty level (0.27) lower than the
baseline (0.5). The model prediction is driven by various CSP patterns from different bands. The factors contributing to high uncertainty prediction
are shown in red, whereas those contributing to low uncertainty are in blue (red factors push the model prediction to the right, indicating higher
uncertainty, while blue factors push the model prediction to the left). The CSP brain plots indicate that theta and alpha bands contributed most
significantly to the classification of this epoch.

through the hospital setting capture the aggregate differ-509

ences between uncertain and certain navigation. While510

Figures 4 and 5 inspect a representative epoch sample511

of the associated classification.512

4. Discussion513

The main goal of this study was to assess if brain ac-514

tivity could be used to characterize uncertainty events515

during navigation in a complex building environment.516

The results demonstrate that behavioral uncertainty in517

human wayfinding likely has neurophysiological corre-518

lates, which can potentially allow for the automatic clas-519

sification of such uncertainty events during wayfinding520

tasks.521

The neurophysiological interpretation of CSP pat-522

terns is only indicative of the most distinct patterns that523

differenciate between the annotated classes in the exper-524

iment: certain and uncertain-labeled 5-s epochs of nav-525

igation through a VR hospital setting. It is not a source526

localization method. The CSP algorithm finds spatial527

filters that maximize variance for one class while min-528

imizing the variance for the other class [82]. A strong529

predictive contribution from a location in the scalp can530

be due to consistent potentials associated with wayfind-531

ing uncertainty, or alternatively, from consistent poten-532

tials during high-certainty navigation epochs. The pat-533

terns may also arise as a combination of both effects.534

CSP pattern selection at the group level (Figure 6(b)) is535

sensitive to outliers, as the selection is driven by eigen-536

values (variance in one condition divided by the sum of537

variances in both conditions). The scalp map pattern vi-538

sualization is constrained by these limitations. We cal-539

culated the average power of the filtered signal within540

each trial [82], and visualized the CSP patterns in Fig-541

ures 4 and 5. These examples provide a snapshot of the542

random forest classifier’s decision which CSP patterns543

were most significant, and the discerning patterns asso-544

ciated with high uncertainty or low uncertainty.545

In the SHAP analyses (Figures 4 and 5) there is a546

clear network of frontal channels in the theta band, and547

frontal with parieto-occipital contributions in the alpha548

and theta bands, that are the primary drivers of the bi-549

nary classification performance. The theta band contri-550

butions in the frontal cortex mirrors previous findings of551

theta and alpha band involvement in active navigation.552

Frontal midline theta-band has been associated with ac-553

tive navigation in VR contexts [83], with desynchro-554
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Figure 6: (a) Feature selection for predicting human-annotated un-
certainty scores. The plot shows the classification performance as a
function of the number of selected features. The baseline performance
(dashed line) is achieved by using all 20 CSP features. Starting from
only using one feature, we incrementally added features into the sub-
set based on their importance. We were able to achieve the uncertainty
classification with only a small subset of CSP features, with marginal
performance loss. The distribution of feature types is shown by the
pie plots, indicating that the most informative CSP features come from
the theta and alpha bands. (b) Visualization of the most discriminative
CSP patterns.

