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1 Abstract 1

The success of Convolutional Neural Networks (CNNs) in classifying objects has led to a 2

surge of interest in using these systems to understand human vision. Recent studies 3

have argued that when CNNs are trained in the correct learning environment, they can 4

emulate a key property of human vision – learning to classify objects based on their 5

shape. While showing a shape-bias is indeed a desirable property for any model of 6

human object recognition, it is unclear whether the resulting shape representations 7

learned by these networks are human-like. We explored this question in the context of a 8

well-known observation from psychology showing that humans encode the shape of 9

objects in terms of relations between object features. To check whether this is also true 10

for the representations of CNNs, we ran a series of simulations where we trained CNNs 11

on datasets of novel shapes and tested them on a set of controlled deformations of these 12

shapes. We found that CNNs do not show any enhanced sensitivity to deformations 13

which alter relations between features, even when explicitly trained on such 14

deformations. This behaviour contrasted with human participants in previous studies as 15

well as in a new experiment. We argue that these results are a consequence of a 16

fundamental difference between how humans and CNNs learn to recognise objects: 17

while CNNs select features that allow them to optimally classify the proximal stimulus, 18

humans select features that they infer to be properties of the distal stimulus. This 19

makes human representations more generalisable to novel contexts and tasks. 20

Author summary 21

The human visual system is highly adept at recognising and reasoning about objects 22

under a wide variety of viewing conditions. Research in vision sciences has shown that 23

humans largely rely on shape to recognise objects, but extracting object shape from a 24

retinal image is a challenge (indeed, it is an ill-posed problem), and until recently, 25

models of vision have been poor at classifying naturalistic images of objects. This has 26

changed with the development of Convolutional Neural Networks (CNNs) that perform 27

as well as humans on certain recognition tasks. Thus it makes sense to ask if we can gain 28

insight into how humans extract shape by studying CNNs. Here, we show that there is 29

a fundamental difference between the two systems. While humans pay particular 30

attention to relations between an object’s parts and features, we show that the shape 31

extracted by CNNs is akin to a template, where all diagnostic features are equally 32

important. Thus, despite their success, these results show that CNNs are currently not 33

good models of human object recognition and machine learning models must bridge this 34

gap in order to capture the robustness and generalisability of human vision. 35
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Introduction 36

A great deal of research into human vision is driven by the observation that we do not 37

perceive the world as it really is. Instead, visual perception is biased. This is particularly 38

true about our perception of objects. We prefer to group objects based on certain 39

Gestalt principles (a bias to look for proximity, similarity, closure and continuity [9]), we 40

prefer to view objects from certain perspectives (a bias for canonical-perspectives [37]) 41

and we prefer to categorise objects based on certain features (a bias for shape [31, 6]). 42

There are two possible explanations on the origin of these biases. The first view, 43

which we shall call the optimisation approach, proposes that these biases are an 44

internalisation of the biases present in the environment relevant to a particular task. 45

According to this view, humans prefer to view objects from a canonical perspective 46

because these perspectives are more frequent in the visual environment and they prefer 47

to classify objects based on shape because shape is more diagnostic during object 48

classification. In other words, biases are a consequence of performing statistical learning 49

with the goal of optimising behaviour on a particular task. As a person learns a task, 50

they acquire the statistical dependencies present within the task-environment and starts 51

mirroring these environmental biases. 52

The second view, which we shall call the heuristic approach, proposes that biases 53

arise because of the manner in which the visual system transforms visual inputs. The 54

retinal image of an object contains a vast amount of information in the form of 55

luminance values at various wavelengths at each location on the retina. However, the 56

information relevant to successful interaction with the environment, such as the 57

identities, locations and trajectories of objects in the world (that is, information about 58

the distal stimulus), is nowhere explicit in the retinal image (the proximal stimulus). 59

According to the heuristic view, the visual system transforms the retinal image to create 60

a representation of the distal stimulus. It is this transformation from proximal to distal 61

stimulus that is the source of biases. 62

Of course, the simple act of transforming one representation to another should not 63

necessarily lead to biases. But, in this case, mapping the retinal image to the distal 64

stimulus is an ill-posed problem: there is not enough information in the proximal 65

stimulus to unambiguously recover the properties of the distal stimulus [39, 36]. To 66

overcome this problem, the visual system makes assumptions (i.e., employs heuristics) 67

to determine which properties of the proximal stimulus are used to build distal 68

representations [47, 28, 34, 40]. A striking example of such assumptions is the Kanizsa 69

triangle [26], where the visual system encodes the multiple collinearities of edges present 70

in the proximal image and uses these to build contours of a triangle even though these 71

contours do not exist in the retinal image. On this view, the goal of the visual system is 72

not to optimise performance on a certain task, but to arrive at a veridical representation 73

of the (distal) cause of the retinal image. The advantage of developing these 74

representations is that they are relevant for broad range of tasks – the same 75

representation of an object can be used for recognition and visual reasoning [21]. 76

Psychological experiments have provided an equivocal support for both views. For 77

example, the optimisation view is indirectly supported by studies that show that human 78

biases, such as the shape-bias, increases with age [46], while the heuristic view is 79

indirectly supported by the early observations of Gestalt psychologists as well as more 80

recent studies that show that visual perceptions are more than the sum of their sensory 81

inputs [42, 35]. However, psychological experiments provide only an indirect method of 82

testing these views. A more direct test can be performed by constructing a 83

computational model that learns to identify objects and test whether this model shows 84

similar biases to humans. For a long time, it was not possible to create such a model as 85

most models could not match human performance on object recognition tasks. This has 86

recently changed with the advent of Convolutional Neural Networks (CNNs). 87
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CNNs are machine learning models that can replicate (and sometimes even exceed) 88

human performance on some object recognition and localisation tasks [32]. Importantly, 89

CNNs learn to recognise objects by optimising the mappings between the proximal 90

stimulus and the object categories themselves [12]. As a consequence, the learned 91

representations that support object recognition are specialized for image classification. 92

There is no pressure to learn representations of objects than can perform a range of 93

tasks, let alone learn distal representations of objects. As such, CNNs provide a 94

concrete model to test the optimisation view. If human perceptual biases are acquired 95

through internalising the statistics of the environment on a particular task, then 96

training CNNs to perform classification on ecologically realistic datasets should lead to 97

perceptual biases similar to the ones observed for humans. 98

A number of recent studies have tested this idea by looking at shape-bias in CNNs. 99

Psychological experiments have repeatedly shown that humans categorise objects 100

primarily based on their shape, rather than other properties such as colour, size or 101

texture [31, 6]. One manifestation of this bias is that we can identify most objects from 102

line drawings as quickly and accurately as we can identify them from full-color 103

photographs [6] and we can do this even if we have no previous experience with line 104

drawings [16]. To test whether learning to perform classification on a naturalistic 105

images can lead to a shape-bias, Geirhos et al. [11] trained CNNs on a large collection of 106

naturalistic images (ImageNet) and tested them on a cue-conflict task that combined 107

the shape of one category (say a cat) with the texture of another category (say, an 108

elephant). They observed that instead of showing a shape-bias, CNNs preferred to 109

classify these conflicting images based on texture rather than shape (classifying the 110

image as an elephant), while human participants did the opposite. In another study, 111

Malhotra et al. [33] tested human participants and CNNs on images that simultaneously 112

contained multiple predictive features, including global shape, but also local features 113

such as large coloured patches or segments. While CNNs classified these images based 114

on the most predictive features, human participants ignored these features and preferred 115

to classify objects based on global shape, even though this was not the optimal policy in 116

the task. These findings seem to challenge the optimisation view as they show (a) that 117

training a network to optimise performance on a database of naturalistic images does 118

not necessarily lead to a shape-bias, and (b) humans seem to have a shape-bias even in 119

environments where the optimal policy is to learn based on non-shape features. 120

