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Summary 15 

Massive DNA excision occurs regularly in ciliates, ubiquitous microbial eukaryotes with somatic 16 

and germline nuclei in the same cell. Tens of thousands of internally eliminated sequences 17 

(IESs) scattered throughout a copy of the ciliate germline genome are deleted during 18 

development of the streamlined somatic genome. Blepharisma represents one of the two 19 

earliest diverging ciliate classes, and, unusually, has dual pathways of somatic nuclear 20 

development, making it ideal for investigating the functioning and evolution of these processes. 21 

Here, we report the somatic genome assembly of Blepharisma stoltei strain ATCC 30299 (41 22 

Mb), arranged as numerous alternative telomere-capped minichromosomes. This genome 23 

encodes eight PiggyBac transposase homologs liberated from transposons. All are subject to 24 

purifying selection, but just one, the putative IES excisase, has a complete catalytic triad. We 25 

propose PiggyBac homologs were ancestral excisases that enabled evolution of extensive, 26 

natural genome editing. 27 

 28 

 29 
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Introduction 47 

DNA excision in ciliates is a spectacular and widespread form of natural genome editing with 48 

profound consequences for what germline and somatic genomes mean (Arnaiz et al., 2012; 49 

Chen et al., 2014; Hamilton et al., 2016; Swart and Nowacki, 2015). Though the responsible 50 

processes are under active study, much remains to be learnt from these master DNA 51 

manipulators, including how and why this remarkable situation arose in them.  52 

 53 

Knowledge of ciliate genome editing mechanisms is dominated by Tetrahymena and 54 

Paramecium (class Oligohymenophorea), with additional input from Oxytricha, Stylonychia and 55 

Euplotes (class Spirotrichea) (Chalker et al., 2013; Vogt et al., 2013). The remaining nine ciliate 56 

classes await detailed characterization. To advance investigation of natural genome editing and 57 

tackle questions about its origin we focused on the ciliate species Blepharisma stoltei. Together 58 

with its sister-class, Karyorelictea, the class Heterotrichea, to which this ciliate species belongs, 59 

represent the earliest branching ciliate lineages, more distantly related to current model ciliates 60 

than those models are to each other (Lynn, 2010). Furthermore, the genus Blepharisma exhibits 61 

distinctive alternative somatic nuclear developmental pathways, which have the potential to 62 

disentangle genome editing processes from indirect influences of preceding pathways. 63 

 64 

Blepharisma is a distinctive genus of single-celled ciliates known for the red, light-sensitive 65 

pigment, blepharismin, in their sub-pellicular membranes (Giese, 1973), and unusual 66 

nuclear/developmental biology (Figure 1) (Miyake et al., 1991). To date molecular investigations 67 

and genomics of ciliates have predominantly focused on oligohymenophoreans and spirotrichs 68 

(Figure 2, Table S1). In recent years, publication of a draft genome for the heterotrich ciliate, 69 

Stentor, has facilitated revival of this genus for investigations of cellular regeneration 70 

(Slabodnick and Marshall, 2014; Slabodnick et al., 2017; Zhang et al., 2021). However, 71 

significant hurdles still need to be overcome to investigate genome editing in Stentor coeruleus 72 

since requisite cell mating has not been observed in the reference somatic genome strain 73 

(personal communication, Mark Slabodnick), and very high lethality has been reported for other 74 

strains in which mating occurred (Rapport et al., 1976). We therefore focused on Blepharisma 75 

which is amenable to such investigations, with controlled induction of mating, and, critically, 76 

established procedures for investigating cellular and nuclear development from more than a 77 

century of meticulous cytology (Friedl et al., 1983; Giese, 1973; Harumoto et al., 1998; Inaba, 78 

1965; Kobayashi et al., 2015; Kumazawa, 1979; Miyake and Harumoto, 1990; Miyake et al., 79 
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1979; Repak, 1968; Salvini et al., 1983; Sugiura et al., 2010; Terazima and Harumoto, 2004; 80 

Young, 1937).  81 

 82 

The Blepharisma stoltei strains used in the present study were originally isolated in Germany 83 

(strain ATCC 30299) and Japan (strain HT-IV), with the former continuously cultured for over 84 

fifty years, and the latter for over a decade. The cells are comparatively straightforward to 85 

maintain, e.g., stable cultures can be established in a simple salt medium on a few grains of 86 

rice. Due to their distinctive pigmentation and large size several Blepharisma species are 87 

excellent subjects for introducing cell biology concepts to non-specialists, and are thus readily 88 

available for educational purposes from commercial suppliers. They are ideal subjects for 89 

behavioral and developmental investigations, e.g., as voracious predators of smaller ciliates and 90 

other unicellular species, and also exhibit pronounced phenotypic plasticity, including forming 91 

cysts and giant, cannibal cells under suitable conditions (Giese, 1973). 92 

 93 

Like all ciliates (Prescott, 1994), Blepharisma cells have two types of nuclei: a macronucleus 94 

(MAC) which is very large and transcriptionally active during vegetative growth, and a small, 95 

generally transcriptionally inactive micronucleus (MIC), which serves as the germline (Figure 1A, 96 

B). In vegetative propagation (asexual replication) of Blepharisma, cell fission results in half of 97 

the MAC pinching off before distributing to each of the resulting daughter cells together with the 98 

mitotically divided MICs. Upon starvation, Blepharisma cells, like other ciliates, are also capable 99 

of sexual processes initiated by conjugation. Essential for developmental investigations, the 100 

intricate ballet of nuclear movements and morphological changes occurring during Blepharisma 101 

conjugation is well-documented (Miyake et al., 1991) (Figure 1C). During this process half of the 102 

MICs in each of the cells undergo meiosis (meiotic MICs) and the rest do not (somatic MICs) 103 

(Figure 1C). One of the meiotic MICs eventually gives rise to two haploid gametic nuclei. One 104 

gametic MIC (the migratory nucleus) from each conjugating cell is exchanged with that of its 105 

partner. In parallel in partnered cells, subsequent fusion of the migratory and stationary haploid 106 

nuclei generates a zygotic nucleus (synkaryon), and after successive mitotic divisions gives rise 107 

to both new MICs and new MACs (known as anlagen). The new MACs continue to mature, 108 

eventually growing in size and DNA content (Miyake et al., 1991). 109 

 110 

Conveniently for investigations of development and genome editing, Blepharisma is one of only 111 

two ciliate genera, along with Euplotes (Katashima, 1959; Kimball, 1942; Luporini et al., 1983; 112 

Vallesi et al., 1995), where conjugation has been shown to be mediated through pheromone-like 113 
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substances called gamones. Blepharisma has two mating types, distinguished by their gamone 114 

production. Mating type I cells release gamone 1, a ~30 kDa glycoprotein (Miyake and Beyer, 115 

1974; Sugiura and Harumoto, 2001); mating type II cells release gamone 2, calcium-3-(2’-116 

formylamino-5’-hydroxybenzoyl) lactate, a small-molecule effector (Kubota et al., 1973). 117 

Blepharisma cells commit to conjugation when complementary mating types recognize each 118 

other's gamones, with the cells remaining paired while meiosis and fertilization occur and 119 

eventually new MACs begin to form. 120 

 121 

As in model ciliates, we show in an accompanying paper that MIC-specific sequences are 122 

removed to form a functional Blepharisma MAC genome (Seah, et al. 2022). Like other ciliates 123 

the resulting MAC genome appears to have been freed of mobile elements and other forms of 124 

junk DNA contained in the MIC genome (Klobutcher and Herrick, 1997). However, this situation 125 

is an oversimplification of the actual MAC genome content (Seah, et al. 2022). In the best 126 

studied ciliates, genome editing is thought to be coordinated or assisted by small RNAs (sRNAs) 127 

(Chalker et al., 2013). Specific MIC-limited DNA segments — internally eliminated sequences 128 

(IESs) — are excised by domesticated transposases (Arnaiz et al., 2012; Chalker et al., 2013; 129 

Klobutcher and Herrick, 1995; Prescott, 1994). Large scale genome-wide DNA amplification 130 

accompanies genome editing, producing thousands of copies in mature MACs of larger ciliate 131 

species (Klobutcher and Herrick, 1997; Prescott, 1994).  132 

 133 

We were motivated to investigate genome editing in Blepharisma, as, unlike model ciliates, 134 

these cells can produce two kinds of anlagen, and because one of their two developmental 135 

pathways skips the preceding series of mitoses, meioses, nuclear exchanges and fertilization 136 

(Miyake et al., 1991) (Figure 1C). Primary anlagen mature in the conventional manner from 137 

zygotic nuclei. Somatic MICs which have not undergone meiosis can give rise to secondary 138 

anlagen, which can develop into mature macronuclei (Miyake et al., 1991). This occurs 139 

frequently in strains with a high selfing frequency (conjugation among cells within a clonal 140 

population), in preference to development of primary MAC anlagen (Miyake et al., 1991). This 141 

alternative pathway of MAC development has also been observed experimentally after removal 142 

of primary MAC anlagen by microsurgery (Miyake et al., 1991). As conjugation progresses, the 143 

old (maternal) MACs are progressively degraded (Miyake et al., 1991). Since the B. stoltei MIC 144 

genome has numerous gene-interrupting IESs (Seah et al. 2022), in principle, editing of DNA 145 

needs to occur in both primary and secondary anlagen to produce functional MAC genomes.  146 

 147 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2022. ; https://doi.org/10.1101/2021.12.14.471607doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.471607
http://creativecommons.org/licenses/by/4.0/


 

 
6 

Here we provide essential somatic genome and transcriptomic resources for B. stoltei. From 148 

long-read sequencing, the B. stoltei MAC genome appears to be organized as numerous 149 

alternative minichromosomes. Among Blepharisma’s MAC-encoded transposase genes we 150 

identified were PiggyBac transposase homologs, which, thus far only reported in the distantly 151 

related ciliates Paramecium and Tetrahymena. A few Blepharisma PiggyBac homologs are 152 

substantially upregulated in MAC development, including the main candidate IES excisase. 153 

Consistent with ancient origins of ciliate genome editing, Blepharisma shares pronounced 154 

development-specific upregulation of homologs known to be involved in this process. 155 

Blepharisma therefore represents an invaluable outgroup for investigations of genome editing 156 

evolution. 157 

 158 

Results 159 

A compact somatic genome with a minichromosomal architecture 160 

The draft Blepharisma stoltei ATCC 30299 MAC genome is compact (41 Mb) and AT rich (66%), 161 

like most sequenced ciliate MAC genomes (Figure 2; Table S1, 2, Figure S1A). The genome is 162 

gene-dense (25,711 predicted genes), with short intergenic regions, tiny, predominantly 15 and 163 

16 bp introns (Figure S4; Supplemental information, “Tiny spliceosomal introns”) and 164 

untranslated regions (UTRs) (Figure 3A). B. stoltei uses an alternative nuclear genetic code with 165 

UGA codons reassigned from stops to tryptophan (Figure S1B).  166 

 167 

From joint variant calling of reads from strains ATCC 30299 and HT-IV, strain ATCC 30299 168 

appears to be virtually homozygous, with only 1277 heterozygous single-nucleotide 169 

polymorphisms (SNPs) compared to 193725 in strain HT-IV (i.e., individual heterozygosity of 170 

