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ABSTRACT 30 

Epigenetic ageing clocks have revealed that tissues within an organism can age with different 31 

velocity. However, it has not been explored whether cells of one type experience different 32 

ageing trajectories within a tissue depending on their location. Here, we employed lipidomics, 33 

spatial transcriptomics and single-cell ATAC-seq in conjunction with available single-cell RNA-34 

seq data to address how cells in the murine liver are affected by age-related changes of the 35 

microenvironment. Integration of the datasets revealed zonation-specific and age-related 36 

changes in metabolic states, the epigenome and transcriptome. Particularly periportal 37 

hepatocytes were characterized by decreased mitochondrial function and strong alterations in 38 

the epigenetic landscape, while pericentral hepatocytes – despite accumulation of large lipid 39 

droplets – did not show apparent functional differences. In general, chromatin alterations did 40 

not correlate well with transcriptional changes, hinting at post-transcriptional processes that 41 

shape gene expression during ageing. Together, we provide evidence that changing 42 

microenvironments within a tissue exert strong influences on their resident cells that can shape 43 

epigenetic, metabolic and phenotypic outputs. 44 

  45 
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INTRODUCTION 46 

Ageing is characterised by a general physiological decline that is accompanied by metabolic, 47 

epigenetic and transcriptional changes1. A common attribute for these alterations is an 48 

increased inter-individual heterogeneity as observed in large cohorts. Even on an organismal 49 

level within populations of genetically identical individuals, variability seems intrinsically inter-50 

connected with ageing. For example, in cohorts of C. elegans or mice, some individuals die 51 

much earlier than others2. 52 

It is largely appreciated that transcriptional variability increases with age3–5. While whole tissue 53 

omics approaches have been important to get an insight into the uniform changes that occur 54 

on the organ level during ageing, such methods cannot investigate heterogeneity on a cellular 55 

level. It is therefore unresolved whether all cells of the same cell type in a tissue age in the 56 

same way or whether the location of the cells within a tissue matters in this context. The 57 

development of single-cell and spatial omics methods renders it now possible to obtain 58 

(spatially resolved) molecular profiles at close to single-cell resolution, thus providing 59 

promising tools for deciphering the multifaceted process of ageing6. 60 

The liver is a heterogeneous tissue that consists of hepatocytes arranged in repeating units of 61 

hexagonally shaped lobules. Blood flows into the lobule from portal veins and hepatic arteries 62 

at the corners of the lobules to the central veins. This architecture creates gradients of oxygen, 63 

nutrients and hormones7. This gradual change in the lobule’s microenvironment is also 64 

referred to as liver zonation8 and the resulting spatial division of labour is essential for the 65 

optimal function of the liver. For example, the outer highly oxygenated periportal lobule layers 66 

perform mitochondrial-dependent metabolic tasks such as β-oxidation whereas the low 67 

oxygen concentrations at the pericentral areas will drive glycolysis7. As hepatocytes are the 68 

primary cells that perform these metabolic processes and their metabolic characteristics 69 

depend on location, the liver is an attractive tissue to address the impact of location and 70 

metabolic state on the ageing trajectory within a dedicated cell type. 71 
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Here, we employed spatial transcriptomics as well as single-cell ATAC-seq (scATAC-seq) in 72 

conjunction with publicly available single-cell RNA-seq (scRNA-seq) data from ageing mice to 73 

address how ageing of hepatocytes is affected by zonation in the liver. One very obvious 74 

phenotypic difference in the ageing and diseased liver is the deposition of fat, which is mainly 75 

focused around the central vein. Using spatial transcriptomics, we report insights into the 76 

molecular underpinnings of this phenotype, and additionally identify mitochondrial dysfunction 77 

as a potential driver for age-related phenotypes in the periportal region of the liver. While 78 

scATAC-seq can clearly separate young and old hepatocytes, unsupervised clustering 79 

approaches do not separate scRNA-seq profiles based on their age. Yet, age is a relevant 80 

factor for explaining transcriptional variability between cells. Together, the data presented here 81 

shed light on the molecular basis of fat deposition in the ageing liver and serve as a valuable 82 