However, recently it has been argued that CNNs can also be trained to infer an 121

object’s shape given the right type of training. For example, Geirhos et al. [11] trained 122

standard CNNs on Style-Transfer image dataset that mixes the shape of images from 123

one class with the texture from other classes so that only shape was diagnostic of 124

category. CNNs trained on this dataset learned to classify objects by shape. In another 125

study, Feinman and Lake [10] found CNNs were capable of learning a shape-bias based 126

on a small set of images, as long as the training data was carefully controlled. Similarly, 127

Hermann et al. [15] showed that more psychologically plausible forms of data 128

augmentation, namely the introduction of color distortion, noise, and blur to input 129

images, make standard CNNs rely more on shape when classifying images. Indeed, the 130

authors found that data augmentation was more effective in inducing a shape bias than 131

modifying the learning algorithms or architectures of networks, and concluded: “Our 132

results indicate that apparent differences in the way humans and ImageNet-trained 133

CNNs process images may arise not primarily from differences in their internal workings, 134

but from differences in the data that they see”. 135

These results raise the possibility that human biases are indeed a consequence of 136

learning the statistical properties of the environment, à la CNNs, rather than developing 137

representations of distal objects. But studies so far have focused on judging whether or 138

not CNNs are able to develop a shape-bias, rather than examining the type of shape 139
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representations they acquire. If humans and CNNs indeed acquire a shape-bias through 140

a similar process of statistical optimisation, then CNNs should not only show a 141

shape-bias, but also develop shape representations that are similar to human shape 142

representations. The data on this is currently controversial. Some studies have found 143

that CNNs are sensitive to small changes in object shapes and this sensitivity correlated 144

with humans [30], while others have found that changing some local features of objects 145

severely impacts object recognition in CNNs but has no impact for humans [1]. 146

A key finding about human shape representations is that humans do not give equal 147

weight to all shape-related features. For example, it has been shown that human 148

participants are more sensitive to distortions of shape that change relations between 149

parts of objects than distortions that preserve these relations [2, 24]. These observations 150

have typically been taken to support a heuristic view according to which relations 151

present in the proximal images are used to build distal representations of objects [18]. 152

The question we ask is whether CNNs trained to classify objects learn to encode these 153

relational features of shape. If they do, it would suggest that CNNs and humans indeed 154

learn similar shape representations [15] and that shape-biases in object recognition are 155

the product of optimising performance on object classification. But if not, it would 156

suggest that these biases are best characterized as heuristics designed to build distal 157

representations of shape. We present two experiments below designed to tease apart the 158

shape representations in humans and CNNs. Our results suggest that even though 159

CNNs are able to categorise objects based on shape, they do this on the basis of 160

qualitatively different shape representations to humans. In both experiments human 161

behaviour is better explained by the heuristic approach than an optimisation approach. 162

The rest of the paper is divided into three sections. In the first section, we focus on 163

objects that consist of multiple parts and, in the second section, on objects that consist 164

of a single part. The deformations required to infer the shape representations of these 165

two types of objects are different, but related. Therefore, we begin each section by 166

describing these deformations and how these deformations are predicted to affect shape 167

representations under the two (optimisation and heuristic) views. We then present 168

results of experiments where humans and CNNs were trained on the same set of shapes 169

and then presented these deformations. In the final section, we discuss how our findings 170

pose a challenge for developing models of human vision. 171

Experiment 1: multi-part objects 172

Proximal and distal encodings of multi-part objects 173

What sort of deformations of the proximal stimulus should allow us to contrast the 174

optimisation and heuristic approaches? Specific hypotheses can be derived from the 175

structural description theory [2], which assumes we build representations of distal 176

stimuli during the process of identifying objects. On this theory, objects are represented 177

as collections of convex parts in specific categorical spatial relations. For example, 178

consider two objects – a bucket and a mug – both of which consist of the same parts: a 179

curved cylinder (the handle) and a truncated cone (the body). The encoding of objects 180

through parts and relations between parts makes it possible to support a range of visual 181

skills. For example, it is possible to appreciate the similarity between a mug and a 182

bucket because they both contain the same parts (curved cylinder and truncated code) 183

as well as their differences (the different relations between the object parts). That is, 184

the representational scheme supports visual reasoning. In addition, the parts themselves 185

are coded so that they can be identified from a wide range of viewing conditions (e.g., 186

invariance to scale, translation and viewing angle, as well as robustness to occlusion), 187

allowing objects to be classified from novel poses and under degraded conditions. 188
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Fig 1. Stimuli used by Hummel and Stankiewicz [24]. The first column shows a set of
six (Basis) shapes that participants were trained to recognise. Participants were then
tested on shapes in the second and third columns, which were generated by deforming
the Basis shape in the corresponding row. In the second column (Rel deformation) a
shape is generated by changing one categorical relation (highlighted in red circle). In
the third column (Cod deformation) all categorical relations are preserved but
coordinates of some elements are shifted (highlighted in blue ellipse).

Note that the reliance on categorical relations to build up distal representations of 189

multi-part objects is a built-in assumption of the model (one of the model’s heuristics), 190

and it leads to the first hypothesis we test, namely that image deformations that change 191

a categorical relation between an object’s parts should have a larger impact on the 192

object’s representation than metrically-equivalent deformations that leave the 193

categorical relations intact (as might be produced by viewing a given object from 194

different angles). By contrast, any model that relies only on the properties of the 195

proximal stimulus might be expected to treat all metrically-equivalent deformations as 196

equivalent. Such a model may learn that some distortions are more important than 197

others in the context of specific objects, but it is unclear why they would show a general 198

tendency to treat categorical deformations as different than metric ones since there is no 199

heuristic that assumes that categorical relations between parts is central feature of 200

object shape representations. (Indeed, there is no explicit encoding of parts at all.) 201

Instead, all deformations are simply changes in the locations of features in the image. 202

Hummel and Stankiewicz [24] explored this question in the context of comparing 203

structural description and view based models of human vision. They created a collection 204

of shapes modeled on Tarr and Pinker’s (1989) simple “objects”. Each object consisted 205

of a collection of lines connected at right angles (Figure 1). Hummel and Stankiewicz 206

then created two deformations of each of these Basis object. One deformation, the 207
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relational deformation (Rel), was identical to the Basis object from which it was created 208

except that one line was moved so that its “above/below” relation to the line to which it 209

was connected changed (from above to below or vice-versa). This deformation differed 210

from the Basis object in the coordinates of one part and in the categorical relation of 211

one part to another. The other deformation, the coordinates deformation (Cod), moved 212

two lines in the Basis object in a way that preserved the categorical spatial relations 213

between all the lines composing the object, but changed the coordinates of two lines. 214

Note that both variants deformed the objects (proximal stimulus) but the relational 215

variant changes categorical relations between parts of the object. 216

Across five experiments participants first learned to classify a set of base objects and 217

then in a test phase were asked to identify the base objects and reject the Rel and Cod 218

stimuli. The experiments differed in the specific set of images used, the specific tasks, 219

the duration of the stimuli, but across all experiments, participants found it easy to 220

reject the Rel foils and difficult to reject the Cod foils. The effects were not subtle. In 221

Experiment 1 (that used the stimuli from Figure 1) participants mistook the Rel and 222

Cod images as the base approximately 10% and 90%, respectively, with similar findings 223

observed across experiments. Hummel and Stankiewicz took these findings to support 224

the claim that humans encode objects in terms of the categorical relations between their 225

parts, consistent with the predictions of the structural description theories that propose 226

a heuristic approach to human shape representation [18]. 227

Testing CNNs on the Hummel and Stankiewicz [24] stimuli 228

The findings of Hummel and Stankiewicz [24] provide a critical test for any model that 229

claims to be a theory of human vision: if shape-bias in humans is a consequence of 230

optimising over an object recognition task, then it should also lead to shape 231

representations that are more sensitive to relational deformations than coordinate 232

deformations. To test this hypothesis, we replicated the experimental setup of Hummel 233

and Stankiewicz, replacing human participants with CNNs. We trained the network on 234

the Basis shapes shown in Figure 1. Once the network had learnt to categorise these 235

