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Summary 24 

 25 

Globally, weedy plants result in more crop yield loss than plant pathogens and insect pests 26 

combined. Much of the success of weeds rests with their ability to rapidly adapt in the face 27 

of human-mediated environmental management and change. The evolution of resistance to 28 

herbicides is an emblematic example of this rapid adaptation. Here, we focus on Alopecurus 29 

myosuroides (blackgrass), the most impactful agricultural weed in Europe. To gain insights 30 

into the evolutionary history and genomic mechanisms underlying adaptation in 31 

blackgrass, we assembled and annotated its large, complex genome. We show that non-32 

target site herbicide resistance is oligogenic and likely evolves from standing genetic 33 

variation. We present evidence for divergent selection of resistance at the level of the 34 

genome in wild, evolved populations, though at the transcriptional level, resistance 35 

mechanisms are underpinned by similar patterns of up-regulation of stress- and defence-36 

responsive gene families. These gene families are expanded in the blackgrass genome, 37 

suggesting that the large, duplicated, and dynamic genome plays a role in enabling rapid 38 

adaptation in blackgrass. These observations have wide significance for understanding 39 

rapid plant adaptation in novel stressful environments. 40 

 41 
Main 42 

Human-mediated environmental change is driving rapid evolutionary responses in the 43 

global biota 1,2 and it is important to understand the outcome of these changes in natural and 44 

agricultural plant populations and communities.  Plant genomes offer glimpses into the adaptive 45 

potential of plant populations when challenged with novel environmental stresses. Agricultural 46 

weeds rapidly adapt in managed agroecosystems and have been proposed as models to address 47 

fundamental questions in plant ecology and evolution 3-7. Their global impacts on crop yields 48 

provides an additional economic incentive to understand weed adaptation.  49 

Herbicide use has become a mainstay of weed management in most industrialized 50 

agricultural economies. Unsurprisingly, heavy reliance on herbicides has resulted in the rapid 51 

and widespread evolution of resistance, making herbicide resistance a widely studied weedy trait 52 
8-9. Two main ‘types’ of herbicide resistance are recognized 10-11. Target site resistance (TSR) 53 

refers to modification of the sequence, copy number or expression of the gene encoding the 54 
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herbicide target enzyme. Non-target site resistance (NTSR) encompasses a range of mechanisms 55 

that limit herbicide delivery to its site of action. Typically, NTSR is inherited in a quantitative 56 

manner, and despite some advances in identifying and/or validating causal loci 12-15, efforts to 57 

discern the genomic basis and evolutionary dynamics of this trait have been hampered by lack of 58 

access to genomic resources in target species. 59 

The diploid, allogamous grass, Alopecurus myosuroides (blackgrass) is native to the 60 

Eastern Mediterranean and West Asia 16. It is now a widespread and impactful weed in 61 

agricultural crops in the UK 17, France 18 and Germany 19, with evidence of an ongoing range 62 

expansion in Europe. Alopecurus species are also major weeds in China 20. Blackgrass 63 

populations appear to be uniquely prone to the rapid and widespread evolution of herbicide 64 

resistance. In a nationwide survey in England conducted, most blackgrass populations exhibited 65 

resistance to multiple herbicide modes of action 21. Resistance was conferred by both TSR and 66 

NTSR mechanisms that often co-existed in populations, and there was evidence that current and 67 

historical herbicide use regimes favoured the evolution of the generalist NTSR mechanism 22. 68 

Herbicide resistant blackgrass is estimated to cost UK farmers £0.4 billion per year 23. 69 

Access to genomes and genomic resources for weed species will greatly enhance the 70 

capacity to unravel pattern and process in economically and ecologically important weedy plant 71 

species 24. Here, we present a high-quality reference genome of blackgrass. We analyse genome 72 

structure and function to infer genomic features that may predispose blackgrass to the rapid 73 

evolution of weediness and present data from genomic and transcriptomic resequencing of two 74 

well-characterised NTSR populations. 75 

 76 

Results 77 

Genome assembly and annotation. Genome analysis indicated that blackgrass (A. myosuroides) 78 

has a large genome (3.31-3.55 Gb) and exhibits heterozygosity of 1.52% and repeat content of 79 

84.2% contributing to the large genome size (Supplementary Tables 1 and 2). We adopted a 80 

hierarchical sequencing approach that includes complementary single-molecule 81 

sequencing/mapping technologies coupled with deep coverage short read sequences to generate a 82 

pseudo-chromosome reference genome assembly for blackgrass (Supplementary Figure 1). The 83 

total primary contig length is 3,475 Mb, which is consistent with our genome size estimations 84 

based on flow cytometry and k-mer analysis (3,312-3,423 Mb and 3,400-3,550 Mb, 85 
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respectively). The final polished blackgrass genome assembly size was highly contiguous at 86 

3,572 Mb, including 3,400 (95.2%) Mb ordered as seven pseudo-chromosomes with only 172 87 

Mb of unanchored sequences (Table1, Supplementary Table 3).    88 

Both the euchromatic and heterochromatic components of the blackgrass genome are 89 

highly complete as supported by BUSCO scores (96.9% from the Embryophyta lineage) 25 and a 90 

high long terminal repeat assembly index across the genome (LAI - 9.6-35.2) 26, with a mean 91 

value of 21.9 (Supplementary Table 4; Supplementary Figure 4). In addition, the Illumina short 92 

reads (81×) returned a 99.6% mapping rate and covered 99.9% of the assembled genome. We 93 

identified 8,026,403 polymorphisms as SNPs or InDels (Figure 1a), which was expected from 94 

the predicted heterozygosity level of the blackgrass genome. We also observed a high correlation 95 

(r = 0.98) between the assembled chromosome and cytogenic chromosome lengths based on 96 

published data 27. 97 

We annotated 45,263 protein-coding genes based on de novo and homology-based 98 

predictions and transcriptome data from multiple tissues (Supplementary Figure 3). Mean gene 99 

length was 2,864 bp, with an uneven distribution across the chromosomes with increased gene 100 

density toward the distal ends that recedes to very low density in the middles of chromosomes 101 

