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Abstract

Humans are particularly sensitive to changes in the relationships between parts of objects. It

remains unclear why this is. One hypothesis is that relational features are highly diagnostic of

object categories and emerge as a result of learning to classify objects. We tested this by analysing

the internal representations of supervised convolutional neural networks (CNNs) trained to classify

large sets of objects. We found that CNNs do not show the same sensitivity to relational changes as

previously observed for human participants. Furthermore, when we precisely controlled the

deformations to objects, human behaviour was best predicted by the amount of relational changes

while CNNs were equally sensitive to all changes. Even changing the statistics of the learning

environment by making relations uniquely diagnostic did not make networks more sensitive to

relations in general. Our results show that learning to classify objects is not sufficient for the

emergence of human shape representations.
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Human shape representations are not an emergent property of

learning to classify objects

Introduction 1

A great deal of research into human vision is driven by the observation that visual 2

perception is biased. For example, we prefer to group objects in a scene based on certain Gestalt 3

principles – a bias to look for proximity, similarity, closure and continuity (Ellis, 2013). We also 4

prefer to view objects from certain viewpoints – a bias for canonical-perspectives (Palmer, 1981). 5

This paper is focused on one such bias – the shape-bias – the observation that humans, from a very 6

young age, prefer to categorise objects based on their shape, rather than other prominent features 7

such as colour, size or texture (Biederman & Ju, 1988; Landau, Smith, & Jones, 1988). One 8

manifestation of this bias is that we can identify most objects from line drawings as quickly and 9

accurately as we can identify them from full-color photographs (Biederman & Ju, 1988) and we can 10

do this even if we have no previous experience with line drawings (Hochberg & Brooks, 1962). 11

Two different explanations have been proposed regarding the origin of these biases. The 12

first view, which we call the heuristic approach, proposes that biases originate because the visual 13

system needs to transform the proximal stimulus – i.e., the retinal image – into a representation of 14

the distal stimulus – i.e., a veridical representation of the cause of the stimulus. Of course, the 15

simple act of transforming one representation to another should not necessarily lead to biases. But, 16

in this case, mapping the retinal image to the distal stimulus is an ill-posed problem: there is not 17

enough information in the proximal stimulus to unambiguously recover the properties of the distal 18

stimulus (Nakayama, He, & Shimojo, 1995; Pizlo, 2001). To overcome this problem, the visual 19

system makes assumptions (i.e., employs heuristics) to determine which properties of the proximal 20

stimulus are used to build distal representations (Knill, 1992; Mamassian & Landy, 1998; Pizlo & 21

Stevenson, 1999; Stevens, 1981). A striking example of such assumptions is the Kanizsa triangle 22

(Kanizsa, 1979), where the visual system encodes the multiple collinearities of edges present in the 23

proximal image and uses these to build contours of a triangle even though these contours do not 24

exist in the retinal image. The advantage of distal representations is that they are relevant for a 25

broad range of tasks – the same representation of an object can be used for recognition and visual 26
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SHAPE THROUGH CLASSIFICATION 4

reasoning (Hummel & Biederman, 1992) amongst other visual skills. 27

A second view proposes that these biases can emerge as a result of internalisation of the 28

biases present in the environment relevant for classifying objects. According to this view, humans 29

prefer to view objects from a canonical perspective because these perspectives are more frequent in 30

the visual environment, and they prefer to classify objects based on shape because shape is more 31

diagnostic during object classification. In other words, biases are a consequence of performing 32

statistical learning on a large set of objects, with the goal of optimising behaviour on a particular 33

task. We will call this the optimisation-for-classification approach or, more briefly, the optimisation 34

approach. 35

The goal of this study was to test the second view – whether inferences about distal stimuli 36

can emerge as a result of learning to classify a large set of objects. We tested this by focusing on 37

supervised Convolutional Neural Networks (CNNs) – which are machine learning models that 38

recognise objects by learning statistical features of their proximal stimuli that can be used to 39

optimally classify each stimulus, given some training data. The learned representations that 40

support object recognition are specialized for image classification. There is no pressure to learn 41

distal representations of objects. As such, CNNs trained using supervised learning to classify 42

objects provide a concrete model to test the optimisation view. If human perceptual biases are 43

acquired purely through internalising the statistics of the environment in order to classify objects, 44

then training CNNs to perform classification on ecologically realistic datasets should lead to 45

perceptual shape biases similar to the ones observed for humans. 46

Initial studies testing shape-bias in CNNs showed that CNNs trained in a supervised setting 47

on large datasets of naturalistic images (e.g. ImageNet) frequently lacked a shape-bias, instead 48

preferring to classify images based on texture (Geirhos et al., 2018) or other local features (Baker, 49

Lu, Erlikhman, & Kellman, 2018; Malhotra, Dujmovic, & Bowers, 2021). However, it has been 50

argued that CNNs can also be trained to infer an object’s shape given the right type of training. 51

For example, Geirhos et al. (2018) trained standard CNNs on Style-Transfer image dataset that 52

mixes the shape of images from one class with the texture from other classes so that only shape was 53

diagnostic of category. CNNs trained on this dataset learned to classify objects by shape. In 54

another study, Feinman and Lake (2018) found CNNs were capable of learning a shape-bias based 55
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on a small set of images, as long as the training data was carefully controlled. Similarly, Hermann, 56

Chen, and Kornblith (2020) showed that more psychologically plausible forms of data augmentation, 57

namely the introduction of color distortion, noise, and blur to input images, make standard CNNs 58

rely more on shape when classifying images. Indeed, the authors found that data augmentation was 59

more effective in inducing a shape bias than modifying the learning algorithms or architectures of 60

networks, and concluded: “Our results indicate that apparent differences in the way humans and 61

ImageNet-trained CNNs process images may arise not primarily from differences in their internal 62

workings, but from differences in the data that they see” (Hermann et al., 2020, Abstract). 63

These results raise the possibility that human biases are indeed a consequence of 64

internalising the statistical properties of the environment relevant to classifying objects rather than 65

the product of heuristics involved in building distal representations of objects. But studies so far 66

have focused on judging whether or not CNNs are able to develop a shape-bias, rather than 67

examining the type of shape representations they acquire. If humans and CNNs indeed acquire a 68

shape-bias through a similar process of statistical optimisation, then CNNs should not only show a 69

shape-bias, but also develop shape representations that are similar to human shape representations. 70

A key finding about human shape representations is that humans do not give equal weight 71

to all shape-related features. For example, it has been shown that human participants are more 72

sensitive to distortions of shape that change relations between parts of objects than distortions that 73

preserve these relations (Biederman, 1987; Hummel & Stankiewicz, 1996). These observations have 74

typically been taken to support a heuristic view according to which relations present in the proximal 75

images are used to build distal representations of objects (Hummel, 1994). The question we ask is 76

whether CNNs trained to classify objects learn to encode these relational features of shape. If they 77

do, it would suggest that the relational sensitivity of human shape representations can emerge as a 78

consequence of learning to classify large sets of objects and that shape-biases in object recognition 79

are the product of optimising performance on object classification. But if not, it would suggest that 80

these biases are best characterized as heuristics designed to build distal representations of shape and 81

that learning to classify objects is not sufficient for the emergence of such distal representations. 82

In the rest of the paper, we discuss a series of experiments (simulation studies with CNNs 83

as well as behavioural experiments with human participants) which show that the shape 84
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representations that emerge as a result of classifying images in CNNs are qualitatively different 85

from human shape representations. In the first two experiments, we examine objects that consist of 86

multiple parts, while the following experiments examine objects that consist of a single part. The 87

deformations required to infer the shape representations of these two types of objects are different, 88

but related. Therefore, we begin each section by describing these deformations and how these 89

deformations are predicted to affect shape representations under the two (optimisation and 90

heuristic) views. We then present results of experiments where humans and CNNs were trained on 91

the same set of shapes and then presented these deformations. In the final section, we discuss how 92

our findings pose a challenge for developing models of human vision. 93

Experiment 1 94

In our first experiment, we asked whether models that learn to optimise their performance 95

by classifying large sets of objects develop a key property of human shape representations – it’s 96

sensitivity to a subset of object deformations. According to the structural description theory 97

