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Abstract: Despite the importance of microbial dysbiosis in human disease, the phenomenon remains poorly 
understood. We provide the first comprehensive and predictive model of dysbiosis at ecosystem-scale, leveraging 
our new machine learning method for efficiently inferring compact and interpretable dynamical systems models. 
Coupling this approach with the most densely temporally sampled interventional study of the microbiome to date, 
using microbiota from healthy and dysbiotic human donors that we transplanted into mice subjected to antibiotic 
and dietary interventions, we demonstrate superior predictive performance of our method over state-of-the-art 
techniques. Moreover, we demonstrate that our approach uncovers intrinsic dynamical properties of dysbiosis 
driven by destabilizing competitive cycles, in contrast to stabilizing interaction chains in the healthy microbiome, 
which have implications for restoration of the microbiome to treat disease. 

 
Introduction  
 Dysbiosis of the gut microbiome, or disruption of the normal 
composition of the microbes present, has been associated with a 
variety of human diseases, including infectious1, 
neurological/psychiatric2,3, autoimmune4, metabolic5 and 
malignancies6. Cross-sectional studies have typically been employed 
to find such associations, and have produced large compendia of 
compositions of microbial taxa in dysbiotic stool samples. However, 
a major gap remains between cataloging static snapshots of 
dysbiotic microbiomes and understanding what properties of the 
complex gut microbial ecosystem drive dysbiosis. Microbes are 
inherently dynamic7, changing over time due to both internal 
interactions as well as responses to external perturbations. The 
dynamics of a microbiome reveals important information about how 
microbes interact and how the ecosystem as a whole behaves;  for 
instance, unstable responses to perturbations can be indicative of 
an inability to maintain homeostatic function1. Mathematical 
models of dynamical systems have a long history in ecology and 
biomedicine, and have led to many insights, including for microbial 
ecosystems8. Dynamical systems models are particularly powerful 
because, once inferred from data, they can be directly interrogated 
using mathematical tools or computational simulations to study 
aspects including: stability and other ecological properties9-12, 
topological properties of the interaction network, including motifs13-
15, and in silico forecasts of the system, such as “knock-outs” of taxa 
or responses to perturbations not yet experimentally studied.  
However, to successfully apply dynamical systems analyses to the 
gut microbiome two elements are needed: (1) computational 
models and inference algorithms capable of handling the scale and 
complexity of microbiome data, and (2) sufficiently rich data, in 
order to provide the information necessary to infer parameters of 
the computational models.  

Scale and complexity of microbiomes, as well as limitations of 
measurement modalities, present modeling and analytical 
challenges. The gut microbiome contains hundreds of ecologically 

diverse yet interacting microbes. Indeed, there is increasing 
recognition that this interaction structure is critically important, 
driving factors such as whether so-called pathobiont bacteria will 
cause disease or remain harmless in the host16. A well-established 
modeling framework, which we and others have employed, uses the 
generalized Lotka-Volterra (gLV) equations17-20 to model pair-wise 
interactions among microbial taxa. Although gLV models have been 
shown empirically to predict microbial dynamics with good accuracy 
for small ecosystems19, these models present significant challenges 
for scalability and interpretability, because the number of modeled 
interactions increases quadratically with the number of taxa in the 
system (e.g., for a system of 300 taxa, 89,700 interactions must be 
modeled). All these model parameters must ultimately be inferred 
from microbiome data, which itself has fundamental limitations. The 
frequency and regularity of sampling is dependent on gut transit 
time and practical logistics, particularly for human studies. Further, 
microbiome data relies on sequencing and other high-throughput 
methods, which have complicated noise characteristics. 
Measurement noise presents particular challenges when we seek to 
characterize low abundance components of the microbiome, which 
can serve critical ecological roles 21,22, but are orders of magnitude 
lower than the predominant taxa in the gut. 

Sufficiently rich experimental data is critical for inferring 
dynamical systems models of the gut microbiome. Perturbations are 
essential to analyze how components of dynamical systems interact 
and to assess the stability of systems; data at equilibrium in a single 
or small number of conditions cannot be used to infer these 
properties of the system. Culture experiments provide one means to 
introduce controlled perturbations. Traditional approaches studying 
single microbial isolates in solid or liquid culture systems have 
yielded deep insights into bacterial genetics and functions, but are 
not well-suited for studying complex ecosystems. More recent 
higher-throughput in vitro approaches include multi-stage 
fermenters23, microfluidic devices24 and microbial-host cell co-
culture systems25. Even with these advances, culturing native 
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microbiomes in vitro remains very challenging, especially for longer 
durations of time, due to the extremely varied chemical, physical 
and nutritional requirements of the diverse micro-organisms 
present. Gnotobiotic mice, in which bacteria-free mice are 
inoculated with micro-organisms, are a compelling experimental 
system that has been shown to sustain the vast majority of bacterial 
species found in native human microbiomes26 and recapitulate 
important aspects of human physiology and pathology19,27,28. From 
the standpoint of dynamical systems inference, gnotobiotic models 
allow for targeted strong perturbations, such as dietary changes or 
antibiotics. Gnotobiotic models also allow the experimenter to limit 
unwanted external perturbations or variability, including the genetic 
background of the host, and thus isolate properties that are intrinsic 
to the microbiome, rather than due to uncontrolled interactions 
with the environment or host genetics. 

To analyze microbial dysbiosis at ecosystem-scale, and address 
the challenges described above, we developed a new computational 
method, MDSINE2, and generated (to our knowledge) the densest 
interventional time-series study to date. The remainder of this paper 
is structured as follows. First, we demonstrated MDSINE2’s 
underlying computational innovations that enable scalable, 
interpretable, and accurate inference from microbiome time-series 
data. Second, we characterized microbiome dynamics in our 
experiments, of colonization of two cohorts of gnotobiotic mice with 
human microbiota from a healthy or dysbiotic donor (an average of 
77 fecal samples/mouse over a 65-day period). Third, we compared 
performance of MDSINE2 against other state-of-the-art 
computational methods in forecasting dynamics on our dataset, and 
demonstrated superior performance of our method. Fourth and 

finally, we demonstrated that our combined computational and -
experimental approach provides the first comprehensive and 
predictive model of dysbiosis at ecosystem-scale, revealing intrinsic 
instability of the dysbiotic microbiome driven by chains of ecological 
interactions and keystone taxa automatically identified by our 
method. 
 
Results 
MDSINE2 is a computational framework for inferring dynamical 
systems models of microbiomes at scale 

 To infer accurate and interpretable dynamical systems 
models from microbiome time-series data, we developed MDSINE2 
(Figure 1), a fully Bayesian machine learning model and associated 
software package that performs inference and provides tools for 
analysis and visualization of results. The inputs to the MDSINE2 
software are time-series measurements of relative bacterial 
abundances and total bacterial concentrations, derived from 16S 
rRNA amplicon sequencing and qPCR with universal 16S rRNA 
primers, respectively. The software then provides a variety of tools 
for interrogating the inferred dynamical systems model, including 
forecasting trajectories of taxa (including under perturbations or 
with removal of taxa from the system), analyzing topological 
properties of the interaction network, quantitating the 
keystoneness of individual taxa or modules, and formally assessing 
the stability of the microbial ecosystem.  

Our computational model introduces several innovations. First, 
MDSINE2 extends the generalized Lotka-Volterra (gLV) model to 
include automatically learned interaction modules, which we define 
as groups of taxa that share common interaction structure (i.e., are 

Figure 1. Schematic of the MDSINE2 computational method for inferring interpretable dynamical systems models of microbiomes at 
scale. (A) Input data to the method are measurements of total bacterial concentration obtained via qPCR, and measurements of taxa 
abundances obtained via 16S rRNA amplicon sequencing. These measurements are obtained from studies in which the microbiome 
undergoes perturbations, designed to provide sufficiently rich information to infer dynamical systems models. (B) MDSINE2 infers 
interpretable dynamical systems models by automatically learning interaction modules, or groups of taxa that share the same interactions 
with other modules and perturbations. The method is fully Bayesian and propagates error throughout the model, providing estimates of 
uncertainty for all variables including module memberships (co-cluster probabilities). The software provides a variety of tools for analysis 
and visualization of the inferred dynamical system, including: (C) microbial interaction network structure and stability, (D) keystoneness 
(quantitative impact on the ecosystem when modules are removed), and (E) module-level analyses of taxonomic composition and 
phylogeny.  
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promoted or inhibited by the same taxa outside the module) and 
have a common response to external perturbations (e.g., 
antibiotics). Interaction modules are motivated by both empirical 
observations that groups of microbial taxa covary29,30 and 
theoretical ecology concepts such as guilds, or groups of taxa that 
utilize resources in a similar way31. Modular structure reduces the 
complexity of the system to be analyzed, which has the potential to 
increase human interpretability32,33. Further, this reduction in 
complexity enables scalability of the standard gLV model: the 
number of parameters in the model is reduced from order quadratic 
in the number of taxa (e.g., all potential pairwise interactions 
between taxa) to order quadratic in the number of modules (which 
scales logarithmically with the number of taxa). MDSINE2 
additionally extends the gLV model to include stochastic effects and 
measurement noise error models, enabling full propagation of 
uncertainty throughout the model and associated confidence 
measures (e.g., Bayes Factors). We developed and implemented an 
efficient custom Markov Chain Monte Carlo (MCMC) sampling 
algorithm to approximate the posterior probability of the model. 
See Methods and Supplemental Information for complete details on 
the model and inference algorithm.   
 