3.08 × 10-5 vs. 4.67 × 10-3 respectively). Low SNP levels were likely beneficial for overall 171 

genomic contiguity, since heterozygosity poses significant algorithmic challenges for assembly 172 

software (Chin et al., 2016). For brevity’s sake, we refer to this genome as the Blepharisma 173 

MAC genome (and “Blepharisma” for the associated strain). Though the final assembly 174 

comprises 64 telomere-to-telomere sequences, chromosomes and their ends are meaningless 175 

given the extensive natural fragmentation of the Blepharisma MAC genome (characterized in the 176 

next section), hence we simply refer to “contigs”.  177 
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 178 

The basic telomere unit of Blepharisma is a permutation of CCCTAACA, like its heterotrich 179 

relative Stentor coeruleus (Slabodnick et al., 2017) (Figure S2). Since a compelling candidate 180 

for a telomerase ncRNA (TERC) could not be found in either Blepharisma or Stentor using 181 

Infernal (Nawrocki et al., 2009) and RFAM models (RF00025 - ciliate TERC; RF00024 - 182 

vertebrate TERC), it was not possible to delimit the repeat ends. Heterotrichs may use a 183 

different or very divergent ncRNA. In contrast to the extremely short (20 bp) MAC telomeres of 184 

spirotrichs like Oxytricha with extreme MAC genome fragmentation (Swart et al., 2013), 185 

sequenced Blepharisma MAC telomeres are moderately long (Figure S2A), with a mode of 209 186 

bp (~26 repeats of the 8 bp motif), extending to a few kilobases. 187 

 188 

With a moderately strict definition of possessing at least three consecutive telomeric repeats, 189 

one in eight reads in the Blepharisma HiFi library were telomere-bearing. Telomeric reads are 190 

distributed across the entire genome (Figure 3B). Typically, a minority of mapped reads are 191 

telomere-bearing at individual internal positions, and so we term them alternative telomere 192 

addition sites (ATASs) (Figure 3B). We identified 46705 potential ATASs, the majority of which 193 

(38686) were represented by only one mapped HiFi read.  194 

 195 

The expected distance between telomeres, and hence the average MAC DNA molecule length, 196 

is about 130 kb. This is consistent with the raw input MAC DNA lengths, which were mostly 197 

longer than 10 kb and as long as 1.5 Mb (Figure S3A, B), and the small fraction (1.3%) of 198 

Blepharisma’s HiFi reads bound by telomeres on both ends. Excluding the length of the 199 

telomeres, telomere-bound reads may be as short as 4 kb (Figure S2B). Given the frequency of 200 

telomere-bearing reads, we expect many additional two-telomere DNA molecules longer than 12 201 

kb, the approximate maximum length of the HiFi reads (Figure S3A, B). 202 

 203 

Since the lengths of the sequenced two-telomere DNA molecules on average imply that they 204 

encode multiple genes, we propose classifying them as “minichromosomes”. This places them 205 

between the “nanochromosomes” of ciliates like Oxytricha and Stylonychia, which typically 206 

encode single genes and a few kilobases long (Aeschlimann et al., 2014; Swart et al., 2013), 207 

and Paramecium tetraurelia and Tetrahymena thermophila MAC chromosomes which are 208 

hundreds of kilobases to megabases long (Aury et al., 2006; Sheng et al., 2020; Zagulski et al., 209 

2004). The Paramecium bursaria MAC genome is considerably more fragmented than those of 210 
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other previously examined Paramecium species, and have thus also been classified as 211 

minichromosomes (Cheng et al., 2020).  212 

Key features of gene expression during new MAC development  213 

To gain an overview of the molecular processes during Blepharisma genome editing, we 214 

examined gene expression trends across development. Complementary B. stoltei strains were 215 

treated with gamones of the opposite mating type, before mixing to initiate conjugation (Miyake 216 

et al., 1991; Sugiura et al., 2012). Samples for morphological staging and RNA-seq were taken 217 

at intervals from the time of mixing ("0 hour" time point) up to 38 hours. 218 

 219 

During Blepharisma conjugation, meiosis begins around 2 h after conjugating cell pairs form and 220 

continues up to 18 h, by when gametic nuclei generated by meiosis have been exchanged 221 

(Figure 1C; Figure 4). This is followed by karyogamy and mitotic multiplication of the zygotic 222 

nucleus (22 hours). At 26 h, new, developing primary MACs can be observed in the conjugating 223 

pairs, as large, irregular bodies (Figure 4). These nuclei mature into the new MACs of the 224 

exconjugant cell by 38 h, after which cell division generates two daughter cells. Smaller 225 

secondary MACs, derived directly from MICs without all the intermediate nuclear stages, can 226 

also be seen from 22 h, eventually disappearing, giving way to the primary MACs (Figure 4). 227 

 228 

Examining gene expression at 26 h, when the majority of cells are forming a new MAC (Figure 229 

4), we observe two broad trends: relatively stable constitutive gene expression (Table S5; Data 230 

S3), e.g., an actin homolog (ENA accession: BSTOLATCC_MAC19444) and a bacteria-like 231 

globin protein (BSTOLATCC_MAC21846), versus pronounced development-specific 232 

upregulation (Table S6; Data S3), e.g., a histone (BSTOLATCC_MAC21995) an HMG box 233 

protein (BSTOLATCC_MAC14030), and a translation initiation factor (eIF4E, 234 

BSTOLATCC_MAC5291). We eschewed a shallow Gene Ontology (GO) enrichment analysis, 235 

instead favoring close scrutiny of a smaller subset of genes strongly upregulated during new 236 

MAC formation. For this, computational gene annotations in combination with BLASTP searches 237 

and examination of literature associated with homologs was used. Ranking the relative gene 238 

expression at 26 h vs. the average expression of starved, gamone treated, and 0 h cells, in 239 

descending order, revealed numerous genes of interest, including homologs of proteins known 240 

to be involved in genome editing in model ciliates (Table S6).  241 

 242 
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Among the top 100 genes ranked this way (69× to 825× upregulation) nine contain transposase 243 

domains from PFAM: DDE_Tnp_1_7, DDE_3, MULE and DDE_Tnp_IS1595 (e.g., 244 

BSTOLATCC_MAC2188, BSTOLATCC_MAC14490, BSTOLATCC_MAC18054, 245 

BSTOLATCC_MAC18052, respectively). We also observe small RNA (sRNA) biogenesis and 246 

transport proteins, i.e., a Piwi protein (BSTOLATCC_MAC5406) and a Dicer-like protein 247 

(BSTOLATCC_MAC1138; “Supplemental information”, “Homologs of small RNA-related proteins 248 

involved in ciliate genome editing” and Figure S8), and a POT1 telomere-binding protein 249 

homolog (POT1.4; BSTOLATCC_MAC1496; Supplemental information “Telomere-binding 250 

protein paralogs”). Numerous homologs of genes involved in DNA repair and chromatin are also 251 

present among these highly developmentally upregulated genes (“Supplemental information”, 252 

“Development-specific upregulation of proteins associated with DNA repair and chromatin” and 253 

“Development-specific histone variant upregulation”). The presence of proteins involved in either 254 

transcription initiation or translation initiation among these highly upregulated genes suggests a 255 

possible manner in which regulation of development-specific gene expression may be 256 

coordinated (“Supplemental information”, “Development-specific upregulation of proteins 257 

associated with initiation of transcription and translation”). 258 

A single Blepharisma PiggyBac homolog has a complete catalytic 259 

triad 260 

In Paramecium tetraurelia and Tetrahymena thermophila, PiggyBac transposases are 261 

responsible for IES excision during genome editing (Baudry et al., 2009; Cheng et al., 2010). 262 

These transposases appear to have been domesticated, i.e., their genes are no longer 263 

contained in transposons but are encoded in the somatic genome where they play an essential 264 

genome development role (Baudry et al., 2009; Cheng et al., 2010). PiggyBac homologs 265 

typically have a DDD catalytic triad, rather than the more common DDE triad of other DDE/D 266 

transposases (Yuan and Wessler, 2011). The DDD catalytic motif is present in Paramecium 267 

PiggyMac (Pgm) and Tetrahymena PiggyBac homologs Tpb1 and Tpb2 (Bischerour et al., 2018; 268 

Cheng et al., 2010). Among ciliates, domesticated PiggyBac transposases have so far only been 269 

reported in these model oligohymenophorean genera. Notably they have not been detected in 270 

either the MAC or MIC genome of the spirotrich Oxytricha trifallax (Chen et al., 2014; Swart et 271 

al., 2013).  272 

 273 
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We detected more transposase domains (9 distinct PFAM identifiers) in Blepharisma than any 274 

other ciliate species we examined (Figure 5A). Using HMMER searches with the domain 275 

characteristic of PiggyBac homologs, DDE_Tnp_1_7 (PF13843), we found eight homologs in B. 276 

stoltei ATCC MAC genome and five additional ones within IESs, none of which were flanked by 277 

terminal repeats (identified by RepeatModeler). We also found PiggyBac homologs in the MAC 278 

genomes of B. stoltei HT-IV and B. japonicum R1072.  279 

 280 

Reminiscent of Paramecium tetraurelia, which, among ten PiggyMac homologs, has just one 281 

homolog with a complete catalytic triad (Bischerour et al., 2018), the DDD triad is preserved in 282 

just a single Blepahrisma PiggyBac homolog (Figure 5B; Contig_49.g1063, 283 

BSTOLATCC_MAC17466). This gene is strongly upregulated during development from 22 to 38 284 

h, when new MACs develop and IES excision is required (Figure 5B). In a multiple sequence 285 

alignment the canonical catalytic triad second aspartate of a lower-expressed, MIC-limited 286 

PiggyBac is offset by one amino acid (Data S5). 287 

 288 

There are significant similarities in the basic properties of Blepharisma and Paramecium IESs, 289 

detailed in the Blepharisma MIC genome report (Seah et al. 2022). Consequently, adopting the 290 

Paramecium nomenclature, we refer to the primary candidate IES excisase as Blepharisma 291 

PiggyMac (BPgm) and the other somatic homologs as BPgm-Likes (BPgmLs). By extension, we 292 

refer to their close relatives which are germline-limited as PiggyMics (Figure 5B). 293 

 294 

Other than the PFAM DDE_Tnp_1_7 domain, three Blepharisma MAC genome-encoded 295 

PiggyBac homologs also possess a short, characteristic cysteine-rich domain (CRD) (Figure 296 

5C), which is absent from the other BPgmLs and PiggyMics. PiggyBac CRDs have been 297 

classified into three different groups and are essential for Paramecium IES excision (Guérineau 298 

et al., 2021). In Blepharisma, the CRD consists of five cysteine residues arranged as CxxC-299 

CxxCxxxxH-Cxxx(Y)H (where C, H, Y and x respectively denote cysteine, histidine, tyrosine and 300 

any other residue). Two Blepharisma homologs possess this CRD without the penultimate 301 

tyrosine residue, while the third contains a tyrosine residue before the final histidine. This -YH 302 

feature towards the end of the CxxC-CxxCxxxxH-Cxxx(Y)H CRD is shared by all the PiggyBac 303 

homologs we found in Condylostoma, the bat PiggyBac-like element (PBLE) and human 304 