(Biederman, 1987), humans represent objects as collections of convex parts in specific categorical 98

spatial relations. For example, consider two objects – a bucket and a mug – both of which consist of 99

the same parts: a curved cylinder (the handle) and a truncated cone (the body). The encoding of 100

objects through parts and relations between parts makes it possible to support a range of visual 101

skills. For example, it is possible to appreciate the similarity between a mug and a bucket because 102

they both contain the same parts (curved cylinder and truncated code) as well as their differences 103

(the different relations between the object parts). That is, the representational scheme supports 104

visual reasoning. In addition, the parts themselves are coded so that they can be identified from a 105

wide range of viewing conditions (e.g., invariance to scale, translation and viewing angle, as well as 106

robustness to occlusion), allowing objects to be classified from novel poses and under degraded 107

conditions. 108

Note that the reliance on categorical relations to build up distal representations of 109

multi-part objects is a built-in assumption of the model (one of the model’s heuristics), and it leads 110

to the first hypothesis we test, namely that image deformations that change a categorical relation 111

between an object’s parts should have a larger impact on the object’s representation than 112
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metrically-equivalent deformations that leave the categorical relations intact (as might be produced 113

by viewing a given object from different angles). By contrast, any model that relies only on the 114

properties of the proximal stimulus might be expected to treat all metrically-equivalent 115

deformations as equivalent. Such a model may learn that some distortions are more important – 116

i.e., diagnostic – than others in the context of specific objects, but it is unclear why they would 117

show a general tendency to treat relational deformations as different than metric ones since there is 118

no heuristic that assumes that categorical relations between parts is central feature of object shape 119

representations. (Indeed, it may have no explicit encoding of parts at all.) Instead, all deformations 120

are simply changes in the locations of features in the image. 121

Hummel and Stankiewicz (1996) designed an experiment to test this prediction of structural 122

description theory and compare it to the prediction of view based models (Poggio & Edelman, 1990) 123

of human vision. They created a collection of shapes modeled on Tarr and Pinker’s (1989) simple 124

“objects”. Each object consisted of a collection of lines connected at right angles (Figure 1). 125

Hummel and Stankiewicz then created two deformations of each of these Basis object. One 126

deformation, the relational deformation (Rel), was identical to the Basis object from which it was 127

created except that one line was moved so that its “above/below” relation to the line to which it 128

was connected changed (from above to below or vice-versa). This deformation differed from the 129

Basis object in the coordinates of one part and in the categorical relation of one part to another. 130

The other deformation, the coordinates deformation (Cood), moved two lines in the Basis object in 131

a way that preserved the categorical spatial relations between all the lines composing the object, 132

but changed the coordinates of two lines. Note that both types of deformations can, in principle, 133

indicate a change in distal stimulus. But, a system that uses relational changes as a heuristic for 134

changes to distal stimuli will be more sensitive to Rel changes than Cood changes. 135

Across five experiments participants first learned to classify a set of base objects and then 136

tested on their ability to distinguish them from their relational (Rel) and coordinate (Cood) 137

deformations. The experiments differed in the specific set of images used, the specific tasks, the 138

duration of the stimuli, but across all experiments, participants found it easy to discriminate the 139

Rel deformations from their corresponding basis object and difficult to distinguish the Cood 140

deformations. The effects were not subtle. In Experiment 1 (that used the stimuli from Figure 1) 141
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SHAPE THROUGH CLASSIFICATION 8

Figure 1

Stimuli used by Hummel and Stankiewicz (1996).

Note. The first column shows a set of six (Basis) shapes that participants were trained to recognise.

Participants were then tested on shapes in the second and third columns, which were generated by deforming

the Basis shape in the corresponding row. In the second column (Rel deformation) a shape is generated by

changing one categorical relation (highlighted in red circle). In the third column (Cood deformation) all

categorical relations are preserved but coordinates of some elements are shifted (highlighted in blue ellipse).

participants mistook the Rel and Cood images as the base approximately 10% and 90%, 142

respectively, with similar findings observed across experiments. Hummel and Stankiewicz took 143

these findings to support the claim that humans encode objects in terms of the categorical relations 144

between their parts, consistent with the predictions of the structural description theories that 145

propose a heuristic approach to human shape representation (Hummel, 1994). 146

However, an optimisation approach may also be able to explain the findings of Hummel and 147

Stankiewicz – a bias for perceiving objects in terms of parts and relations may simply emerge as a 148
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result of learning to classify objects. In Experiment 1, we tested this hypothesis by replicating the 149

experimental setup of Hummel and Stankiewicz, replacing human participants with two well-known 150

CNNs – VGG-16 and AlexNet – that have been previously argued to capture human-like 151

representations (Kriegeskorte, 2015; Yamins & DiCarlo, 2016) and an ability to develop a 152

shape-bias (Geirhos et al., 2018; Hermann et al., 2020). 153

Methods 154

Training Stimuli. We constructed six basis shapes that were identical to the shapes 155

used by Hummel and Stankiewicz (1996) in their Experiments 1–3. Each image was sized 196x196 156

pixels and consisted of five black line segments on a white background organised into different 157

shapes. All images had one short (horizontal) segment at the bottom and one long (vertical) 158

segment in the middle. This left three segments, two long, which were always horizontal, and one 159

short, which was always vertical. The two horizontal segments could be either left-of or right-of the 160

central vertical segment. Additionally, the short vertical segment could be attached to the left-of or 161

the right-of the upper horizontal segment. This means that there were a total of 8 (2x2x2) possible 162

Basis shapes. We selected six out of these to match the six shapes used by Hummel and 163

Stankiewicz (1996). Each training set contained 5000 images in each category constructed using 164

data augmentation, where the Basis image was translated to a random location (in the range 165

[−50,+50] pixels) on the canvas and randomly scaled ([0.5, 1]) or rotated ([−20°,+20°]). 166

Test Stimuli. Following Hummel and Stankiewicz (1996), we constructed Rel (relational) 167

deformations (called V1 variants by Hummel and Stankiewicz (1996)) of each Basis shape by 168

shifting the location of the top vertical segment, so that it’s categorical relation to the upper 169

horizontal segment changed from “above” to “below”. Similarly, we constructed Cood (coordinate) 170

deformations (called V2 variants by Hummel and Stankiewicz (1996)) by shifting the location of 171

both the top horizontal line and the short vertical segments together, so that the categorical 172

relations between all the segments remained the same but the pixel distance (e.g. cosine distance) 173

was at least as large as the pixel distance for the corresponding Rel deformation. The test set 174

consisted of 1000 triplets of Basis, Rel and Cood images for each category, which were again 175

generated using the same data augmentation method. 176
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Model architecture and pre-training. We evaluated two deep convolutional neural 177

networks, VGG-16 (Simonyan & Zisserman, 2014) and AlexNet (Krizhevsky, Sutskever, & Hinton, 178

2012) on the image classification tasks described in the Results section. We obtained qualitatively 179

similar results for both architectures. Therefore, we focus on the results of VGG-16 in the main text 180

and describe the results of AlexNet in Appendix C. Since human participants had a lifetime 181

experience of classifying naturalistic objects prior to the experiment, we used network 182

implementations that had been pre-trained on a set of naturalistic images. Two types of 183

pre-training were used: networks were either pre-trained in the standard manner on ImageNet (a 184

large database of naturalistic images), or pre-trained on a set of images where shape was made 185

more predictive than texture by using style-transfer (Gatys, Ecker, & Bethge, 2016). We used 186

networks pre-trained by Geirhos et al. (2018), who have shown that networks trained in this 187

manner have a greater shape-bias than networks trained on ImageNet. 188

Further training. Networks were either tested in a Zero-shot condition, where no 189

further training was given on any of our datasets and we recorded the response of the pre-trained 190

networks to the test images, or in a Fine-tuned condition, where the pre-trained network was 191

fine-tuned to classify the 5000 Basis images of each category described in the Stimuli above. This 192

fine-tuning was performed in the standard manner (Yosinski, Clune, Bengio, & Lipson, 2014) by 193

replacing the last layer of the classifier to reflect the number of target classes in each dataset. The 194

models learnt to minimise the cross-entropy error by using the Adam optimiser (Kingma & Ba, 195