resource for the hepatic and ageing community. 83 

 84 

  85 
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RESULTS 86 

Spatial Transcriptomics give insights into the zonation-specific and age-related 87 

metabolic rearrangements. 88 

Transcriptional profiling using bulk RNA sequencing data from the Tabula Muris Consortium9 89 

shows metabolic pathways, known to be changing in ageing10, with the majority of genes 90 

contributing to alterations in lipid metabolism (Figure S1a,b, Supplementary Table 1). Changes 91 

in lipid metabolism have been described to occur during ageing and the recent development 92 

of lipidomics started to identify corresponding changes in lipid profiles11. Liver pathologies that 93 

involve fat deposition, such as non-alcoholic fatty liver disease (NAFLD) show a tendency 94 

towards zonated lipid deposition around the central area12, but we were not aware of any 95 

dataset investigating lipid deposition in the ageing liver with respect to the specific zones. To 96 

assess the lipid deposition around the main zones, we performed RNAScope for pericentral 97 

(Cyp2e1, Glul) and periportal markers (Albumin, Cyp2f2)13 combined with H&E (Hematoxylin 98 

and Eosin) staining in liver isolated from young (3-4 months) and old (18-20 months) mice 99 

(Figure 1a, S1c). Importantly, Sirius red staining showed no profound increase in liver fibrosis 100 

in old livers (Figure S1c). On the contrary, Oil-red-O (O-R-O) staining (Figure S1d, upper 101 

panel) and immunohistochemical (IHC) staining for PLIN2 (Figure S1d, lower panel), a protein 102 

known to be enriched at the outer membrane of LDs14, showed that large LDs accumulate 103 

around the central vein in aged livers. 104 

The apparent zone-dependent deposition of lipids in the ageing liver prompted us to 105 

investigate the underlying transcriptional events. We used the 10X Genomics Visium Platform 106 

and ran 10µm tissue cryosections from livers of two young and two old mice. The sequencing 107 

metrics of the samples can be found in Supplementary Table 2. Initially, we visualized the 108 

normalized spatial gene expression of the zonation markers Cyp2f2, Cyp2e1 and Glul in young 109 

and old liver (Figure 1b). Based on the expression distribution of these marker genes, spatial 110 

transcriptomics was able to resolve central and portal areas.  111 
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 112 

Figure 1: Age-related and zonation-specific transcriptional alterations. a) RNAscope of zone-113 

specific marker genes Glul (magenta, upper panel), Cyp2f2 (cyan, upper panel), Cyp2e1 (magenta, 114 

lower panel) and Albumin (cyan, lower panel) in paraffin-embedded liver sections from young (3 month 115 
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old) and old (18 month old) mice. Scale bar = 100 µm. b) H&E staining of one young (upper panel) and 116 

one old (lower panel) liver specimen used for spatial transcriptomics (Scale bar=500 µm) and plots 117 

showing the expression levels of Glul, Cyp2f2 and Cyp2e1 indicated by colour. The colour gradient 118 

represents normalised gene expression. c) UMAP projection of the spatial data, colour-coded are the 119 

different zones and ages (left panel) and the expression of Glul, Cyp2e1 and Cyp2f2 (right panel). d), 120 

e) GO network calculated using ClueGO for differentially expressed genes in the periportal (based on 121 

Supplementary Table 3 - for details, see Method section) (d) and pericentral (e) zone of the ageing liver. 122 

f) UpSet plot showing the number of differentially regulated genes (top) and pathways (bottom) in the 123 

indicated categories (Y=young, O=old, PC=pericentral, PP=periportal). g) Heatmap with hierarchical 124 

clustering of differentially expressed genes from the indicated pathways selected from f). g) 125 

Transcription factor activity prediction from the age-dependent differentially expressed genes by the 126 

iRegulon app in Cytoscape (based on Supplementary Table 3 - for details see Methods section). For 127 

each zone, the top predicted TFs are shown as well as their interaction to regulate transcripts. Numbers 128 

indicate the genes in every cluster. 129 

 130 

 131 

Principal Components analysis showed that spots from each slide cluster; spots from the two 132 

young liver slides overlap, while spots from the two old slides separate (Figure S1e). 133 