Cohorts of gnotobiotic mice “humanized” with fecal transplants 
from healthy or dysbiotic donors exhibit differential diversity 
and varied responses to perturbations 

To investigate intrinsic differences between dynamics of 
healthy and dysbiotic microbiomes, we performed experiments with 
two cohorts of gnotobiotic mice, each cohort gavaged with fecal 
microbiomes derived from either a healthy donor (H-cohort, n=4) or 
a dysbiotic donor with ulcerative colitis (D-cohort, n=5) (Figure 2A). 
After an equilibration period of three weeks, mice were subjected to 
a sequence of three perturbations (high fat diet (HFD), vancomycin, 
and gentamicin) designed to provide rich data for dynamical systems 
inference, by differentially perturbating components of the 

microbiome (e.g., high fat/simple carbohydrate vs. complex 
carbohydrate utilizers and bacteria susceptible or resistant to 
different antibiotics). Mice were separately housed and fecal 
samples were collected over the 65-day duration of the experiment, 
with an average of 77 samples per mouse. Samples were 
interrogated for relative abundance via 16S rRNA amplicon 
sequencing and total bacterial concentration via qPCR using a 
universal 16S rDNA primer. The resulting 59 million sequencing 
reads were bioinformatically processed using DADA234 resulting in 
1473 Amplicon Sequence Variants (ASVs) that were then further 
agglomerated into 1224 Operational Taxonomic Units (OTUs) at a 
99% sequence similarity threshold. We performed this additional 
agglomerative step because we observed DADA2-induced artifacts 
of ASVs dropping in/out throughout time-series (see Sup 
Information §4 for further details). 
 Microbiomes between the two cohorts were significantly 
different both in terms of ecological diversity (Sup Fig 1) as well as 
in taxonomic composition (Fig 2 and Sup Fig 2). Over the course of 
the study, the H-cohort had significantly higher alpha diversity than 
the D-cohort (p<0.05 for 56 of the 77 time points, Wilcoxon rank-
sum, Sup Fig 1A and Sup Table 1).  Beta diversity was significantly 
different between the two cohorts over the entirety of the time 
series (p=0.001, PERMANOVA, Sup Fig 1B,C). Fold-change analyses 
showed that taxonomic composition of the microbiomes of mice 
from the two cohorts also differed significantly. Considering 
taxonomic composition at steady-state, at the phylum level (Sup Fig 
2), abundances of Bacteroidetes and Verrucomicrobia were 
significantly higher in the H-cohort (see Sup Table 2 for p-values). At 
the family level (Fig 2E, Sup Table 2), seventeen taxonomic groups 
were significantly different between the two cohorts including 
higher abundances of Bacteroidaceae, Porphyromonadaceae, 
Sutterellaceae, Lachnospiraceae, Veillonellaceae, and 
Akkermansiaceae and lower abundances of Odoribacteraceae, 
Prevotellaceae, Desulfovibrionaceae in the H-cohort relative to the 
D-cohort. 
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Figure 2: High-temporal resolution gnotobiotic mice colonization and perturbation studies using healthy and dysbiotic human donor 
microbiomes show persistent but differential colonization. (A) Experimental design for studies (n = 4 mice in healthy donor cohort; n = 
5 mice in dysbiotic donor cohort) with 77 serial fecal samples/mouse. (B) Average total bacterial concentrations in serial fecal samples 
from mouse cohort receiving healthy donor microbiome. (F) Relative abundance of microbes in starting inoculum from the healthy 
donor. (G) Relative abundances of microbes in serial fecal samples from mouse cohort receiving healthy donor microbiome, averaged 
over the biological replicates. (C), (H), (I) corresponding data from mouse cohort receiving dysbiotic donor microbiome. (D) Legend for 
figures (F), (G), (H), and (I).  (E) Abundances of seventeen taxa at the family level differed significantly at steady state between gnotobiotic 
mice that received healthy versus dysbiotic donor microbiomes (see Sup Table 2 for p-values).  
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Fold-change analyses showed that responses to the 
perturbations were generally consistent across the two cohorts at 
the phylum level (Sup Fig 3A, Sup Table 2), with decreases of 
Bacteroidetes and increases of Firmicutes and Verrucomicrobia on 
the high fat diet; decreases of Firmicutes and increases of 
Proteobacteria on vancomycin; and increases in Firmicutes and 
decreases in Verrucomicrobia on gentamicin. At the family level (Sup 
Fig 3B, Sup Table 2), fold-change analyses also found common 
responses between the cohorts for some bacterial groups, such as 
decreases in Bacteroidaceae, Prevotellaceae, Sutterellaceae and 
increases in Peptostreptococcaceae, Desulfovibrionaceae, 
Enterobacteriaceae Erysipelotrichaceae, Streptococcaceae on the 
high fat diet; decreases in Lachnospiraceae, Ruminococcaceae and 
increases in Erysipelotrichaceae on vancomycin; and decreases in 
Akkermansiaceae on gentamicin. However, the underlying 
differences in taxonomic composition between the two cohorts and 
the inability of fold-change analyses to disentangle direct and 
indirect effects of perturbations (i.e., whether the perturbation itself 
caused the change or it arose indirectly through chains of microbe-
microbe interactions) limits the utility of such analyses for 
comparing dynamics of ecosystems. MDSINE2 addresses these 
challenges, as described below, to provide insights into common and 
differential dynamics between the healthy and dysbiotic donor 
microbiomes. 
 
MDSINE2 outperforms state-of-the-art methods in forecasting 
microbial dynamics 

We evaluated MDSINE2’s ability to forecast held-out 
microbiome trajectories, an established performance measure19, 
against state-of-the-art methods. Previous comparisons have been 
performed on gnotobiotic datasets with <20 taxa; our dataset is the 
largest dense time-series with perturbations, to our knowledge, and 
thus represents a more challenging and realistic benchmark than 
previously investigated. Consistent with prior work35, to ensure 
sufficient time-series information for dynamical systems inference, 
taxa that were not present at ≥0.01% relative abundance for seven 
consecutive time-points in at least two mice in each cohort were 
filtered out. For the H- and D-cohort this resulted in 94 and 113 OTUs 
respectively, with 60 of those OTUs in common (Sup Figure 4). 

We evaluated popular comparator methods that use total 
bacterial concentration measurements (gLV with ridge regression-

based inference [gLV Ridge]17 and gLV with elastic net regularization 
[gLV Elastic]) and methods that use only relative abundance 
compositional information (compositional Lotka Volterra [cLV]  20, 
linear dynamics trained on relative abundances [L-RA], and gLV 
Elastic trained on relative abundances [gLV-RA]). For forecasting 
comparisons, we employed one-subject-hold-out training and 
testing methodology, e.g., holding out all data from one mouse, 
training on the remaining data, and forecasting all taxa trajectories 
for the entire 65-day time-series for the held-out mouse given only 
an initial data point. We evaluated performance using root-mean-
squared error over the time-series, e.g., a measure of the difference 
between the predicted and ground-truth measurement.  
 MDSINE2 consistently outperformed all the comparator 
methods (Figure 3). To gain further insight into this result, we 
analyzed predictive error for each OTU, sorted by its abundance. All 
the methods performed well on the top 10% of highly abundant 
OTUs (>109 CFU/g) when trained on absolute abundances. But, 
interestingly, MDSINE2 significantly outperformed the other 
methods on ~80% of the other taxa, which are at lower abundances 
(Sup Fig 5, p-values in Sup Table 3). MDSINE2’s ability to better 
model a much broader and more diverse set of taxa than the other 
methods is relevant, because lower abundance taxa have been 
shown to play important roles in the gut, e.g., Clostridium scindens36 
or Paraclostridium bifermentans37 providing resistance to 
Clostridioides difficile infection.  Of note, there was no significant 
difference in performance between MDSINE2 and the comparator 
methods for the lowest abundance OTUs (bottom ~10% in 
abundance). This result could be due to a variety of factors, including 
inconsistent presence of these OTUs in the data (e.g., falling below 
the limits of detection for some time-points) and insufficient low 
abundance data for calibrating MDSINE2’s error model. 
 
MDSINE2 automatically organizes OTUs into interaction 
modules that demonstrate coherence across microbiomes 

To gain insights into the overall structures of the healthy and 
dysbiotic microbiome dynamical systems models inferred by 
MDSINE2, we analyzed interaction modules (Figure 4; 16 modules 
for the H-cohort, and 11 for the D-cohort), which provide an 
interpretable organization of the OTUs into groups with common 
interactions and responses to perturbations. 
 