nization when an obstruction appeared. Higher theta555

power in parietal areas has been previously observed in556

landmark-based wayfinding scenarios [50] when partic-557

ipants evaluated the landmarks in an active navigation558

context. Further, in active navigational tasks, naviga-559

tion based on egocentric reference frames recruited a560

network of parietal, motor, and occipital cortices in the561

alpha band, with frontal theta band modulation [1]; and562

retrosplineal cortex involvement in heading computa-563

tion [37], but not in translational movement. Studies in564

VR maze learning have found that there is more preva-565

lent theta activity when a maze becomes more difficult;566

suggesting that increased theta activity is indicative of567

general demands of the wayfinding task [76].568

The current research provided the first steps in569

developing a continuous EEG-based measurement of570

wayfinding uncertainty in indoor environments. Once571

these neural measurements of uncertainty states are572

further refined and confirmed in broader studies, they573

can be used to conduct rigorous and efficient research574

with important applications for building design and pre-575

occupancy evaluation. The current study contributes to576

the development of a novel continuous measures for as-577

sessing the level of uncertainty during navigation at any578

given moment. As suggested by [14], continuous navi-579

gation data can provide important insights into what in-580

formation someone seeks to reduce that uncertainty and581

can better explain the cognition-action loop contribut-582

ing to spatial learning and decision making. The EEG-583

based classification approach to identifying wayfinding584

uncertainty that we developed here can potentially al-585

lows researchers to test hypotheses about the impact of586

environmental features on human behavior. Applica-587

tions of this approach stretch across numerous architec-588

tural specialties, as well as other “spatial professions”589

such as the design of immersive video games and spher-590

ical cinema [84]. Continuing to improve our under-591

standing of the neurological components of wayfind-592

ing uncertainty could also potentially contribute to new593

types of navigational aid design and more effective ap-594

proaches to familiarizing people to a new spatial envi-595

ronment. In high-stakes situations, such as those involv-596

ing emergency first responders or helping patients to597

reach the appropriate care centers, providing the right598

information as uncertainty arises could improve out-599

comes and help to reduce anxiety.600

4.1. Limitations and Future Work601

The binary classification approach followed in this602

study is dependent on the class labels (certainty vs. un-603

certainty) and the labeling procedure that was imple-604

mented. The certainty/uncertainty scores provided by605

human annotators followed a specific procedure (Ap-606

pendix B), which may not be generalizable to other607

wayfinding contexts. The interpretation of the neural608

features a associated with the classification performance609

must be understood in the context of this specific rating610

approach, as well as the hospital environment and the611

types of navigational tasks performed (Appendix A).612

Using VR to investigate wayfinding navigation has613

some limitations, particularly in that physical cues, tex-614

tures, and sounds may differ from real-world environ-615

ments. Some researchers have argued that the brain’s616

predictive capability effectively short-circuits the body617

and its broader related processes in VR if the visual per-618

ception is in line with the body’s actions, for instance,619

when head movements result in predictable alterations620

in visual information [85]. However, additional studies621

using mobile EEG in non-virtual contexts are needed to622

determine if the results from VR can be fully general-623

ized to real-world environments.624

Experiences of wayfinding uncertainty, along with625

the associated behaviors and neural dynamics, are ex-626
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pected to change gradually and continuously during the627

wayfinding process. If changes in sensory- information628

processing, decision making, and action (walking, turn-629

ing, stopping) occur intermittently in a typical wayfind-630

ing task, we can expect that the associated neural dy-631

namics would be modulated correspondingly. Our re-632

sults using two-class models provide evidence of dis-633

tinguishable neural features in pre-labeled certainty and634

uncertainty epochs, but not their modulation in transi-635

tion states. In future studies we plan to conduct single-636

trial dynamic characterizations of behavioral and neu-637

ral data, which will help to quantify the neural pattern638

modulations associated specific aspects of wayfinding639

activities and their transitions.640

These effects should be studied further in regards to641

design elements to guide wayfinding cues in the built642

environment and VR spaces. Cross- participant differ-643

ences and optimized machine learning models that take644

into account different wayfinding strategies (e.g. allo-645

centric vs. egocentric oriented participants) [26] may646

provide more information about the EEG features that647

are linked to wayfinding certainty and uncertainty states648

and help to ensure that architectural designs and cues649

are useful for the entire human population.650

Recent study [86] has shown the potential of “aug-651

mented reality” (virtual information overlayed onto real652

spaces) as a tool to improve wayfinding performance653

and decrease cognitive loads during wayfinding tasks.654

Findings from neurological studies on wayfinding un-655

certainty and responses to environmental cues may as-656

sist in the development of such tools, leading to a more657

context-aware and user-aware intelligent wayfinding aid658

system.659

5. Conclusion660

This study took a machine-learning classification ap-661

proach to gain a better understanding of neurological662

features associated with periods of uncertainty during663

navigation. This study used a VR hospital environ-664

ment, and participants were asked to complete wayfind-665

ing tasks of varying difficulty. Two observers indepen-666

dently annotated human mental uncertainty state on a667

scale from 1 (low) to 5 (high). We implemented random668

forest classifiers to predict researcher-identified uncer-669

tainty states from the EEG common spatial patterns670

across various frequency bands and an AUC score of671

0.70. We also observed an increase in alpha power in672

fronto-parietal regions with a corresponding suppres-673

sion of frontal theta power in high-uncertainty condi-674

tions, and the opposite patterns in the low-uncertainty675

condition. Our results indicate that the frontal theta and676

occipital alpha power of EEG can potentially be used as677

a metric to quantify uncertainty states during wayfind-678

ing.679
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information-seeking actions, but what information?, Cognitive744

Research: Principles and Implications 5 (1) (2020) 1–17.745
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Appendix A. Description of Wayfinding Task1012