PiggyBac element-derived (PGBD) proteins PGBD2 and PGBD3. In contrast, PiggyBac 305 

homologs from Paramecium and Tetrahymena have a CRD with six cysteine residues arranged 306 
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in the variants of the motif CxxC-CxxC-Cx{2-7}Cx{3,4}H, and group together with human 307 

PGDB4 and Spodoptera frugiperda PBLE (Figure 5C). 308 

PiggyBac transposases are subject to purifying selection and 309 

originated early in ciliate evolution  310 

Previous experiments involving individual or paired gene knockdowns of most of the ten 311 

Paramecium tetraurelia PiggyMac(-like) paralogs led to substantial IES retention, even though 312 

only one PiggyMac gene (Pgm) has the complete catalytic triad, indicating that all these proteins 313 

are functional (Bischerour et al., 2018). To examine functionally constraints on Paramecium 314 

PiggyMac homologs we examined non-synonymous (dN) to synonymous substitution rates (dS), 315 

i.e. ω = dN/dS, for pairwise codon sequence alignments using two closely related Paramecium 316 

species (P. tetraurelia and P. octaurelia). All dN/dS values for pairwise comparisons of each of 317 

the catalytically incomplete P. tetraurelia PgmLs versus the complete Pgm, were less than 1, 318 

ranging from 0.01 to 0.25 (Table S7). All dN/dS values for pairwise comparisons between P. 319 

tetraurelia and P. octaurelia PiggyBac orthologs were also substantially less than 1, ranging 320 

from 0.02 to 0.11 (Table S8). Since dN/dS= 1 indicates genes evolving neutrally (Yang and 321 

Nielsen, 2000), none of these genes are likely pseudogenes, and all appear subject to similar 322 

purifying selection. 323 

 324 

Only one of Blepharisma’s eight MAC and five MIC PiggyBac homologs has the complete, 325 

characteristic DDD triad necessary for catalysis. In pairwise comparisons of each of the MAC 326 

homologs with incomplete/missing triads versus the complete one dN/dS ranges from 0.0076 to 327 

0.1351 (Table S9). The pairwise non-synonymous to synonymous substitution rates of the 328 

PiggyMics in comparison to the BPgm were also much less than 1 (range 0.007 to 0.2), 329 

indicating they are also subject to purifying selection.  330 

 331 

We detected PiggyBac homologs in two other heterotrichs, but not the oligohymenophorean 332 

Ichthyophthirius multifiliis (“Supplemental information”). To determine whether the Blepharisma 333 

PiggyBac homologs share a common ciliate ancestor with the oligohymenophorean PiggyBacs, 334 

or whether they arose from independent acquisitions in major ciliate groups, we created a large 335 

phylogeny of PiggyBac homologs representative of putative domesticated transposases from 336 

Blepharisma stoltei ATCC 30299, Condylostoma magnum, Paramecium spp., Tetrahymena 337 

thermophila, as well as PiggyBac-like elements (PBLEs (Bouallègue et al., 2017)) from diverse 338 
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eukaryotes (Figure 6; Data S1). All the heterotrichous ciliates PiggyBac homologs, ie. BPgm, 339 

BPgmLs 1-7 and PiggyMics grouped together with the Condylostoma Pgms. The ciliate Pgms 340 

and PgmLs largely cluster as a single clade, with the exception of PiggyMic 5, which appears as 341 

a low-support outgroup to opisthokont, archaeplastid and stramenopile PiggyBac-like elements. 342 

PiggyMic 5 has the shortest detected DDE_Tnp_1_7 domain (26 a.a.), and appeared poorly 343 

aligned relative to the other homologs.  344 

Blepharisma’s MAC genome encodes additional domesticated 345 

transposases 346 

Three Blepharisma MAC genome-encoded proteins possess PFAM domain DDE_1 (PF03184; 347 

Figure 7). The most common domain combinations for this domain, aside from proteins with it 348 

alone (5898 sequences; PFAM version 35), are with an N-terminal PFAM domain 349 

HTH_Tnp_Tc5 (PF03221) alone (2240 sequences), and both an N-terminal CENP-B_N domain 350 

(PF04218) and central HTH_Tnp_Tc5 domain (1255 sequences). The CENP-B_N domain is 351 

characteristic of numerous transposases, notably the Tigger and PogoR families (Gao et al., 352 

2020). Though pairwise sequence identity is low amongst the Blepharisma DDE_1 proteins 353 

(avg. 28.3%) in their multiple sequence alignment, the CENP-B_N domain in one of them 354 

appears to align reasonably well to corresponding regions in the two proteins lacking this 355 

domain, suggesting it deteriorated beyond the recognition capabilities of HMMER3 and the 356 

given PFAM domain model. BLASTp matches for all three proteins in GenBank are annotated 357 

either as Jerky or Tigger homologs (Jerky transposases belong to the Tigger transposase family 358 

(Gao et al., 2020)). Given that none of the Blepharisma MAC DDE_1 domain proteins appears 359 

to have a complete catalytic triad, it is unlikely they are involved in transposition or IES excision. 360 

 361 

Six MAC-encoded transposases containing the DDE_3 domain (PF13358) are present in 362 

Blepharisma, all of which are substantially upregulated in MAC development and five of which 363 

possess the complete DDE catalytic triad (Figure 7B). The DDE_3 domain is characteristic of 364 

DDE transposases encoded by the Telomere-Bearing Element transposons (TBEs) of Oxytricha 365 

trifallax (Williams et al., 1993; Witherspoon et al., 1997), which, despite being MIC genome-366 

limited, are proposed to be involved in IES excision (Nowacki et al., 2009). DDE_3-containing 367 

transposons, called Tec elements, are found in another spirotrichous ciliate, Euplotes crassus, 368 

but no role in genome editing has been established for these (Jahn et al., 1993). TBEs and Tec 369 

elements do not share obvious features, other than both possessing an encoded protein 370 
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belonging to the IS630-Tc1 transposase (super)-family (Doak et al., 1994). All six Blepharisma 371 

DDE_3 genes have at least 150× HiFi read coverage, consistent with their presence in bona fide 372 

MAC DNA. 373 

 374 

As judged by BLASTP searches in which most of the top hundred best matches are classified 375 

are “IS630 family” transposases, Blepharisma MAC-encoded DDE_3 domain transposases are 376 

more closely related to the IS630 transposase family than to Oxytricha TBE transposases and 377 

Euplotes Tec transposases. One of the BLAST top hits is a MIC genome-encoded protein in 378 

Oxytricha trifallax with a DDE_3 domain which is not a TBE transposase (GenBank accession: 379 

KEJ83017.1). IS630 transposases diverge considerably from Tc1-Mariner transposases, and 380 

hence are considered an outgroup to them (Dupeyron et al., 2020). IS630-related transposases 381 

encoded by Anchois transposons have also been detected in the Paramecium tetraurelia MIC 382 

genome (Arnaiz et al., 2012). Given that all but one of the B. stoltei paralogs appear to possess 383 

a complete catalytic triad, there is a possibility that they may be involved in some IES exicison.  384 

 385 

Among other ciliates with draft MAC genomes we examined, the IS1595- and MULE 386 

transposase-like domains (PFAM PF12762 and PF10551) have so far only been observed in the 387 

spirotrichs Oxytricha and Stylonychia (Aeschlimann et al., 2014; Swart et al., 2013). 388 

DDE_Tnp_IS1595 domains are characteristic of the Merlin transposon superfamily and MULE is 389 

part of the Mutator transposon superfamily (Yuan and Wessler, 2011). Currently no particular 390 

functions have been demonstrated for these proteins in these ciliates, but their genes were 391 

substantially upregulated during their development (Chen et al., 2014; Swart et al., 2013). Both 392 

transposase-like domains are found in MAC-encoded proteins in Blepharisma and their 393 

underlying genes are upregulated during MAC development (Figure 7C, Figure S7). Consistent 394 

with the notion of transposase domestication, the genes encoding DDE_Tnp_IS1595 and MULE 395 

proteins appear to lack flanking transposon terminal inverted repeats. Members of both IS1595 396 

and MULE transposases also appear to have complete catalytic triads. 397 

 398 

In addition to cut-and-paste transposases, we detected a family (> 30 copies) of APE-type non-399 

LTR retrotransposase genes encoding proteins with two characteristic domains, i.e., an APE 400 

endonuclease domain (PFAM “exo_endo_phos_2”; PF14529) and a reverse transcriptase 401 

domain (PFAM “RVT_1”; PF00078) present on adjacent genes. Unlike the conventional 402 

transposase-derived genes in B. stoltei, the expression of all these genes throughout the 403 

conditions we examined is negligible, and some also appear to be truncated pseudogenes (Data 404 
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S3; workbook “RVT1 + exo_endo_phos_2”). Since it is necessary to understand the relationship 405 

of these sequences with respect to IESs, and that they are not due to residual MIC DNA 406 

contamination, their analysis is reported in the context of the Blepharisma stoltei MIC genome 407 

(Seah et al. 2022). 408 

Discussion 409 

The genus Blepharisma represents one of the earliest diverging ciliate lineages, the 410 

heterotrichs, forming an outgroup to the best-studied and deeply divergent oligohymenophorean 411 

and spirotrich ciliates (Lynn, 2010). Blepharisma species thus provide a vantage point to 412 

compare unique processes that have accompanied the evolution of nuclear and genomic 413 

dimorphism in ciliates, particularly the extensive genomic editing occurring during MAC 414 

development. The annotated draft B. stoltei ATCC 30299 MAC genome and associated 415 

transcriptomic data provide the basis for comparative studies of genome editing.  416 

Blepharisma PiggyMac is the primary candidate IES excisase 417 

A considerable body of evidence implicates PiggyBac homologs in IES excision of the 418 

oligohymenophorean ciliates Tetrahymena and Paramecium (Arnaiz et al., 2012; Baudry et al., 419 

2009; Bischerour et al., 2018; Cheng et al., 2010; Feng et al., 2017). The responsible IES 420 

excisases in the less-studied spirotrichs, Oxytricha, Stylonychia and Euplotes, are not as 421 

evident. Oxytricha’s TBE transposases are considered to be involved in IES excision, but are 422 

encoded by full-length germline-limited transposons and are absent from the MAC (Nowacki et 423 

al., 2009), unlike the primary, MAC genome-encoded IES excisase (Tpb2) in Tetrahymena and 424 

the Paramecium PiggyMacs and PiggyMac-likes. The pronounced developmental upregulation 425 

of numerous additional MAC- and MIC-encoded transposases in Oxytricha raises the possibility 426 

that transposases other than those of TBEs could also be involved in IES excision (Chen et al., 427 

2014; Swart et al., 2013). Knowledge of IESs in other ciliates is sparse, primarily confined to the 428 

phyllopharyngean Chilodonella uncinata (Zufall and Katz, 2007; Zufall et al., 2012). As far as we 429 

are aware, no specific IES excisases have been proposed for them. 430 

 431 

In current models of IES excision, MIC-limited sequence demarcation by deposition of 432 

methylation marks on histones occurs in an sRNA-dependent process (Chalker et al., 2013). 433 