Basis shapes, we tested how it categorised the Basis stimuli as well as Rel (relational) 236

and Cod (coordinate) deformations of each shape (see Methods for details). The results 237

are shown in Figure 2 following three different training conditions. The panel on the left 238

shows the accuracy when no data augmentation was used during training, consistent 239

with the training conditions in [24]. That is, the network learned six different Basis 240

Fig 2. Accuracy on the Basis shapes as well as the two types of deformations (Rel and
Cod) for a VGG-16 network. In each case, the model was trained on the set of Basis
shapes shown in Figure 1 above, and the training set consisted of (left) exactly these
shapes in fixed position, scale and rotation, (middle) Basis shapes were translated to
different positions on the canvas but presented at a fixed scale and rotation, and (right)
Basis shapes were translated, rotated and scaled.
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stimuli (one for each category) with no variation of the Basis images across training 241

trials. The network learned the task perfectly (accuracy for Basis shapes is 100%). But 242

unlike humans, it also generalised perfectly to the Rel and Cod deformations (accuracy 243

remained 100% under the two conditions). The two panels on the right show the results 244

following two different data augmentation training conditions, consistent with standard 245

machine learning approaches. The same results were obtained. 246

These results are qualitatively different from the observations of Hummel and 247

Stankiewicz [24]: while human participants also generalised to Cod (coordinate) 248

deformations, their performance for Rel (relational) deformations was very different 249

(mistaking the Rel deformations as Basis shapes less than 10 percent of the time). 250

One possible explanation for the perfect performance on the Rel and Cod stimuli 251

across the three training conditions is that the CNNs were forced to make a response, 252

and the softmax classification function obscured the fact that the model was treating 253

the Rel and Cod stimuli differently in the hidden layers of the network. In other words, 254

it is possible that the Basis-Rel similarity was less than the Basis-Cod similarity (like 255

humans) but these dissimilarities did not manifest in the outputs of the model. 256

We tested this hypothesis by examining the internal representations of the trained 257

network. Figure 3 shows the average similarity between internal representations for a 258

Basis image and it’s Rel deformation (Ba-Rel), as well as it’s Cod deformation (Ba-Cod). 259

(see Methods for how this distance was computed). The internal representations are 260

computed at all convolutional and fully connected layers within the network. We 261

compared these similarities to two baselines: the similarity between two Basis images 262

Fig 3. Cosine similarity between internal representations at convolutional and fully
connected layers of a trained VGG-16 network. The solid (red) line plots the cosine
similarity between the internal representations of a Basis shape and its Rel deformation,
while the dashed (blue) line plots the cosine similarity between the internal
representations of a Basis shape and its Cod deformation. The hatched (yellow) area
shows the upper and lower bounds on cosine similarity (obtained by computing the
cosine similarity of images from the same and different categories, respectively). Shaded
regions around each line show 95% confidence interval. Based on the results of Hummel
and Stankiewicz [24], we would expect the solid (red) line (Ba-Rel) to be closer to the
lower, rather than upper bound. Instead we observe that it stays at the upper bound
throughout the network and is statistically indistinguishable from the dashed (blue) line,
showing that there is no significant difference between the Basis shape and either
(relational or coordinate) deformation at any layer of the network.
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that belong to the same category and the similarity between two Basis images that 263

belong to different categories. These two baselines provide the upper and lower bounds 264

on similarities respectively. The results show that the network starts with representing 265

all types of images in a similar manner (there is no statistical difference between 266

similarities within or between categories in the early layers) but representations begin to 267

separate in the deeper convolution and fully connected layers (the hatched (yellow) 268

region increases in size as we move left to right because images from different categories 269

have lower similarity than images from the same category). Crucially, there is no 270

statistical difference between Ba-Rel and Ba-Cod, at any layer, both of which are at the 271

upper bound of similarity between representations. That is, the similarity between the 272

representation of a Basis image and it’s Rel deformation is no less than that of a Basis 273

image and it’s Cod deformation or even the similarity between two different Basis 274

images from the same category. These results suggest that the lack of difference in the 275

network’s performance on Basis, Rel and Cod stimuli extends to it’s internal 276

representations – that is, we did not find any evidence that suggests that the CNN 277

represents a relational change to an image in any privileged manner compared to a 278

coordinate change. 279

Although these findings suggest that CNNs represent shape in a dissimilar manner 280

to humans, two alternative explanations should be considered. First, we have assumed 281

that pre-training CNNs on a large dataset of naturalistic images, such as ImageNet, 282

should be enough to make them acquire similar shape representations as humans. This 283

is indeed a standard assumption when comparing these models with human data [see, 284

for example, 7]. However, it is possible that pre-training the model in this manner is not 285

enough to teach the models about the importance of relations. Perhaps if CNNs were 286

explicitly trained that relations matter, they would do a better job in characterizing 287

human shape representations. Second, performance on the two deformations was perfect 288

in the simulations above, and perhaps ceiling effects obscured more subtle differences 289

between Rel and Cod stimuli consistent with human vision. We consider these two 290

possibilities in turn. 291

Teaching relational representations of multi-part objects 292

In the above experiments, the training environment did not contain an instance of a 293

relational (Rel) or coordinate (Cod) deformation. What if the network was trained to 294

recognise that relational changes are important? In the next set of simulations, we 295

created a training environment with a “relational bias”. We show next that when we do 296

this, the network can learn specific changes to relations but it does not generalise this 297

knowledge to novel (but highly similar) relational changes. 298

Consider the three augmented training sets shown in Figure 4. In each set the 299

network is trained on the six Basis shapes (and their translation, rotation and scale 300

transformations) just like in the experiments above. In addition, it is also trained on 301

five new shapes. These five shapes are the Rel deformations of the first five Basis shapes. 302

In other words, the training set assigns different categories to a shape and it’s Rel 303

deformation for five out of six figures. After the network has been trained on these 304

eleven (5 + 5 + 1) shapes, it is tested on the Rel and Cod deformations of the final 305

(unpaired) Basis shape. 306

The difference between the three datasets lies in the degree of novelty of test images. 307

In all three datasets in Figure 4, the same relation (dashed red circle) is changed 308

between the unpaired Basis shape and it’s Rel deformation. However, in the first set, 309

there were four other categories (two pairs, highlighted in red rectangles) in the training 310

set where a similar change in relation occurred – that is, for all highlighted categories, 311

there existed another category where the short red segment at the left end of the top 312

bar flipped from “above” to “below” or vice-versa. In the second training set (Set 2 in 313
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Fig 4. Three training sets that try to teach the network to recognise relational changes.
In each set, the first column shows a set of six unique Basis shapes, while the second
column shows Rel deformations of the first five shapes (see red arrow). At the bottom
are the two test shapes. These test shapes are identical to the eleventh (unpaired)
training shape, except for one relational (dashed red circle) or coordinate (dashed blue
ellipse) deformation. In Set 1 and Set 2, the difference between the untrained shape and
the tested Rel deformation overlaps with some pairs of shapes in the training set
(highlighted in solid red rectangles), while in Set 3 there is no overlap between the
tested deformation and any trained deformation.

December 13, 2021 9/29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2021. ; https://doi.org/10.1101/2021.12.14.472546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472546
http://creativecommons.org/licenses/by/4.0/


Fig 5. Cosine similarity between Basis image and two types of deformations for a
VGG-16 network trained on augmented datasets. Like Figure 3, the hatched (yellow)
region shows the upper and lower bound on similarity, the solid (red) line shows
similarity between Basis and the relational deformation while the dashed (blue) lines
shows similarity between Basis and the coordinate deformation.