Figure 3: MDSINE2 outperforms state-of-the-art methods in predicting relative and absolute microbial abundances. Performance of 
methods was evaluated using Root Mean Square Error (RMSE) on forecasted trajectories with hold-one-subject-out cross-validation. 
MDSINE2, generalized Lotka-Volterra (gLV) with ridge (gLV-ridge) or elastic net regularization (gLV-elastic) forecast absolute abundances; the 
compositional gLV (cLV), linear dynamics relative abundance (LRA) and gLV trained on relative abundance (gLV-RA) forecast relative 
abundances. For comparisons in relative abundance space, forecasts of MDSINE2, gLV-ridge/elastic were re-normalized.  (A) and (C) 
Comparison of RMSE per OTU forecast for the healthy donor microbiome for absolute and relative abundance, respectively. (B), (D) 
Corresponding results for the dysbiotic microbiome. (****: p<0.0001, ***: p<0.001); one-tailed Wilcoxon signed rank test followed by 
Benjamini-Hochberg correction for multiple comparisons. 
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  Phascolarctobacterium faecium OTU_14- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Dialister OTU_106- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 ***** Firmicutes OTU_88- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 *** Clostridiales OTU_71- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Anaerotignum OTU_120- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_99- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Cuneatibacter OTU_134- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Frisingicoccus OTU_89- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_116- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Clostridium_XlVa OTU_54- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Hungatella OTU_96- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Merdimonas OTU_42- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_112- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Roseburia intestinalis/hominis OTU_46- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_50- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Lachnospira OTU_154- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 ** Lachnospiraceae OTU_63- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Enterocloster OTU_68- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Enterocloster OTU_16- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_66- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Blautia OTU_73- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Blautia faecis OTU_57- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Blautia caecimuris OTU_39- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Blautia OTU_95- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Blautia obeum OTU_82- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Blautia OTU_25- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Blautia hydrogenotrophica OTU_129- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 * Blautia OTU_153- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_67- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Blautia OTU_119- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Blautia OTU_104- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Blautia massiliensis OTU_40- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Blautia OTU_43- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Blautia OTU_137- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Blautia OTU_103- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Murimonas intestini OTU_17- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Acetitomaculum OTU_144- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Anaerostipes caccae OTU_84- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_150- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_111- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_146- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Mediterraneibacter OTU_23- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Faecalicatena OTU_76- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_109- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Ruminococcus2 OTU_34- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Sellimonas intestinalis OTU_53- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 * Mediterraneibacter OTU_118- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Clostridium_XlVa scindens OTU_79- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 ** Lachnospiraceae OTU_160- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Fusicatenibacter saccharivorans OTU_69- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Eisenbergiella massiliensis OTU_35- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 ** Lachnospiraceae OTU_115- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Clostridium_XlVa OTU_38- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_94- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_44- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Lachnospiraceae OTU_90- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 ** Lachnospiraceae OTU_33- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Hungatella OTU_141- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Hungatella hathewayi/effluvii OTU_21- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Ihubacter OTU_136- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Erysipelatoclostridium ramosum OTU_62- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Longibaculum OTU_58- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Coprobacillus cateniformis OTU_55- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 ** Erysipelotrichaceae OTU_27- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Holdemanella OTU_122- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Holdemania filiformis OTU_30- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Holdemania massiliensis OTU_61- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 **** Clostridia OTU_201- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Christensenella massiliensis OTU_195- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Christensenella OTU_91- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Flintibacter OTU_149- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Flintibacter OTU_105- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Intestinibacillus OTU_165- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Agathobaculum OTU_92- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Flintibacter OTU_65- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Lawsonibacter OTU_155- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Intestinimonas massiliensis OTU_181- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Lawsonibacter OTU_78- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Intestinimonas OTU_158- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Dysosmobacter OTU_45- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Dysosmobacter OTU_143- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 * Oscillibacter OTU_182- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Pseudoflavonifractor OTU_168- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Flavonifractor plautii OTU_47- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Phocea massiliensis OTU_108- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Ruminococcaceae OTU_113- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Ruminococcus bromii OTU_101- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Caproiciproducens OTU_161- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Caproiciproducens OTU_121- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Ruminococcaceae OTU_110- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Ruminococcus bicirculans OTU_80- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Ruminococcus OTU_87- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Clostridium_IV OTU_56- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Harryflintia OTU_97- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Negativibacillus OTU_64- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Fournierella massiliensis OTU_75- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Faecalibacterium OTU_70- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Faecalibacterium prausnitzii/cf. OTU_32- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Ruthenibacterium OTU_85- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Ruthenibacterium OTU_37- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Gemmiger OTU_190- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Gemmiger OTU_114- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 * Anaerofilum OTU_162- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Monoglobus pectinilyticus OTU_125- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 * Monoglobus OTU_100- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 *** Clostridiales OTU_151- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 * Lactococcus OTU_131- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Enterococcus OTU_133- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 *** Clostridiales OTU_152- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

E Gentamicin
Vancomycin

High Fat Diet
HealthyA DysbioticB

Gram + Bacteria

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
10 H
11

H
12

H
13

H
14

H
15

H
16

Module

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10 D
11

Module

 ***** Proteobacteria OTU_48- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Paraprevotella OTU_22- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Paraprevotella OTU_124- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Bacteroides salyersiae OTU_8- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Bacteroides nordii OTU_15- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Bacteroides caccae OTU_7- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Bacteroides fragilis/ovatus OTU_2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Bacteroides dorei/fragilis OTU_6- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Bacteroides finegoldii OTU_36- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Bacteroides OTU_9- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Bacteroides intestinalis OTU_74- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Bacteroides OTU_4- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Bacteroides uniformis OTU_10- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Bacteroides stercoris/dorei OTU_29- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Phocaeicola OTU_1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Phocaeicola OTU_24- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Parabacteroides merdae OTU_18- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Parabacteroides OTU_183- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Parabacteroides OTU_86- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Parabacteroides distasonis OTU_12- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Parabacteroides distasonis OTU_31- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Parabacteroides goldsteinii OTU_13- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Coprobacter fastidiosus OTU_51- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Barnesiella OTU_41- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Odoribacter splanchnicus OTU_126- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Butyricimonas OTU_130- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Butyricimonas paravirosa/faecihominis OTU_72- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Alistipes indistinctus OTU_147- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Alistipes finegoldii/onderdonkii OTU_52- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Alistipes OTU_28- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Alistipes finegoldii OTU_59- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Sutterella wadsworthensis OTU_19- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Parasutterella excrementihominis OTU_5- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Oxalobacter formigenes OTU_140- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 * Escherichia/Shigella OTU_11- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  Bilophila wadsworthia OTU_20- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ** Desulfovibrionaceae OTU_139- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  Akkermansia muciniphila OTU_3- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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Figure 4: MDSINE2 infers modular representations of complex microbiome dynamics. Our method automatically learns modules of OTUs 
based on similarity of their dynamic interactions and responses to perturbations. Results are split into Gram-positive and Gram-negative 
OTUs for display purposes. (A) and (B) Perturbation effects on Gram-positive OTUs in healthy and dysbiotic microbiomes, respectively. (C) 
and (D) Corresponding perturbation effects on Gram-negative OTUs. (E) Module memberships for Gram-positive OTUs. Intensity of color 
in the grid indicates abundance post-colonization and prior to perturbations (average over Days 14 to Day 21). (F) Corresponding module 
memberships for Gram-negative OTUs. (G) and (H) Inferred module interaction networks for health and dysbiotic microbiomes, 
respectively. Thickness of edges denotes the strength of evidence; only edges with Bayes Factors > 10 are shown. Sizes of nodes denote 
the number of OTUs in the module. 
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Taxonomy provides one means of interpreting the 

microbiological context of modules. We found that multiple 
modules in both the healthy and dysbiotic donor microbes were 
significantly enriched at the family, order, class, and phylum levels, 
including expected segregation into the major Gram positive and 
negative phyla, Bacteroidetes and Firmicutes (Supp Fig 6). As noted 
above, fold-change analyses cannot distinguish direct from indirect 
effects. In contrast, MDSINE2, through its underlying dynamical 
systems model and Bayesian framework, provides quantitative 
estimates of the evidence for direct effects via Bayes Factors (BF)38. 
Thus, we investigated whether the direct effects of perturbations on 
taxa corresponded to known microbiology established in previous 
studies. The perturbation that had the largest impact was 
vancomycin with decisive evidence (BF>100) for direct effect on 
seven modules in the H-cohort and also seven modules in the D-
cohort, with negative signs (repressive effects) for all the modules. 
In 86% of the affected modules in the H-cohort and 100% in the D-
cohort, the majority of the taxa were Firmicutes, corresponding to 
expected vancomycin susceptibility of members of this phylum. 
MDSINE2 identified the high-fat diet as the next strongest 
perturbation, with decisive evidence for direct effects on three 
modules within each cohort (positive effect in all cases). In 66% of 
affected modules in the H-cohort and 100% in the D-cohort, the 
majority of taxa were again Firmicutes, consistent with prior studies 
that have shown greater capacity for members of this phylum to 
grow on fat sources39. No modules showed decisive evidence for the 
gentamicin perturbation; this may be because gentamicin’s primary 
activity is against aerobic, Gram-negative bacteria (e.g., 
Enterobacteriaceae), which were small components of the gut 
microbiomes studied. Although these results indicate that many 
modules captured taxonomic relationships, taxonomy does not 
reflect the detailed evolutionary signals encapsulated in phylogenic 
analyses, and is thus a fairly blunt instrument for interpreting 
microbiological context. 