These sequences are recognized by domesticated transposases whose excision is supported 434 
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by additional proteins that somehow recognize these marks (Chalker et al., 2013). Together with 435 

MIC sequencing we observed abundant, development-specific sRNA production in Blepharisma 436 

resembling other model ciliates (Seah et al. 2022). Homologs of proteins implicated in ciliate 437 

genome editing were present among the genes most highly differentially upregulated during new 438 

MAC development, notably including Dicer-like and Piwi proteins which are candidate genes 439 

responsible for development-specific sRNA biogenesis (Figure S8). 440 

 441 

Since the oligohymenophorean PiggyBac homologs are clear IES excisases, we sought and 442 

found eight homologs of these genes in the Blepharisma MAC genome and five in the IESs. 443 

Blepharisma is the first ciliate genus aside from Tetrahymena and Paramecium in which such 444 

proteins have been reported, and distantly related to both. Additional searches revealed clear 445 

PiggyBac homologs in Condylostoma magnum, and a weaker pair of matches in Stentor 446 

coeruleus, suggesting that these are a common feature of heterotrich ciliates. Reminiscent of 447 

Paramecium tetraurelia, in which just one of the nine PiggyBac homologs, PiggyMac, has a 448 

complete DDD catalytic triad (Bischerour et al., 2018), a single Blepharisma PiggyBac homolog 449 

has a complete canonical DDD catalytic triad, and its gene is highly upregulated during MAC 450 

development. As is characteristic of PiggyBac homologs, each of these three proteins also has a 451 

C-terminal, cysteine-rich, zinc finger domain. The organization of the heterotrich PiggyBac 452 

homolog zinc finger domains is more similar to comparable domains of Homo sapiens PGBD2 453 

and PGBD3 homologs than the zinc finger domains in Paramecium and Tetrahymena PiggyBac 454 

homologs. 455 

 456 

Since the discovery of multiple PiggyBac homologs (PiggyMac-likes) in Paramecium there have 457 

been questions about their role. Aside from PiggyMac, all PiggyMac-likes have incomplete 458 

catalytic triads, and are thus likely catalytically inactive, but nevertheless their gene knockdowns 459 

lead to pronounced IES retention (Bischerour et al., 2018). It has therefore been proposed that 460 

the PiggyMac-likes may function as heteromeric multi-subunit complexes in conjunction with 461 

PiggyMac during DNA excision (Bischerour et al., 2018). On the other hand, cryo-EM structures 462 

available for moth PiggyBac transposase support a model in which these proteins function as a 463 

homodimeric complex in vitro (Chen et al., 2020). Furthermore, the primary Tetrahymena 464 

PiggyBac, Tpb2, is able to perform cleavage in vitro alone (Cheng et al., 2010). In other 465 

eukaryotes, domesticated PiggyBacs without complete catalytic triads are thought to be retained 466 

due to co-option of their DNA-binding domains (Sarkar et al., 2003). One possibility for such 467 

purely DNA-binding transposase-derived proteins in ciliates could be in competitively regulating 468 
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(taming) the excision of DNA by the catalytically active transposases. Future experimental 469 

analyses of the BPgm and the BPgm-likes could aid in resolving the conundrums and 470 

understanding of possible interactions between catalytically active and inactive transposases. 471 

Blepharisma has additional domesticated transposases whose 472 

roles await determination 473 

In addition to the PiggyBac homologs, we found MAC genome-encoded transposases with the 474 

PFAM domains “DDE_1”, “DDE_3”, “DDE_Tnp_IS1595” and “MULE” in Blepharisma. All the 475 

genes encoding these proteins lack flanking terminal repeats characteristic of active 476 

transposons, suggesting they are further classes of domesticated transposases. In Blepharisma 477 

and numerous other organisms, the DDE_1 domains co-occur with CENPB domains. Two such 478 

proteins represent totally different proposed exaptations in mammals (centromere-binding 479 

protein) and fission yeast (regulatory protein) (Casola et al., 2008; Hohmann, 1993; Mojzita and 480 

Hohmann, 2006). Given the great evolutionary distances involved, there is no reason to expect 481 

that the Blepharisma homologs have either function. None of the three proteins with co-482 

occurring DDE_1 and CENPB domains have a complete catalytic triad, making it unlikely that 483 

these are active transposases or IES excisases, though all three are noticeably upregulated 484 

during MAC development. Six proteins with the PFAM domain DDE_3 are also encoded by 485 

Blepharisma MAC genes, of which five possess a complete catalytic triad. DDE_3 domains are 486 

also characteristic of TBE transposases in Oxytricha and Tec transposases in Euplotes. All the 487 

“DDE_3” protein genes are upregulated during conjugation in B. stoltei, peaking during new 488 

MAC development. A number of DDE_Tnp_IS1595 and MULE domain-containing proteins have 489 

complete catalytic triads and also show pronounced upregulation during Blepharisma MAC 490 

development. 491 

 492 

All ciliate species have MAC genome-encoded transposase families (Figure 5A). Though 493 

upregulation of some of these homologs in model ciliates has been noted (Chen et al., 2014; 494 

Swart et al., 2013; Vogt and Mochizuki, 2013), their roles remain to be determined. Aside from 495 

the timing of IES excisase expression to coincide with new MAC genome formation, the manner 496 

in which the excisases perform excision is also crucial. Upon excision, classical cut-and-paste 497 

transposases in eukaryotes typically leave behind additional bases, notably including the target-498 

site duplication arising when they were inserted, forming a “footprint” (van Luenen et al., 1994). 499 

PiggyBac homologs are unique in performing precise, “seamless” excision in eukaryotes (Elick 500 
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et al., 1996), conserving the number of bases at the site of transposon insertion after excision, a 501 

property that makes them popular for genetic engineering (Chen et al., 2020). Tetrahymena 502 

Tpb2 is the one exception among PiggyBac homologs associated with imprecise excision in this 503 

eukaryote (Cheng et al., 2010). Since intragenic IESs are abundant in Blepharisma, like 504 

Paramecium and unlike Tetrahymena, it is essential that these are excised precisely.  505 

 506 

Though there are clearly numerous additional domesticated transposases with complete 507 

catalytic triads and whose genes are substantially upregulated during Blepharisma 508 

development, whether they are capable of excision, and if this is precise, needs to be 509 

established. Tetrahymena has distinct domesticated transposases that excise different subsets 510 

of IESs, namely those that are predominant, imprecisely excised and intergenic (by Tpb2) 511 

(Cheng et al., 2010), versus those that are rare, precisely excised and intragenic (by Tpb1 and 512 

Tpb6) (Cheng et al., 2016; Feng et al., 2017). We could envisage if the additional Blepharisma 513 

domesticated transposases are still capable of excision, but not a precise form, an involvement 514 

in excision of a subset of the numerous intergenic IESs. 515 

A single origin of PiggyBac homologs within ciliates is the most 516 

parsimonious scenario 517 

Though phylogenetic analyses indicate Tetrahymena, Paramecium and Blepharisma PiggyBac 518 

homologs form a monophyletic clade the lack of PiggyBac homologs in some ciliate classes and 519 

potentially the oligohymenophorean Ichthyophthirius multifiliis raises the question whether 520 

PiggyBac IES excisases were lost or replaced in these lineages, or rather gained independently 521 

from the same source by heterotrichs and a subset of oligohymenophoreans. We think the 522 

former is more likely, and consistent with a long-standing hypothesis for ancestral IES excisase 523 

substitution in particular ciliate lineages (Klobutcher and Herrick, 1997). However, the alternative 524 

cannot be dismissed, because non-model ciliates, where the genome assembly quality allows 525 

reliable gene and domain annotations, have only been sparsely sampled. 526 

Future directions 527 

The B. stoltei ATCC 30299 MAC genome together with the corresponding MIC genome (Seah et 528 

al., 2022) pave the way for future investigations of genome editing in the context of a peculiar, 529 

direct pathway to new MAC genome development skipping the upstream complexity of the 530 
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standard pathway (Miyake et al., 1991). The pair of B. stoltei strains used are both now low 531 

frequency selfers, in which the conventional, indirect MAC development pathway dominates. 532 

Comparisons with fresh, high frequency Blepharisma selfers collected from the wild will facilitate 533 

comparative gene expression analyses with the direct MAC development pathway, which will 534 

assist in distinguishing expression upregulation due to meiotic and fertilization processes 535 

preceding indirect new MAC development.  536 
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Methods 537 

Strains and localities 538 

The strains used and their original isolation localities were: Blepharisma stoltei ATCC 30299, 539 

Lake Federsee, Germany (Repak, 1968); Blepharisma stoltei HT-IV, Aichi prefecture, Japan; 540 

Blepharisma japonicum R1072, from an isolate from Bangalore, India (Harumoto et al., 1998). 541 

Cell cultivation, harvesting and cleanup 542 

For genomic DNA isolation B. stoltei ATCC 30299 and HT-IV cells were cultured in Synthetic 543 

Medium for Blepharisma (SMB) (Miyake and Beyer, 1973) at 27˚C. Belpharismas were fed 544 

Chlorogonium elongatum grown in Tris-acetate phosphate (TAP) medium (Andersen, 2004) at 545 

room temperature. Chlorogonium cells were pelleted at 1500 g at room temperature for 3 546 

minutes to remove most of the TAP medium, and resuspended in 50 mL SMB. 50 ml of dense 547 

Chlorogonium was used to feed 1 litre of Blepharisma culture once every three days. 548 

 549 

Blepharisma stoltei ATCC 30299 and HT-IV cells used for RNA extraction were cultured in 550 

Lettuce medium inoculated with Enterbacter aerogenes and maintained at 25˚C (Miyake et al., 551 

1990).  552 

  553 

Blepharisma cultures were concentrated by centrifugation in pear-shaped flasks at 100 g for 2 554 

minutes using a Hettich Rotanta 460 centrifuge with swing out buckets. Pelleted cells were 555 

washed with SMB and centrifuged again at 100 g for 2 minutes. The washed pellet was then 556 

transferred to a cylindrical tube capped with a 100 µm-pore nylon membrane at the base and 557 

immersed in SMB to filter residual algal debris from the washed cells. The cells were allowed to 558 

diffuse through the membrane overnight into the surrounding medium. The next day, the 559 

cylinder with the membrane was carefully removed while attempting to minimize dislodging any 560 

debris collected on the membrane. Cell density after harvesting was determined by cell counting 561 

under the microscope. 562 
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DNA isolation, library preparation and sequencing 563 

B. stoltei macronuclei were isolated by sucrose gradient centrifugation (Lauth et al., 1976). DNA 564 

was isolated with a Qiagen 20/G genomic-tip kit according to the manufacturer’s instructions. 565 

Purified DNA from the isolated MACs was fragmented, size selected and used to prepare 566 

libraries according to standard PacBio HiFi SMRTbell protocols. The libraries were sequenced in 567 

circular consensus mode to generate HiFi reads. 568 

  569 

Total genomic DNA from B. stoltei HT-IV and B. stoltei ATCC 30299 was isolated with the 570 

SigmaAldrich GenElute Mammalian genomic DNA kit. A sequencing library was prepared with a 571 