2014) with a small learning rate of 10−5 and a weight-decay of 10−3. In all simulations, learning 196

continued until the loss function had converged. To check for overfitting, we created 197

cross-validation sets and ensured performance on training set was not higher than on the 198

cross-validation sets. We also trained networks using standard regularization methods such as batch 199

normalization and dropout and obtained qualitatively similar results. In most cases, the networks 200

achieved nearly perfect classification on the training set. All simulations were performed using the 201

Pytorch framework (Paszke et al., 2017) and we used torchvision implementation of all models. 202

Analysis of internal representations. To test the similarity of internal 203

representations of Basis images and their Rel and Cood deformations, we obtained the embedding of 204

each image at each convolution and fully connected layer of the CNN. For a given category, we 205
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randomly sampled 100 pairs of images from the Basis and Rel test sets and computed the cosine 206

similarity between embeddings of each pair. This gave us the estimated average distance in the 207

Ba–Rel condition. Similarly the average cosine similarity between 100 pairs of Basis and Cood test 208

images gave us the Ba–Cood distance. These distances were compared against two baseline 209

conditions. The upper limit of similarity was given by the average similarity of 100 pairs of Basis 210

images from the same category. The lower limit was given by the average similarity of 100 pairs of 211

Basis images from different categories (in each pair, one of the images was from one category and 212

the other from one of the other six categories). 213

Results and Discussion 214

An analysis of the internal representations of VGG-16 is shown in Figure 2 and it’s 215

classification performance is showin in Figure A1 in Appendix A. (Results for AlexNet followed the 216

same qualitative pattern and are shown in Appendix C). Each panel in Figure 2 corresponds to a 217

combination of pre-training and test conditions and shows the average cosine similarity between 218

internal representations for a Basis image and it’s relational (Ba-Rel, solid red line) and coordinate 219

(Ba-Cood, dashed blue line) deformations. The internal representations are computed at all 220

convolutional and fully connected layers within the network. We compared these similarities to two 221

baselines: the average similarity between two Basis images that belong to the same category and 222

the average similarity between two Basis images that belong to different categories. These two 223

baselines provide the upper and lower bounds on similarities (hatched yellow region). 224

We observed that in the Zero-shot condition (left-hand column in Figure 2), the similarity 225

between a basis image and it’s relational variant was the same on average (across seeds) as the 226

similarity between the basis image and it’s coordinate variant throughout the networks. That is, the 227

networks failed to distinguish between the basis images and their relational and coordinate variants. 228

In fact, networks also failed to distinguish between basis images from different categories (note the 229

narrow hatched (yellow) region in the Zero shot condition in Figure 2 and the classification 230

performance in Figure A1). Thus pre-training on ImageNet or Stylized-ImageNet was not 231

sufficient for networks to distinguish between the stimuli or their deformations used by Hummel 232

and Stankiewicz – to these models, all line drawings are alike. In contrast, the networks successfully 233
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Figure 2

Cosine similarities in internal representations for a VGG-16 network

Note. In each panel, the solid (red) line plots the cosine similarity between the internal representations of

a Basis shape and its Rel deformation, while the dashed (blue) line plots the cosine similarity between the

internal representations of a Basis shape and its Cood deformation. Layers of the network are along the

x-axis with Conv2d Linear indicating convolutional and fully connected layers, respectively. Networks were

either pre-trained on ImageNet (first row) or on Stylized-ImageNet – a dataset developed to induce a

shape-bias in CNNs (second row). Their internal representations were then probed either without any further

training (Zero-shot, first column) or fine-tuning on the Hummel and Stankiewicz dataset (second column).

The hatched (yellow) area shows the upper and lower bounds on cosine similarity (obtained by computing

the cosine similarity of images from the same and different categories, respectively). Shaded regions around

each line show 95% confidence interval. Based on the results of Hummel and Stankiewicz (1996), we would

expect the solid (red) line (Ba-Rel) to be closer to the lower, rather than upper bound. Instead we observe

that it stays at the upper bound throughout the network and overlaps the dashed (blue) line (Ba-Cood).
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learned to distinguish between stimuli from different categories in the Fine-tuned condition (see 234

classification performance in Figure A1). Examining the internal representations showed that the 235

networks represented all types of images in a similar manner in the early convolution layers (there 236

is no difference between similarities within or between categories in the early layers) but 237

representations begin to separate in the deeper convolution and fully connected layers (the hatched 238

(yellow) region increases in size as we move left to right because images from different categories 239

have lower similarity than images from the same category). However, both types of pre-treained 240

networks, the basis images were equally distant to their relational and coordinate deformations (see 241

the overlapping Ba-Rel and Ba-Cood lines in Figure 2). Note that this is not because the networks 242

overfit to the training data. In fact, networks showed very good generalisation to both novel Basis 243

images (in unseen combinations of rotations, translation and scale) and the two types of 244

deformations, with the cosine distance between a basis shape and either deformation close to the 245

upper bound of similarity (also see the high classification performance for both deformations in 246

Figure A1). In summary, we did not find any evidence that suggests that the CNN represents a 247

relational change to an image in any privileged manner compared to a coordinate change. 248

Experiment 2 249

The results of Experiment 1 suggested that learning to classify the naturalistic images in 250

ImageNet or even Stylized-ImageNet is not sufficient for CNNs to perceive the objects in terms 251

of their categorical relations. But it could be argued that this is not because of a limitation of the 252

optimisation approach, but due to the limitation of datasets that the model was trained on. It is 253

possible that, if the classification model was trained on datasets where relational differences were 254

diagnostic of object categories, it may have internalised this statistic and started perceiving objects 255

in terms of their categorical relations, just like humans. We tested this hypothesis in the next set of 256

simulations, where we created a training environment with a “relational bias”. We show next that 257

when we do this, the network can learn specific changes to relations but it does not generalise this 258

knowledge to novel (but highly similar) relational changes. 259
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SHAPE THROUGH CLASSIFICATION 14

Figure 3

Three training sets that try to teach the network to recognise relational changes.

Note. In each set, the first column shows a set of six unique Basis shapes, while the second column shows

Rel deformations of the first five shapes (see red arrow). At the bottom are the two test shapes. These test

shapes are identical to the eleventh (unpaired) training shape, except for one relational (dashed red circle)

or coordinate (dashed blue ellipse) deformation. In Set 1, the difference between the untrained shape and

the tested Rel deformation is exactly the same as the relational change distinguishing one pair of shapes

and similar to another pair in the training set (both highlighted in solid red rectangles). In Set 2, the exact

relational change is not trained, however there is similar relational change at a close location (pair again

highlighted in solid red rectangle). Set 3 is the most challenging, where none of the diagnostic relational

changes in the training set occur at similar locations to the tested relational deformation.
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Methods 260

Experiment 2 used the same model architectures, pre-training and analysis methods as 261

Experiment 1. However, instead of using the training dataset based on Hummel and Stankiewicz 262

(1996), we created three new datasets where relational changes were diagnostic of image categories. 263

Training and Test Stimuli. We generated three datasets – shown as Set 1, Set 2 and 264

Set 3 in Figure 3 – for teaching CNNs to recognise relational deformations on Hummel and 265

Stankiewicz’s stimuli. Each dataset again contained the six Basis shapes (and their translation, 266

rotation and scale transformations) from the training set in Experiment 1. Additionally, they also 267

contained five new Basis shapes. These five shapes were the relational (Rel) deformations of the 268

first five Basis shapes. In other words, the training set assigned different categories to a shape and 269

it’s Rel deformation for five out of six figures. The test set consisted of Rel and Cood deformations 270

of the final (unpaired) shape. Each training set again consisted of 5000 images per category, where 271

each image was constructed by translating, scaling and rotating the Basis shape for that category. 272

The test set consisted of 1000 images per category where each image was constructed by randomly 273

translating, scaling and rotating the Rel and Cood deformations of the unpaired Basis shape. 274

The difference between Set 1, 2, and 3 lay in the degree of novelty of test images. In all 275

three datasets the same relation (dashed red circle in Figure 3) was changed between the unpaired 276