(Figure 1a). Among these protein-coding genes, 2,385 were annotated as transcription factors. In 102 

addition, 4,258 non-coding RNAs were identified, including 1,369 transfer RNAs, 941 ribosomal 103 

RNAs, 513 micro RNAs and 1,425 small nuclear RNAs (Figure 1a for genome overview).  104 

 105 

Transposon elements and the burst of LTR retrotransposons. We annotated 2,851 Mb 106 

(81.7%) of sequence in the assembled genome as transposable elements (TEs) (Supplementary 107 

Table 5). A total of 5,287,231 repeat elements were identified and the dominant type of TE was 108 

long terminal repeat retrotransposons (LTR-RTs), representing approximately 80.3% (2290 Mb) 109 

of annotated TEs and amounting to 65.6% of the blackgrass genome size. Gypsy, Copia and 110 

unclassified retrotransposon elements contributed to 39.2%, 8.6% and 17.9% of the genome size, 111 

respectively. DNA transposons contributed to 14.5% of the genome and the CACTA transposon 112 

were the most abundant DNA transposons, accounting for 5.9% of the annotated TEs and 4.9% 113 

of the assembled blackgrass genome (Figure 1b).  114 

 115 
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Retrotransposons are highly unstable and have played an important role in the evolution 116 

of plant genomes 28. We observed a single peak of insertion time, occurring approximately 0.1 117 

million years ago (Ma), for Gypsy, Copia, and unclassified retrotransposons in blackgrass, which 118 

suggests a recent burst of LTR retrotransposons in the genome (Figure 1c). In addition, we 119 

observed a higher proportion of recent LTR-RT insertions when compared to those in rice, 120 

barley and goatgrass (progenitor of the wheat D genome). Moreover, the burst of 121 

retrotransposons in blackgrass was more recent than those in barley (Hordeum vulgare) and 122 

goatgrass (Aegilops tauschii) but occurred at a similar time in blackgrass (A. myosuroides) and 123 

rice (Oryza sativa) (Figure 1d). Therefore, the recent large-scale burst of retrotransposons might 124 

have contributed to blackgrass genome expansion, explaining the large genome size. 125 

 126 

Phylogenetics and gene expansion and contraction. To assess the divergence time between 127 

blackgrass and other grasses, we constructed a phylogenetic tree based on the concatenated 128 

sequence alignment of the 476 single-copy orthologous genes shared by blackgrass and 11 other 129 

species (Figure 2a). The divergence between blackgrass and barley was after the separation of 130 

blackgrass from rice and Brachypodium distachyon. The divergence time between blackgrass 131 

and barley was estimated at 37.9 million years ago.  132 

We also examined gene family evolution through expansion and contraction events. A 133 

total of 33,757 orthologous gene families composed of 382,550 genes were identified from 12 134 

species, of which 6,470 gene families were shared by all the species. Blackgrass contains 1,678 135 

species-specific gene families, which is the most among all the investigated species 136 

(Supplementary Figure 4). A total of 559 and 352 gene families were identified with significant 137 

expansion and contraction, respectively. GO enrichment analysis of the expanded genes revealed 138 

that they were mainly related to multiple enzymatic functions, including glutathione transferase 139 

(GST), UDP-glycosyltransferase (UGT), and monooxygenases, all of which have been reported 140 

to be associated with non-target site herbicide resistance (Figure 2b). 141 

  142 

Genome duplication and comparative genomics. We explored evidence for whole genome 143 

duplication events in the blackgrass genome. Synonymous substitution rate (Ks) values were 144 

calculated from 1,884 paralogous gene pairs and were used to infer the age distribution of the 145 

duplication events, which are evident with two distinct peaks at Ks values of 0.1 and 0.8, 146 
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respectively (Figure 2c). To determine if these peaks were species-specific or common in the 147 

grass family, we performed the same analysis for rice, barley, Brachypodium and goatgrass 148 

(Figure 2c). The results indicated that the peak at 0.8 was shared in all investigated species, 149 

suggesting blackgrass underwent the same ancient whole genome duplication in the ancestor of 150 

Poaceae species ~70 MYA 29. The peak at 0.1 is not apparent in other species, suggesting that 151 

this genome duplication event is unique for blackgrass. We further examined the paralogous 152 

genes within the duplication events and found that the peak at 0.1 was evidenced by a high 153 

density of 'co-located' paralogous genes on chromosomes 1, 2, and 3 (Figure 1a) which suggests 154 

the blackgrass genome underwent some small-scale local duplication events in addition to the 155 

whole genome duplication. To investigate gene duplication structure in the blackgrass genome, 156 

we analysed all chromosome-anchored protein-coding genes for duplications and organization. 157 

The results show that blackgrass contains 9,106 singletons, 20,856 dispersed duplicated genes, 158 

4,607 proximally duplicated genes, 4,967 tandemly duplicated genes and 3,615 segmentally 159 

duplicated genes. 160 

Conserved genome structure and organization between blackgrass, barley, goatgrass, 161 

Brachypodium, and rice was examined through collinearity and macro-/micro- synteny 162 

approaches. We identified 11,826 plant gene families shared by all five species with 2,338 163 

blackgrass-specific gene families (Figure 2d). Blackgrass chromosomes 2, 3, 4, 5 and 7 are 164 

completely collinear with barley chromosomes 3, 2, 6, 1, and 5, respectively (Figure 2e). For 165 

blackgrass chromosome 1, most regions were colinear with barely chromosome 7, with two 166 

small regions being colinear with parts of barley chromosome 4 and 5. Blackgrass chromosome 167 

6 was colinear with barely chromosome 4 and a small part of chromosome 1 indicating that 168 

blackgrass genome content and structure most closely resembles that of barley.  We observed a 169 

similar pattern of collinearity between blackgrass and goatgrass as we did between blackgrass 170 

and barley (Figure 2e). To investigate the chromosome evolution of blackgrass, we used rice as 171 

the reference species for comparison because it has retained 12 ancestral grass karyotype 172 

chromosomes. We found that blackgrass chromosomes 2 and 4 were derived from single ancient 173 

chromosomes 1 and 2, respectively (Figure 2f). All other blackgrass chromosomes were derived 174 

from fusion events between ancient chromosomes, including the large blackgrass chromosome 1 175 

derived from fusion events among ancient chromosomes 3, 6, 8, 11 and 12; 3 from 4 and 7; 5 176 

from 5 and 10, 6 from 3, 6 and 8; 7 from 9, 11 and 12. These chromosome reshuffling events 177 
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might have contributed to the introduction of genetic variation and speciation of blackgrass.  178 