Therefore, to guard against batch effects, we integrated young and old datasets individually, 134 

first using canonical correlation analysis15 and analysing zonal expression effects. Then, we 135 

merged all datasets using the same strategy. To assess whether the sample separation 136 

reflected gene expression differences based on age or were mostly due to a potential batch 137 

effect, we used the loadings calculated in the PCA and intersected those with a recently 138 

published resource, in which global ageing genes were defined organismal and tissue-wide16. 139 

The majority of the genes that contributed to the first principal component were part of the 140 

liver-specific global ageing genes (Figure S1f). To perform differential analysis of the PP and 141 

PC zones of the liver tissue, we assigned spots to pericentral and periportal groups based on 142 

Cyp2e1 and Cyp2f2 expression levels (Figure 1c, Methods). We used a two-part, generalised 143 

linear hurdle model17 to identify gene expression changes between young and old liver in 144 
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general, but also specifically in periportal and pericentral region upon ageing (Supplementary 145 

Table 3). We performed GO enrichment using the ClueGo plugin for Cytoscape18,19 for the 146 

age-related changes in the two zones. While the periportal region was characterized by 147 

changes in mitochondrial respiration and proton transport as well as amino acid metabolism 148 

(Figure 1d), ontologies in the pericentral zone were enriched for terms related to lipid 149 

biosynthesis and carboxylic acid catabolic processes (Figure 1e). Common for both zones 150 

were changes in ribonucleotide metabolism and response to peptide hormones, such as 151 

insulin (Figure 1d,e). To further zoom into the differences of the zones, and to identify 152 

commonly and zone-specifically deregulated genes, we represented the data as an UpSet plot 153 

(Figure 1f). This analysis confirmed the notion of zone-specific alterations. The periportal area 154 

showed age-related expression changes of genes encoding for members of the electron 155 

transport chain, for example an age related decrease in Uqcrfs1 (cytochrome b-c1), which 156 

catalyses the electron transfer from ubiquinol to cytochrome c20, and Cox7c or Cox5a that 157 

drive oxidative phosphorylation21 (Figure 1g). On the other hand, the pericentral area showed 158 

a signal of hypoxia, which might be caused by the previously reported changes in liver 159 

vascularisation upon ageing22. Finally, we wanted to understand whether the transcriptional 160 

changes were driven by a dedicated set of transcription factors. We used the iRegulon app 161 

within Cytoscape18,23 and visualised the top three most significant TFs (NES >4) based on 162 

age-dependent differential expression within the two zones. Shared between the zones is 163 

Hnf1, which has been shown to regulate many hepatic genes24. Genes in the periportal area 164 

were predicted to be regulated by Hnf4a and Foxa3 (Figure 1h).  Hnf4a is a master regulator 165 

during hepatic differentiation and plays an important role during liver regeneration25, similarly 166 

to Foxa326. In addition, Hnf4a has recently been shown to possess anti-proliferative capacity 167 

and thus protects against hepatocellular carcinoma25. On the other hand, genes in the 168 

pericentral zone were predicted to be regulated by Cebp and Nr4a2 (Figure 1h), two TFs that 169 

regulate glucose and lipid metabolism27,28. Taken together, spatial transcriptomics revealed 170 

that ageing is accompanied by zonation-specific metabolic rewiring, which is driven by a 171 

network of dedicated transcription factors.  172 
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The ageing liver is characterised by lipid remodelling and loss of spare respiratory 173 

capacity in periportal mitochondria 174 

The spatial transcriptomic data suggested age-related metabolic alterations that depend on 175 

the location of cells with respect to central or portal regions. To gain more insight into the 176 

metabolic alterations, we first performed lipidomics to characterise the changes in lipid 177 

metabolism within the ageing liver. This approach allowed us to address not only storage and 178 

membrane lipids, but also to analyse levels of cardiolipins and ubiquinones to further 179 

investigate the observed alterations in mitochondrial metabolism.  180 

 181 

Figure 2: Lipid remodelling and alterations in mitochondrial metabolism in the ageing liver. a) 182 