Figure 4) there were two categories in the training set where the tested relation changed. 314

However, in this case, this relational change occurred in a different location (closer to 315

central vertical line). In the third training set, the tested relational change was truly 316

novel – that is, none of the trained categories differed in the tested relational change. Of 317

course, the training set still contained categories that differed in a relational change but 318

none of the trained differences overlapped with the tested difference. 319

Figure 5 shows the cosine similarity in internal representations for CNNs trained on 320

these three modified data sets (as in previous simulations, all networks were pre-trained 321

on ImageNet and re-tuned to each training set). In panel (a) the cosine similarity 322

Ba-Rel is lower than Ba-Cod in deeper layers of the CNN. That is, the network treats 323

the relational deformation as less similar to Basis figures than the coordinate 324

deformations. This looks much more like the behaviour of human participants in 325

Hummel and Stankiewicz [24]. But note this training set contains two categories with 326

exactly the same relational change that distinguishes the tested Rel deformation from 327

the corresponding Basis figure. A stronger test is provided in the second case. Here, we 328

observed that the this effect is significantly reduced (panel (b)) – the cosine similarity 329

Ba-Rel is slightly lower than Ba-Cod but by a much smaller degree and the difference 330

only exists in the fully connected layers (also compare results in Figure 15 in Appendix 331

for AlexNet, where this effect is slightly more pronounced but qualitatively similar). 332

The strongest test for whether the network learns relational representations is provided 333

by the third case, where none of the categories in the training set change the exact 334

relation that distinguishes the Rel deformation from the Basis image. Here, we observed 335

(Figure 5(c)) that the effect disappears completely – the cosine similarity Ba-Rel was 336

indistinguishable from Ba-Cod and both similarities were at the upper bound. The 337

network failed to learn that novel relational changes are more important for classification 338

than coordinate changes even when the learning environment contained a “relational 339

bias” – i.e., changing relations led to a change in an image’s category mapping. 340

Experiment 2: single-part objects 341

Deformations for testing single-part objects 342

As detailed above, structural description theories claim that the categorical relations 343

between object parts are encoded in order to build distal representations of multi-part 344

objects. But of course, in order to build distal representations of complex objects, it is 345

also necessary to build distal representations of the parts themselves. This raises the 346

question of what sorts of deformations of the proximal stimulus should allow us to 347
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contrast optimisation and heuristic approaches for identifying the component parts of 348

complex objects or single-part objects? According to the structural description theory 349

[2], certain shape properties of the proximal image are taken by the visual system as 350

strong evidence that individual parts have those properties. For example, if there is a 351

straight or parallel line in the image, the visual system infers that the part contains a 352

straight edge or parallel edges. If the proximal stimulus is symmetrical, it is assumed 353

that the part is symmetrical [see, for example, 41]. These (and other) shape features 354

used to build a distal representation of the object part are called nonaccidental because 355

they would only rarely be produced by accidental alignments of viewpoint. The visual 356

system ignores the possibility that a given nonaccidential feature in the proximal 357

stimulus (e.g., a straight line) is the product of an accidental alignment of eye and distal 358

stimulus (e.g., a curved edge). That is, the human visual system uses nonaccidental 359

proximal features as a heuristic to infer distal representations of object parts. 360

Critical for our purpose, many of the nonaccidental features described by Biederman 361

[2] are relational features, and indeed, many of the features are associated with Gestalt 362

rules of perceptual organization, such as good continuation, symmetry, and Pragnanz 363

(simplicity). Accordingly, any deformations of the proximal stimulus that alter these 364

nonaccidental features (such as disrupting symmetry) should have a larger impact on 365

classifications than deformations that do not. By contrast, it is not clear that CNNs 366

optimized to classify objects will encode symmetry or other relational features used to 367

build distal representations. Accordingly, CNNs may be insensitive to deformations of 368

symmetry or other relations present in the proximal stimulus. 369

With this in mind, we created set of seven symmetrical pentagons (Figure 6(a)), and 370

made deformations of these polygons by altering the locations of the vertices composing 371

the polygons in a way that precisely controlled the metric change in the vertices’ 372

locations (in the retinal image). Like Experiment 1, we created two types of 373

deformations: (a) a coordinate deformation that parametrically varied the degree to 374

which a polygon rotated in the visual image, vs. (b) a relational change that had an 375

equivalent impact as the corresponding rotation, but instead introduced a shear that 376

changed relative location of the polygon’s vertices. Although the specific manipulation 377

is different from that used in Experiment 1, the general logic is the same: one of the 378

deformations preserves the relations between object features while the other changes 379

them. To a model that looks only at proximal stimulus, both deformations lead to an 380

equivalent pixel-by-pixel change, while to a model that infers properties such as 381

symmetry and solidity of the distal stimulus, the coordinate deformation preserves these 382

properties while the relational deformation changes them. 383

Figure 6(b) shows some examples of test images for one of the trained shapes. These 384

test shapes are organised based on the degree and type of deformation. The degree of 385

relational deformation (shear) of a test image increases as we move from left to right, 386

while the degree of coordinate deformation (rotation) increases as we move from top to 387

bottom. We can also construct test shapes that are a combination of these relational 388

and coordinate deformations. Every shape in Figure 6(b) is a combination of a rotation 389

and a shear of the basis shape in the top-left corner. We have organised these test 390

shapes based on their distance to the basis figure: all shapes along each diagonal have 391

the same cosine distance to the basis shape.1 and diagonals farther from the basis shape 392

are at a larger distance. Thus, this method gives us a set of test shapes organised 393

according to increasing relational and coordinate changes and matched based on the 394

distance to the basis shape. We could now ask how accuracy degrades on this landscape 395

of test shapes. If the visual system encodes shape as a set of diagnostic features of the 396

retinal image, accuracy should fall as one moves across (perpendicular to) the diagonals 397

1We obtained qualitatively similar results when deformations were organised based on their Euclidean
distance to the Basis shape.
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Fig 6. Stimuli used to test shape representations in single-part objects. (a) The shapes
in the Basis set used for training. Each shape is presented at various translations and
scales. (b) The test set for one of the categories (Cat 2) is obtained by deforming the
Basis shape (in the top-left corner) through a combination of rotation and shear
operations. Here we have organised these deformations in a matrix based on their
coordinate distance (measured as cosine distance) and relational distance (measured as
change in relative location of vertices) from the basis shape. All deformations on a
diagonal of this matrix are at the same coordinate distance from the Basis shape and all
deformations in a column are at the same relational distance from the Basis shape.
Highlighted (red) squares show stimuli for computing cosine distance in Figure 8 below.
Deformations marked D1 and D2 are used for testing human participants. (c) The
predicted accuracy on the test set presented as heat-maps, assuming that accuracy is a
function of coordinate distance (top), or relational distance (bottom).

on the landscape. On the other hand, if the visual system encodes shape as a property 398

of the distal stimulus, then changing internal relations should lead to a larger change in 399

classification accuracy than an equivalent coordinate change – that is, the accuracy 400

should fall sharply as one moves left to right along each diagonal. Figure 6(c) shows 401

predicted accuracy on this landscape for the two types of shape representations. 402

Performance of CNNs 403

The performance of the network on each test category is shown in Figure 7. Accuracy 404

was highest on the top-left corner for each category (i.e., for the Basis shape) and 405

reduced as the degree of relational and coordinate change was increased. Thus, unlike 406
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Fig 7. Accuracy on the landscape of relational and coordinate deformations for a
VGG-16 trained on a set of seven polygons shown in Figure 6(a). (Top) For each
category, every point on this landscape shows the percent of shapes (with a relational
and coordinate deformation given by the position on the landscape) accurately classified
as the given category by the trained network. (Bottom) The confusion matrix for all
deformations. For any heat map, the category label along the row shows the ground
truth – i.e., all test shapes used to obtain the heat map were obtained by distorting the
basis shape from that category. The category label along the column shows output class
label assigned by the network. Therefore, in each row, the diagonal heat map shows the
correct classifications, while the off-diagnoal heat maps show how each deformation was
misclassified.