Combined, these results indicate that blackgrass diverged from Brachypodium and rice earlier 179 

than barely and goatgrass.  180 

 181 

QTL-seq bulk segregant analysis for NTSR. To identify the genomic regions controlling 182 

herbicide resistance, we performed bulk segregant analysis in the CC2 and CC5 families to 183 

identify ΔSNP values with trait significance 30,31. We obtained 3,402,057 and 3,205,888 reliable 184 

SNPs for each of the CC2 and CC5 families, respectively (Supplementary Figure 5). We 185 

identified 7 significant QTLs in the CC2 family distributed among chromosomes 2,3,5, and 6 186 

(Supplementary Table 6).  In the CC5 family we identified 8 QTLs distributed mainly on 187 

chromosome 3 with 1 region on chromosome 2 (Supplementary Table 6). Interestingly, there 188 

was no overlap between QTL regions identified in the two seed families, however 12 of the 15 189 

total QTL regions were located on chromosomes 2 and 3 (Figure 3). These two chromosomes 190 

also showed the greatest density of differentially expressed genes (DEGs), with almost half (33) 191 

of the 68 consistent DEGs located on these two chromosomes, along with half of the previously 192 

reported NTSR candidate loci for this species (Figure 3). These results suggest that 193 

chromosomes 2 and 3 are ‘hot-spots’ for NTSR evolution in this species. In addition, a total of 194 

371 genes were encoded within the 15 identified QTLs, with each QTL containing between 10 195 

and 58 genes. Among the 15 identified QTL regions, seven contain differentially expressed 196 

genes identified between susceptible and resistant plants; six of them contain transcription 197 

factors. The most significant QTL was identified on chromosome 2 in the CC2 family, which 198 

covered 2.5 Mb and contains 33 candidate genes. An NADPH-dependent aldo-keto reductase 199 

gene was present in this region and was upregulated in resistant plants for both CC2 and CC5 200 

families. Members of this gene family have been reported to be associated with non-target 201 

herbicide resistance in other weed species 32. 202 

 203 

RNA-seq analysis of herbicide resistance. To identify deferentially expressed genes between 204 

susceptible and resistant plants, we performed RNA-seq analysis in two seed families (CC2 and 205 

CC5). Principal components analysis of gene expression data (19,937 genes across 19 biological 206 

samples) indicates both seed families and resistance phenotypes contain significant sources of 207 

variation between samples (Figure 4a). Seed family (CC2 vs. CC5) was the stronger source of 208 
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variance accounting for ~58% of the total variance on the first Principal Component (PC1). 209 

Within each seed family, the herbicide resistant ‘R’ samples form separate clusters from their 210 

susceptible ‘S’ counterparts on PC2. The PC2 axis represents 12% of the total variance. In each 211 

seed family the ‘direction’ of separation of ‘R’ samples from ‘S’ is the same. 212 

Differential expression analysis between ‘R’ and ‘S’ samples across the two seed families 213 

identified 643 differentially expressed genes. Of these, 341 were unique to family ‘CC2’, while 214 

234 were unique to family ‘CC5’ (Figure 4b). A subset of 68 genes were found to be 215 

differentially expressed in both seed families. Hierarchical clustering of these 68 genes 216 

confirmed that resistance phenotype was a greater source of variability than seed family, and 217 

81% (55) of these 68 genes were up-regulated in ‘R’ samples relative to ‘S’ for both families 218 

(Figure 4c).  219 

The list of 68 DEGs consistent across both seed families was found to contain three of 220 

eight previously recorded blackgrass NTSR candidate genes; ‘AmGSTF1’, ‘AmGSTU2’, and 221 

‘AmOPR1’ 15,16. In each case, expression of these three candidate genes was significantly higher 222 

in the ‘R’ phenotype than the ‘S’ (Supplementary Figure 6), agreeing with previously reported 223 

findings 15,16. Across the 68 consistent DEGs, six glutathione-S-transferases (GST), six 224 

cytochrome P450s, three ATP-binding cassette transporters (ABC transporters), and one aldo-225 

keto reductase were found. This is consistent with a previous study which has demonstrated the 226 

potential importance of these key gene families in herbicide metabolism 11. Gene set enrichment 227 

analysis of DEGs for each family identified both shared and unique GO terms. Most of the 228 

shared overrepresented GO terms have been reported to be associated with NTSR, including 229 

glutathione transferase, UDP-glycosyltransferase, and some cytochrome P450 superfamilies. 230 

Xenobiotic transmembrane transporter was only overrepresented in CC5 (Figure 4d and 4e), 231 

indicating possible family-specific mechanism of resistance for CC5. 232 

 233 

Genetic coordination of NTSR via gene co-expression network analysis 234 

Gene co-expression networks were constructed using traditional spearman-ranked and condition 235 

specific approaches that enable alternate strategies to examine the genetic coordination of NTSR 236 

mechanisms (Figure 5a and 5b, respectively).  The traditional spearman ranked coefficient 237 

approaches resulted in a total of 16,601 nodes connected by 16,130 edges (Figure 5a).  Hub gene 238 

sub-graphs display significant co-expressed gene interaction pairs that include candidate genes 239 
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from the bulk segregant and RNA-seq studies.  We identified a total of 13 CC2 specific sub-240 

graphs and 20 for CC5 (Supplemental Figure 7a-d).  In CC2, we found metabolism genes 241 

identified in the QTL-seq analysis, such as GST, aldo-keto reductase, and Beta-keto acyl 242 

synthase co-expressed with various transcription factors and other genes that could be involved 243 

in their regulation (Supplemental Figure 7a-b).  An aldo-keto reductase was discovered through 244 