As another means to assess the quality and utility of modules 
as an organizing principle for gut microbiome dynamics, we 
investigated their coherence across different microbiomes in terms 

of phylogeny, i.e., whether taxa in a module in one microbiome tend 
to be in a module in another microbiome. However, direct 
comparison of OTU membership in interaction modules across 
microbiomes is challenging, because of limited overlap in OTUs (in 
our dataset, 60 OTUs are common, out of 94 in the H- and 113 in the 
D-cohort). To address this challenge, we used an approach we term 
Phylogenetic Neighborhood Analysis (Figure 5). Briefly, the method 
merges OTUs into successively phylogenetically coarser sets and 
then evaluates module coherence of the resulting sets between 
microbiomes. As expected, module coherence was not significantly 
different from chance at high phylogenetic similarity (corresponding 
to low overlap of species present in both microbiomes) or at low 
phylogenetic similarity (corresponding to highly heterogeneous 
groups of taxa that would not be expected to have similar behavior). 
However, module coherence between the H- and D-cohort 
microbiomes was significant between 86% and 95% sequence 
identity (approximately corresponding to genus to family level in 
terms of taxonomy). Coherence at this level of sequence identity, 
where we may expect to see similar phenotypes and niche behaviors 
of microbes, suggests that the modules capture relevant 
microbiological relationships.  
 
The dysbiotic microbiome exhibits intrinsic instability driven by 
competitive cycles 

To evaluate intrinsic stability behavior relevant to microbial 
ecosystems, we performed in silico “knock-down” experiments 
designed to mimic strong antibiotic treatments, testing systems’ 
robustness to perturbations, or ability to return to steady-state after 
disturbances. Briefly, random sets of bacteria (ranging from 10% to 
70% of total taxa) were repeatedly sampled and a negative 
perturbation was applied to growth rates of the bacteria. We then 
compared post-perturbation steady-states to the steady-states of 
the unperturbed ecosystems (Fig 6A), and also evaluated the 
ecological diversities of perturbed ecosystems (Figure 6B). The D-
cohort demonstrated a significantly larger deviation of the post-
perturbation steady state when compared to the H-cohort, (p-value 
below machine precision, Mann-Whitney U, Sup Table 5). Further, 
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Figure 5: Interaction module membership demonstrates significant consistency across healthy and dysbiotic microbiomes. Phylogenetic 
Neighborhood Analysis (PNA) allows comparison between complex microbiomes that do not overlap extensively at the OTU level, by 
comparing successively phylogenetically coarsened representations of the ecosystems. (A) Illustration of the PNA algorithm. (B) 
Interaction module membership was significantly correlated between the healthy and dysbiotic microbiomes at ~97% (approximately 
species taxonomic level) down to ~87% (approximately family taxonomic level) sequence identity, as compared to a null distribution 
obtained by randomly permuting OTU labels. As expected, at very coarse levels, modular structure is lost (eventually one module is 
formed) in both the observed and null distributions. 
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credible intervals of deviations were larger for the D-cohort, 
demonstrating greater variability in post-perturbation steady states, 
which is an additional hallmark of instability. Ecological diversity 
analyses similarly showed strikingly different behaviors of the H- and 
D-cohorts: even when large fractions of taxa were perturbed, the H-
cohort microbiome tended to return to pre-perturbation diversity 
levels with high probability, whereas the D-cohort microbiome 
exhibited increasing probability of dramatic collapses in diversity as 
more taxa were perturbed (Fig 6B). These results indicate an intrinsic 
inability of the dysbiotic microbiome to recover consistently from 
strong perturbations, such as could occur in the setting of antibiotic 
administration, infection, or other major insults to the ecosystem. 

We additionally evaluated the stability of the two ecosystems 
using mathematical criteria from dynamical systems theory. These 
criteria require that the eigenvalues of the matrix describing the 
pairwise interactions from the gLV dynamics equations have 
negative real parts.40 Because MDSINE2 estimates the full posterior 
probability distribution of inferred models, we can compute a 
readily interpretable measure of stability for stochastic microbial 
ecosystem dynamics: the probability of the system having all 
negative eigenvalues (see Sup Information §5). For this measure, we 
found that the H-cohort microbiome has a 31% higher probability of 
being stable than the D-cohort microbiome (Fig 6C), providing 
additional evidence for intrinsic instability of the dysbiotic 
microbiome. 
 We next sought to identify features of the ecological network 
inferred by MDSINE2 that could explain the differences in stability 

seen between the H- and D-cohort microbiomes. The overall edge 
density differs between the two networks (22% for H- and 40% for 
D-cohort) as well as the ratios of positive to negative interactions 
(1:1 for H- and 1:2 for D-cohort). The higher edge density alone 
suggests that the D-cohort dynamical system is potentially less 
stable9,40, due to a higher probability of containing feedback cycles 
in the network. Stability and control theory have established that 
the feedback cycle is the core topological feature driving stability41. 
Pairwise interactions, the simplest form of feedback cycles, have 
particular interpretations in ecology, and their contributions to 
stability are well-characterized for linear and gLV dynamical 
systems10: mutualism (+/+) and competition (−/−) are destabilizing, 
and parasitism (+/−) is stabilizing (Sup Fig 7). For length three cycles 
and higher, more complex ecological interactions arise, and any sign 
combination is potentially destabilizing42. To investigate these 
topological features in the H- and D-cohort dynamical systems, we 
tested for the enrichment of length two and three cycles (Fig 6D). 
The most differentially abundant two-cycle motif was competition (-
/-), with significantly more such cycles present in the D-cohort than 
the H-cohort (p-value below machine precision, Mann-Whitney U). 
The most differentially abundant cycle of length three was also an 
all-competition cycle, again with significantly more of those cycles in 
the D-cohort than the H-cohort (p-value below machine precision, 
Mann-Whitney U). These findings suggest that competitive cycles 
drive the intrinsic instability observed in the dysbiotic microbiome 
dynamical system. 
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Figure 6: The dysbiotic microbiome exhibits instability as assessed by in silico simulations and formal analyses.  (A) The dysbiotic 
microbiome exhibits greater deviations from baseline and more variability in deviations, when subjected to strong in silico perturbations 
(i.e., analogous to antibiotic exposures). Fractions of OTUs were sampled repeatedly and negatively perturbed to simulate an effect 
analogous to an antibiotic disturbance to the ecosystem. (B) The ecological (alpha) diversity of the dysbiotic microbiome also shows post-
perturbation decreases and greater volatility, when the systems are subjected to the same perturbations as in (A).  The differences were 
significant for all fractions tested in both (A) and (B) (see Supp Table 5 for p-values). (C) Analytical assessment of stability demonstrated 
lower stability of the dysbiotic microbiome (extreme skewing of the dysbiotic system’s eigenvalues to right half of the complex plane with 
greater positive real parts). (D) Topological analysis revealed significantly more competitive cycles in the dysbiotic microbiome (see Supp 
Table 5 for p-values), which is also a hallmark of instability.  
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Keystoneness analysis reveals modules of bacteria with 
functional ecological roles that promote stability or instability 
in healthy or dysbiotic microbiomes 
 To evaluate quantitatively the relative importance of 
interaction modules in the ecosystem, we performed a module 
keystoneness analysis (Fig 7A,B). Modules with the highest positive 
or negative keystoneness values characterize groups of bacteria that 
are most critical to maintaining the structure of the ecosystems. 
Positive keystone modules (“promoters”) are those that when 
removed result in a reduction in the microbial abundances of the 
other community members; negative keystone modules 
(“suppressors”) are those that when removed result in increases of 
abundances of the other community members.  