Basis shape and it’s Rel deformation. However, in the first set, there were four other categories (two 277

pairs, highlighted in red rectangles) in the training set where a similar change in relation occurred – 278

that is, for all highlighted categories, there existed another category where the short red segment at 279

the left end of the top bar flipped from “above” to “below” or vice-versa. In the second training set 280

(Set 2 in Figure 3) there were two categories in the training set where the tested relation changed. 281

However, in this case, this relational change occurred in a different location (closer to central 282

vertical line). In the third training set (Set 3 in Figure 3), the tested relational change was the least 283

similar to training (relational changes only occurred to the right of central vertical line for all other 284

trained images). 285

Further Training. Like in Experiment 1, the CNNs were fine-tuned on the training 286

stimuli consisting of eleven (5 + 5 + 1) Basis shapes. All other details of training, including 287

hyper-parameters were kept the same as in Experiment 1. 288
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SHAPE THROUGH CLASSIFICATION 16

Figure 4

Cosine similarity for VGG-16 networks that have been trained on diagnostic relations

Note. Each panel shows cosine similarity in internal representations between Basis images and Rel (solid,

red) or Cood (dashed, blue) deformations of those images. The network was either pre-trained on ImageNet

(first row) or Stylized-ImageNet (second row) and fine-tuned on Set 1 (left), Set 2 (middle) or Set 3 (right)

shown in Figure 3. Like Figure 2, the hatched (yellow) region shows the upper and lower bound on similarity.

We can see that the network fine-tuned on Set 1 represents relational deformations as significantly different

from Basis images as well as coordinate deformations (solid red line is much lower than upper bound and

dashed blue line for deeper layers in the network). However, this is not the case for networks fine-tuned on

Set 2 or Set 3.

Results and Discussion 289

Figure 4 shows the cosine similarity in internal representations for VGG-16 trained on these 290

three modified data sets (we obtained a similar pattern of results for AlexNet – see Figure C3). As 291

in previous simulations, we tested networks that were either pre-trained on ImageNet (first row) or 292

on Stylized-ImageNet (second row) and fine-tuned to each training set. We observed that when 293

networks were trained on Set 1 (left column in Figure 4), the cosine similarity Ba-Rel was lower 294

than Ba-Cood in deeper layers of the CNN. That is, the networks treated the relational deformation 295

as less similar to Basis figures than the coordinate deformations. This looks much more like the 296
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behaviour of human participants in Hummel and Stankiewicz (1996). But note that Set 1 contained 297

two pairs of categories with the same relational change that distinguishes the tested Rel 298

deformation from the corresponding Basis figure. A stronger test is provided by Set 2 that excludes 299

the pair of categories distinguished by the critical relational change from the training set. Here, we 300

observed that the this effect was significantly reduced (middle column in Figure 4) – the cosine 301

similarity Ba-Rel was slightly lower than Ba-Cood but by a much smaller degree and the difference 302

existed only for the networks pre-trained on ImageNet and only in the fully connected layers (also 303

compare results in Figure C3 in Appendix for AlexNet, where this effect is slightly more 304

pronounced but qualitatively similar). The strongest test for whether the network learns relational 305

representations is provided by Set 3, where none of the categories in the training set changed the 306

exact relation that distinguishes the Rel deformation from the Basis image in the test set. Here, we 307

observed (Figure 4, right-hand column) that the effect disappeared completely – the cosine 308

similarity Ba-Rel was indistinguishable from Ba-Cood and both similarities were at the upper bound. 309

All networks failed to learn that novel relational changes are more important for classification than 310

coordinate changes even when the learning environment contained a “relational bias” – i.e., 311

changing relations led to a change in an image’s category mapping. 312

Experiment 3 313

Experiments 1 and 2 used stimuli that consisted of multiple parts and relational 314

deformations involved changing the relationships between these parts. But of course, in order to 315

build distal representations of complex objects, it is also necessary to build distal representations of 316

the parts themselves. While Experiments 1 and 2 show that CNNs and humans differ in their 317

representation of multi-part objects, the stimuli used in these experiments did not allow us to 318

compare the representations of the parts themselves, or indeed single-part objects. Another 319

limitation of the stimuli in Experiments 1 and 2 was that it used discrete relations (‘up’ vs ‘down’, 320

‘left of’ vs ‘right of’), which do not permit a manipulation of the degree of relational or coordinate 321

change. This meant that we could not match the extent of relational change with an equivalent 322

coordinate change and compare the sensitivity to each of these changes. 323

What sorts of deformations of the proximal stimulus should allow us to contrast 324
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optimisation and heuristic approaches for identifying the component parts of complex objects or 325

single-part objects? According to the structural description theory (Biederman, 1987), certain 326

shape properties of the proximal image are taken by the visual system as strong evidence that 327

individual parts have those properties. For example, if there is a straight or parallel line in the 328

image, the visual system infers that the part contains a straight edge or parallel edges. If the 329

proximal stimulus is symmetrical, it is assumed that the part is symmetrical (see, for example, 330

Pizlo, Sawada, Li, Kropatsch, & Steinman, 2010). These (and other) shape features used to build a 331

distal representation of the object part are called non-accidental because they would only rarely be 332

produced by accidental alignments of viewpoint. The visual system ignores the possibility that a 333

given non-accidental feature in the proximal stimulus (e.g., a straight line) is the product of an 334

accidental alignment of eye and distal stimulus (e.g., a curved edge). That is, the human visual 335

system uses non-accidental proximal features as a heuristic to infer distal representations of object 336

parts. Critical for our purpose, many of the non-accidental features described by Biederman (1987) 337

are relational features, and indeed, many of the features are associated with Gestalt rules of 338

perceptual organization, such as good continuation, symmetry, and Pragnanz (simplicity). 339

Accordingly, any deformations of the proximal stimulus that alter these non-accidental features 340

(such as disrupting symmetry) should have a larger impact on classifications than deformations that 341

do not. 342

With this in mind, we designed a new stimuli set that allowed us to precisely manipulate 343

the relational and coordinate deformations of single-part objects. The stimuli set consisted of seven 344

symmetrical polygons (see Figure 5(a)), and we deformed these polygons by altering the locations 345

of the vertices composing the polygons in a way that precisely controlled the metric change in the 346

vertices’ locations (in the retinal image). Like Experiment 1, we created two types of deformations: 347

(a) a coordinate deformation that parametrically varied the degree to which a polygon rotated in 348

the visual image, vs. (b) a relational change that had an equivalent impact as the corresponding 349

rotation, but instead introduced a shear that changed relative location of the polygon’s vertices. 350

Note that rotating an object preserves all non-accidental features (Biederman, 1987), while shearing 351

it changes it’s symmetry – a non-accidental property of the object. To a model that looks only at 352

proximal stimulus, both deformations lead to an equivalent pixel-by-pixel change, while to a model 353
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Figure 5

Stimuli used to test shape representations in single-part objects.

Note. (a) The shapes in the Basis set used for training. Each shape is presented at various translations

and scales. (b) The test set for one of the categories (Cat 2) is obtained by deforming the Basis shape (in

the top-left corner) through a combination of rotation and shear operations. Here we have organised these

deformations in a matrix based on their coordinate distance (measured as cosine distance) and relational

distance (measured as change in relative location of vertices) from the basis shape. All deformations on a

diagonal of this matrix are at the same coordinate distance from the Basis shape and all deformations in a

column are at the same relational distance from the Basis shape. Highlighted (red) squares show stimuli for

computing cosine distance in Figure 7 below. Deformations marked D1 and D2 are used for testing human

participants. (c) The predicted accuracy on the test set presented as heat-maps, assuming that accuracy is a

function of coordinate distance (top), or relational distance (bottom).
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that infers properties such as symmetry and solidity of the distal stimulus, the coordinate 354

deformation preserves these properties while the relational deformation changes them. 355

Figure 5(b) shows some examples of test images for one of the trained shapes. These test 356

shapes are organised based on the degree and type of deformation. The degree of relational 357

deformation (shear) of a test image increases as we move from left to right, while the degree of 358

coordinate deformation (rotation) increases as we move from top to bottom. We can also construct 359

test shapes that are a combination of these relational and coordinate deformations. Every shape in 360