NEBnext FS DNA Library Prep Kit for Illumina and sequenced on an Illumina HiSeq 3000 572 

sequencer, generating 150 bp paired-end reads.  573 

 574 

Total genomic DNA from B. japonicum was isolated with the Qiagen MagAttract HMW DNA kit. 575 

A long-read PacBio sequencing library was prepared using the SMRTbell® Express Template 576 

Preparation Kit 2.0 according to the manufacturers’ instructions and sequenced on an PacBio 577 

Sequel platform with 1 SMRT cell. Independently, total genomic DNA form B. japonicum was 578 

isolated with the SigmaAldrich GenElute Mammalian genomic DNA kit and an sequencing 579 

library was prepared with the TruSeq Nano DNA Library Prep Kit (Illumina) and sequenced on 580 

an Illumina NovaSeq6000 to generate 150 bp paired-end reads.  581 

Gamone 1/ Cell-Free Fluid (CFF) isolation and conjugation activity 582 

assay 583 

B. stoltei ATCC 30299 cells were cultured and harvested and concentrated to a density of 2000 584 

cells/mL according to the procedure described in “Cell cultivation, Harvesting and Cleanup”. This 585 

concentrated cell culture was incubated overnight at 27˚C. The next day, the cells were 586 

harvested, and the supernatant collected and preserved at 4˚C at all times after extraction. The 587 

supernatant was then filtered through a 0.22 µm-pore filter. BSA (10 mg/mL) was added to 588 

produce the final CFF at a final BSA concentration of 0.01%. 589 

 590 

To assess the activity of the CFF, serial dilutions of the CFF were made to obtain the gamone 591 

activity in terms of units (U) (Miyake, 1981).The activity of the isolated CFF was 210 U. 592 
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Conjugation time course and RNA isolation for high-throughput 593 

sequencing 594 

B. stoltei cells for the complementary strains, ATCC 30299 and HT-IV, were cultivated and 595 

harvested by gentle centrifugation to achieve a final cell concentration of 2000 cells/ml for each 596 

strain. Non-gamone treated ATCC 30299 (A1) and HT-IV cells (H1) were collected (time point: -597 

3 hours). Strain ATCC 30299 cells were then treated with synthetic gamone 2 (final 598 

concentration 1.5 µg/mL) and strain HT-IV cells were treated with cell-free fluid with a gamone 1 599 

activity of ~210 U/ml for three hours (Figure S6). 600 

 601 

Homotypic pair formation in both cultures was checked after three hours. More than 75% of the 602 

cells in both cultures formed homotypic pairs. At this point the samples A2 (ATCC 30299) and 603 

H2 (HT-IV) were independently isolated for RNA extraction as gamone-treated control cells just 604 

before mixing. For the rest of the culture, homotypic pairs in both cultures were separated by 605 

pipetting them gently with a wide-bore pipette tip. Once all pairs had been separated, the two 606 

cultures were mixed together. This constitutes the experiment’s 0-h time point. The conjugating 607 

culture was observed and samples collected for RNA isolation or cell fixation at 2 h, 6 h, 14 h, 608 

18 h, 22 h, 26 h, 30 h and 38 h (Figure S6). Further details of the sample staging approach are 609 

described in (Miyake et al., 1991) and (Sugiura et al., 2012).  At each time point including 610 

samples A1, H1, A2 and H2, 7 mL of culture was harvested for RNA-extraction using Trizol. The 611 

total RNA obtained was then separated into a small RNA fraction < 200 nt and a fraction with 612 

RNA fragments > 200 nt using the Zymo RNA Clean and Concentrator-5 kit according to the 613 

manufacturer's instructions. RNA-seq libraries were prepared by BGI according to their standard 614 

protocols and sequenced on a BGISeq 500 instrument. 615 

 616 

Separate 2 mL aliquots of cells at each time point for which RNA was extracted were 617 

concentrated by centrifuging gently at 100 rcf. 50 µL of the concentrated cells were fixed with 618 

Carnoy’s fixative (ethanol:acetic acid, 6:1), stained with DAPI and imaged to determine the state 619 

of nuclear development (Miyake et al., 1991). 620 

 621 
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Cell fixation and imaging 622 

B. stoltei cells were harvested as above (“Cell cultivation”), and fixed with an equal volume of 623 

“ZFAE” fixative, containing zinc sulfate (0.25 M, Sigma Aldrich), formalin, glacial acetic acid and 624 

ethanol (Carl Roth), freshly prepared by mixing in a ratio of 10:2:2:5. Fixed cells were pelleted 625 

(1000 g; 1 min), resuspended in 1% TritonX-100 in PHEM buffer to permeabilize (5 min; room 626 

temperature), pelleted and resuspended in 2% (w/v) formaldehyde in PHEM buffer to fix further 627 

(10 min; room temp.), then pelleted and washed twice with 3% (w/v) BSA in TBSTEM buffer 628 

(~10 min; room temp.). For indirect immunofluorescence, washed cells were incubated with 629 

primary antibody rat anti-alpha tubulin (Abcam, ab6161; 1:100 dilution in 3% w/v BSA/TBSTEM; 630 

60 min; room temp.) then secondary antibody goat anti-rat IgG H&L labeled with AlexaFluor 488 631 

(Abcam, ab150157, 1:500 dilution in 3% w/v BSA/TBSTEM; 20 min; room temp.). Nuclei were 632 

counterstained with DAPI (1 µg/mL) in 3% (w/v) BSA/TBSTEM. A z-stack of images was 633 

acquired using a confocal laser scanning microscope (Leica TCS SP8), equipped with a HC PL 634 

APO 40× 1.30 Oil CS2 objective and a 1 photomultiplier tube and 3 HyD detectors, for DAPI 635 

(405 nm excitation, 420-470 nm emission) and Alexa Fluor 488 (488 nm excitation, 510-530 nm 636 

emission). Scanning was performed in sequential exposure mode. Spatial sampling was 637 

achieved according to Nyquist criteria. ImageJ (Fiji) (Schindelin et al., 2012) was used to adjust 638 

image contrast and brightness and overlay the DAPI and AlexaFluor 488 channels. The z-stack 639 

was temporally color-coded. 640 

 641 

For a nuclear 3D reconstruction (Figure 1B), cells were fixed in 1% (w/v) formaldehyde and 642 

0.25% (w/v) glutaraldehyde. Nuclei were stained with Hoechst 33342 (Invitrogen) (5 µM in the 643 

culture media), and imaged with a confocal laser scanning microscope (Zeiss, LSM780) 644 

equipped with an LD C-Apochromat 40x/1,1 W Korr objective and a 32 channel GaAsP array 645 

detector, with 405 nm excitation and 420-470 nm emission. Spatial sampling was achieved 646 

according to Nyquist criteria. The IMARIS (Bitplane) software v8.0.2 was used for three-647 

dimensional reconstructions and contrast adjustments. 648 

Genome assembly 649 

Two MAC genome assemblies for B. stoltei ATCC 30299 (70× and 76× coverage) were 650 

produced with Flye (version 2.7-b1585) (Kolmogorov et al., 2019) for the two separate PacBio 651 

Sequel II libraries (independent replicates) using default parameters and the switches: --pacbio-652 
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hifi -g 45m. The approximate genome assembly size was chosen based on preliminary Illumina 653 

genome assemblies of approximately 40 Mb. Additional assemblies using the combined 654 

coverage (145×) of the two libraries were produced using either Flye version 2.7-b1585 or 2.8.1-655 

b1676, and the same parameters. Two rounds of extension and merging were then used, first 656 

comparing the 70× and 76× assemblies to each other, then comparing the 145× assembly to the 657 

former merged assembly. Assembly graphs were all relatively simple, with few tangles to be 658 

resolved (Figure S5B). Minimap2 (Li, 2018) was used for pairwise comparison of the assemblies 659 

using the parameters: -x asm5 --frag=yes --secondary=no, and the resultant aligned sequences 660 

were visually inspected and manually merged or extended where possible using Geneious 661 

(version 2020.1.2) (Kearse et al., 2012). 662 

 663 

Visual inspection of read mapping to the combined assembly was then used to trim off contig 664 

ends where there was little correspondence between the assembly consensus and the mapped 665 

reads - which we classify as "cruft". Read mapping to cruft regions was often lower or uneven, 666 

suggestive of repeats. Alternatively, these features could be due to trace MIC sequences, or 667 

sites of alternative chromosome breakage during development which lead to sequences that are 668 

neither purely MAC nor MIC. A few contigs with similar dubious mapping of reads at internal 669 

locations, which were also clear sites of chromosome fragmentation (evident by abundant 670 

telomere-bearing reads in the vicinity) were split apart and trimmed back as for the contig ends. 671 

Telomere-bearing reads mapped to the non-trimmed region nearest to the trimmed site were 672 

then used to define contig ends, adding representative telomeric repeats from one of the 673 

underlying sequences mapped to each of the ends. The main genome assembly with gene 674 

predictions can be obtained from the European Nucleotide Archive (ENA) (PRJEB40285; 675 

accession GCA_905310155). “Cruft” sequences are also available from the same accession. 676 

 677 

Two separate assemblies were generated for Blepharisma japonicum. A genome assembly for 678 

Blepharisma japonicum strain R1072 was generated from Illumina reads, using SPAdes 679 

genome assembler (v3.14.0) (Prjibelski et al., 2020). An assembly with PacBio Sequel long 680 

reads was produced with Ra (v0.2.1) (Vaser and Sikic, 2019), which uses the Overlap-Layout-681 

Consensus paradigm. The assembly produced with Ra was more contiguous, with 268 contigs, 682 

in comparison to 1510 contigs in the SPAdes assembly, and was chosen as the reference 683 

assembly for Blepharisma japonicum (ENA accession: ERR6474383).  684 

 685 
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Condylostoma magnum genomic reads (study accession PRJEB9019) from a previous study 686 

(Swart et al., 2016) were reassembled to improve contiguity and remove bacterial 687 

contamination. Reads were trimmed with bbduk.sh from the BBmap package v38.22 688 

(https://sourceforge.net/projects/bbmap/), using minimum PHRED quality score 2 (both ends) 689 

and k-mer trimming for Illumina adapters and Phi-X phage sequence (right end), retaining only 690 

reads ≥25 bp. Trimmed reads were error-corrected and reassembled with SPAdes v3.13.0 691 

(Prjibelski et al., 2020) using k-mer values 21, 33, 55, 77, 99. To identify potential contaminants, 692 

the unassembled reads were screened with phyloFlash v3.3b1 (Gruber-Vodicka et al., 2020) 693 

against SILVA v132 (Quast et al., 2013); the coding density under the standard genetic code 694 

and prokaryotic gene model were also estimated using Prodigal v2.6.3 (Hyatt et al., 2010). 695 

Plotting the coverage vs. GC% of the initial assembly showed that most of the likely bacterial 696 

contigs (high prokaryotic coding density, lower coverage, presence of bacterial SSU rRNA 697 

sequences) had >=40% GC, so we retained only contigs with <40% GC as the final C. magnum 698 

genome bin. The final assembly is available from the ENA bioproject PRJEB48875 (accession 699 

GCA_920105805). 700 

 701 

All assemblies were inspected with the quality assessment tool QUAST (Gurevich et al., 2013). 702 