For the H-cohort, the top positive and negative keystoneness 
modules are H9 and H16 (Figure 7C), respectively. These modules 
act as hubs (≥4 outgoing edges) in the network, with H9 promoting 
all the modules it interacts with, and H16 suppressing all the 
modules it interacts with, respectively, suggesting opposite 
ecological roles for H9 and H16. Interestingly H9 and H16 participate 
in a regulatory feedback loop as well, a topology that provides 
robustness to external disturbances. Interestingly, all the members 
of H9 (OTU6 Bacteroides fragilis/dorei, OTU92 Agathobaculum, 
OTU101 Ruminococcus bromii and OTU114 Gemmiger) have the 
capability to degrade starches. R. bromii has previously been 
identified as a keystone species for its ability to degrade resistant 
starches RS(3), with preference for large α(1-4)-linked 
oligosaccharides. OTU114 Gemmiger can metabolize resistant 
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Figure 7: Keystoneness analysis characterized the relative importance of each module for maintaining microbiome states and revealed 
chains of ecological interactions governing dynamics. (A) and (B) Keystoneness maps for healthy and dysbiotic donor microbiomes 
provide quantitative rankings of the effect of removing each module on the remainder of the ecosystem. (C) and (D) By tracing interactions 
from the top positive and negative keystoneness modules, chains of ecological interactions are highlighted. In the healthy donor 
microbiome, chains of positive ecological interactions were seen, with the head node (H9) consisting of taxa with strong starch 
degradation capabilities. In contrast, the dysbiotic donor microbiome is dominated by competitive interactions. Thick edges are bayes 
factor greater than 10 (strong evidence) and thin transparent edges are Bayes factors between √10 and 10 (substantial evidence). 
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starches RS(2)43, and this genus has been shown to be absent or at 
reduced abundance in patients with inflammatory bowel 
diseases44,45. The other modules in the positive interaction chain 
with H9 include H4, H5, H6, H8, and H11 (H4, H5, H6, and H8 have 
directed edges promoting H11 as well). Most of the taxa in H4, H6, 
and H8 are in the Order Clostridiales, with H4 taxa more 
predominantly from the Family Lachnospiraceae, and H6 and H8 
taxa more predominantly from the Family Ruminococcaceae. 
Module H5 consists of predominantly taxa in the Order 
Erysipelotrichales. Finally, H11 is the largest module in the H-cohort 
ecosystem, and contains a majority of the Gram-negative bacteria in 
that microbiome. Of note, the topology identified by MDSINE2, as 
well as the metabolic products of taxa in these modules suggest a 
possible cross-feeding network beginning with primary starch 
degradation in H9, followed by fermentation in H4, H5, H6, and H8, 
producing acetate, lactate, and simple carbohydrates. 

For the D-cohort, the top positive and negative keystone 
modules were D5 and D2 (Figure 7B), respectively, with all the OTUs 
in D5 belonging to the Family Lachnospiraceae and all but one of the 
OTUs in D2 also belonging to the Family Lachnospiraceae. When one 
considers the complete network, both modules effectively have 
suppressive activity: D5 is in competition with D2, which is a hub 
suppressing all its neighbors (Fig 7D). Thus, D5 indirectly promotes 
the growth of other taxa in the cohort (by suppressing a suppressor), 
and in so doing also participates in a potentially unstable feedback 
cycle with D2. Another negative keystone module is D10, a directly 
suppressive hub like D2, which contains two taxa: OTU19 Sutterella 
wadsworthensis and OTU31 Parabacteroides distasonis. 
Interestingly, S. wadsworthensis has previously been positively 
associated with inflammatory bowel disease in observational 
studies and was found to be a negatively associated with response 
to fecal microbiota transplant (FMT) in UC patients46-49. S. 
wadsworthensis has several properties that give it potential 
competitive advantages in the gut, particularly in dysbiotic 
environments, including being a facultative anaerobe, bile resistant, 
a nitrate reducer, capable of degrading host IgA, and able to adhere 
to mucus and extracellular protein matrices. In contrast to the H-
cohort where the top negative keystoneness module is in a stable 
feedback loop with another module, the D-cohort’s top negative 
keystoneness module can potentially grow unchecked, suppressing 
other community modules, providing further insights into how the 
dysbiotic microbiome may be destabilized. 
 
Discussion 
 A important innovation of our method is the ability to analyze 
microbial dynamical systems in terms of modules. Modularity has 
been extensively exploited for understanding other complex 
biological systems, such as mammalian genetic regulatory 
networks50-52, but relatively underexploited in the microbiome 
field29,30. The conventional approach in the microbiome field is to 
use taxonomy to define groups for analysis. One shortcoming of 
taxonomic approaches is that the names of many bacteria are 
historical artifacts that do not accurately represent evolutionary 
relationships. Another significant issue is that taxonomic groupings 
do not necessarily correspond to any clear functions or behaviors in 
an ecosystem. In contrast, our approach automatically learns 
groupings of microbes based on shared interaction structures in the 
dynamic ecosystem and responses to external perturbations, both 
of which are functional properties of the microbes. Indeed, our 
method identified groups of bacteria that are quite taxonomically 
and phylogenetically distinct, yet share a common function, such as 
the taxa in the top positive keystone module in the healthy 
microbiome, consisting of Ruminococcus, Bacteroides, 

Agathobaculum, and Gemmiger that share a common ability to 
degrade starches.  
 Our results also demonstrate the utility of analyzing intrinsic 
dynamical systems properties of complex microbiomes. 
Reductionist approaches seeking to find pathobiont species to 
explain dysbiotic states in human microbiomes, such as in ulcerative 
colitis, have not yielded clear results, despite intensive efforts. In 
some ways, this is not surprising: the human microbiome constitutes 
a highly complex and dynamic ecosystem. Our results suggest that 
dysbiotic behavior of these microbiomes can be explained at the 
systems level, in terms of interactions in the underlying ecological 
network. We found that microbiomes, when taken out of the human 
hosts and transplanted into genetically identical mice that did not 
have disease symptoms, still exhibited intrinsic differences in 
stability driven by the topology of interactions. This topology is not 
discoverable through standard differential abundance analyses of 
cross-sectional studies. Such analyses return lists of microbes that 
differ between cohorts but offer no further means to understand 
the reasons behind these differences. In contrast, dynamical 
systems analyses offer insights into how ecosystems behave, 
including under physiologically relevant perturbations. For example, 
MDSINE2 identified a key network of interactions in the healthy 
microbiome, which could constitute a cross-feeding network that 
begins with organisms that degrade resistant starches and 
ultimately result in production of butyrate, a primary energy source 
of intestinal cells important in maintaining proper intestinal barrier 
function22,53,54. Restoration of taxa in this chain in dysbiotic 
microbiomes might therefore increase stability, and moreover 
produce direct benefits to the host. 

There are several directions for future work on the 
computational model. First, MDSINE2’s model of measurement 
noise, a well-established model based on the negative binomial 
distribution, could be extended to include zero inflation or 
nonparametric features (which could be particularly advantageous 
for metagenomics or other data types that may not fit the negative 
binomial model well). A second direction for extension is the gLV 
model, which only allows for pairwise, “mass action” style 
interactions. Although it would be conceptually straightforward to 
include higher-order interactions, it remains unclear how prevalent 
such interactions are in mammalian microbiomes55; another 
approach would be to include  interactions with saturation behavior, 
or even learn nonparametric models for interactions to avoid 
needing to prespecify their forms. A third, and particularly exciting 
area for extension, would be incorporating additional data 
modalities to more fully capture the host-microbial ecosystem, such 
as metagenomic, metatranscriptomic and metabolomic data 
sources. 
  
Conclusion 
 We have introduced MDSINE2, a computational method for 
accurately inferring interpretable dynamical systems models of the 
microbiome at scale, and demonstrated on a new densely-sampled 
microbiome time-series dataset from “humanized” gnotobiotic mice 
that our approach outperforms other methods when forecasting 
microbiome dynamics. Moreover, our approach identified intrinsic 
instability in microbial dysbiosis, driven by competitive cycles and 
the absence of chains of stabilizing interactions found in the healthy 
microbiome. Our approach provides new tools for characterizing the 
dynamical systems behaviors of complex host-microbial ecosystems 
and holds promise for guiding rational design of interventions to 
stably alter human microbiomes for prophylactic or therapeutic 
purposes. 
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Methods  
 
MDSINE2 Model 
Overview 
Our statistical model of microbial dynamics is a fully Bayesian 
hierarchical model based on continuous-time stochastic generalized 
Lotka-Volterra (gLV) dynamics: 
 

d𝒙!,# = 𝒙!,#(𝑡) '(1 ++𝜸$,𝒄!𝒛$,𝐜!
(() ℎ$(𝑡)

*

$+,

/𝒂,,# − 𝒂-,#𝒙!,#(𝑡)

+ + 𝒃𝐜!,𝐜"𝒛𝐜!,𝐜"
(.) 𝒙!/(𝑡)

/:𝒄"1𝒄!

3 + 𝒙!,#(𝑡)d𝒘!,# .					(1)	 

 
This formulation of stochastic behavior models multiplicative 
random effects on microbial abundances, which could arise from a 
variety of phenomena, such as temporal host, environmental or 
dietary fluctuations that result in short time-scale increases or 
decreases in abundance of each taxa. 
 
The abundance of taxa 𝑖 in time-series 𝑠 (e.g., biological replicate) is 
denoted as 𝒙!#. MDSINE2 probabilistically assigns each taxa to an 
interaction module, where 𝒄# denotes the module assignment for 
taxa 𝑖. The growth rate and self-interaction random variable for taxa 
𝑖 are denoted 𝒂,,#and 𝒂-,#, respectively. The 𝑃 external 
perturbations are accounted for by the random variables 𝜸$,𝒄!  that 
denote the effect of perturbation 𝑝 on taxa 𝑖’s growth rate; 𝒛$,𝐜!