Figure 5(b) is a combination of a rotation and a shear of the basis shape in the top-left corner. We 361

have organised these test shapes based on their distance to the basis figure: all shapes along each 362

diagonal have the same cosine distance to the basis shape1, and diagonals farther from the basis 363

shape are at a larger distance. Thus, this method gives us a set of test shapes organised according 364

to increasing relational and coordinate changes and matched based on the distance to the basis 365

shape. We could now ask how accuracy degrades on this landscape of test shapes. If the visual 366

system encodes shape as a set of diagnostic features of the proximal (retinal) image, accuracy 367

should fall as one moves across (perpendicular to) the diagonals on the landscape. On the other 368

hand, if the visual system encodes shape as a property of the distal stimulus, then changing internal 369

relations should lead to a larger change in classification accuracy than an equivalent coordinate 370

change – that is, the accuracy should fall sharply as one moves left to right along each diagonal. 371

Figure 5(c) shows predicted accuracy on this landscape for the two types of shape representations. 372

Methods 373

Training Stimuli. The training set for Experiment 2 consisted of seven symmetric filled 374

pentagons, presented on a white canvas. Each category contained 5000 training images. The 375

training set presented these polygons at different translations and scales, so it was not possible to 376

classify them based on the position of a local feature or the area of the polygon. The difference 377

between Basis shapes for two categories was the angles between the edges. Note that all polygons 378

in the training set were presented in the upright orientation since rotation is the one of the 379

1 We obtained qualitatively similar results when deformations were organised based on their Euclidean distance to the

Basis shape.
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transforms (the coordinate transform) that the model is tested on. 380

Test Stimuli. The test set consisted of a grid of shapes that were obtained by deforming 381

the Basis shape of the corresponding category. We used two deformations: rotation, which 382

preserved the internal angles between edges, and shear, which changed internal angles. To shear a 383

shape, it’s vertices were horizontally moved by a distance that depended on the vertical distance to 384

the apex. For a vertex with coordinates (xold, yold), we obtained a new set of vertices, 385

(xnew, ynew) = (xold + λ(∆y)2, yold), where λ was the degree of shear and ∆y was the distance 386

between yold and yapex, the y-coordinate of the vertex at the apex. Images could also be 387

combination of rotations and shears. To do this, the Basis image was first sheared, then rotated. 388

We measured the (cosine or Euclidean) distance of a deformed image from the Basis image and 389

used this distance to organise the test images on a grid (see Figure 5), where images in each column 390

had the same degree of shear and images along each diagonal had the same (cosine or Euclidean) 391

distance to the Basis image. We then obtained 100 exemplars of each deformed image on the grid 392

by randomly translating and scaling the image. 393

Model architecture and pre-training. We used the same set of models as 394

Experiments 1 and 2 (VGG-16 and AlexNet) pre-trained in the same manner (either on ImageNet 395

or on Stylized-ImageNet). 396

Further training. Like Experiments 1 and 2, models were tested in either the Zero-shot 397

condition, where we did not train the model on our training set and simply examined the internal 398

representations in response to test images, or in the Fine-tuned condition, where the pre-trained 399

model underwent further training (with a reduced learning rate) on the training stimuli. We again 400

observed that the models failed to distinguish any shape in the Zero-shot condition, therefore we 401

restrict the presentation of our results to the Fine-tuned condition. 402

Analysis of internal representations. The similarity of internal reprsentations for the 403

polygons stimuli is obtained in a similar manner to the Hummel and Stankiewicz stimuli. The 404

similarity of a shear transformation to the corresponding Basis image (Ba-Sh) is estimated by 405

measuring the average cosine similarity between embeddings (at all convolutional and 406

fully-connected layers of the network) of 100 pairs images from the Basis and sheared sets of the 407

same category. Similarly, the similarity between a Basis image and it’s rotational transformation 408
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Figure 6

Performance of VGG-16 on deformations of single-part objects.

Note. Test stimuli for each category is shown in the top row. Middle and bottom rows show accuracy on the

landscape of relational and coordinate deformations for the network pre-trained on ImageNet (middle row)

or Stylized-ImageNet (bottom row). In each case, the network was fine-tuned on the set of seven polygons

shown in Figure 5(a). Each heatmap (in middle and bottom rows) corresponds to a category and shows

the percent of shapes (with a relational and coordinate deformation given by the position on the landscape)

accurately classified as the category from which the stimulus was derived. For most categories, accuracy is

highest for small deformations (top-left corner) and decreases as a function of the coordinate distance from

the basis shape (perpendicular to diagonal). The relational distance (left-to-right) has no added effect on this

decrease in accuracy.

(Ba-Rot) is estimated by measuring the average cosine similarity between embeddings of 100 pairs 409

of images from Basis and rotated sets of the same category. 410

Results and Discussion 411

The classification performance of VGG-16 for images from the test set is shown in Figure 6 412

(we obtained a qualitatively similar pattern of results for AlexNet, see Appendix C). For all 413

networks, we observed that test accuracy was highest at the top-left corner (i.e., for the Basis 414

shape) and reduced as the degree of relational and coordinate change was increased. Thus, unlike 415

Experiment 1, where we were able to observe only ceiling performance for both deformations, the 416
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Figure 7

Cosine similarity in internal representations of VGG-16 in Experiment 3.

Note. The solid (red) and dashed (blue) lines show the average cosine similarity between Basis images and

relational (shear) and coordinate (rotation) deformations, respectively. The hatched (yellow) region shows

the bounds on this similarity, with the upper bound determined by the average similarity between Basis

images from the same category and lower bound determined by the average similarity between Basis images

of different categories. If relational (shear) deformation has a larger affect on internal representations than a

coordinate (rotation) deformation, one would expect the solid (red) line to be below the dashed (blue) line.

design of Experiment 3 allowed us to compare how performance degrades for the two types of 417

deformations. Crucially, we observed that for most categories, accuracy decreased as a function of 418

distance to the Basis shape (perpendicular to the diagonals), rather than relational change (left to 419

right). In fact, for some categories accuracy improved as one moved from left to right along the 420

diagonals. Occasionally, we observed high accuracy for large rotations on one category. This was 421

generally due to false positives, where large rotations for all categories were classified as the same 422

category by the network (see Figure B1 in Appendix B for details). Overall, these results suggest 423

that the network does not represent the shapes in this task in a relational manner. If it did, it’s 424

performance on relational changes should have been a lot worse than it’s performance on 425

relation-preserving rotations. 426

But classification accuracy only provides a indirect measure of internal representations. In 427

order to get more insight into the network’s internal representations for relational and coordinate 428
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deformations, we examined the cosine distance between internal representations for the Basis image 429

and two test images that were equidistant from it. An example of these images is highlighted 430

(dashed red squares) in Figure 5(b). These cosine similarities for two VGG-16 networks are plotted 431

in Figure 7 (we again obtained qualitatively similar results for AlexNet – see Figure C6 in 432

Appendix). At all internal layers, we observed that the average similarity between a Basis image 433

and it’s relational (shear) deformation was equal or higher than the average similarity between the 434

Basis image and it’s coordinate (rotation) deformation (compare solid (red) and dashed (blue) lines 435

in Figure 7). In other words, relational deformation of an image was closer to the Basis image than 436

it’s coordinate deformation and pre-training on the Stylized-ImageNet dataset to give the 437

network a shape-bias did not change this pattern. This is the opposite of what one would expect if 438

the network represented the stimuli in a relational manner. 439

Experiment 4 440

Results of Experiment 3 showed that a CNNs trained to classify objects do not show any 441

enhanced sensitivity to deformations of relations between features of single-part objects. In other 442

words, we did not observe any evidence suggesting that the CNNs infer properties of distal stimuli 443

based on the proximal input image. In our next experiment, we examined how humans trained on 444

the exact same stimuli responded to the two types of deformations. 445

Participants. Participants (N = 37, Mage = 33, 70% female, 30% male2) with normal or 446

corrected-to-normal vision were recruited via Prolific for an online study and the experiment was 447

conducted on the Pavlovia platform. They were reimbursed a fixed 2 GBP and participants who 448

proceeded to the testing phase (N = 23) had a chance to earn a bonus of up to another 2 GBP 449

depending on their performance during testing. The average payment was 8 GBP/hour. A written 450

ethics approval for the study was obtained from the University of Bristol Ethics board. 451