Variant calling 703 

Illumina total genomic DNA-seq libraries for B. stoltei strains ATCC 30299 (ENA accession: 704 

ERR6061285) and HT-IV (ERR6064674) were mapped to the ATCC 30299 reference assembly 705 

with bowtie2 v2.4.2 (Langmead and Salzberg, 2012). Alignments were tagged with the MC tag 706 

(CIGAR string for mate/next segment) using samtools (Danecek et al., 2021) fixmate. The BAM 707 

file was sorted and indexed, read groups were added with bamaddrg (commit 9baba65, 708 

https://github.com/ekg/bamaddrg), and duplicate reads were removed with Picard 709 

MarkDuplicates v2.25.1 (http://broadinstitute.github.io/picard/). Variants were called from the 710 

combined BAM file with freebayes v1.3.2 (Garrison and Marth, 2012) in diploid mode, with 711 

maximum coverage 1000 (option -g). The resultant VCF file was combined and indexed with 712 

bcftools v1.12 (Danecek et al., 2021), then filtered to retain only SNPs with quality score > 20, 713 

and at least one alternate allele. 714 
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Annotation of alternative telomere addition sites 715 

Alternative telomere addition sites (ATASs) were annotated by mapping PacBio HiFi reads to 716 

the curated reference MAC assembly described above, using minimap2 and the following flags: 717 

-x asm20 --secondary=no --MD. We expect reads representing alternative telomere additions to 718 

have one portion mapping to the assembly (excluding telomeric regions), with the other portion 719 

containing telomeric repeats being soft-clipped in the BAM record. For each mapped read with a 720 

soft-clipped segment, we extracted the clipped sequence, and the coordinates and orientation of 721 

the clip relative to the reference. We searched for ≥ 24 bp tandem direct repeats of the telomere 722 

unit (i.e., ≥3 repeats of the 8 bp unit) in the clipped segment with NCRF v1.01.02 (Harris et al., 723 

2019), which can detect tandem repeats in the presence of noise, e.g., from sequencing error. 724 

The orientation of the telomere sequence, the distance from the end of the telomeric repeat to 725 

the clip junction (‘gap’), and the number of telomere-bearing reads vs. total mapped reads at 726 

each junction were also recorded. Junctions with zero gap between telomere repeat and clip 727 

junction were annotated as ATASs. The above procedure was implemented in the MILTEL 728 

module of the software package BleTIES v0.1.3 (Seah and Swart, 2021). 729 

 730 

MILTEL output was processed with Python scripts depending on Biopython (Cock et al., 2009), 731 

pybedtools (Dale et al., 2011), Bedtools (Quinlan and Hall, 2010), and Matplotlib (Hunter, 2007), 732 

to summarize statistics of junction sequences and telomere permutations at ATAS junctions, 733 

and to extract genomic sequences flanking ATASs for sequence logos. Logos were drawn with 734 

Weblogo v3.7.5 (Crooks et al., 2004), with sequences oriented such that the telomere would be 735 

added on the 5’ end of the ATAS junctions.  736 

 737 

To calculate the expected minichromosome length, we assumed that ATASs were independent 738 

and identically distributed in the genome following a Poisson distribution. About 47×103 ATASs 739 

were annotated, supported on average by a single read. Given a genome of 42 Mbp at 145× 740 

coverage, the expected rate of encountering an ATAS is 47×103 / (145 × 42 Mbp), so the 741 

distance between ATASs (i.e., the minichromosome length) is exponentially distributed with 742 

expectation (145 × 42 Mbp) / 47×103 = 130 kbp. 743 
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RNA-seq read mapping 744 

To permit correct mapping of tiny introns RNA-seq data was mapped to the B. stoltei ATCC 745 

30299 MAC genome using a version of HISAT2 (Kim et al., 2019) with modified source code, 746 

with the static variable minIntronLen in hisat2.cpp lowered to 9 from 20 (change available in the 747 

HISAT2 github fork: https://github.com/Swart-lab/hisat2/; commit hash 86527b9). HISAT2 was 748 

run with default parameters and parameters --min-intronlen 9 --max-intronlen 500. It should be 749 

noted that RNA-seq from timepoints in which B. stoltei ATCC 30299 and B. stoltei HT-IV cells 750 

were mixed together were only mapped to the former genome assembly, and so reads for up to 751 

three alleles may map to each of the genes in this assembly. 752 

Genetic code prediction 753 

We used the program PORC (Prediction Of Reassigned Codons; available from 754 

https://github.com/Swart-lab/PORC) previously written to predict genetic codes in protist 755 

transcriptomes (Swart et al., 2016) to predict the B. stoltei genetic code. This program was used 756 

to translate the draft  B. stoltei ATCC 30299 genome assembly in all six frames (with the 757 

standard genetic code). Like the program FACIL (Dutilh et al., 2011) that inspired PORC, the 758 

frequencies of amino acids in PFAM (version 34.0) protein domain profiles aligned to the six 759 

frame translation by HMMER 3.1b2 (Eddy, 2011) (default search parameters; domains used for 760 

prediction with conditional E-values < 1e-20), and correspondingly also to the underlying codon, 761 

are used to infer the most likely amino acid encoded by each codon (Figure S1B). 762 

Gene prediction 763 

We created a wrapper program, Intronarrator, to predict genes in Blepharisma and other 764 

heterotrichs, accommodating their tiny introns. Intronarrator can be downloaded and installed 765 

together with dependencies via Conda from GitHub (https://github.com/Swart-lab/Intronarrator). 766 

Intronarrator directly infers introns from spliced RNA-seq reads mapped by HISAT2 from the 767 

entire developmental time course we generated. RNA-seq reads densely cover almost the entire 768 

Blepharisma MAC genome, aside from intergenic regions, and most potential protein-coding 769 

genes (Figure 4B). After predicting the introns and removing them to create an intron-minus 770 

genome, Intronarrator runs AUGUSTUS (version 3.3.3) using its intronless model. It then adds 771 

back the introns to the intronless gene predictions to produce the final gene predictions.  772 

 773 
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Introns are inferred from “CIGAR” string annotations in mapped RNA-seq BAM files, using the 774 

regular expression “[0-9]+M([0-9][0-9])N[0-9]+M” to select spliced reads. For intron inference we 775 

only used primary alignments with: MAPQ >= 10; just a single “N”, indicating one potential 776 

intron, per read; and at least 6 mapped bases flanking both the 5’ and 3’ intron boundaries (to 777 

limit spurious chance matches of a few bases that might otherwise lead to incorrect intron 778 

prediction). The most important parameters for Intronarrator are a cut-off of 0.2 for the fraction of 779 

spliced reads covering a potential intron, and a minimum of 10 or more spliced reads to call an 780 

intron. The splicing fraction cut-off was chosen based on the overall distribution of splicing 781 

(Figure S4A-C). From our visual examination of mapped RNA-seq reads and gene predictions, 782 

values less than this were typically “cryptic” excision events (Saudemont et al., 2017) which 783 

remove potentially essential protein-coding sequences, rather than genuine introns. Intronarrator 784 

classifies an intron as sense (7389 in total, excluding alternative splicing), when the majority of 785 

reads (irrespective of splicing) mapping to the intron are the same strand, and antisense (554 in 786 

total) when they are not. The most frequently spliced intron was chosen in rare cases of 787 

overlapping alternative intron splicing. 788 

 789 

To eliminate spurious prediction of protein-coding genes overlapping ncRNA genes, we also 790 

incorporated ncRNA prediction in Intronarrator. Infernal (Nawrocki et al., 2009) (default 791 

parameters; e-value < 1e-6) was used to predict a restricted set of conserved ncRNAs models 792 

(i.e., tRNAs, rRNAs, SRP, and spliceosomal RNAs) from RFAM 14.0 (Kalvari et al., 2018). 793 

These ncRNAs were hard-masked (with “N” characters) before AUGUSTUS gene prediction. 794 

Both Infernal ncRNA predictions (excluding tRNAs) and tRNA-scan SE 2.0 (Chan et al., 2019) 795 

(default parameters) tRNA predictions are annotated in the B. stoltei ATCC 30299 assembly 796 

deposited in the European Nucleotide Archive. 797 

 798 

Since we found that Blepharisma stoltei, like Blepharisma japonicum (Swart et al., 2016), uses a 799 

non-standard genetic code, with UGA codon translated as tryptophan, gene predictions use the 800 

“The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma 801 

Code (transl_table=4)” from the NCBI genetic codes. The default AUGUSTUS gene prediction 802 

parameters override alternative (mitochondrial) start codons permitted by NCBI genetic code 4, 803 

other than ATG. So, all predicted B. stoltei gene coding sequences begin with ATG.  804 

 805 

RNA-seq read mapping relative to gene predictions of Contig_1 of B. stoltei ATCC30299 was 806 

visualized with PyGenomeTracks (Lopez-Delisle et al., 2021). 807 
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Assessment of genome completeness 808 

A BUSCO (version 4.0.2) (Waterhouse et al., 2018) analysis of the assembled MAC genomes of 809 

B. stoltei and B. japonicum was performed on the set of predicted proteins (BUSCO mode -prot) 810 

using the BUSCO Alveolata database. The completeness of the Blepharisma genomes was 811 

compared to the protein-level BUSCO analysis of the published genome assemblies of ciliates 812 

T. thermophila, P. tetraurelia, S. coeruleus and I. multifiliis (Figure S1). 813 

Gene annotation 814 

Pannzer2 (Törönen et al., 2018) (default parameters) and EggNog (version 2.0.1) (Huerta-815 

Cepas et al., 2019) were used for gene annotation. Annotations were combined and are 816 

available from the Max Planck Society’s Open Research Repository, Edmond 817 

(https://dx.doi.org/10.17617/3.8c). Protein domain annotations were performed using hmmscan 818 

from HMMER3 (version 3.3, Nov 2019) (Eddy, 2011) vs. the PFAM database (Pfam-A.full, 33.0, 819 

retrieved on June 23, 2020) with default parameters.  820 

Gene expression analysis   821 

Features from RNA-seq reads mapped to the B. stoltei ATCC 30299 MAC and MAC+IES 822 

genomes over the developmental time-course were extracted using featureCounts from the 823 

Subread package (Liao et al., 2014). Further analysis was performed using the R software 824 

environment. Genes with a total read count of less than 50, across all timepoints, were filtered 825 

out of the dataset. The remaining genes were passed as a DGElist object to edgeR (Robinson 826 

et al., 2010). Each time point, representing one library, was normalized for library size using the 827 

edgeR function calcNormFactors. The normalized read counts were transformed into TPM 828 

(transcripts per million) values (Li et al., 2010; Wagner et al., 2012). The TPM-values for 829 

different genes were compared across timepoints to examine changes in gene expression. 830 

Heatmaps showing log2(TPM) changes across timepoints were plotted using the tidyverse 831 

collection of R packages (https://www.tidyverse.org/) and RColorBrewer 832 

(https://rdrr.io/cran/RColorBrewer/). Tabulated gene expression estimates together with protein 833 

annotations are available from Edmond (https://dx.doi.org/10.17617/3.8c). 834 
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Sequence visualization and analysis 835 

Nucleotide and amino acid sequences were visualized using Geneious Prime (Biomatters Ltd.) 836 