Heatmap with hierarchical clustering of lipid datasets derived from 3 old and 4 young mouse livers, 183 

showing the differentially expressed classes of lipids. Hierarchical clustering was performed using 184 

LipidSig 29 based on data available in Supplementary Table 4. b) Bar plot of the log-fold changes in lipid 185 

classes expressed in old vs. young liver. Fold changes and significance (*p-value<0.05, ***p-186 
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value<0.001) were calculated using LipidSig based on data available in Supplementary Table 4. c) Bar 187 

plot showing the expression of Ubiquinones CoQ9 and CoQ10 in young and old liver. Statistical 188 

significance was determined using a two-sample t-test (**p-value<0.01). d) Exemplary FACS profiles of 189 

sorted hepatocytes based on CD73 (pericentral) and E-Cadherin (periportal). e) Mitochondrial function 190 

as measured by Seahorse Mitochondrial Stress kit (parameter on top of graph) expressed as old vs 191 

young and pericentral-periportal. N=2 (per N, one or two young and two old mice were sorted and 192 

averaged). Error bars represent the SEM.  193 

 194 

 195 

We extracted lipids from livers of young and old mice. PCA (Figure S2a) and differential 196 

abundance analysis of the most significantly changed lipids (Figure 2a, Supplementary Table 197 

4) showed a strong lipid remodelling for most of the major lipid classes. While we did not 198 

observe an overall increase in triacylglycerides (TAGs), we noted a significant increase in the 199 

levels of lysoPE (LPE) and lysoPC (LPC) (Figure 2b), which might stem from the remaining 200 

serum in the liver as those lipids are enriched in extracellular fluids 30. Importantly, we noted 201 

a strong increase in diacylglycerides (DAGs) and a decrease in sphingomyelin (SM) (Figure 202 

2b), pointing towards changes in membrane fluidity31,32 and lipid-mediated signalling. Indeed, 203 

an increase in DAGs as well as a decrease in SMs has been linked to an increase in insulin 204 

insensitivity, a well-known hallmark of ageing33,34 and a pathway that was also evident in the 205 

spatial transcriptomics data (Figure 1d,e). We then focused on mitochondria-related lipids. A 206 

significant increase in all cardiolipins (CL) measured (Figures 2b, S2b) indicated changes in 207 

the composition of mitochondrial membranes and hence the function of mitochondrial inner 208 

membrane proteins, including the electron transport chain (ETC)35. This hypothesis was also 209 

supported by the observation that ubiquinones, lipids that transfer the electron between the 210 

different complexes of the ETC, were strongly down-regulated with age (Figure 2c). These 211 

findings in combination with the spatial transcriptomics data supported the hypothesis of age-212 

dependent mitochondrial changes. As the spatial transcriptomic data and the lipidome analysis 213 

pointed towards a strong impact on mitochondrial metabolism, we wanted to investigate this 214 
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phenotype in more detail, particularly in a zone-specific manner. In order to do this, we used 215 

a previously published protocol36 to sort hepatocytes into pericentral and periportal upon 216 

perfusion of the liver (Figure 2d, S2c). This approach depends on the zonation-dependent 217 

expression of E-cadherin (periportal) and CD73 (Nt5e, pericentral)36 and was able to separate 218 

pericentral and periportal hepatocytes as judged by expression of Glul and Cyp2f2 (Figure 219 

S2d). First, we measured mitochondrial content in the two zones in an age-dependent manner, 220 

which was variable across different animals and zones, but largely unaltered with age (Figure 221 

S2e). Finally, we performed Seahorse analysis using the mitochondrial stress kit to assess 222 

mitochondrial function. While basal respiration and ATP production changed only mildly with 223 

age, we observed a striking reduction in the maximal and thus, spare respiratory capacity 224 