Stimuli. Four categories (out of seven) were chosen from the dataset in Experiment 3 to 452

train participants. These were Cat 1, Cat 3, Cat 5 and Cat 7 from Figure 5(a). For the test data, 453

2 We did not elicit gender, sex or age information from participants during the experiment and no participant was

excluded based on their gender. The proportion of male and female participants reported here is based on the

demographics information collected by Prolific when participants register on the platform.
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we selected two deformations of each type that were matched according to the cosine distance from 454

the basis (trained) image. For the relational deformation, these were the fifth (Deformation D1) 455

and final (Deformation D2) shear in the top row of Figure 5(b). For the coordinate deformation, 456

these were the fifth (D1) and final (D2) rotations in the left most column of Figure 5(b). This 457

made up the 5 conditions in the experiment: Basis, D1 (Shear), D2 (Shear), D1 (Rotation) and D2 458

(Rotation). The original stimuli were 224x224 pixels but were re-scaled for each participant to 50% 459

of the vertical resolution of the participant’s screen to account for the variability in screen size and 460

resolution when running the study online. 461

Procedure. Participants completed a supervised training phase in which they learned to 462

categorize basis versions of the four categories. Each training block consisted of 40 stimuli for a 463

total of 200 training trials (50 per category). Feedback on overall accuracy was given at the end of 464

each block. Participants completed up to a maximum of 5 training blocks, or until they reached 85% 465

categorization accuracy in a block. Participants who managed to reach 85% accuracy continued to 466

the test block. The order of trials was randomised for each participant. Each trial started with a 467

fixation cross (750 ms), then the stimulus was presented (500 ms) followed by four response buttons 468

corresponding to the four categories (until response). After participants responded, feedback was 469

given - CORRECT (1 s) if the response was correct, and INCORRECT with additional information 470

about what the correct response should have been (1.5 s) if the response was incorrect. The 471

training phase was followed by a test phase consisting of five test blocks. Each block consisted of 20 472

trials for a total of 100 test trials (25 per condition). Like the training phase, the order of test trials 473

was randomised for each participant. The procedure for each test trial was the same as in the 474

training phase except that participants were not given any feedback during testing. 475

Analysis. Four planned comparisons (t-tests) were conducted in order to test whether 476

accuracy rates in each of the shear and rotation conditions differed from accuracy in the basis 477

condition. 478

Results and Discussion 479

The average CNN and human accuracy of classification on each of these deformations is 480

shown in Figure 8. We can see that irrespective of training, VGG-16 was more sensitive to rotation 481
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Figure 8

Comparison of humans and VGG-16 on how classification accuracy changes with deformations.

Note. Left and middle panels show classification accuracy for VGG-16 trained on ImageNet and

Stylized-ImageNet, respectively. Right panel shows performance of human participants on the same

stimuli. Each panel shows performance under three conditions: basis image, deformation D1 and deformation

D2. For the shear deformation (solid, red line), D1 and D2 consists of images in the top row in the fourth

and eighth column in Figure 5. For the rotation deformation (dashed, blue line), D1 and D2 consist of images

in the first column and fourth and eighth rows. Error bars show 95% confidence interval and dotted black

line shows chance performance.

than to shear (see Figure C7 for AlexNet). While performance decreases for both deformations, it 482

decreases more rapidly for rotations. Human participants showed the opposite pattern (Figure 8, 483

right-hand panel). There was no significant difference in performance between the basis image and 484

the two rotation deformations (both t(22) < 3.48, p > .28), while performance decreased 485

significantly for each of the shear deformations (both t(22) > 14.10, p < .001, dz > .83). The 486

largest shear resulted in largest decrease in performance (Mdifference = 25.87%). Thus, the 487

behaviour of participants was in line with the prediction of structural description theories, where 488

shape is encoded based on relations between features, and in the opposite direction to the 489

performance of the CNNs trained to classify objects. 490
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Experiment 5 491

One response to the difference between CNNs and humans in Experiments 3 and 4 is that it 492

arises due to the difference in experience of the two systems. Humans experience objects in a 493

variety of rotations and consequently represent a novel object in a rotation invariant manner. 494

CNNs, on the other hand, have not been explicitly trained on objects in different orientations 495

(although ImageNet includes some objects in various poses). It could therefore be argued that 496

CNNs do not learn relational representations in Experiment 3 because the training set did not 497

provide an incentive for learning such a representation. Indeed, the optimisation view argues that a 498

bias must be present in the training environment for the visual system to internalise it. 499

To give the network a better chance of learning to classify based on internal relations, we 500

conducted two further simulations. In the first simulation, we trained the networks on some 501

rotations for all Basis shapes and tested them on unseen rotations. This simulation emulates 502

generalising the concept of rotation for each object after observing some of the rotations for that 503

object. In the second simulation, the networks were shown all rotations of some Basis shapes and 504

tested on unseen rotations of the left-out Basis shapes. This simulation emulates generalising the 505

concept of rotation from one object to another. 506

Methods 507

All methods in Experiment 5 remained the same as Experiment 3, except for the images in 508

the training sets. In the first simulation, the training set now consisted of Basis (polygon) shapes 509

presented at random translations and scales (just like Experiment 3) but additionally, also at 510

rotations in the range [−45◦, 0] for all polygons. We then tested the networks on rotations in the 511

range [0,+45◦]. In the second simulation, we selected six (out of seven) categories and trained the 512

network on random translations, scales and all rotations ([0, 360°)) for these categories. For the 513

seventh category (Cat 3), images were still randomly translated and scaled, but always presented in 514

the upright orientation. We then tested how the network generalised to the two types of 515

deformations for this critical category. We obtained qualitatively similar results for networks 516

pre-trained on ImageNet and Stylized-ImageNet. Since the network trained on 517

Stylized-ImageNet has the best chance of capturing human data, here we present the results of 518
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this network for both simulations. 519

Results and Discussion 520

Figure 9

Performance of VGG-16 trained on some rotations of all categories.

(a) Accuracy landscape

(b) Accuracy for conditions in

experiment

Note. (a) Accuracy of network plotted as percent of correct classifications for each rotation and shear

deformation of each category, and (b) accuracy for shear (solid, red) and rotation (dashed, blue) as a function

of deformations used in Experiment 4 with human participants (compare with Figure 8, right-hand panel).

The network performance for the first simulation is shown in Figure 9. We observed that, 521

despite being trained on this augmented dataset, results remained qualitatively similar. For most 522

categories performance degraded equally or more with a change in rotation than with an equivalent 523

change in shear. That is, the network was better at generalising to large relational deformations 524

(shears) than large relation-preserving deformations (rotation). The pattern was different for 525

Category 6, where the network showed good performance on large rotations. But examining the 526

confusion matrix again revealed that the high accuracy at large rotations for this category was 527

misleading as it was accompanied with large Type I errors: large rotations for shapes of any 528

category were mis-classified as belonging to the Category 6. Overall, we did not find any evidence 529

for the network learning shapes based on their internal relations. 530

The results of the second simulation are shown in Figure 10. Figure 10a shows the heat-map 531
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Figure 10

Performance of VGG-16 trained on all rotations of some categories.