QTL-seq to be specific to the CC2 family that is also significantly upregulated in both the CC2 245 

and CC5 families.  The HMG transcriptional regulator is also positively correlated with two 246 

genes involved in metabolism: Tubulin/FtsZ family gene and a Ubiquitin carboxyl-terminal 247 

hydrolase, and negatively correlated with an Alpha-N-acetylglucosaminidase, (Supplemental 248 

Figure 7e).  In the CC5 family sub-graphs, we identified alternate active genetic machinery that 249 

are co-expressed with genes identified in the QTL regions, such as Cytochrome p450s, 250 

thioesterase, glycosyl hydrolase, pectinesterase, exostensin gene family, and others connected 251 

with various classes of transporters and transcription factors/regulators (Supplemental Figure 7c-252 

d).  The condition specific network also partitioned clusters of co-expressed gene interactions 253 

pairs in both a family specific and overlapping manner.  For example, this approach also 254 

identified an aldo-keto reductase and protein tyrosine/serine/threonine kinase unique to CC2.  255 

Oxioreductase, peroxidase, and vacuolar sorting were among CC5 specific clusters 256 

(Supplemental Figure 7f).  This approach also identified a largely connected subgraph of 257 

connected genes discovered in both CC2 and CC5 bulk-segregant and RNA-seq analysis 258 

(Supplemental Figure 7g)   259 

 260 

Discussion. 261 

Despite the global distribution and impacts of weedy plants, few genomic resources have been 262 

developed to explore the genetics and evolution of weediness (see 33). Here, we present a 263 

reference-grade genome assembly for Europe’s worst agricultural weed 21,23. Metrics for genome 264 

size, completeness, structure, and quality indicate that this A. myosuroides genome is the largest 265 

and highest quality weedy plant genome produced to date. The very high proportion of sequence 266 

identified as transposable elements (TE), particularly LTR-retrotransposons, provides context for 267 

the genome size and plasticity that drives rapid evolution of weediness in blackgrass. It is well 268 

known that high levels of TE activity (transcription and movement) can provide the impetus for 269 
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changes in gene expression, gene duplication, and genome organization, all of which can 270 

facilitate gene family evolution and the exaptation and co-option of genes to perform new 271 

functions, particularly in relation to biotic and abiotic stresses 34. 272 

 The analysis of genome structure and duplication identifies further signatures of a 273 

dynamically evolving and plastic genome as the basis for rapid adaptation in blackgrass. There is 274 

an over-representation of expanded gene families, evidence for a relatively recent unique 275 

genome duplication event in blackgrass, and a general excess of duplicated genes. It is notable 276 

that the paralogous genes associated with this duplication event are located on chromosomes 1, 2 277 

and 3, where the densest regions of significant QTLs and differentially expressed genes are 278 

found (Fig 3). Also, expanded gene families included several gene functions that have been 279 

previously implicated in herbicide resistance and biotic and abiotic defense pathways. These 280 

features of the genome are consistent with a model that posits blackgrass weediness as an 281 

emergent property of a large and dynamic genome where rapid adaptation to new environmental 282 

stresses is enabled by exaptation of duplicated and differentially expressed genes under strong 283 

selective pressure 35,36. 284 

 Herbicides exert intense selection pressure on weed populations. The genomic basis of 285 

monogenic, target site resistance is well known 11, but with a few exceptions (for example 37,38), 286 

explorations of non-target site herbicide resistance (NTSR) have been limited to transcriptomics-287 

based approaches, which do not inform the genetic basis of resistance directly. Using F2 seed 288 

families produced from two discrete NTSR genetic backgrounds, we demonstrate that NTSR is 289 

an oligogenic trait in blackgrass. Fifteen significant QTLs were identified (8 and 7 in the two 290 

seed families, respectively). Notably, there were no overlapping QTL regions between seed 291 

families derived from the two blackgrass populations, though significant QTLs were over-292 

represented on chromosomes 2 and 3. These observations suggest that whilst selection for NTSR 293 

may be localized to certain regions of the genome, the genetic basis and genomic architecture of 294 

these traits is quite different amongst blackgrass populations. At the genomic level, evolution of 295 

NTSR amongst populations is divergent. 296 

 Our bulk segregant approach for sampling resistant and susceptible phenotypes 297 

identified a relatively small set of constitutively, differentially expressed genes (DEGs). As 298 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2021. ; https://doi.org/10.1101/2021.12.14.472569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472569


11 
 

observed for the genomic data, there was a strong signal for selection of different molecular 299 

genetic mechanisms of resistance in the two resistant populations. 53% of DEGs were specific to 300 

one of the seed families, and 36% were specific to the other. However, there is also evidence for 301 

some convergence at the transcriptional level with 11% of the resistance associated DEGs being 302 

common to both seed families. It is difficult to definitively conclude from our analysis if the 89% 303 

(575) of family specific DEGs represent large functional differences in the NTSR phenotype, the 304 

effects of alternate paralogous gene expression, or perhaps pleiotropic differences arising from 305 

the different genetic background and genomic architecture of NTSR in the two parental NTSR 306 

populations. Our co-expression network analysis provides some indication, however, that whilst 307 

the metabolic machinery of NTSR across populations has common features, there are discrete 308 

genomic, transcriptional, and metabolic bases to NTSR in different blackgrass populations. 309 

 The common set of 68 DEGs included several genes and gene families that have been 310 

implicated in previous studies of NTSR in blackgrass 13,14 and in other weed species with evolved 311 

NTSR 39-44. The common DEGs are also over-represented on chromosomes 2 and 3 where most 312 

significant QTLs are found. We also note that a member of one of these gene families, the aldo-313 

keto reductases, is closely linked to the most significant of our 15 QTL regions (chromosome 2, 314 

CC2 family). These differentially expressed gene families have roles in stress- and defense-315 

related metabolism (Figures 4d and 4e) and are generally found to be expanded in blackgrass 316 

(Figures 2a and 2b).  These findings add weight to our assertion that the rapid evolution of 317 

resistance and weediness in blackgrass is facilitated by its large, repetitive, and dynamic genome.  318 