(()  is a 
corresponding random indicator variable that probabilistically 
selects whether the perturbation affects the interaction module. 
The function  ℎ$ has a value of 1 during the time-period when the 𝑝-
th perturbation is active and a value of 0 otherwise. The strength of 
the microbial interaction from taxa 𝑗 to taxa 𝑖 is denoted 𝒃𝐜!,𝐜", with 
𝒛𝐜!,𝐜"
(.)  the corresponding random indicator variable for that microbial 

interaction.  The stochastic variation of the microbial abundances 
over time is captured by the variable 𝒘!,#, specifying geometric 
Brownian motion for the stochastic component (e.g., a 
multiplicative stochastic process on the microbial abundance). 
 
To perform inference, we perform a first-order discretization (see 
Supplemental Information) to obtain the discrete-time latent 
trajectories:  
 
							log @𝒙!,#(𝑘 + 1)B~Normal @log @𝜇!,#(𝑘 + 1)B , ∆!,2𝝈3𝟐 B 							(2) 
 
where  
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/
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Here, ∆!,2= 𝑡!,28, − 𝑡!,2, the difference between adjacent time-
points for the same time-series 𝑠. 
 
Given relative abundance time-series data (e.g., 16S rRNA amplicon 
sequencing) and measurements of microbial concentrations (e.g., 

16S rRNA amplicon qPCR with universal primers), MDSINE2 uses a 
custom Markov Chain Monte Carlo (MCMC) algorithm to infer the 
full posterior probability distribution. Below we give additional 
details on the model, including prior probability distributions on 
variables; for complete mathematical and algorithmic details, see 
Supplemental Information.  
 
Interaction Modules  
We employ a Dirichlet Process (DP) prior56 to model interaction 
modules. The expected number of modules under this prior 
probability distribution is	≈ 𝛼 log 98:

:
, where 𝑁 is the number of 

taxa and  𝛼 is the concentration parameter57. This property is 
desirable for scaling to large ecosystems, as the expected number of 
microbial interactions in our model scales as 𝑂(log(𝑁)-) (as 
opposed to 𝑂(𝑁-) in the standard gLV model). We place a diffuse 
Gamma prior on the concentration parameter as described in58. Our 
formulation allows us to marginalize out the interaction and 
perturbation parameters during inference, which greatly increases 
efficiency56. See Supplemental Information for complete details.  
 
Interaction Parameters and Perturbation Effects 
To facilitate modularity and interpretability of inferred interaction 
networks, we assume no intra-module interactions and model only 
inter-module interactions, 𝒃𝒄!𝒄". We assume perturbations (e.g., 
antibiotics or dietary changes) have module-specific effects, 𝜸𝒄!. 
Further, we model the presence/absence of module-module 
interactions and module-perturbation effects by using the binary 
indicator variables 𝒛(𝒃) and 𝒛(𝜸), respectively. These binary 
indicators allow the model to infer the structural edges that specify 
the underlying network topology between modules. Additionally, 
this formulation allows for direct calculation of the statistical 
evidence for presence of each interaction or perturbation effect 
using Bayes factors. See Supplemental Information for full details. 
 
Measurement Model 
The observed data are sequencing counts 𝒚!,#(𝑘) of taxa and qPCR 
measurements 𝑸!,<(𝑘) of bacterial concentrations, where j indexes 
the qPCR measurement replicates. Sequencing counts are modeled 
using a negative binomial distribution59  
 
𝒚!,#(𝑘)	|	𝒙!,#(𝑘), 𝑟!,2~NegBin @𝜑[𝒙!,#(𝑘), 𝑟!,2\, 𝜖[𝒙!,#(𝑘), 𝑑=, 𝑑,\B 

𝜑[𝒙!,#(𝑘), 𝑟!,2\ = 𝑟!,2
𝒙!,#(𝑘)
∑ 𝒙!,/(𝑘)/

 

	𝜖[𝒙!,#(𝑘), 𝑑=, 𝑑,\ = 	
𝑑=

𝒙!,#(𝑘)/∑ 𝒙!,/(𝑘)/
+ 𝑑,	 

 
Here 𝑟!,2 is the total number of reads for the sample in time-series s 
at time 𝑡!,2, and 𝑑= and 𝑑, parameterize the function 𝜖(⋅), which 
specifies the Negative Binomial dispersion parameter. We fit the 
parameters 𝑑= and 𝑑, using data from replicates (see below). 
 
We model the qPCR measurements with a log-normal distribution: 
 

log[𝑸!,>(𝑘)\~	Normal blogb+𝒙!,#(𝑘)
#

c , 𝜎𝑸$(2)
- c 

 
Here, 𝜎𝑸$(2)

-  is the empirical variance of the set of qPCR 
measurement replicates for time-series s at time 𝑡!,2. See 
Supplemental Information for complete mathematical details of the 
measurement model and inference procedure. 
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Software 
MDSINE2 was implemented in Python 3.7 using the Numpy60, 
Scipy61, Numba62, Matplotlib63, and Seaborn64 packages. The 
software is publicly available under the Gnu General Public License 
v3.0 (https://github.com/gerberlab/MDSINE2). The input to 
MDSINE2 consists of five tab-delimited files: (1) list of the sequence 
and taxonomic label for each taxa, (2) table of counts for each taxa 
in each sample, (3) table specifying the time points at which each 
sample was collected for each subject, (4) table of qPCR values for 
each sample, and (5) table of perturbation names, start times, end 
times, and associated subjects that received the perturbation. The 
software outputs inference results in two files: (a) a Python pickle 
file that contains the MDSINE2 inference object used to perform the 
inference, and (b) a HDF5 file containing all the MCMC posterior 
samples. Once inference is complete, the software includes 
functionality to visualize and interpret the posterior samples, 
including visualizing trajectories, module networks (with a 
Cytoscape65 export option) and keystoneness, as well as generating 
text files with summaries of posterior distributions. See online 
software documentation for complete details. We also give demos 
of the functionalities in the binder tutorials. The tutorials (Google 
Colab) can be accessed in the folder 
https://github.com/gerberlab/MDSINE2_Paper/tree/master/googl
e_colab. 
 
Gnotobiotic Experiments and Microbiome Data Generation 
Mouse Experiments 
Two cohorts of male C57Bl/6 germfree mice (n=4 for the H-cohort 
and n=5 for the D-cohort) were used in the experiments (BWH 
IACUC: 2016N000141). Mice were singly housed in Optmice cages 
within the Massachusetts Host-Microbiome Center (MHMC) at 
Brigham and Women’s Hospital.26 The mice in each group were 
given a Fecal Microbiota Transplant (FMT) from two de-identified 
human stool donors (a healthy donor for the H-cohort and a donor 
with ulcerative colitis for the D-cohort) from an ongoing study at 
Brigham and Women’s Hospital (IRB# 2017P002420). Per the study 
protocol, samples were flash frozen without cryoprotectants and 
stored at -80°C.  Material for FMTs was prepared by thawing the 
stool samples and homogenizing in 5 mL of pre-reduced 1x 
Phosphate Buffered Saline (PBS) with 0.05% cysteine inside an 
anaerobic chamber. Germfree mice were then orally gavaged with 
200µl/mouse of FMT material. Post-gavage, mice were equilibrated 
for 3 weeks before beginning a series of three perturbations: high 
fat diet (HFD), vancomycin, and gentamicin (in that order). Each 
perturbation lasted for one week, followed by a one-week 
normalization period off perturbations. Aside from the HFD 
perturbation, mice were maintained on standard MHMC gnotobiotic 
mouse chow (Autoclavable Mouse Breeder Diet 5021; LabDiet). For 
the HFD perturbation, Research Diets D12492 (60 kcal% of fat) was 
used. For the vancomycin perturbation, drinking water was replaced 
with water containing vancomycin at a concentration of 100 ug/mL 
and 3% sucralose (filter sterilized). For the gentamicin perturbation, 
drinking water was replaced with water containing gentamicin at a 
concentration of 4 ug/mL and 3% sucralose (filter sterilized). In all 
situations, mice were allowed to eat and drink ad libitum. Mouse 
fecal pellets were collected in triplicate based on the sample 
collection timeline detailed in Figure 2. We also obtained additional 
samples to generate data for fitting the d0 and d1 parameters in our 
amplicon sequencing measurement noise model. For this purpose, 
a total of nine fecal pellets, three pellets on each of the three 
consecutive days (8, 9, 10) were collected from mouse 2. Each fecal 
pellet was divided into two parts. This resulted in 18 samples that 
were then processed through the entire sequencing pipeline, from 
DNA extraction through sequencing. To collect fecal pellets, each 

mouse was removed from the Optimice cage and placed inside an 
autoclaved Nalgene cup. After pellets were produced, mice were 
placed back in their cages and samples were collected from the cup 
with autoclaved forceps. Samples were placed in cryovial tubes and 
snap frozen in liquid nitrogen immediately, then stored at -80°C. At 
the end of experiments, mice were euthanized by overdose on 
inhaled vapors of isoflurane administered in an anesthesia chamber 
followed by cervical dislocation. These procedures are in accordance 
with the recommendations of the Panel on Euthanasia of the 
American Veterinary Medical Association.  
 