(a) Accuracy landscape for left-out Category

(b) Accuracy for conditions in

experiment

Note. (a) Accuracy of network plotted as percent of correct classifications for rotation and shear deformations

for all categories. Note the high performance for all rotations of most categories is expected as the network is

trained on these rotations. The critical (out-of-training-distribution) test is the network’s performance on

the left-out category – Category 3 (highlighted using red rectangle) (b) Accuracy of network for the set of

deformations D1 and D2 for Category 3, tested in Experiment 4 with human participants (compare with

Figure 8, right-hand panel).

of accuracy on the test grid for the left-out category. This heat map showed that the network 532

continued showing the pattern observed above – it’s performance decreases across (perpendicular to) 533

the diagonals, but increases as one moves from left-to-right along these diagonals. Figure 10b shows 534

the performance on the same conditions as the human experiment (see Figure 8). Again, we see that 535

the performance drops less rapidly across the two shear deformations (dashed line) than the two 536

rotation deformations (solid line). This figure makes it clear that training other orientations on all 537

rotations does not help the network generalise better to novel orientations for the left-out category. 538

In fact, the performance drops more quickly than when none of the categories were rotated in the 539

training set (compare with Figure 8). This is because the network starts classifying novel 540

orientations of the left-out shape as the shapes that it had seen being rotated in the training set. 541

It may be tempting to think that the differences between humans and CNNs can be 542
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Figure 11

A proposal for achieving rotation invariance in CNNs (from Goodfellow et al. (2016, chap. 9))

Note. Each panel shows the response of the network to a different rotation of the digit ‘5’. The network

detects different rotations by having a large set of filters, one matching each rotation. The output unit pools

across all rotation filters, essentially performing a disjunction over all filter activations.

reconciled by training CNNs that learn rotation-invariant shapes. However, consider how a CNN 543

achieves rotation-invariance. Figure 11, taken from Goodfellow, Bengio, and Courville (2016, chap. 544

9), illustrates how a network consisting of convolution and pooling layers may learn to recognise 545

digits in different orientations. As a result of training on digits (here, the digit 5) oriented in three 546

different directions, the convolution layer develops three different filters, one for each orientation. A 547

downstream pooling unit then amalgamates this knowledge and fires when any one of the 548

convolution filters is activated. Therefore, this pooling unit can be considered as representing the 549

rotation-invariant digit 5. During testing, when the network is presented the digit 5 in any 550

orientation, the corresponding convolution filter gets activated, resulting in a large response in the 551

pooling unit and the network successfully recognises the digit 5, irrespective of it’s orientation. 552

In contrast, a relational account of shape representation does not rely on developing filters 553

for each orientation of a shape. Indeed, it is not even necessary to observe a shape in all 554

orientations to get, at least some degree of, rotation invariance. All that is needed is to be able to 555

recognise the internal parts of an object and check whether they are in the same relation as the 556

learned shape. Accordingly, many psychological studies have shown that invariance, such as 557

rotation invariance, precedes recognition (Biederman & Cooper, 1991, 1992; Biederman & 558
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Gerhardstein, 1995; Hummel, 2013). 559

General Discussion 560

In a series of experiments we have shown that humans represent shape in qualitatively 561

different ways to CNNs that learn to classify large datasets of objects using supervised learning. In 562

Experiment 1 we found that CNNs trained to classify objects were entirely insensitive to 563

deformations in categorical relations between object parts. Furthermore, we could not train CNNs 564

to be sensitive to relational changes in general even when we made relational changes diagnostic of 565

category classification (Experiment 2). In Experiment 3 and 4, where we precisely matched the 566

extent of relational and coordinate deformations, we found that humans were highly sensitive to 567

relational deformations of single-part objects, whereas CNNs were only sensitive to coordinate 568

distance, and once again, CNNs could not learn to be sensitive to relational manipulations 569

(Experiment 5). 570

These findings challenge the hypothesis that humans perceive objects based on similar 571

principles as CNNs trained to classify large sets of objects and that apparent differences arise due 572

to “differences in the data that they see” (Hermann et al., 2020). These results show that even 573

CNNs that have been trained to classify objects on the basis of shape (trained on the 574

Stylized-ImageNet) learn the wrong sort of shape representation. These findings add to other 575

studies that also highlight the different types of shape representation used by CNNs and the human 576

visual system. For example, Puebla and Bowers (2021) have found that CNNs fail to support a 577

simple relational judgement with shapes, namely, whether two shapes are the same or different. 578

Again, this highlights how CNNs trained to process shape ignore relational information. In 579

addition, Baker et al. (2018) have shown that CNNs that classify objects based on shape focus on 580

local features and ignore how local features relate to one another in order to encode the global 581

structure of objects. 582

These failures may reflect a range of processes present in humans but absent in CNNs 583

trained to recognise objects through supervised learning, such as figure-ground segregation, 584

completing objects behind occluders, encoding border ownership, and inferring 3D properties about 585

the object (Pizlo et al., 2010). Consistent with this hypothesis, Jacob, Pramod, Katti, and Arun 586
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(2021) and Bowers et al. (2022) have recently highlighted a number of these failures in CNNs, 587

including a failure to represent 3D structure, occlusion, and parts of objects. More broadly, these 588

results challenge the the claim that CNNs trained to recognise objects through supervised learning 589

are good models of the ventral visual stream of human vision (see, for example, (Cadieu et al., 2014; 590

Mehrer, Spoerer, Jones, Kriegeskorte, & Kietzmann, 2021; Yamins et al., 2014)). 591

One interesting study that provides some evidence to suggest that standard CNNs have 592

similar shape representations to humans was reported by Kubilius, Bracci, and Op de Beeck (2016). 593

In one of their experiments (Experiment 3), they compared the similarity of representations in 594

various CNNs in response to a change in metric and non-accidental features of single-part objects. 595

For instance, they compared a base object that looked like a slightly curved brick to two objects: 596

one object that was obtained by deforming the base object into a straight brick (a non-accidental 597

change) and a second object that was obtained by deforming the base object into a greatly curved 598

brick (a metric change). Kubilius et al. reported that, like humans, CNNs were more sensitive to 599

non-accidental changes. However, it is unclear whether CNNs were more sensitive to one of their 600

manipulations because of the non-accidental change or because of other confounds accompanying 601

these manipulations. For example, when Kubilius et al. modified some of the base shapes to 602

non-accidental deformations, it was accompanied by a change in local features (such as properties 603

of vertices). Recent research (Baker et al., 2018; Geirhos et al., 2018) has shown that, unlike 604

humans, CNNs are in fact highly sensitive to change in local and textural features and it is unclear 605

whether it is these types changes that are driving the effects observed by Kubilius et al. (2016). 606

More work is required to reconcile their findings with our own. 607

More generally, our findings raise the question as to whether optimizing CNNs on 608

classification tasks is even the right approach to developing models of human object recognition. It 609

is striking how well our findings are well predicted by a classic structural description theory of 610

object recognition that builds a distal representation of objects using heuristics (e.g., Biederman, 611

1987). As detailed above, on this theory, the visual system encodes specific features of the proximal 612

stimulus that are best suited for making inferences about the distal object. This includes explicitly 613

coding the relations between parts in order to support visual reasoning about objects (e.g., 614

appreciating the similarity and differences of buckets and mugs as discussed above), and encoding 615
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parts in terms of non-accidental features that often include relations between features, such as 616

symmetry, in order to infer their 3D distal shape from variable proximal 2D images. Just as 617

predicted, humans are selectively sensitive to these deformations (changes in the relations between 618

parts in Figure 1 and changes in symmetry in Figure 5), whereas CNNs treated these deformations 619

no differently than others. 620

Of course, it is possible that training CNNs on a range of different tasks (especially tasks 621

where the objective is to approximate the distal representation) or on tasks with different objectives 622

rather than classification (e.g. unsupervised learning of image sequences (Parker & Serre, 2015), or 623

generative modelling (Kingma & Welling, 2013) or on a “self-supervised” task (Grill et al., 2020)) 624

may lead to shape representations that are more similar to those formed in human visual cortex. 625

However, here we wanted to focus on CNNs trained on recognising objects through supervised 626

learning because of two reasons. Firstly, it has been argued that CNNs trained under these settings 627

learn to classify objects based on human-like shape representations (Geirhos et al., 2018; Hermann 628

et al., 2020; Kubilius et al., 2016). Secondly, these models have had the largest success in predicting 629

neural representations in human and primate visual system (Cadieu et al., 2014; Schrimpf et al., 630

2020; Yamins & DiCarlo, 2016) and it has been argued that there is a “strong correlation between a 631

model’s categorization performance and it’s ability to predict individual level IT neural unit 632

response data” (Yamins et al., 2014). Our findings challenge the view that optimizing performance 633

in a classification task can explain shape representations used during human shape perception. 634

Instead, these findings are well predicted by the classic structural description theory of object 635

recognition that builds a distal representation of objects using heuristics (e.g., Biederman, 1987). 636

It is also possible that a different Deep Learning architecture may be more successful than 637