 Access to a high-quality blackgrass genome has enabled us to identify several genomic 319 

features that can account for the weediness and adaptability of the species. Non-target site 320 

herbicide resistance is a complex trait that evolves repeatedly in blackgrass and other weedy 321 

plants, giving rise to a generalist resistance phenotype 22. Here, we clearly establish that it is an 322 

oligogenic trait, but that the genetic basis of NTSR can be markedly different between wild, 323 

evolved populations; albeit underpinned by some common metabolic pathways and manifested 324 

through genes that are similarly differentially expressed. Our results are consistent with those of 325 

Giacomini, et al. 45 who found physical clustering of differentially expressed genes, and whilst 326 

we do not find overlapping QTLs, there is strong evidence for selection of NTSR within similar 327 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2021. ; https://doi.org/10.1101/2021.12.14.472569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472569


12 
 

genomic regions causing us to tentatively conclude that, as reported by Van Etten, et al. 38 and 328 

Kreiner, et al. 37, landscape scale evolution of NTSR likely results from both parallel and non-329 

parallel patterns of evolution across the genome. These findings have wide significance for 330 

understanding the potential for rapid plant adaptation under novel and changing environments. 331 

They suggest that large and plastic plant genomes harbor sufficient standing genetic variation to 332 

enable rapid adaptation to novel stresses. The associated duplication and redundancy in plant 333 

genomes means that adaptation may not be mutation-limited and that the repeated evolution of 334 

resistance and/or tolerance relies on neither rare mutational events, nor hard selective sweeps. 335 
 336 

  337 
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Table and Figures:  338 

Table 1 | Assembly statistics of the blackgrass genome.  339 
 340 
Characteristics Values 
Assembly size (bp) 3,572,044,634 
Number of scaffolds 2,512 
N50 scaffold length (bp) 2,255,730 
The largest scaffold (bp) 17,744,454 
Number of contigs 7,866 
N50 contig length (bp) 1,189,615 
The largest contig (bp) 9,284,242 
GC content (%) 44.66 
Total size of pseudomolecules (bp) 3,400,051,202 
Total size of unanchored sequences 171,993,432 
Ns in the assembly 80,915,468 
Total size of retrotransposons (bp) 2,302,477,515 
Total size of DNA transposons (bp) 507,120,408 
Total size of repeat sequences (bp) 2,851,385,969 
Number of genes 45,263 
Average length of genes (bp) 2,864 
Average number of exons per gene 4.3 
Total size of genes (bp) 129,639,341 
Number of annotated genes 35,999 

 341 
 342 

 343 
 344 
  345 
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 346 
 347 
Figure 1 | Genomic features and components of the A. myosuroides genome. a, overview of 348 
the A. myosuroides genome, including the assembled seven chromosomes (1), distribution of 349 
protein-coding genes (2), distribution of GC content across the genome (3), distribution of 350 
transposable elements (4), distribution of Gypsy family of long terminal repeats retrotransposons 351 
(5), distribution of Copia family of long terminal repeats retrotransposons (6), distribution of 352 
SNP/Indel (7). All the histograms (from 1 to 7) were featured in a 1-Mb sliding window. 353 
Connecting line in the center of the diagram represents a genomic syntenic region covering at 354 
least 10 paralogues. b, Proportions of the major elements in the blackgrass genome, including 355 
Gypsy LTR-RTs, Copia LTR-RTs, unclassified LTR-RTs, DNA transposons, coding DNA and 356 
unannotated sequences. c, The insertion time distribution of different types of LTR-RT in the 357 
blackgrass genome. d, The insertion time distribution of intact LTR-RTs in the blackgrass 358 
genome compared to those in goatgrass (progenitor of the wheat D genome), barley and rice. 359 
  360 
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 361 
 362 
Figure 2 | Evolution and Comparative genomics of the A. myosuroides genome. a, 363 
Phylogenetic tree of 12 plant species and gene family expansion and contraction. Inferred 364 
divergence time is denoted at each node in black. The red and blue numbers above the species 365 
name indicate the total number of expanded and contracted gene families, respectively. b, Gene 366 
Ontology (GO) enrichment analysis of expanded gene families in the blackgrass genome 367 
(molecular function category). c, The frequency distribution of synonymous substitution rates 368 
(Ks) of paralogous genes within each genome. A shared whole genome duplication event for 369 
grasses was assigned to the peak. d, Venn diagram of shared and unique gene families among 370 
five closely related Poaceae species. Each number represents the number of gene families. e, 371 
Syntenic blocks between blackgrass and other sequenced grass genomes, including goatgrass and 372 
barley. f, Syntenic blocks between blackgrass and other sequenced grass genomes, including 373 
Brachypodium and rice. 374 
  375 
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 376 
Figure 3 | Location across the genome of the differentially expressed genes associated with 377 
the NTSR trait. Green and purple circles show the position of DEGs identified in the CC5 and 378 
CC2 seed families respectively. Circle sizes are relative to the adjusted P-value, whereby larger 379 
circles denote stronger significance. DEGs consistent across both families are marked with black 380 
labels, while orange labels show the position of previously reported NTSR candidate genes. 381 
Lower sections show the change in ΔSNP index across these chromosomes for the CC2 (top) and 382 
CC5 (bottom) families. Shaded regions represent the 95% and 99% confidence bounds for each 383 
SNP. Vertical green and purple bars show the QTL regions for the CC5 and CC2 families, 384 
identified from their ΔSNP index. 385 
 386 
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 387 
 388 
Figure 4 | Differential gene expression analysis of the seed families CC2 and CC5, 389 
segregating for the NTSR herbicide resistance trait.  a, Principal components analysis using 390 
all gene expression data. b, Numbers of differentially expressed genes comparing the ‘R’ and ‘S’ 391 
groups within each family. c, Heatmap and hierarchical clustering of the 68 differentially 392 
expressed genes consistently associated with NTSR across both seed families. d and e, Gene 393 
ontology terms, significantly overrepresented in the CC2 and CC5 families, respectively.  394 
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 395 

 396 
Figure 5 | Genetic coordination of NTSR in CC2 and CC5.  a, traditional spearman-ranked 397 
gene coexpression network derived from RNAseq expression that depicts common and unique 398 
genetic architecture underpinning NTSR in both the CC2 and CC5 families.  Green nodes are 399 
unique to CC2, purple nodes are unique to CC5, and orange are common between both families.  400 
The graph was filtered for nodes with at least 2 connections.  b, a condition-specific gene co-401 
expression network derived from the RNAseq data taking into consideration plant phenotype 402 
(herbicide susceptible/resistant). 403 
 404 
 405 
 406 