(Kearse et al., 2012). Multiple sequence alignments were performed with MAFFT version 7.450 837 

(Katoh and Standley, 2013; Katoh et al., 2002). Phylogenetic trees were constructed with 838 

PhyML version 3.3.20180621 (Guindon et al., 2010).  839 

Orthogroup inference and analysis of orthogroup clusters 840 

OrthoFinder version 2.5.2 with default parameters (i.e., using Diamond for searching, MAFFT for 841 

multiple alignment and FastTree for phylogenies) was used to define orthogroups, i.e., sets of 842 

genes descended from the last common ancestor of the chosen species. Proteomes for the 843 

following ciliate species were used: Tetrahymena thermophila, Oxytricha trifallax, Stentor 844 

coeruleus (data from ciliate.org (Stover et al., 2012)); Euplotes octocarinatus (EOGD (Wang et 845 

al., 2018)); Paramecium tetraurelia, Paramecium caudatum (data from ParameciumDB (Arnaiz 846 

et al., 2020)); plus Perkinsus marinus ATCC 50983 (GenBank accession: AAXJ00000000) as a 847 

non-ciliate outgroup. Orthogroup clusters are available as Data S2, or from Edmond 848 

(https://dx.doi.org/10.17617/3.8c). 849 

Identification and correction of MIC-encoded PiggyBac homologs 850 

We sought coding regions present within Blepharisma IESs to gauge the expression and type of 851 

MIC-limited genes (IES assembly and gene prediction described in Seah et al. 2022). After gene 852 

prediction within IESs with Intronarrator, predicted protein domains were annotated by HMMER 853 

(v3.3) (Eddy, 2011). Several transposase families were represented in protein domains 854 

identified with coding regions of IESs. However, gene prediction within IESs was hampered by 855 

the presence of intermittent A-residues in the consensus sequence which occur due to the 856 

inaccuracy inherent in long-reads, from which the IES regions were assembled. These errors 857 

cause IES gene-prediction to falter by generating inaccurate ORFs. To circumvent this, a six-858 

frame translation of the MIC-limited genome regions was performed using a custom script, 859 

which was then used to detect PFAM domains, using HMMER and the Pfam-A database 32.0 860 

(release 9) (Mistry et al., 2021). Domain annotations for diagrams were generated with the 861 

InterproScan 5.44-79.0 pipeline (Jones et al., 2014) 862 
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Four instances of the Pfam domain DDE_Tnp_1_7, characteristic of PiggyBac transposases, 863 

were detected in an initial gene prediction within Blepharisma IESs. The four genes 864 

corresponding to the DDE_Tnp_1_7 domain had high RNA-seq coverage of combined reads 865 

from all timepoints across development. The IESs with the PiggyBac domains on Contig 17 and 866 

Contig 39 each had two ORFs with a partial DDE_1_7 domain, separated by a few hundred bp. 867 

Alignment of short-read MIC-enriched DNA reads mapped to the IES regions containing the 868 

putative PiggyBac homologs indicated that several A-nucleotides in the assembled IESs were 869 

insertion errors in the IES assembly, which were corrected with the short-read alignment. Open 870 

reading frames of predicted genes in these corrected regions were adjusted accordingly. The 871 

prefix “cORF” (corrected ORFs) was used to indicate the short-read corrected sequences of the 872 

PiggyMics.  873 

 874 

Short-read MIC-enriched DNA sequences were aligned to the IES regions containing putative 875 

PiggyBac homologs with Hisat2 (2.0.0-beta) with modified source code (described above). Indel 876 

errors in the IES assembly were corrected manually, then used to predict coding regions. Pfam 877 

domains were annotated on MIC PiggyBac homologs with corrected ORFs using the 878 

InterproScan (v. 1.1.4) (Quevillon et al., 2005) plugin in Geneious v11.1.5 (Biomatter Ltd.). 879 

DDE_Tnp_1_7 domains were detected in the corrected ORFs, which in some cases spanned 880 

IES regions lacking predicted genic regions before correction. A multiple sequence alignment of 881 

the correct MIC PiggyBac homologs with other ciliate PiggyBac-derived proteins (PGBDs) and 882 

eukaryotic PiggyBac-like elements (PBLEs) that contain the PiggyBac transposase domain 883 

DDE_Tnp_1_7 (PF13843) was performed with MAFFT (v4.1) via the Geneious plugin (algorithm 884 

L-INS-i, BLOSUM62 scoring matrix, gap open penalty 1.53, offset value 0.123). A phylogenetic 885 

tree was constructed using the FastTree (v 2.1.11) plugin for Geneious (Whelan-Goldman 886 

model).  887 

dN/dS estimation 888 

We generated pairwise coding sequence alignments of PiggyMac paralog nucleotide sequences 889 

from P. tetraurelia and P. octaurelia using MAFFT version 7.450 (Katoh and Standley, 2013) 890 

(Katoh et al., 2002) (algorithm: “auto”, scoring matrix: 200PAM/k=2, gap open penalty 1.53, 891 

offset value 0.123) using the “translation align” panel of Geneious Prime (version 2020.1.2) 892 

(Kearse et al., 2012). PAML version 4.9 (Yang, 2007) was used to estimate dN/dS values in 893 

pairwise mode (runmode = -2, seqtype = 1, CodonFreq = 2). For Blepharisma stoltei, we 894 
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generated pairwise coding sequence alignments of the Blepharisma PiggyMac homolog, BPgm 895 

(Contig_49.g1063; BSTOLATCC_MAC17466), with the Blepharisma Pgm-likes (BPgmLs) using 896 

Translation Align panel of Geneious v11.1.5 (Genetic code: Blepharisma, Protein alignment 897 

options: MAFFT alignment (v7.450) (Katoh and Standley, 2013), scoring matrix: BLOSUM62, 898 

Gap open penaly: 1.53, offset value: 0.1). PAML version 4.9 was used to estimate dN/dS values 899 

in pairwise mode (runmode = -2, seqtype = 1, CodonFreq = 2). 900 

Phylogenetic analysis 901 

Protein sequences of PBLEs were obtained from Bouallègue et al (Bouallègue et al., 2017). 902 

Protein sequences of Paramecium and Tetrahymena Pgms and PgmLs were obtained from 903 

ParameciumDB (Arnaiz et al., 2020) (PGM, PGMLs1-5) and ciliate.org (Stover et al., 2012) 904 

(Tpb1, Tpb2, Tpb7, LIA5), respectively. Condylostoma and Blepharisma Pgms and PgmLs were 905 

obtained from genome assemblies (accessions GCA_920105805 and GCA_905310155, 906 

respectively). Sequence manipulation was done using Geneious (Biomatters Ltd.). The 907 

Geneious plug-in for InterProScan (Jones et al., 2014) was used to identify DDE_Tnp_1_7 908 

domains using the PFAM-A database (Mistry et al., 2021). The DDE_Tnp_1_7 domain and 909 

regions adjacent to it were extracted and aligned using the MAFFT plug-in (v7.450) for 910 

Geneious (Katoh and Standley, 2013) (Algorithm: L-INS-i, Scoring matrix: BLOSUM62, Gap 911 

open penalty: 1.53, Offset value: 0.123). Phylogenetic trees using this alignment were generated 912 

with the FastTree2 (v2.2.11) Geneious plug-in using the Whelan-Goldman model. The 913 

phylogenetic trees were visualized with FigTree (v1.4.4) (Andrew Rambaut, 914 

http://tree.bio.ed.ac.uk/).  915 

Repeat annotation 916 

Interspersed repeat element families were predicted with RepeatModeler v2.0.1 (default 917 

settings, random number seed 12345) with the following dependencies: rmblast v2.9.0+ 918 

(http://www.repeatmasker.org/RMBlast.html), TRF 4.09 (Benson, 1999), RECON (Bao and 919 

Eddy, 2002), RepeatScout 1.0.6 (Price et al., 2005), RepeatMasker v4.1.1 920 

(http://www.repeatmasker.org/RMDownload.html). Repeat families were also classified in the 921 

pipeline by RepeatClassifier v2.0.1 through comparison against RepeatMasker’s repeat protein 922 

database and the Dfam database. Consensus sequences of the predicted repeat families, 923 

produced by RepeatModeler, were then used to annotate repeats with RepeatMasker, using 924 

rmblast as the search engine. 925 
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 926 

Terminal inverted repeats (TIRs) of selected repeat element families were identified by aligning 927 

the consensus sequence from RepeatModeler, and/or selected full-length elements, with their 928 

respective reverse complements using MAFFT (Katoh and Standley, 2013) (plugin version 929 

distributed with Geneious). TIRs from the Dfam DNA transposon termini signatures database 930 

(v1.1, https://www.dfam.org/releases/dna_termini_1.1/dna_termini_1.1.hmm.gz) (Storer et al., 931 

2021) were searched with hmmsearch (HMMer v3.2.1) against the IES sequences, to identify 932 

matches to TIR signatures of major transposon subfamilies. 933 

 934 

Data and code availability 935 

The draft Blepharisma stoltei ATCC 30299 MAC genome assembly is accessible from 936 

bleph.ciliate.org and from the European Nucleotide Archive (ENA) bioproject PRJEB40285 937 

under the accession GCA_905310155. PacBio CCS reads (ERR5873783 and ERR5873334) 938 

and subreads (ERR5962314) used to assemble the genome are also available from ENA. 939 

Illumina DNA-seq data for the B. stoltei ATCC 30299 and HT-IV strains is available from 940 

accessions ERR6061285 and ERR6064674, respectively. The RNA-seq developmental time 941 

course is available from the bioproject PRJEB45374 (accessions ERR6049461-ERR6049485). 942 

 943 

Illumina and PacBio Sequel sequencing data for Blepharisma japonicum strain R1702 is 944 

available from the ENA bioproject PRJEB46921 (Illumina accessions: ERR6473251, 945 

ERR6474356; PacBio accession: ERR6474383). 946 

 947 

Code availability for software we generated or modified is indicated in place in Methods. 948 
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Figure captions 1273 

Figure 1. Blepharisma nuclei and nuclear development during conjugation. A. B. stoltei 1274 

ATCC 30299 cell stained with anti-alpha tubulin-Alexa488 (depth-color coded red to yellow) and 1275 

DAPI (cyan). B. Snapshot of a 3D reconstruction (Imaris, Bitplane) from CLSM images of 1276 

Hoechst 33342 (dsDNA dye, Invitrogen™) fluorescence (Ex405 nm / Em420-470 nm). C. 1277 

Schematic of nuclear processes occurring during conjugation (classified according to, and 1278 

modified from (Miyake et al., 1991)). Nuclear events occurring before and up to, but not 1279 

including fusion of the gametic nuclei (syngamy) are classified into sixteen pre-gamic stages 1280 

where the MICs undergo meiosis and the haploid products of meiotic MICs are exchanged 1281 

between the conjugating cells, followed by karyogamy. After karyogamy, cells are classified into 1282 

10 stages S (synkaryon), D1 (1st mitosis), I1 (1st interphase), D2 (2nd mitosis), I2 (2nd interphase), 1283 

D3 (3rd mitosis), I3 (3rd interphase), D4 (4th mitosis), E1 (1st embryonic stage), E2 (2nd embryonic 1284 

stage). After E2, the exconjugants divide further and are classified into 6 stages of cell division 1285 