CNNs at encoding objects based on relations between their parts. Indeed, previous research 638

indicates that relational reasoning may require a more powerful architecture that can explicitly and 639

separately represent (i) parts and relations, and (ii) their bindings (e.g., to distinguish whether the 640

brick is above the cone or vice-versa; Doumas, Puebla, Martin, & Hummel, in press; Hummel, 2011; 641

Hummel & Biederman, 1992; Hummel & Holyoak, 1997, 2003). Other Deep Learning architectures 642

such as Capsule Networks (Sabour, Frosst, & Hinton, 2017), Transformers (Vaswani et al., 2017), 643

LSTMs (Hochreiter & Schmidhuber, 1997) or Neural Turing machines (Graves, Wayne, & 644
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Danihelka, 2014) may also provide the representational power necessary to represent structural 645

descriptions. What is clear from our study is that learning to classify objects is not, in and of itself, 646

sufficient for the emergence of human shape representations. 647

Code and Data 648

All code for generating the datasets, simulating the model as well as participant data from 649

Experiment 4 can be downloaded from: https://github.com/gammagit/distal 650
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Appendix A

Classification performance

Figure A1

Classification accuracy for VGG-16 in Experiment 1

Note. Panels in the first column show classification accuracy on the pre-trained network without any further

training, while panels in the second column shown test performance for a model that was fine-tuned on the

set of Basis shapes. Dashed black line shows chance performance. In keeping with the cosine distance in

internal representations, we observed that models in the Zero-shot condition failed to classify the Basis shapes

or their deformations (accuracy was statistically at chance across models) and models in the Fine-tuned

condition learned to perfectly classify Basis images, but failed to distinguish them from relational or coordinate

deformations.
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Appendix B

Examining errors in Experiment 3

Figure B1

Confusion matrices for VGG-16 in Experiment 3.

Note. For any heat map, the category label along each row shows the ground truth – i.e., all test shapes used

to obtain the heat map were obtained by distorting the basis shape from that category. The category label

along the column shows output category label assigned by the network. Therefore, in each row, the diagonal

heat map shows the correct classifications, while the off-diagnoal heat maps show how each deformation was

misclassified.

In Experiment 3, we observed that performance decreased as a function of coordinate 771

distance for most categories. However, in most simulations, we also observed that there was one 772

category where performance was really high for most deformations, including large rotations. For 773

example, in Figure 6, most categories show a large decrease in performance with increase in 774

rotation of test images, except for Category 7 (both middle and bottom rows). To understand why 775

this was the case, it is useful to look at the errors made by the network. Figure B1 shows confusion 776

matrices for two models (VGG-16 pre-trained on ImageNet and Stylized-ImageNet respectively). 777

Each heat map shows the number of times an output category was chosen for all deformations of a 778

given input category. This confusion matrix shows that the both networks were prone to 779

mis-classify large rotations from any category as belonging to Category 7 (note large number of 780
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classifications in final column of each matrix for large rotations). These false positives (Type I 781

errors) create a bias in the accuracy results for Category 7 in Figure 6 – that is, the high accuracy 782

for large rotations for Category 7 category are, in fact, misleading as the networks classify large 783

rotations for any category as Category 7. These confusion matrices also show that the networks 784

showed a “rightward” bias – there are more Type I errors in the upper triangle of each matrix than 785

the lower triangle. In other words, the network was more likely to mis-classify images from each 786

category as the category above rather than the category below. 787
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Appendix C

Results for AlexNet

Figure C1

Cosine similarity for internal representations for Alexnet in Experiment 1

Note. Like the results for VGG-16 (compare with Figure 2 in the main text), the similarity between Basis

images and both types of deformations is at the upper bound throughout the network, showing that the

network does not distinguish the trained (Basis) image from it’s Rel and Cood deformations.
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Figure C2

Performance of AlexNet in the test set for Experiment 1.

Note. Each panel shows accuracy on the Basis shapes as well as the two types of deformations: relational

(Rel) which changes a categorical relation and coordinate (Cood), which preserves all categorical relations.

Compare with performance of VGG-16 in Figure A1.
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Figure C3

Cosine similarity for AlexNet, trained on diagnostic relations in Experiment 2

Note. Like the results for VGG-16 (compare with Figure 4), we see that networks learns to distinguish the Rel

deformation from the Basis image for Set 1 (left column), when it has seen the specific deformation in the

training set. But this sensitivity to Rel deformation diminishes in Set 2 (middle column), when only one pair

of trained shapes have a similar deformation and completely lost for Set 3 (right column) when the network

has been trained on the Rel deformations, but the specific deformation tested is novel.
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Figure C4

Classification performance for AlexNet trained on ImageNet in Experiment 3

Note. Each heatmap shows accuracy for on test items for a particular category for AlexNet pre-trained on

ImageNet and fine-tuned on the dataset in Figure 5. Each cell in the heatmap corresponds to a deformation

that is a combination of relational (shear) and coordinate (rotation) transformations of the trained Basis

shapes (see Figure 5(a)). The grid at the bottom shows the “confusion matrix” – each heatmap in the grid

shows the proportion of responses predicted as the category along the column for a deformation with basis

shape taken from the category along the row. Like the results for VGG-16 (compare with Figure 6), we see

that accuracy decreases as a function of coordinate distance from the basis shape, rather than the relational

distance.
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Figure C5

Classification performance for AlexNet trained on Stylized-ImageNet in Experiment 3

Note. Each heatmap in the top row shows accuracy for on test items for a particular category for AlexNet

pre-trained on Stylized-ImageNet and fine-tuned on the dataset in Figure 5. The bottom panel shows the

confusion matrix. See Figure C4 for explanation.
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Figure C6

Cosine similarity for AlexNet in Experiment 3.

Note. Cosine similarity between internal representations for the Basis shapes and two deformations of the

basis shape (dashed red squares in Figure 5(b)) from the polygons dataset at each convolution and fully

connected layer of AlexNet. Solid (red) line shows the average similarity between representations for a basis

shape and its relational (shear) deformation, while dashed (blue) line shows the average similarity between a

basis shape and it’s coordinate (rotation) transformation. The hatched area shows the bounds on similarity,

with the upper bound determined by the average similarity between two basis shapes from the same category

and lower bounds determined by the average similarity between two basis shapes of different categories. Like

the results for VGG-16 (compare with Figure 7), we observed that the network treated the relational (shear)

deformation as being more similar to the basis shape than the coordinate (rotation) deformation.
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Figure C7

Comparison of classification accuracy for AlexNet (Experiment 3) and human participants

(Experiment 4).

Note. Each panel shows performance under three conditions: basis image, deformation D1 and deformation

D2. For the shear deformation (solid, red line), D1 and D2 consists of images in the top row in the fourth

and eighth column in Figure 5. For the rotation deformation (dashed, blue line), D1 and D2 consist of images

in the first column and fourth and eighth rows. Error bars show 95% confidence interval and dashed red line

shows chance performance. Note that the results in right-hand panel are reproduced here for convenience but

are the results of the same experiment reported in Figure 8, right-hand panel.
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Figure C8

Performance of AlexNet in Experiment 5, Simulation 1

(a) Accuracy landscape

(b) Accuracy for conditions in

experiment

Note. Performance of AlexNet fine-tuned on an augmented dataset where the Basis shapes are not only

translated and scaled but also randomly rotated in the range [−45°, 0°]. The network is then tested on on

shear and rotation deformations in the range [0°,+45°]. Like the results for VGG-16 (compare with Figure 9),

we observed that even when the network was trained on some rotations, it’s performance on untrained

rotations (a coordinate transformation) was still worse than shears (a relational transformation). (b) shows

accuracy for deformation level D1 and D2 used for testing human participants.
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Figure C9

Performance of AlexNet in Experiment 5, Simulation 2

(a) Accuracy landscape for left-out Category

(b) Accuracy for conditions in

experiment

Note. Performance of AlexNet fine-tuned on an augmented dataset where the basis shapes are not only

randomly translated and scaled but also rotated. For six out of seven categories, the network is trained on all

rotations ([0, 360°)). We then tested the network on the left-out category (Cat 3, highlighted with red square

in (a)) on untrained rotations and shears. However, we observed that despite being trained in this manner,

the accuracy degraded as a function of the coordinate deformation, rather than the relation deformation. (b)

shows the performance of this network for deformations D1 and D2 used to test human participants.
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