Experiment 1, where we were able to observe only ceiling performance for both 407

deformations, the design of Experiment 2 allows us to compare how performance 408

degrades for the two types of deformations. We observed that for most categories, 409

accuracy decreased as a function of distance to the Basis shape (perpendicular to the 410

diagonals), rather than relational change (along the diagonals, left to right). In fact, for 411

some categories accuracy improved as one moved from left to right along the diagonals. 412

We also observed a variability across categories in how the performance reduced 413

across deformations. For example, in Figure 7(top), Category 5 shows much larger 414

decrease in performance with increase in rotation of test images than Category 7. To 415

understand why this was the case, it is useful to look at the errors made by the network. 416

Figure 7(bottom) shows the confusion matrix, where each heat map now shows the 417

number of times an output class was chosen for a given input. This confusion matrix 418

shows that the network was prone to mis-classify large rotations from any category as 419

belonging to Category 7. These Type I errors create a bias in the accuracy results for 420

Category 7 in Figure 7(top). The high accuracy for large rotations for Category 7 421
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category are, in fact, misleading as the network classifies large rotations for any 422

category as Category 7. This confusion matrix also shows that the network showed a 423

“rightward” bias – there are more Type I errors in the upper triangle of the matrix than 424

the lower triangle. In other words, the network was more likely to mis-classify images 425

from each category as the category above rather than the category below. 426

These results suggest that the network does not represent the shapes in this task in 427

a relational manner. If it did, it’s performance on relational changes should have been a 428

lot worse than it’s performance on relation-preserving rotations. But, like in the case of 429

the stimuli from Hummel and Stankiewicz [24], accuracy only provides a indirect 430

measure of internal representations. It is possible that even though the network 431

correctly classifies many images with large relational change (images on the right hand 432

side in Figure 6(b)), the internal representation of these images is quite different from 433

the Basis image. We tested this hypothesis by examining the cosine distance between 434

internal representations for the Basis image and two test images that were equidistant 435

from it. An example of these images is highlighted (dashed red squares) in Figure 6(b). 436

These cosine similarities for an example VGG-16 network are plotted in Figure 8 (we 437

obtained qualitatively similar results for AlexNet – see Figure 17 in Appendix). At all 438

internal layers, we observed that the average similarity between Basis and relational 439

(shear) deformation was higher than the average similarity between the Basis image and 440

it’s coordinate (rotation) deformation (compare solid and dashed lines in Figure 8). In 441

other words, relational deformation of an image was closer to the Basis image than it’s 442

coordinate deformation. This is the opposite of what one would expect if the network 443

represented the stimuli in a relational manner. 444

Fig 8. Cosine similarity in internal representations of VGG-16 in Experiment 2. The
solid (red) and dashed (blue) lines show the average cosine similarity between Basis
images and relational (shear) and coordinate (rotation) deformations, respectively. The
hatched (yellow) region shows the bounds on this similarity, with the upper bound
determined by the average similarity between Basis images from the same category and
lower bound determined by the average similarity between Basis images of different
categories. If relational (shear) deformation has a larger affect on internal
representations than a coordinate (rotation) deformation, one would expect the solid
(red) line to be below the dashed (blue) line.
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(a) VGG-16 (b) Human

Fig 9. Comparison of (a) network performance and (b) human participants in
classifying sheared (dashed line) and rotated (solid line) images. Each panel shows
performance under three conditions: basis image, deformation D1 and deformation D2.
For the shear deformation, D1 and D2 consists of images in the top row in the fourth
and eighth column in Figure 6. For the rotation deformation, D1 and D2 consist of
images in the first column and fourth and eighth rows. Error bars show 95% confidence
interval and dashed red line shows chance performance.

Performance of human participants 445

The optimisation view (CNNs) and heuristic view (structural description theory) make 446

contrasting predictions of how performance should degrade when a learned shape is 447

deformed through rotation and shear transformations. In our next experiment, we 448

examined which of these predictions holds for human participants. 449

We trained 23 participants on the same categorisation task used to train the CNN 450

above. Participants saw the polygons shown in Figure 6(a) and had to learn to 451

categorise them. Once they had learned this task, they were tested on four deformations 452

of each Basis shape – two shears and two rotations. These deformations are marked as 453

D1 and D2 in Figure 6(b) (see Methods for details). 454

The average accuracy of classification on each of these deformations is shown in 455

Figure 9. In Figure 9(a), we can see that the CNN is more sensitive to rotation than to 456

shear. While performance decreases for both deformations, it decreases more rapidly for 457

rotations. Human participants showed the opposite pattern (Figure 9(b)). There was no 458

significant difference in performance between the basis image and the two rotation 459

deformations (both t(22) < 3.48, p > .28), while performance decreased significantly for 460

each of shear deformations (both t(22) > 14.10, p < .001, dz > .83). The largest shear 461

resulted in largest decrease in performance (Mdifference = 25.87%). Thus, the 462

behaviour of participants was in line with the prediction of structural description 463

theories, where shape is encoded based on relations between internal parts, and in the 464

opposite direction to the performance of the CNN. 465

Teaching relational representations for single-part objects 466

One response to this difference between CNNs and humans is that it arises due to the 467

difference in experience of the two systems. Humans experience objects in a variety of 468

rotations and consequently represent a novel object in a rotation invariant manner. 469

CNNs, on the other hand, have not been explicitly trained on objects in different 470

orientations (although ImageNet includes objects in various poses). It could therefore 471

be argued that the CNN does not learn relational representations in the polygons task 472
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(a) Accuracy landscape
(b) Accuracy for conditions

in experiment

Fig 10. Performance of VGG-16 trained on an augmented dataset where the Basis
shapes are not only translated and scaled, but also rotated randomly in the range
[−45°, 0°]. The network is then tested in the same way as above, where the Basis shapes
are deformed by shear or rotation (in the range [0°,+45°]) transform. (a) Accuracy
(plotted) as percent correct on the landscape of deformations, and (b) shows accuracy
for deformations used in experiment with human participants (compare with Figure 9(b)
above).

because the training set did not provide an incentive for learning such a representation. 473

Indeed, the optimisation view argues that a bias must be present in the training 474

environment for the visual system to internalise it. 475

To give the network a better chance of learning to classify based on internal 476

relations, we conducted two further simulations. In the first simulation, we trained the 477

network on rotational deformations of Basis shapes, in addition to translation and scale 478

deformations. To test whether the network generalises based on relational 479

representations, we tested the network on the grid of deformations shown in Figure 6(b) 480

and excluded the rotations used in that grid from the training set. Specifically, the 481

Basis shapes were presented at random rotations in the training set in the range 482

[−45◦, 0] and tested on rotations in the range [0,+45◦]. The network performance on 483

this test grid for each category is shown in Figure 10. 484

We observed that, despite being trained on this augmented dataset, results remained 485

qualitatively similar. For most categories performance degraded equally or more with a 486

change in rotation than with an equivalent change in shear. That is, the network was 487

better at generalising to large relational deformations (shears) than large 488

relation-preserving deformations (rotation). The pattern was different for the final 489

category, where the network showed good performance on large rotations. But 490

examining the confusion matrix again revealed that the high accuracy at large rotations 491

for these two categories was misleading as it was accompanied with large Type I errors: 492

large rotations for shapes of any category were mis-classified as belonging to the final 493

category. Overall, we did not find any evidence for the network learning shapes based 494

on their internal relations. 495

In the second set of simulations, we selected six (out of seven) categories and trained 496

the network on random translations, scales and all rotations ([0, 360°)) for these 497

categories. For the seventh category (Cat 3), images were still randomly translated and 498

scaled, but always presented in the upright orientation. We then tested how the network 499

generalised to the two types of deformations for this critical category. 500

The results of this simulation are shown in Figure 11. Figure 11(a) shows the 501

heat-map of accuracy on the test grid for the left-out category. This heat map showed 502
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(a) Accuracy landscape for left-out Category
(b) Accuracy for conditions

in experiment

Fig 11. Performance of VGG-16 trained on an augmented dataset, where the Basis
shapes are not only translated and scaled for all categories but also rotated at all angle
([0°, 360°]) for six out of seven categories. We test whether this augmented training
allow the network to generalise better on the relation-preserving deformation (rotation)
than the relation-changing deformation (shear) for the left-out category (Cat 3,
highlighted). (b) Accuracy for the set of deformations tested with human participants
(compare with Figure 9(b) above).