Description of the wayfinding tasks are included in1013

the Table 2, and examples of the virtual stimuli included1014

in the Figure A.7.1015

Appendix B. Coding Wayfinding Uncertainty1016

We screened the recorded first-person perspective1017

videos for all participants. Each recorded video was1018

divided into 5-second clips, leading to a total of 12701019

video segments. Wayfinding uncertainty scores were1020

assigned to each 5-second clip using the following pro-1021

cedure.1022

First, 254 video clips were randomly selected, and1023

two research assistants were asked to rate the navi-1024

gational uncertainty of the participant during each 5-1025

second clip, on a scale from 1 (low uncertainty) to 51026

(high uncertainty), based on their own individual inter-1027

pretations of the videos. The Cohen’s kappa inter-rater1028

reliability score for these ratings was 0.48.1029

After this initial pilot rating, a group meeting was1030

held to review points of consistency and divergence in1031

the research assistants’ ratings. In this discussion we1032

identified behavioral indicators to help the raters reduce1033

their points of disagreement. Those behavioral indi-1034

cators were: (1) decisive movement, (2) exploratory1035

movement, (3) turning around, (4) swinging head, (5)1036

made decision, (7) intention to move, and (8) other ac-1037

tions. The raters were asked to determine which of these1038

indicators was present in each video segment.1039

In “decisive movement,” the participant moved with-1040

out hesitation and in a firm rhythm. In contrast, “ex-1041

ploratory movement” referred to segments in which the1042

participant was moving but paused frequently to eval-1043

uate signs or environmental cues to guide their naviga-1044

tion. Participants were “turning around” during a seg-1045

ment if they rotated in only one direction, from left1046

to right for example. They were regarded as “swing-1047

ing head” if they turned their heads in both directions,1048

which implied they were hesitating. If they moved af-1049

ter “turning around” or “swinging head,” they were re-1050

garded as having “made [a] decision.” If they began to1051

enter motion instructions in the controller during the1052

video segment, then they showed “intention to move.”1053

If the participants’ behavior during the clip was not1054

relevant to wayfinding activities—for example if they1055

were standing in an elevator or encountering technical1056

issues—then the video clip would be identified as “other1057

actions.”1058

The manner in which the raters were instructed to1059

evaluate the videos is shown in Figure 9. An uncertainty1060
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Figure A.7: Examples (screenshots) of the VR hospital environment.

score of 0 was given if the clip showed only “other ac-1061

tions”; these clips were excluded from the data analy-1062

sis. An uncertainty score of 1 was given to videos when1063

participants were moving decisively most of the time.1064

A score of 2 was given if the participant was conduct-1065

ing exploratory movement. If the participant made a1066

decision after turning around the video would be given1067

a score of 3. If the participant turned around without1068

making a decision, or if they swung their head and then1069

initiated a movement, the video would be given a score1070

of 4. Finally, if the participant swung their head but1071

showed no intention to move, the clip was given an un-1072

certainty rating of 5.1073

Finally, all 1270 video clips were reviewed by the two1074

annotators. The 5-level uncertainty measurement refers1075

to the raw ratings from annotators. We further calcu-1076

lated the 2-level uncertainty scores by simple threshold-1077

ing (Table B.1), which is used for binary classification.1078

The results of these final ratings produced a 0.53 kappa1079

score for 5-level uncertainty, and 0.88 kappa score for1080

2-level uncertainty (Table 1).1081

Table B.1: Cohen’s Kappa for the behavioral uncertainty ratings.

5-level
uncertainty

2-level
uncertainty∗

Other
actions

Cohen’s
Kappa

0.53 0.88 0.75

∗ uncertainty score = 1, uncertainty score ≥ 4.
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Figure B.8: Decision pipeline of uncertainty ratings.
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Table B.2: Wayfinding tasks.

Task Origin Destination Description

Task 1 Info desk Elevator The shortest path included walking through the main entrance hallway
with furniture on the left side, then seeing the sign for “Ambulatory
Care” with directions to turn right at the first intersection, and then see-
ing a T-shape intersection with the sign “Medical Imaging” in front.
After turning right participants could see the sign of “Main Elevator” at
the end of the hallway.

Task 2 Elevator Nurse station
(Unit A)

The shortest path included pressing a button to go up, leaving the ele-
vator and seeing a white wall with the icon “Floor 5,” seeing T-shape
intersections on both the right and left, seeing a sign with information
about Unit A, and going through the corresponding corridor to reach the
destination at a center of an H-shape intersection with a sign “Unit A –
Care Station.”

Task 3 Nurse station
(Unit A)

Patient room
#5A-511

The shortest path included reading the sign listing patient room num-
bers, taking the appropriate corridor, and finding the appropriate room
in the corridor.

Task 4 Patient room
#5A-511

Elevator Same environment as described in Tasks 2 and 3.

Task 5 Elevator Hospital main
entrance

Same environment as described in Tasks 2.

Task 6 Hospital main
entrance

Ambulatory
care reception
desk

Same environment as described in Tasks 1 and 2. After seeing the sign
“Ambulatory Care” individuals will turn right and see another hallway
with the sign “Ambulatory Care Reception Desk” in front of them.

Task 7 Ambulatory
care reception
desk

Treatment
chair #4
(Section C)

The shortest path included seeing three corridors with the large icons
“A,” “B,” and “C” on the walls, then going through the appropriate hall-
way past room number signs on both sides, passing an intersection with
information about Clinic C, then reaching the appropriate chair.

Task 8 Treatment
chair #4
(Section C)

Back to the
ambulatory
care reception
desk

Same environment as described in Task 7.

Task 9 Ambulatory
care reception
desk

Cafeteria
cashier

The shortest path included seeing the sign in the front corridor describ-
ing the direction to Medical Imaging, Cafeteria, and Ambulatory Care,
then turning left, reaching a T-intersection, and seeing the cafeteria lo-
cated to the right.

Task 10 Cafeteria
cashier

Hospital main
entrance

The shortest path back to the hospital entrance included reaching the
main hallway then following a short corridor to the information desk,
then turning to the right.
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