DNA Extraction, 16S rRNA Amplicon Sequencing and qPCR 
For DNA extraction, all samples were processed using the standard 
protocol66 at the Massachusetts Host-Microbiome Center (MHMC), 
which uses the Zymo Research ZymoBIOMICS DNA 96-well kit 
according to manufacturer instructions with the addition of bead 
beating for 20 minutes. Amplicon sequencing and qPCR were also 
performed using the standard MHMC protocol. Briefly, for amplicon 
sequencing, the v4 region of 16S rRNA gene was PCR amplified using 
515F and 806R primers67: 5’-[Illumina adaptor]-[unique bar code]-
[sequencing primer pad]-[linker]-[primer] 

• (fwd primer): AATGATACGGCGACCACCGAGATCTACAC-
NNNNNNNN-TATGGTAATT-GT-
GTGCCAGCMGCCGCGGTAA 

• (rev primer): CAAGCAGAAGACGGCATACGAGAT-
NNNNNNNN-AGTCAGTCAG-CC-
GGACTACHVGGGTWTCTAAT 

Following PCR of the v4 region, 250 bp paired end reads were 
generated on an Illumina MiSeq with the following custom primers 
with index primer: ATTAGAWACCCBDGTAGTCC-GG-CTGACTGACT. 

• 5’-[sequencing primer pad]-[linker]-[primer] 
Read 1: TATGGTAATT-GT-GTGCCAGCMGCCGCGGTAA 

• 5’-[primer]-[linker]-[sequencing primer pad] 
Read 2: AGTCAGTCAG-CC-GGACTACHVGGGTWTCTAAT 

qPCR for estimating total bacterial concentration was performed 
using universal 16S primers and a standard curve prepared from 
dilutions of Bacteroides fragilis (ATCC 51477). Samples were loaded 
into 384 well plates via the Eppendorf EP Motion liquid handler and 
then run on a QuantStudio 12K Flex Real-Time PCR System 
(ThermoFisher) using TaqMan Universal Master Mix II no UNG kit 
(ThermoFisher 4440040), TaqMan Gene Expression Assay 
(ThermoFisher 4331182),  probe set Dye: FAM, Quencher: NFQ-MGB 
and Reference Dye: Rox for quantification (ThermoFisher assay ID 
Pa04230899_s1), all according to manufacturer’s instructions. 
 
Bioinformatics 
Generating ASV tables From Amplicon Reads 
We generated an ASV read count table and assigned taxonomy using 
DADA2 v1.16 according to the standard pipeline using pseudo-
pooling34. Forward reads were trimmed to a length of 240 and 
reverse reads were trimmed to a length of 160. Our function calls 
for these core steps in the DADA2 pipeline were:   
 

out <- filterAndTrim(fnFs, filtFs, 
fnRs, filtRs, truncLen=c(240,160), 
maxN=0, maxEE=c(2,2), truncQ=2, 
rm.phix=TRUE, compress=TRUE, 
multithread=TRUE) 

errF <- learnErrors(filtFs, 
multithread=TRUE, randomize=TRUE, 
nbases=1e8, pool = "pseudo") 

errR <- learnErrors(filtRs, 
multithread=TRUE, randomize=TRUE, 
nbases=1e8, pool = "pseudo") 

dadaFs <- dada(filtFs, err=errF, 
multithread=TRUE, pool = "pseudo") 
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dadaRs <- dada(filtRs, err=errR, 
multithread=TRUE, pool = "pseudo") 

 
To assign taxonomic labels to ASVs, we used DADA2-formatted 
reference databases RDP trainset 16 and Silva version 138. When 
using assignTaxonomy in DADA2, we specified the maximum 
number of multiple species assignments to be 2. For species 
assignments, if one database returned a species assignment and the 
other did not, we labelled the ASV with the species from the 
database that returned the assignment. If both databases returned 
species assignments, but they were discordant, we set the 
assignment to the union of the returned assignments. If the total 
number of possible species assigned was greater than 4, then we did 
not set a species assignment. This process resulted in 1473 ASVs in 
total. The DADA2 script used for this study is located in 
https://github.com/gerberlab/MDSINE2_Paper/tree/master/googl
e_colab 
 
ASV Aggregation into OTUs 
We performed agglomerative clustering of ASVs into OTUs (average 
linkage, using Hamming distance = 3 base pairs). This process 
resulted in 1224 OTUs in total from the original 1473 ASVs. 
Consensus sequences  
for OTUs were determined by requiring >=65% consensus at each 
position, otherwise the position was assigned an ‘N’. The taxonomic 
assignment for each OTU was derived as follows. If the taxonomy of 
all ASVs within an OTU agreed down to the species level, then we 
marked that OTU with that taxonomic label. If the ASVs instead only 
agreed down to the genus level with differing species, then we 
marked that OTU with that genus, and the species of the OTU was 
labelled with the union of all of the constituents’ species. Otherwise, 
if there were any conflicts at the genus level or above, we assigned 
the taxonomy using RDP’s Naïve Bayes classifier68 with the OTU’s 
consensus sequence as input. 
 
Phylogenetic Placement of Sequences 
We performed phylogenetic placement of consensus OTUs onto a 
reference tree constructed from 16S rRNA sequences of type strains 
tagged as “good” quality, length between 1200bp and 1600bp in 
RDP 11.5 69. We performed multiple alignment of the sequences 
using the RDP’s web-hosted alignment tool with default parameters 
70. To facilitate a good multiple alignment, we filtered out sequences 
with insertions seen in ≤ 3 other sequences. A reference tree was 
constructed using FastTree71 version 2.1.7 SSE3 with the general-
time-reversible maximum likelihood option. For phylogenetic 
placement, the aligned reference sequences were first trimmed to 
position 1045 to 1374 (corresponding to the region flanked by the 
16S v4 primers) and a hidden Markov Model was learned using 
hmmbuild  in HMMER v3.172. OTU sequences were then aligned 
using  hmmalign with the -mapali option. Finally, the aligned 
sequences were phylogenetically placed using pplacer v1.1.alpha19 
with default settings73.  
 
Alpha/Beta Ecological Diversity Analyses 
Alpha diversity was assessed using normalized Shannon entropy. 
The Mann-Whitney U test was performed to assess significance of 
differences between healthy and dysbiotic microbiome cohorts, 
with correction for multiple hypotheses performed using the 
Benjamini-Hochberg procedure74. Beta diversity with the Bray-Curtis 
metric was used to assess the variation in the microbial 
compositions between healthy and dysbiotic donor microbiomes. 
Permutational Analysis of Variance (PERMANOVA) was performed 
to assess significance of differences between healthy and dysbiotic 
microbiome cohorts using scikit-bio 0.5.6.  

 
Fold Change Analysis 
Fold change analysis was performed using DESeq2 v1.3.2.0. All 
default options were used with features only kept if there were at 
least 100 reads (summing across all the samples used in the analysis) 
using the following commands 
 

coldata$window<- factor(coldata$window) 
dds <- DESeqDataSetFromMatrix(countData = 

cts,colData = coldata, design = ~window) 
akeep <- rowSums(counts(dds)) >= 100  
dds <- dds[akeep,] 
dds<- DESeq(dds) 

 
The scripts to perform this analysis are contained in 
https://github.com/gerberlab/MDSINE2_Paper/tree/master/deseq
2. The fold changes were calculated in two ways, both using the 
default Wald test in the software. We first compared the steady 
state differences between the two cohorts by summing the reads 
over four consecutive measurements proceeding the first 
perturbation (steady state here is days (16, 18, 21, 21.5)) We also 
computed within cohort fold changes during the perturbations and 
compard them to the reads which were summed over four 
consecutive time points just before the perturbation began. In other 
words, we calculated the fold changes with respect to the “steady 
states” achieved just before the perturbation was applied. The HFD 
fold change was calculated by comparing days (23, 23.5, 24, 25) to 
days (16, 18, 21, 21.5), the vancomycin fold change was calculated 
by comparing days (37, 37.5, 38, 39)  to (32, 33, 35, 35.5)		and the 
gentamicin perturbation fold change was calculated by comparing 
days (52,52.5,53,54)	𝑡𝑜 (46,47,50,50.5). 
 
 
MDSINE2 analyses on H-cohort and D-cohort datasets 
Model Inference 
Day 0 and 0.5 samples were excluded from inferences, due to their 
very low overall bacterial concentrations. Models were inferred 
independently for the H-cohort and D-cohort datasets using 10,000 
MCMC iterations  after 5,000 burn-in steps.  To assess convergence 
of MCMC chains, we  used the 𝑅p statistic75 and confirmed values of 
𝑅p<1.05 for the concentration parameter, the growth rates and the 
process variance, indicating sufficient mixing of MCMC chains. 
Inference took ~26.5 hours (6.3 sec/iteration) for the H-cohort and 
~17.25 hours (4.1 sec/iteration) for the D-cohort on an Intel Xeon 
E5-2697V2 (2.70 GHz base frequency, 3.50 GHz max frequency) with 
an allocation of one core and 8gb of RAM separately for each task. 
Full details on inference are given in the Supplemental Information. 
 