that the network continued showing the pattern observed above – it’s performance 503

decreases across (perpendicular to) the diagonals, but increases as one moves from 504

left-to-right along these diagonals. Figure 11(b) shows the performance on the same 505

conditions as the human experiment (see Figure 9). Again, we see that the performance 506

drops less rapidly across the two shear deformations (dashed line) than the two rotation 507

deformations (solid line). This figure makes it clear that training other orientations on 508

all rotations does not help the network generalise better to novel orientations for the 509

left-out category. In fact, the performance drops more quickly than when none of the 510

categories were rotated in the training set (compare with Figure 9(a)). This is because 511

the network starts classifying novel orientations of the left-out shape as the shapes that 512

it had seen being rotated in the training set. 513

It may be tempting to think that the differences between humans and CNNs can be 514

reconciled by training CNNs that learn rotation-invariant shapes. However, consider 515

how a CNN achieves rotation-invariance. Figure 12, taken from Goodfellow et al. [12, 516

chap. 9], illustrates how a network consisting of convolution and pooling layers may 517

learn to recognise digits in different orientations. As a result of training on digits (here, 518

the digit 5) oriented in three different directions, the convolution layer develops three 519

different filters, one for each orientation. A downstream pooling unit then amalgamates 520

this knowledge and fires when any one of the convolution filters is activated. Therefore, 521

this pooling unit can be considered as representing the rotation-invariant digit 5. During 522

testing, when the network is presented the digit 5 in any orientation, the corresponding 523

convolution filter gets activated, resulting in a large response in the pooling unit and 524

the network successfully recognises the digit 5, irrespective of it’s orientation. 525

In contrast, a relational account of shape representation does not rely on developing 526

filters for each orientation of a shape. Indeed, it is not even necessary to observe a shape 527

in all orientations to get, at least some degree of, rotation invariance. All that is needed 528

is to be able to recognise the internal parts of an object and check whether they are in 529

the same relation as the learned shape. Accordingly, many psychological studies have 530

shown that invariance, such as rotation invariance, precedes recognition [3, 4, 5, 20]. 531
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Fig 12. An example of how the operations of convolution and pooling can help a CNN
achieve rotation invariance. Taken from Goodfellow et al. [12, chap. 9]

Discussion 532

In two sets of experiments we have shown that CNNs and humans represent shape in 533

qualitatively different ways. In Experiment 1 we compared how CNNs and humans 534

encode multi-part objects following deformations in the categorical relation between 535

parts (Relational Variants) and deformations that maintained the categorical relations 536

between parts (Coordinate Variants). Whereas humans are highly sensitive to 537

deformations in the categorical relations between parts [24, 18], we found that CNNs 538

are entirely insensitive to these deformations, with performance only a function of the 539

cosine distance between images in pixel space. Furthermore, we could not train CNNs 540

to classify objects on the basis of the relations between parts. In Experiment 2, we 541

compared CNNs and humans in the classification of single part objects when they were 542

deformed by sheering (Relational) or by rotating (Coordinate) manipulations. Again, 543

we found that humans are highly sensitive to relational deformations, whereas CNNs are 544

only sensitive to coordinate manipulations, and once again, CNNs could not learn to be 545

sensitive to relational manipulations. 546

These findings speak to a current debate concerning the representations that support 547

object recognition in CNNs and humans. On the one hand, some studies have shown 548

that CNNs often classify objects on the basis of texture and other non-shape features 549

[11, 1] whereas humans primary rely on shape [6, 41], suggesting fundamental differences 550

between the two systems. On the other hand, recent studies have shown that changes in 551

the training environment, objective functions, and minor changes to the architectures of 552

CNNs can induce a shape-bias for object recognition in CNNs [10, 11, 15, 14]. Although 553

these later CNNs still do not rely on shape to the same extent as humans, the findings 554

suggests that CNNs may be able account for the the human shape-bias results, and 555

more generally, suggests the goal of optimizing classification performance in CNNs is a 556

promising approach for developing models of human object recognition. 557

However, our results show that CNNs that learn to classify objects on the basis of 558

shape (our stimuli did not contain any diagnostic texture or colour) learn the wrong 559

sort of shape representation. These findings add to other studies that also highlight the 560

different types of shape representation used by CNNs and the human visual system. For 561

example, Puebla and Bowers [43] have found that CNNs fail to support a simple 562

relational judgement with shapes, namely, whether two shapes are the same or different. 563

Again, this highlights how CNNs trained to process shape ignore relational information. 564

In addition, Baker et al. [1] have shown that CNNs that classify objects based on shape 565

focus on local features and ignore how local features relate to one another in order to 566

encode the global structure of objects. They attribute this failure to a range of 567
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processes that are present in humans but appear to be absent in CNNs, including 568

figure-ground segregation, completing objects behind occluders, encoding boarder 569

ownership, and inferring 3D properties about the object. Consistent with this 570

hypothesis, Jacob et al. [25] have recently highlighted a number of these failures in 571

CNNs, including a failure to represent 3D structure, occlusion, and parts of objects. 572

One interesting study that provides some evidence to suggest that standard CNNs 573

have similar shape representations to humans was reported by Kubilius et al. [30]. In 574

one of their experiments (Experiment 3), they compared the similarity of 575

representations in various CNNs in response to a change in metric and non-accidental 576

features of single-part objects. For instance, they compared a base object that looked 577

like a slightly curved brick to two objects: one object that was obtained by deforming 578

the base object into a straight brick (a non-accidental change) and a second object that 579

was obtained by deforming the base object into a greatly curved brick (a metric change). 580

Kubilius et al. reported that, like humans, CNNs were more sensitive to non-accidental 581

changes. However, it is unclear whether CNNs were more sensitive to one of their 582

manipulations because of the non-accidental change or because of other confounds 583

accompanying these manipulations. For example, when Kubilius et al. modified some of 584

the base shapes to non-accidental deformations, it was accompanied by a change in 585

shading (luminance) and local features. Recent research [1, 11] has shown that, unlike 586

humans, CNNs are in fact highly sensitive to change in local and textural features and 587

it is unclear whether it is these types changes that are driving the effects observed by 588

Kubilius et al. [30]. More work is required to reconcile their findings with our own. 589

More generally, our findings raise the question as to whether optimizing CNNs on 590

classification tasks is even the right approach to developing models human object 591

recognition. It is striking how well our findings are well predicted by a classic structural 592

description theory of object recognition that builds a distal representation of objects 593

using heuristics [e.g., 2]. As detailed above, on this theory, the visual system encodes 594

specific features of the proximal stimulus that are best suited for making inferences 595

about the distal object. This includes explicitly coding the relations between parts in 596

order to supporting visual reasoning about objects (e.g., appreciating the similarity and 597

differences of buckets and mugs as discussed above), and encoding parts in terms of 598

non-accidental features that often include relations between features, such as symmetry, 599

in order to infer their 3D distal shape from variable proximal 2D images. Just as 600

predicted, humans are selectively sensitive to these deformations (changes in the 601

relations between parts in Figure 1 and changes in symmetry in Figure 6), whereas 602