  407 
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Methods 408 

 409 

Plant materials for genome sequencing and annotation. Blackgrass seeds collected in 2017 410 

from section 8 of the Rothamsted ‘Broadbalk’ long-term experiment 46 were used to derive an 411 

individual blackgrass plant for genome sequencing. Established in 1843, these field plots have 412 

never received herbicide application, and extensive testing of this population (Rothamsted) over 413 

the last 20 years has confirmed that it remains susceptible to all herbicides, representing a true 414 

wild-type blackgrass genotype. In addition, two field-collected blackgrass seed populations 415 

(Peldon and Lola91) previously characterized as being strongly non-target-site resistance 416 

(NTSR) to acetyl-CoA carboxylase (ACCase) inhibiting herbicides were used to generate F2 seed 417 

families (named CC2 and CC5, respectively) for QTL-seq and RNA-seq analyses. Detailed 418 

protocols for the selection of a single herbicide sensitive plant for genome sequencing and for the 419 

development of CC2 and CC5 seed families is presented in the Supplementary Note. 420 

 421 

Genome survey. Previous study has reported that blackgrass has seven chromosomes 27. In this 422 

study, genome size was estimated through flow cytometry and k-mer based analysis. Flow 423 

cytometry was conducted on four field collected blackgrass populations (the Rothamsted, 424 

Lola91, and Peldon populations used within this study, along with a further herbicide susceptible 425 

population). Genome size estimates were generated for three replicate plants from each of these 426 

populations, against a known standard of the plant Allium schoenoprasum. Using these data, the 427 

blackgrass genome size was estimated as 3,312 – 3,423 Mb. K-mer based analysis from Illumina 428 

sequencing data derived from the Rothamsted population also indicated a genome size from 429 

3,400 Mb to 3,550 Mb. We also estimated the heterozygosity and repeat content of the 430 
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blackgrass genome with GCE package (https://github.com/BioInfoTools/GCE), the results 431 

suggest the blackgrass genome exhibits high level of heterozygosity (1.52%) and repeat content 432 

(84.2%). Due to the complexity of the blackgrass genome, we collected sequencing data from 433 

multiple sequencing platforms for genome assembling. 434 

 435 

Genome sequencing. Pacific Biosciences (PacBio) sequencing: high molecular weight (HMW) 436 

DNA was extracted from leaf tissues of a single plant (Rothamsted) that had been dark adapted 437 

for five days, used to construct PacBio SMRTbell libraries using SMRTbell Express Template 438 

Prep Kit 2.0, following the manufacturers’ protocols. SMRTbell libraries were sequenced on a 439 

PacBio Sequel II system and a total of six SMRT cells and 513 Gb (144 X coverage) data 440 

composed of ~42 million reads were generated.  441 

 442 

BioNano optical maps: HMW DNA was isolated from the same leaf tissue according to the 443 

BioNano Prep Plant Tissue DNA isolation protocol, and then fluorescently labelled using single-444 

sequence-specific DLE1 endonucleases based on BioNano’s Direct Label and Stain (DLS) 445 

technology. The labelled DNA was loaded on the BioNano Genomics Saphyr system to scan by 446 

the sequencing provider. A total of 3,685,283 BioNano molecules were obtained with a total 447 

length of 860 Gb (241 X coverage).  448 

 449 

Chromosome conformation capture sequencing by Hi-C: chromatin conformation capture data 450 

was generated using a Phase Genomics (Seattle, WA) Proximo Hi-C 2.0 Kit. Following the 451 

manufacturer's instructions for the kit, intact cells from two samples were crosslinked using a 452 

formaldehyde solution, digested using the Sau3AI restriction enzyme, and proximity ligated with 453 
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biotinylated nucleotides to create chimeric molecules composed of fragments from different 454 

regions of the genome that were physically proximal in vivo, but not necessarily genomically 455 

proximal. Continuing with the manufacturer's protocol, molecules were pulled down with 456 

streptavidin beads and processed into an Illumina-compatible sequencing library. Sequencing 457 

was performed on an Illumina HiSeq 4000 system, yielding 126 Gb (35 X coverage) data.  458 

 459 

Illumina short reads for polishing: DNA was extracted with the DNeasy Plant Mini Kit 460 

(QIAGEN) to prepare PCR-free paired-end libraries using the Illumina Genomic DNA Sample 461 

Preparation kit following the manufacturer’s instructions (Illumina). All paired-end libraries 462 

were sequenced on an Illumina NovaSeq 6000 system, generating 291 Gb (81 X coverage) of 463 

150-nucleotide paired-end reads.  464 

 465 

Genome assembly. We performed de novo assembly of PacBio long reads into contigs with 466 

MECAT2 47. This produced 12,107 contigs with an N50 of 0.9 Mb and a total size of 4,906 Mb. 467 

To improve the accuracy of the assembled contigs, two polishing strategies were performed 468 

including PacBio long reads polishing using Arrow program 469 

(https://github.com/PacificBiosciences/SMRT-Link) and Illumina short reads polishing using 470 

Pilon (v.1.20) 48. Polished contigs were repeat marked using WindowMasker 49 and then 471 

subjected to haplotype merging using HaploMerger2 50 in terms of the heterozygosity of the 472 

blackgrass genome. BioNano data were first filtered based on molecule length (> 150Kb) and 473 

then aligned to primary contigs to select mapped molecules for de novo assembly to obtain the 474 

BioNano optical maps. The primary contigs and BioNano maps were combined to produce the 475 

hybrid scaffold assembly. The Hi-C reads were aligned to the hybrid scaffold assembly using the 476 
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Juicer pipeline 51 and the hybrid scaffolds was then further scaffolded using the 3D-DNA 477 

pipeline 52. The results were manually examined using the Juicebox Assembly Tools, an 478 

assembly-specific module in the Juicebox visualization system 53. The Hi-C scaffolding resulted 479 

in seven pseudomolecule chromosomes. We performed gap filling using Cobbler (v0.6.1) 54 to 480 

eliminate the gaps generated in the scaffolding steps with PacBio long reads. In addition, the 481 

final assembled scaffolds were further polished using PacBio long reads with Arrow and 482 