(CD1-6) which we did not follow here. See also Figure 4. 1286 

 1287 

Figure 2. Basic properties of ciliate MAC genomes. In cell diagrams MACs are green and 1288 

MICs are small black dots in close proximity to MACs. Citations for genome properties are in 1289 

Data S1. See also Figure S1. 1290 

 1291 

Figure 3. A gene-dense somatic genome with a minichromosomal architecture. A. HiFi 1292 

(DNA) and RNA-seq coverage across a representative B. stoltei ATCC30299 MAC genome 1293 

contig (Contig_1). Y scale is linear for HiFi reads and logarithmic (base 10) for RNA-seq. Plus 1294 

strand (relative to the contig) RNA-seq coverage is green; minus strand RNA-seq coverage is 1295 

blue. Between the RNA-seq coverage graphs each arrow represents a predicted gene. Two 1296 

orthogroups classified by OrthoFinder are shown. B. Mapping of a subset telomere-containing 1297 

HiFi reads to a B. stoltei MAC genome contig region, with alternative telomere addition sites 1298 

(ATASs) shown by blue (5’) or mauve (3’) arrows. Pink bars at read ends indicate soft-masking, 1299 

typically of telomeric repeats. See also Figure S2-5. 1300 

 1301 

Figure 4. Developmental staging of B. stoltei for RNA-seq. Classification of nuclear 1302 

morphology into stages is according to previous descriptions (Miyake et al., 1991). Nuclear 1303 

events occurring before and up to, but not including fusion of the gametic nuclei (syngamy) are 1304 

classified into sixteen stages indicated by roman numerals. These are the pre-gamic stages of 1305 
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conjugation where the MICs undergo meiosis and the haploid products of meiotic MICs are 1306 

exchanged between the conjugating cells. Stages after syngamy are classified into 10 stages as 1307 

in Figure 1. Illustration of various cell stages adapted from (Suzuki, 1957)). Stacked bars show 1308 

the proportion of cells at each time point at different stages of development, preceded by the 1309 

number of cells inspected (n). See also Figure S6. 1310 

 1311 

Figure 5. MAC genome-encoded transposases in ciliates and properties of a putative 1312 

Blepharisma IES excisase. A. Presence/absence matrix of PFAM transposase domains 1313 

detected in predicted MAC genome-encoded ciliate proteins. Ciliate classes are indicated before 1314 

the binomial species names. B. DDE_Tnp_1_7 domain phylogeny with PFAM domain 1315 

architecture and gene expression heatmap for Blepharisma. “Mixing” indicates when cells of the 1316 

two complementary mating types were mixed. Outgroup: PiggyBac element from Trichoplusia ni. 1317 

Catalytic residues: D- aspartate, D'- aspartate residue with 1 aa translocation. C. Cysteine-rich 1318 

domains of PiggyBac homologs. PBLE transposases: Ago (Aphis gossypii); Bmo (Bombyx 1319 

mori); Cag (Ctenoplusia agnata); Har (Helicoverpa armigera); Hvi (Heliothis virescens); PB-Tni 1320 

(Trichoplusia ni); Mlu (PiggyBat from Myotis lucifugus); PLE-wu (Spodoptera frugiperda). 1321 

Domesticated PGBD transposases: Oni (Oreochromis niloticus); Pny (Pundamilia nyererei); 1322 

Lia5, Tpb1, Tpb2, Tpb6 and Tpb7 (Tetrahymena thermophila); Pgm, PgmL1, PgmL2, 1323 

PgmL3a/b/c, PgmL4a/b, PgmL5a/b (Paramecium tetraurelia); Tru (Takifugu rubripes); Pgbd2, 1324 

Pgbd3 and Pgbd4 (Homo sapiens).  1325 

 1326 

 1327 

Figure 6. Phylogeny of ciliate PiggyBac homologs, eukaryotic PBLEs and PGBD5 1328 

homologs. Highlighted clade contains all PiggyBac homologs found in Heterotrichea, containing 1329 

MAC and MIC-limited homologs of PiggyMac from Blepharisma and PiggyMac homologs of 1330 

Condylostoma magnum. The tree is rooted at the PiggyBac-like element of Entamoeba 1331 

invadens. 1332 

 1333 

Figure 7. DDE_1, DDE_3 and DDE_Tnp_IS1595 domain-containing proteins in 1334 

Blepharisma. A. DDE_1 domain phylogeny with PFAM domain architecture and gene 1335 

expression heatmap for Blepharisma. B. DDE_3 domain phylogeny with PFAM domain 1336 

architecture and gene expression heatmap for Blepharisma. C. DDE_Tnp_IS1595 domain 1337 

phylogeny with PFAM domain architecture and gene expression heatmap for Blepharisma. See 1338 

also Figure S7. 1339 
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  1340 

Supplemental figure captions 1341 

Figure S1. Analysis of assembly completeness and genetic code. A. Completeness of the 1342 

B. stoltei ATCC 30299 MAC assembly was estimated by the percentage of BUSCOs found in 1343 

the assembly with reference to the OrthoDB v10 alveolate database (Kriventseva et al., 2019). 1344 

The nature of the ortholog-matches is indicated by characters followed by counts: C (complete 1345 

orthologs) - light blue, D (duplicated orthologs) - dark blue, F (fragmented orthologs) - yellow 1346 

and M (missing orthologs) - red. B. Prediction for B. stoltei ATCC 30299 MAC genome by 1347 

PORC; codons that are stops in the standard genetic code are highlighted in orange. 1348 

 1349 

Figure S2. Properties of minichromosomes, telomeres, and alternative telomere addition 1350 

sites. A. Length distribution of telomeres of telomere-bearing HiFi reads. B. Length distribution 1351 

of HiFi reads delimited by telomeres. C. Diagram of a telomere-bearing read mapped onto 1352 

genome reference at an ATAS. Sequence which is ambiguously chromosomal or telomeric is 1353 

“junction sequence”; junction coordinate which maximizes telomere repeat length on the read is 1354 

the “first identifiable breakpoint”; the coordinate maximizing alignment length to reference is the 1355 

“last identifiable breakpoint”. The last telomeric unit permutation at the last identifiable 1356 

breakpoint is underlined (length 8 bp). D. Mean base frequencies in +/- 1 kbp flanking ATAS 1357 

junctions. E. Sequence logos of chromosomal sequence at ATAS junctions, sorted by which 1358 

permutation of the telomeric repeat is present (plot labels). Logos are aligned to the “last 1359 

identifiable breakpoint” between positions 20 and 21; telomeric repeats on telomere-bearing 1360 

reads begin to the left of the breakpoint. F. Frequencies of 2-mers in whole genome (blue), in 1361 

telomeres (green), and at ATAS junctions (chromosomal side after last identifiable breakpoint, 1362 

orange). G. Histogram of junction sequence lengths for ATASs in B. stoltei. H. Counts of each 1363 

telomere repeat permutation at ATAS junctions (last identifiable breakpoint). 1364 

 1365 

Figure S3. Femto Pulse analyses of B. stoltei MAC DNA and POT1 phylogeny. A. Mapping 1366 

of PacBio CLR reads with 3 consecutive telomeric repeats to a representative T. thermophila 1367 

MAC chromosome (Chr_001 from ciliate.org).  B. Length distribution of input MAC DNA sizes 1368 

prior to fragmentation and library preparation (Femto Pulse; LM = lower maker) - replicate 1. 1369 

RFU=relative fluorescent units. C. Length distribution of input MAC DNA sizes prior to 1370 

fragmentation and library preparation (Femto Pulse; LM = lower maker) - replicate 2. C. POT1 1371 
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paralog phylogeny, PFAM domain architecture, and gene expression in Blepharisma. Diagram 1372 

elements as described in Figure 5B. 1373 

 1374 

Figure S4. Intron splicing. A. Distribution of intron splicing fraction of candidate sense introns 1375 

in the B. stoltei MAC genome. B. Distribution of intron splicing fractions of introns according to 1376 

intron lengths. C. Distribution of intron splicing fraction of candidate antisense introns. D. 1377 

Distribution of intron lengths from predicted genes. E. Sequence logos for 15 bp introns (splicing 1378 

frequency > 0.5). F. Sequence logos for all predicted 16 nt introns, and 16 nt introns with “A” at 1379 

either position -7 or -6 (counting from the 3’ end). The number of introns underlying the logos 1380 

are indicated to the right. G. Distribution of intron splicing fractions of introns according to intron 1381 

lengths. H. Sample of RNA-seq reads mapped to a GT-GG intron from gene 1382 

BSTOLATCC_MAC21551 (Contig_57.g761). Translation in alternative reading frames 1383 

downstream of the predicted intron leads to premature stop codons soon after the intron.  1384 

 1385 

Figure S5. B. stoltei ATCC30299 MAC genome orthogroups and assembly graph. A. 1386 

Clustered orthogroups (Data S2) in the B. stoltei MAC genome. B. Bandage (Wick et al., 2015) 1387 

representation of Flye 2.8.1 assembly graph. Edges corresponding to contigs are colored by 1388 

coverage (brightest pink = 160×, black=0×).  1389 

 1390 

Figure S6. Experimental approach for conjugation RNA-seq time series. Complementary 1391 

mating type strains of Blepharisma stoltei were harvested and cleaned by starving overnight. 1392 

The cleaned cultures were treated in a time-staggered format, with gamones of the 1393 

complementary mating type, where gamone 2 was a solution of the synthetic gamone 2 calcium 1394 

salt and gamone 1 was provided as the cell-free fluid (CFF) harvested from mating-type I cells. 1395 

Two sets of time-staggered gamone-treated cultures were used for the time series. Set I, 1396 

indicated by the solid line, was mixed and used to observe and collect samples at 0 hours, 2 1397 

hours, 6 hours, 26 hours and 30 hours after mixing. Set II, indicated by the dashed lines, was 1398 

mixed and used to observe and collect samples at 14 hours, 18 hours, 22 hours and 38 hours 1399 

after mixing. Test tubes indicate Trizol samples prepared for RNA-extraction which were stored 1400 

at -80 ˚C before processing. Cells collected for imaging were obtained shortly before the 1401 

remainder were transferred into Trizol. 1402 

 1403 

Figure S7. MULE domain transposases in Blepharisma. MULE domain phylogeny with 1404 

PFAM domain architecture and gene expression heatmap for Blepharisma. 1405 
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 1406 

Figure S8. Small RNA-related proteins in Blepharisma. A. ResIII, Helicase_c and 1407 

Ribonuclease_3 domain phylogeny with PFAM domain architecture and gene expression 1408 

heatmap for Blepharisma. B.  PIWI domain phylogeny with PFAM domain architecture and gene 1409 

expression heatmap for B. stoltei. 1410 

 1411 

Figure S9. Histones and histone-domain-containing proteins in Blepharisma. Gene 1412 

expression heatmaps are shown as in previous figures, are clustered according to major histone 1413 

type as classified using HistoneDB domain models. Domains from PFAM and HistoneDB are 1414 

shown to the right. 1415 
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Figure S2.
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Figure S3.
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Figure S4.
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Figure S6.
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Figure S7.
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Figure S8.
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Figure S9.
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