Benchmarking 
We used implementations of the comparator methods provided in 
https://github.com/tyjo/clv. Following Joseph et al. (2020)20, we 
trained the models using elastic-net regression, and in addition, we 
trained gLV using ridge regression to provide comparisons to earlier 
work 17,19. Predictive performance of methods was assessed using a 
hold-one-subject-out cross validation procedure. Per fold, each 
method was provided data from all but one mouse in the cohort to 
infer model parameters. The inferred parameters were then used to 
forward simulate the trajectory of the held-out mouse, using the 
abundance at Day 1 as the initial condition. For comparator 
methods, the Runge-Kutta “rk45” procedure was used, as 
implemented in Joseph et al. (2020)20. For MDSINE2, each posterior 
sample was used to deterministically forward simulate (Equation 2 
with no process variance), and the median of the distribution of 
simulations was used as the final forecast. The methods use 
different approaches to handle zeros in data. To make results as 
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comparable as possible, we used the following settings. For gLV-
elastic net and gLV-ridge, we set the minimum value for taxa to 10@ 
CFU/g, which is consistent with the limit of detection in our 
experiments. For gLV-ra and LRA, which are relative abundance 
methods, we set the minimum to 10AB and for CLV, we set the 
additive offset 𝜖 = 10AB, consistent with the limit of detection for 
relative abundances in our experiments. These minimums were 
enforced both in data preprocessing and on the simulated 
trajectories, so that results remained comparable. For comparisons 
against methods that operate only on relative abundances (cLV, gLV-
ra and LRA), we converted predictions of MDSINE2 or the gLV-based 
models to relative abundances. The following Root Mean Square 
Error metric was used:  
 

RMSLE[𝑋#,!, 𝑋p#,!\ = r,
C
∑ [log,= 𝑋#,!(𝑘) − log,= 𝑋p#,!(𝑘)\2

-
,  

 
where 𝑋#,! denotes the measurements for taxa i in the held-out 
mouse s and 𝑋p#,! are the respective forecast estimates. In order to 
compare the errors between MDSINE2 and other methods, we 
performed one-tailed Wilcoxon signed-rank testing. The paired data 
points used for the test are the RMSLEs associated with MDSINE2 
and the RMSLEs associated with the comparator method for all the 
OTUs in the hold-out subjects.  
 
Consensus Module Construction 
Consensus modules were constructed by performing agglomerative 
clustering on the co-clustering probability matrix where the number 
of clusters is the median number of modules over the posterior. See 
our prior work for more details29,30. 
 
Taxonomic Enrichment Analysis  
Using the consensus modules, we performed enrichment analysis at 
four taxonomic levels: family, order,  class, and phylum. For details 
regarding taxonomic assignment, see section ASV aggregation into 
OTUs. The enrichment analysis was carried out using the 
hypergeometric test followed by Benjamini-Hochberg procedure for 
multiple hypothesis tests. The hypergeometric probability is defined 
as P(𝑋 = 𝑘) = @𝑀𝑘B @

𝑁 −𝑀
𝑛 − 𝑘 B @𝑁𝑛Bv . N is the total number of OTUs 

used in the model, M is the total number of OTUs associated with a 
given taxonomy, n is the size of the interaction module, and k is the 
number of OTUs in the interaction module that is associated with 
the given taxonomy.  
 
 
Phylogenetic Neighborhood Analysis 
Phylogenetic Neighborhood Analysis (PNA) quantitatively assesses 
how phylogenetically similar but non-identical OTUs co-cluster. The 
input to PNA is a percent identity matrix 𝑷 of pairwise OTU 
consensus sequence similarities and a matrix 𝑪 of pairwise OTU co-
clustering probabilities obtained from MCMC posterior inference. 
We compute 𝑷 from the multiple alignment of the OTU consensus 
sequences and reference 16S v4 sequences as described above. PNA 
employs a coarsening procedure analogous to agglomerative 
clustering76, but for PNA, agglomerates across both the phylogeny 
and co-clustering probabilities using average linkage measures. For 
two agglomerations of taxa, 𝑋 and 𝑌, the average phylogenetic 
distance is given by:  

𝑫(𝑋, 𝑌) = 	 ,
|E|	|F|

	∑ (1 − 	𝑷(𝑥, 𝑦)G∈E,I∈F )                      (𝑖) 
 
Similarly, the average of co-clustering probability is given by:  
 

𝑪}(𝑥, 𝑦) 	= ,
|E|	|F|

	∑ 𝑪(𝑥, 𝑦)G∈E,I∈F                                (𝑖𝑖) 
 
The high-level steps of the PNA algorithm are: 
 
Initialize each OTU as its own agglomerate 
Compute the distance 𝑫 between the initial agglomerates using (𝑖) 
While the pairwise distance 𝑫 between agglomerations is less than 
a threshold, t: 
           Merge the agglomeration pairs with smallest distance (highest 
average percent identity) 
           Update the pairwise distance D between the agglomerations 
using (𝑖)  
Return 𝑪}Healthy and 𝑪}D, computed using (𝑖𝑖) 
 
Here, 𝑪,}   are square matrices for each cohort, with the dimensions 
of each matrix equal to the number of agglomerations produced at 
that threshold, i.e., each row of the matrix denotes the probability 
of a given agglomeration unit co-clustering with other 
agglomeration units at the sequence distance threshold t. We used 
threshold values t in increments of 0.01 (1% identity) ranging from 0 
to 0.26, where the final threshold corresponded to a single 
agglomeration containing all the OTUs. We report the 
correspondence between co-clustering probabilities of OTUs in the 
two cohorts, i.e., the degree to which phylogenetically similar OTUs 
co-cluster similarly across the healthy and dysbiotic donor 
microbiomes, as the mean of the Spearman correlations between 
the row vectors of each agglomeration unit. We generated a null 
distribution for co-clustering probabilities between the two 
conditions by randomly permuting the labels of C 10,000 times and 
performing PNA on each permuted matrix. 
 
Simulation-based Stability Analysis 
We simulated perturbations and assessed system recovery as 
follows: 

1. Uniformly randomly select O𝛼 taxa to perturb, where O is 
the total number of taxa and 𝛼 is a specified fraction to 
perturb. 

2. For each selected taxon i, adjust its growth rate to 𝒂,,# + 𝛿 
over a perturbation window of days 14 to 34. 

3. Forward simulate taxa trajectories (as described above for 
Benchmarking) for 64 days, using the experimentally 
measured value at day 21 (e.g., a point at which consistent 
colonization is expected) as the initial condition. 

This procedure was carried out over a range of parameters, 𝛼 ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} and 𝛿 ∈ {−0.5,−1.0, −1.5, −2.0}, 
with N=100 trials for each combination of parameters (𝛼, 𝛿). For 
each trial, 100 MCMC samples were used (every 100th sample out of 
the 10,000 samples) to perform forward simulations. For each trial 
n, the final state for taxa i, 𝑥�#

(K)(𝛼, 𝛿), was computed as an average 
over 12 hours for the final simulated day. For comparison a baseline 
final state, 𝑥#

(K), in which the system was not perturbed, was 
computed in the same manner. Our measure of deviation from the 
baseline for each trial is given by: 
 
𝑑ss	(𝑛; 𝛼, 𝛿) = meani[�log,=[𝑥�#

(K)(𝛼, 𝛿) + 𝜖\ − log,=[𝑥#
(K) + 𝜖\�\ 

 
Here 𝜖 = 10@ is an additive constant (consistent with the limit of 
detection in our experiments). 
 
Keystoneness 
The keystoneness measure is computed by removing all the taxa for 
each module m, forward simulating trajectories (as described in 
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Benchmarking) for the remaining taxa over 100 days and comparing 
the final state of these trajectories to the final state with all taxa 
present in the ecosystem. As in our perturbation experiments for 
stability analysis, final states were computed as the mean of values 
over the last 12 hours in the final simulated day. To be precise, we 
obtain final state estimates 𝑥(L) (full system) and 𝑥�M

(L) (system with 
module removed) for each MCMC step g, which are used to 
compute the keystoneness measure: 
 
𝑘(𝑚) = −	meanL�mean#	∉	M[𝑙𝑜𝑔,=[𝑥�M#

(L) + 𝜖\ − 𝑙𝑜𝑔,=[𝑥#
(L) + 𝜖\\�, 

 
where the subscript 𝑖 denotes the taxon index. Just as in the 
simulation-based stability analysis, ϵ = 10@. Per this formulation, a 
positive 𝑘 value indicates an overall decrease in the system on 
average (meaning 𝑚 has a positive effect on other OTUs when 
present), while a negative 𝑘 value indicates an increase (meaning 𝑚 
has a suppressive effect when present). 
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