Illumina short reads with Pilon 48. The detailed information is presented in the Supplementary 483 

Note.  484 

 485 

Genome assembly quality assessment. The quality of the assembled genome was evaluated by 486 

the following analyses. (1) The Illumina short reads used for polishing were mapped to the 487 

genome assembly using BWA-MEM, the mapping rate and genome coverage were examined. 488 

(2) The genome assembly was subjected to BUSCO (v.4.0.1) 25 analysis to assess the 489 

completeness of the assembly with the embryophyta_odb10 database. (3) The LRT Assembly 490 

Index 26 was calculated for assessing the genome assembly quality. (4) The assembled 491 

chromosome length was compared to the cytogenic chromosome length to check the correlation. 492 

The cytogenic chromosome length information has been reported in 27.  493 

 494 

Genome annotation. A comprehensive non-redundant repeat library for the blackgrass genome 495 

was built using EDTA, a de novo transposable element (TE) annotator that integrates structure- 496 

and homology-based approaches for TE identification 55. The EDTA pipeline incorporates 497 

LTRharvest, the parallel version of LTR_FINDER, LTR_retriever, GRF, TIR-Learner, 498 

HelitronScanner, and RepeatModeler as well as customized filtering scripts. Genome-wide 499 
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prediction of ncRNAs, such as rRNA, small nuclear RNA and miRNA, was performed using 500 

INFERNAL software 56 with search against the Rfam database. The tRNA genes were predicted 501 

using tRNAscan-SE program 57. 502 

 503 

Protein-coding genes were predicted by a combination of de novo prediction, homology-based 504 

and transcriptome-based strategies. SNAP 58, AUGUSTUS 59 and GeneMark 60 were used for ab 505 

initio gene predictions. For homology-based prediction, protein sequences of seven species 506 

(A.thaliana, O.sativa, S.bicolor, B.distachyon, H.vulgare, Z.mays and T.aestivum) were aligned 507 

to the genome assembly using GeMoMa program 61 to provide homology-based evidence. For 508 

transcriptome-based prediction, RNA-seq data were generated from the range of harvested 509 

blackgrass tissues (leaf, main stem, root, developing flowers, mature flowers pre-anthesis, and 510 

mature flowers with pollen). RNA-seq reads were processed to remove adapters and low-quality 511 

bases and assembled both de novo and genome guided using Trinity (v.2.4.0) 62 followed by the 512 

PASA program (http://pasapipeline.github.io) to improve the gene structures.  All predicted gene 513 

structures were integrated into consensus gene models using EVidenceModeler 63. Functional 514 

annotation of protein-coding genes was carried out by comparing against SwissProt, GenBank 515 

nonredundant protein (NR), InterProScan and EggNOG databases. GO term for each gene was 516 

obtained from the corresponding InterPro descriptions. Additionally, the gene set was mapped to 517 

the KEGG pathway database using the online tool ‘BlastKOALA’ 518 

(https://www.kegg.jp/blastkoala/) 64. 519 

 520 

Long terminal repeat retrotransposons (LTR-RTs) insertion time estimation. As the direct 521 

repeat of an LTR-RT is identical upon insertion, the divergence between the LTR of an 522 
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individual element reflects the time of the insertion. The insertion date (T) for each LTR-RT was 523 

computed by T = K/2μ, where K is the divergence rate and μ is the neutral mutation rate (K = -524 

3/4*ln(1-d*4/3), μ =1.3 × 10-8). Sequence identity (%) between the 5' and 3' direct repeats of an 525 

LTR candidate is approximated using blastn, so the proportion of sequence differences is 526 

calculated as d = 100% - identity%. 527 

 528 

Phylogeny and gene family. To identify orthologous and paralogous gene clusters, protein-529 

coding genes from blackgrass and 11 other species (A.tauschii, T.urartu, H.vulgare, P.tenuiflora, 530 

B.distachyon, O.sativa, Z.mays, S.bicolor, S.italica, E.haploclada, A.thaliana) were analyzed 531 

using Orthofinder2 (v2.5.1) 65. In cases where there were multiple transcript variants, the longest 532 

transcript was selected to represent the coding region. A total of 476 single-copy orthologous 533 

genes were identified. Single-copy genes form each species were aligned using MUSCLE 66 and 534 

the alignments were concatenated. The concatenated alignment was subsequently used to 535 

construct a maximum likelihood phylogenetic tree using RAxML 67. The MCMCTree program 68 536 

of PAML 69 was used to estimate the divergence time among 12 species. Three calibration time 537 

points were used based on previous publications and TimeTree website 538 

(http://www.timetree.org) as normal priors to restrain the age of the node, including 146-154 539 

Mya between Arabidopsis and rice, 68-72 Mya between rice and sorghum, and 49-53 Mya 540 

between barley and Brachypodium. The gene family expansion and contraction were determined 541 

by comparing the gene cluster size differences between the ancestor and each species using 542 

CAFÉ program 70. 543 

 544 
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Whole genome duplication and comparative genomic. To study the whole genome duplication 545 

events in the blackgrass genome, we performed the self-alignment within the blackgrass genome 546 

using LAST (v963) 71 and the syntenic blocks were identified using MCscanX 72. For each gene 547 

pair within syntenic blocks, the synonymous divergence levels (Ks) were calculated using the 548 

YN model in KaKs_Calculator 73. The Ks values of all gene pairs were plotted to identify the 549 

putative whole genome duplication events. To identify syntenic blocks between blackgrass and 550 

the other four species (H.vulgare, A.tauschii, B.distachyon, O.sativa), all-against-all BLASTP (E 551 

value < 1 × 10−5) was performed for the protein-coding gene set of each genome pair. Syntenic 552 

blocks were defined based on the presence of at least five synteny gene pairs using the 553 