CNNs treated these deformations no differently than others. 603

There is reason to believe that building structural descriptions of object shape based 604

on explicit representations of the spatial relations among an object’s parts will prove 605

especially challenging for current CNN models of object recognition. Explicitly 606

relational representations require two representational degrees of freedom, one to specify 607

the parts and relations involved in the representation (e.g., there is a brick shape and a 608

cone shape, and one of them is above the other) and a second to specify their bindings 609

[e.g., to distinguish whether the brick is above the cone or vice-versa; 8, 19, 21, 22, 23]. 610

The units in a CNN have only a single degree of freedom, namely activation, with which 611

to express information, rendering them formally too weak to represent relations, and 612

therefore structural descriptions, explicitly. Other Deep Learning architectures such as 613

Capsule Networks [44], Transformers [49], LSTMs [17] or Neural Turing machines [13] 614

may provide the representational power necessary to represent structural descriptions, 615

but to date this has yet to be demonstrated. 616
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Methods 617

Generating training and test sets 618

Training and test sets for Hummel and Stankiewicz [24] We constructed six 619

basis shapes that were identical to the shapes used by Hummel and Stankiewicz [24] in 620

their Experiments 1–3. Each image was sized 196x196 pixels and consisted of five black 621

line segments on a white background organised into different shapes. All images had one 622

short (horizontal) segment at the bottom and one long (vertical) segment in the middle. 623

This left three segments, two long, which were always horizontal, and one short, which 624

was always vertical. The two horizontal segments could be either left-of or right-of the 625

central vertical segment. Additionally, the short vertical segment could be attached to 626

the left-of or the right-of the upper horizontal segment. This means that there were a 627

total of 8 (2x2x2) possible Basis shapes. We selected six out of these to match the six 628

shapes used by Hummel and Stankiewicz [24]. Following Hummel and Stankiewicz [24], 629

we constructed Rel (relational) deformations (called V1 variants by Hummel and 630

Stankiewicz [24]) of each Basis shape by shifting the location of the top vertical 631

segment, so that it’s categorical relation to the upper horizontal segment changed from 632

“above” to “below”. Similarly, we constructed Cod (coordinate) deformations (called V2 633

variants by Hummel and Stankiewicz [24]) by shifting the location of both the top 634

horizontal line and the short vertical segments together, so that the categorical relations 635

between all the segments remained the same but the pixel distance (e.g. cosine distance) 636

was at least as large as the pixel distance for the corresponding Rel deformation. Each 637

training set contained 5000 images in each category. When no augmentation was used, 638

all the images in each category were identical – i.e. the shape appeared at the identical 639

location on the canvas for all images in a category. In addition, we constructed two 640

augmented datasets, one in which the Basis image was translated to a random locations 641

(in the range [−50,+50] pixels) on the canvas and another in which it was additionally 642

randomly scaled ([ 12 , 1]) or rotated ([−20°,+20°]). 643

As described above, we generated three additional datasets for teaching CNNs to 644

recognise relational deformations on Hummel and Stankiewicz’s stimuli (see Figure 4). 645

Each of these training sets contained five pairs of Basis shape and one unpaired shape. 646

Each pair consisted of a shape and it’s Rel deformation. The test set consisted of Rel 647

and Cod deformations of the unpaired shape. The difference in the three datasets was 648

the amount of overlap between the trained Rel deformations and tested deformation. In 649

the first dataset, there were two pairs of Basis shapes where a Rel deformation was 650

constructed by changing the same categorical relation as the one that differed between 651

the unpaired shape and the tested Rel deformation. In the second set, there was only 652

one such pair. And in the third set, none of the trained shapes differed in the tested 653

deformation. Each training set again consisted of 5000 images, where each image was 654

constructed by translating, scaling and rotating the Basis shape for that category. The 655

test set consisted of 1000 images where each image was constructed by randomly 656

translating, scaling and rotating the Rel and Cod deformations of the unpaired Basis 657

shape. 658

Training and test sets for polygons task The training set for Experiment 2 659

consisted of seven symmetric filled pentagons, presented on a white canvas. Each 660

category contained 5000 training images. The training set presented these polygons at 661

different translations and scales, so it was not possible to classify them based on the 662

position of a local feature or the area of the polygon. The difference between Basis 663

shapes for two categories was the angles between the edges. The test set consisted of a 664

grid of shapes that were obtained by deforming the Basis shape of the corresponding 665

category. We used two deformations: rotation, which preserved the internal angles 666
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between edges, and shear, which changed internal angles. To shear a shape, it’s vertices 667

were horizontally moved by a distance that depended on the vertical distance to the 668

apex. For a vertex with coordinates (xold, yold), we obtained a new set of vertices, 669

(xnew, ynew) = (xold + λ(∆y)2, yold), where λ was the degree of shear and ∆y was the 670

distance between yold and yapex, the y-coordinate of the vertex at the apex. Images 671

could also be combination of rotations and shears. To do this, the Basis image was first 672

sheared, then rotated. We measured the distance of a deformed image and test images 673

were organised as shown in Figure 6, where images in each column had the same degree 674

of shear and images along each diagonal had the same (cosine or euclidean) distance to 675

the Basis image. We then obtained twenty exemplars of each deformed image on the 676

grid by randomly translating and scaling the image. 677

CNN Simulations 678

We evaluated two deep convolutional neural networks, VGG-16 [45] and AlexNet [29] on 679

the image classification tasks described in the Results section. We obtained qualitatively 680

similar results for both architectures. Therefore, we focus on the results of VGG-16 in 681

the main text and describe the results of AlexNet in Appendix 1.1. Since human 682

participants had a lifetime experience of classifying naturalistic objects prior to the 683

experiment, we used network implementations that had been pre-trained on a set of 684

naturalistic images (ImageNet). In each experiment, the pre-trained network was 685

fine-tuned to classify the 5000 images per category. Each of these images were obtained 686

from the corresponding Basis image in the manner described above. This fine-tuning 687

was performed in the standard manner [50] by replacing the last layer of the classifier to 688

reflect the number of target classes in each dataset. The models learnt to minimise the 689

cross-entropy error by using the Adam optimiser [27] with a learning rate of 10−5 and a 690

weight-decay of 10−3. In all simulations, learning continued till the loss function had 691

converged. In most cases, the networks achieved nearly perfect classification on the 692

training set. For the first set of experiments (Hummel and Stankiewicz [24] stimuli), the 693

test set consisted of 1000 Basis, Rel and Cod deformations of each category. In the 694

second set of experiments (polygons stimuli) the test set consisted of 100 exemplars 695

(translation and scale variants) of each test image on the grid (see Figure 6). All 696

simulations were perfomed using the Pytorch framework [38] and we used 697

torchvision implementation of all models. 698

To test the similarity of internal representations (Figures 3, 5 and 8), we obtained 699

the embedding of an image at each convolution and fully connected layer of the CNN. 700

For the first set of simulations (Hummel and Stankiewicz [24] stimuli), we selected one 701

(of the six) category and randomly chose 100 pairs of images from the Basis and Rel test 702

set. We then computed the cosine similarity between embeddings of each pair. This 703

gives the estimated average distance in the Ba-Rel condition (solid red line in Figure 3). 704

Similarly the cosine similarity between 100 pairs of Basis and Cod test images gives the 705

Ba-Cod distance (dashed blue line). These distances are compared against two baseline 706

conditions. The upper limit of similarity is given by the similarity of 100 pairs of Basis 707

images from the same category (upper bound of the hatched yellow area in Figure 3). 708

The lower limit is given by the similarity of 100 pairs of Basis images from different 709

category (in each pair, one of the images was from one category and the other from one 710

of the other six categories). The similarity of internal reprsentations for the polygons 711

stimuli is obtained in a similar manner. The similarity Ba-Sh (solid read line in 712

Figure 8) is estimated by measuring the average cosine similarity between embeddings 713

of 100 pairs images from the Basis and sheared sets of the same category. Similarly, 714