MCScanX package 72 with default settings. 554 

 555 

QTL-seq (Bulk segregant analysis of SNPs). Leaf tissue was harvested from the unsprayed 556 

tiller of all 25 ‘R’ and ‘S’ plants from each F2 family. In all cases, young leaf material was 557 

collected over one hour at midday, harvesting tissue from each plant into separate 5ml Eppendorf 558 

tubes. Each sample was immediately flash frozen in liquid nitrogen and stored at -80°C before 559 

use. For grinding, samples were kept cooled in liquid Nitrogen and homogenised using a micro-560 

pestle. For bulk segregant analysis, four bulks were made by pooling DNA from all 25 selected 561 

individuals in each phenotypic group (herbicide resistant ‘R’, and susceptible ‘S’, in each of the 562 

CC2 and CC5 F2 families). Illumina paired-end reads were processed to remove adapters and 563 

low-quality sequences using Trimmomatic 74. Cleaned reads were mapped to the blackgrass 564 

reference genome using BWA. Variants were called using BCFtools (http://samtools.github.io/ 565 

bcftools) and filtered using VCFtools (http://vcftools.sourceforge.net). QTL-seq pipeline was 566 
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used for calculating the SNP-index, the ∆SNP- index was then calculated by subtracting the 567 

SNP-index of one bulk from that of another bulk 30. 568 

 569 

RNA-seq analysis. An RNA-seq analysis was also conducted using the 25-herbicide resistant 570 

‘R’ and susceptible ‘S’ plants from identified from each F2 family. For each phenotypic group, 571 

five replicate RNA-bulks were created by pooling RNA from five individual plants. RNA was 572 

sequenced using standard Illumina TruSeq mRNAseq protocols. The quality of the RNA 573 

sequences derived from each sample was assessed using FastQC v0.11.8 75 and preprocessed to 574 

remove the leading 10 bases from each read and any Illumina adapter sequences, together with 575 

any remaining reads shorter than 50 bases for adapters and low quality bases with Trimmomatic 576 

74.  The trimmed reads for each sample were mapped to the Alopecurus myosuroides genome 577 

using Hisat2 v2.2.1 76 with default parameters except for minimum alignment score parameters 578 

of L, 0, -0.6.  Reads that mapped to coding sequences of annotated genes were counted using 579 

featureCounts v1.6.4 77 with default settings.  Differential gene expression between samples was 580 

analysed in R version 4.0.2 78 using DeSeq2 79. 581 

The expression of all technical replicates was checked prior to analysis. First, all counts data 582 

were transformed using the regularised log-transform function ‘rlog()’ of the DESeq2 package. 583 

Transformed data were then visualised using both a principal components analysis (PCA), and 584 

hierarchical clustering of the Euclidean distance between samples. Visual inspection of these 585 

results identified one clear outlier sample (CC5 ‘S’ sample A), which was excluded from further 586 

analysis. A pre-filtering step was used to remove genes with zero or low counts before 587 

differential expression analysis. First, counts were summed across technical replicates to leave 588 

only biological samples. Next, genes were removed if they did not have at least one read per 589 
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million in at least four samples (where four is equal to the minimum number of reps per 590 

treatment level) as per Anders, et al. 80. The filtered, biological replicates were analysed using 591 

the ‘DESeq()’ function of the DESeq2 package in R, specifying four phenotypic groups: CC2 592 

‘S’, CC2 ‘R’, CC5 ‘S’, and CC5 ‘R’. In total, 19,937 genes and 19 biological replicate samples 593 

were included in this analysis. To generate lists of differentially expressed genes (DEGs), 594 

specific comparisons were extracted for the ‘R’ vs ‘S’ samples within each family from this 595 

fitted model. Only genes which were significant (P<0.05) and with at least 1.5x fold difference in 596 

expression were categorised as differentially expressed. The resultant lists of DEGs for the CC2 597 

and CC5 families were then intersected, to identify DEGs common to both. 598 

Gene ontology information was combined from the Swissprot, Eggnog, and Interpro annotation 599 

files to create a single Gene:GO association map, containing 905,051 associations between 600 

28,498 genes and 13,192 GO terms. Gene ontology enrichment analysis was performed for the 601 

DEGs using the ‘goseq()’ function of the goseq R package 78. The Gene:GO association map was 602 

specified as a custom gene category mapping to use for analysis, and enrichment scores for each 603 

gene ontology term were calculated using the Wallenius method (see Young, et al. 81). Resultant 604 

P-values were adjusted using the Benjamini and Hochberg method to further control the false 605 

discovery rate. 606 

Gene co-expression network construction.  Trimmed means of M-values (TMM) were 607 

calculated from mapped RNAseq data using the edge-R package in R 82 to construct a gene 608 

expression matrix (GEM).  The GEM was log2 transformed and quantile normalized using 609 

custom scripts in R 78.  The traditional gene co-expression network (GCN) was created using the 610 

Knowledge Independent Network Construction tool (KINC v.3.4.0) 83.  A gene correlation 611 

matrix was constructed using the Spearman rank correlation coefficient approach 84 with the 612 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2021. ; https://doi.org/10.1101/2021.12.14.472569doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472569


28 
 

following KINC specific parameters: --minsamp 15 –minexp -inf –mincorr 0.5 –maxcorr 0.99.  613 

A threshold for correlation was determined using the random matrix theory approach (RMT) in 614 

KINC with the following parameters: --tstart 0.95 –tstep 0.001 tstop 0.5 –threads 1 –epsilon 1e-6 615 

–mineigens 50 –spline true –minspace 10 –maxpace 40 –bins 60 and was determined to be 616 

0.919.  The network was extracted using the extract function in KINC and visualized in 617 

Cytoscape v.3.9.0 85.  The condition specific GCN was constructed using the same GEM and 618 

Spearman ranked correlation coefficient approach in KINC, but also incorporated a Gaussian 619 

mixed model (GMM) to determine differentially expressed gene pair clusters that represent 620 

condition specific sub-graphs.  Low powered edges were determined and filtered with the “ 621 

corrpower” function in KINC with and alpha of 0.001 and power of 0.8.  An annotation file was 622 

prepared in text format with samples either being annotated as “resistant” or “susceptible” and 623 

used to run the “cond-test”.  Condition specific sub-graps were extracted and visualized in 624 

Cytoscape v.3.9.0 85. 625 

 626 
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