Ba-Rot is estimated by measuring the average cosine similarity between embeddings of 715

100 pairs of images from Basis and rotated sets of the same category. 716
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Behavioral experiment 717

Participants 718

Participants (N = 37, Mage = 33, 70% female) with normal or corrected-to-normal 719

vision were recruited via Prolific and the experiment was conducted on the Pavlovia 720

platform. They were reimbursed a fixed 2 GBP and participants who proceeded to the 721

testing phase (N = 23) had a chance to earn a bonus of up to another 2 GBP 722

depending on performance during testing. The average payment was 8 GBP/hour. An 723

written ethics approval for the study was obtained for the study from the University of 724

Bristol Ethics board. 725

Stimuli 726

Four categories were chosen from the total data set for the behavioral study. These are 727

Cat 1, Cat 3, Cat 5 and Cat 7 from Figure 6a. For the test data, we selected two 728

deformations of each type that were matched according to the cosine distance from the 729

basis (trained) image. For the relational deformation, these were the fifth (Deformation 730

D1) and final (Deformation D2) shear in the top row of Figure 6b. For the coordinate 731

deformation, these were the fifth (D1) and final (D2) rotations in the left most column 732

of Figure 6b. This made up the 5 conditions in the experiment: Basis, D1 (Shear), D2 733

(Shear), D1 (Rotation) and D2 (Rotation). The original stimuli were 224x224 pixels but 734

were re-scaled for each participant to 50% of the vertical resolution to account for the 735

variability in screen size and resolution when running the study online. 736

Procedure 737

Participants completed a supervised training phase in which they learned to categorize 738

basis versions of the four categories. Each training block consisted of 40 stimuli for a 739

total of 200 training trials (50 per category). Feedback on overall accuracy was given at 740

the end of each block. Participants completed up to a maximum of 5 training blocks, or 741

until they reached 85% categorization accuracy in a block. Participants who managed 742

to reach 85% accuracy continued to the test block. The order of trials was randomised 743

for each participant. Each trial started with a fixation cross (750 ms), then the stimulus 744

was presented (500 ms) followed by four response buttons corresponding to the four 745

categories (until response). After participants responded, feedback was given - 746

CORRECT (1 s) if the response was correct, and INCORRECT with additional 747

information about what the correct response should have been (1.5 s) if the response 748

was incorrect. 749

The training phase was followed by a test phase consisting of five test blocks. Each 750

block consisted of 20 trials for a total of 100 test trials (25 per condition). Like the 751

training phase, the order of test trials was randomised for each participant. The 752

procedure for each test trial was the same as in the training phase apart from the fact 753

that participants were not given any feedback during testing. 754

Analysis 755

Four planned comparisons (t-tests) were conducted in order to test whether accuracy 756

rates in each of the shear and rotation conditions differed from accuracy in the basis 757

condition. 758

Code and Data 759

All code for generating the datasets, simulating the model as well as participant data 760

from Experiment 2 can be downloaded from: https://github.com/gammagit/distal 761
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Appendix 884

1.1 Results with AlexNet 885

Fig 13. Performance of AlexNet in the test set for Experiment 1. Each panel shows
accuracy on the Basis shapes as well as the two types of deformations: relational (Rel)
which changes a categorical relation and coordinate (Cod), which preserves all
categorical relations. In each case, the model was trained on the set of Basis shapes
shown in Figure 1 in the main text, and the training set consisted of (a) exactly these
shapes in fixed position, scale and rotation, (b) Basis shapes were translated to different
positions on the canvas but presented at a fixed scale and rotation, and (c) Basis shapes
were translated, rotated and scaled. Compare with performance of VGG-16 in Figure 2.

Fig 14. Cosine similarity between the internal representations of Basis images and the
internal representation of Rel (relational) and Cod (coordinate) deformations of the
Basis image. Like the results for VGG-16 (compare with Figure 3 in the main text), the
similarity between Basis images and both types of deformations is at the upper bound
throughout the network, showing that the network does not distinguish the trained
(Basis) image from it’s Rel and Cod deformations.
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Fig 15. Cosine similarity between Basis image and two types of deformations for
AlexNet trained on (a) Set 1, (b) Set 2, and (c) Set 3 in Figure 4. Like the results for
VGG-16 (compare with Figure 5), we see that the network learns to distinguish the Rel
deformation from the Basis image for Set 1, when it has seen the specific deformation in
the training set. But this sensitivity to Rel deformation diminishes in Set 2, when only
one pair of trained shapes have a similar deformation and completely lost for Set 3
when the network has been trained on the Rel deformations, but the specific
deformation tested is novel.

Fig 16. Each heatmap shows accuracy for on test items for a particular category for
AlexNet pre-trained on ImageNet and fine-tuned on the dataset in Figure 6. Each cell
in the heatmap corresponds to a deformation that is a combination of relational (shear)
and coordinate (rotation) transformations of the trained Basis shapes (see Figure 6(a)).
The grid at the bottom shows the “confusion matrix” – each heatmap in the grid shows
the proportion of responses predicted as the category along the column for a
deformation with basis shape taken from the category along the row. Like the results
for VGG-16 (compare with Figure 7), we see that accuracy decreases as a function of
coordinate distance from the basis shape, rather than the relational distance.
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Fig 17. Cosine similarity between internal representations for the Basis shapes and two
deformations of the basis shape (dashed red squares in Figure 6(b)) from the polygons
dataset at each convolution and fully connected layer of AlexNet. Solid (red) line shows
the average similarity between representations for a basis shape and its relational (shear)
deformation, while dashed (blue) line shows the average similarity between a basis shape
and it’s coordinate (rotation) transformation. The hatched area shows the bounds on
similarity, with the upper bound determined by the average similarity between two basis
shapes from the same category and lower bounds determined by the average similarity
between two basis shapes of different categories. Like the results for VGG-16 (compare
with Figure 8), we observed that the network treated the relational (shear) deformation
as being more similar to the basis shape than the coordinate (rotation) deformation.
This was the opposite behaviour to the human participants (see Figure 18(b)).

(a) AlexNet (b) Human

Fig 18. Comparison of (a) network performance and (b) human participants in
classifying sheared (dashed line) and rotated (solid line) images. Each panel shows
performance under three conditions: basis image, deformation D1 and deformation D2.
For the shear deformation, D1 and D2 consists of images in the top row in the fourth
and eighth column in Figure 6. For the rotation deformation, D1 and D2 consist of
images in the first column and fourth and eighth rows. Error bars show 95% confidence
interval and dashed red line shows chance performance. Note that the results in (b) are
reproduced here for convenience but are the results of the same experiment reported in
Figure 9(b) above.
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(a) Accuracy landscape
(b) Accuracy for conditions

in experiment

Fig 19. Performance of AlexNet trained on an augmented dataset where the Basis
shapes are not only translated and scaled but also randomly rotated in the range
[−45°, 0°]. The network is then tested on on shear and rotation deformations in the
range [0°,+45°]. Like the results for VGG-16 (compare with Figure 10), we observed
that even when the network was trained on some rotations, it’s performance on
untrained rotations (a coordinate transformation) was still worse than shears (a
relational transformation). (b) shows accuracy for deformation level D1 and D2 used for
testing human participants (compare with human performance in Figure 18(b) above).

(a) Accuracy landscape for left-out Category
(b) Accuracy for conditions

in experiment

Fig 20. Performance of AlexNet trained on an augmented dataset where the basis
shapes are not only randomly translated and scaled but also rotated. For six out of
seven categories, the network is trained on all rotations ([0, 360°)). We then tested the
network on the left-out category (Cat 3, highlighted with red square in (a)) on
untrained rotations and shears. However, we observed that despite being trained in this
manner, the accuracy degraded as a function of the coordinate deformation, rather than
the relation deformation. (b) shows the performance of this network for deformations
D1 and D2 used to test human participants (compare with results in 18(b) above).
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