(SRC) in periportal hepatocytes (Figure 2e). On the other hand, pericentral hepatocytes 225 

showed an increase in maximal respiration. Loss of SRC sensitizes the cells to surges in ATP 226 

demand37 and it has been proposed that SRC can be used as a measure of mitochondrial 227 

health38. Taken together, spatial data, lipidomics and bioenergetics measurements point 228 

towards an age-dependent decrease in hepatic mitochondrial fitness and function, specifically 229 

in the periportal zone of the liver. 230 

 231 

Chromatin accessibility in mouse liver carries a hepatocyte ageing signature 232 

Having defined the transcriptional, lipid and functional alterations that occur within the 233 

periportal and pericentral zones of the ageing liver, we next wanted to investigate if the 234 

differences in phenotype and transcriptome might be explained by an underlying change on 235 

the epigenetic level. Therefore, we performed scATAC-seq using the 10x Chromium platform. 236 

We profiled 4838 nuclei prepared from three young liver tissues and 3361 nuclei from three 237 

old liver tissues. Sequencing metrics can be found in Supplementary Table 3. In order to 238 

identify cell types and their accessibility profiles, we combined the young and old datasets and 239 

subsequently analysed them together using cisTopic39. Clustering according to cell-to-cell 240 

similarity using UMAP identified several cell clusters. Most of the clusters showed intermixing 241 
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between young and old cells. However, the biggest cluster showed a clear separation between 242 

the two age groups (Figure 3a).  243 

 244 

Figure 3: Differential chromatin accessibility in aged liver hepatocytes. a-c) UMAP projection of 245 

scATAC-seq data of mouse liver nuclei. a) Different colours represent liver cells from young and old 246 

age groups identified using cisTopic. b) Different colours represent different cell types based on imputed 247 
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marker gene activity (see also Supplementary Figure S3C). c) Different colours represent different cell 248 

types predicted with cell type assignment using the FACS data of the TMS 9 d) cisTopic identified six 249 

different topics. Colour code of the UMAPs is according to the normalised topic score for each cell. e) 250 

GO term analysis of the 6 different topics. Highlighted are liver-associated metabolic processes. f) 251 

Shared and unique transcription factor (TF) motifs corresponding to the ‘’hepatocyte’’ topics 2, 4 and 6. 252 

g) UMAP projections as in A. Colour code corresponds to the imputed gene activity of zone-specific 253 

genes Glul, Cyp2e1 (pericentral) and Cyp2f2 (periporal). h) Exemplary tracks of differentially accessible 254 

sites between pericentral and periportal hepatocytes upon ageing. The grey bar indicates altered 255 

regions. 256 

 257 

This behaviour was confirmed by a complementary clustering using Signac40 (Figure S3a). To 258 

identify cell types, we inferred transcriptional activity from the respective promoter 259 

accessibility, as described previously41. We used known marker genes13,42 and CellMarker 260 

(http://bio-bigdata.hrbmu.edu.cn/CellMarker/) to infer the cellular identity of each cluster. We 261 

were able to resolve all expected cell types of the liver, except for cholangiocytes (Figure 3b, 262 

S3b-c). We were not able to distinguish different immune cell types since their marker genes’ 263 

imputed activity was ambiguous (Figure 3b, S3b,c). In line with the observation that the livers 264 

were not fibrotic, we did not observe a significant increase in immune or hepatic stellate cell 265 

numbers based on the scATAC-seq profiles or detected a specific inflammatory signal. 266 

Notably, based on the marker gene profiles, the only cluster clearly separated by age was the 267 

hepatocyte one (Figure 3a,b, S3a,b). Regions that changed accessibility with age encoded for 268 

genes involved in pathways such as glucose homeostasis and fat-cell differentiation (Figure 269 

S3d). To further validate our chromatin-state-based cell type assignment, we predicted cell 270 

types of our scATAC-seq data with FACS-based scRNA-seq (Smart-seq2) data from the TMS 271 

consortium9. The integration largely confirmed our cell type prediction (Figure 3c). However, 272 

we noticed that particularly hepatocytes were not predicted clearly in different age groups. 273 

Next, we made use of the inferred cis-regulatory topics that underlie the Latent Dirichlet 274 

Allocation (LDA) used by cisTopic39 and assigned those topics to the individual clusters. Most 275 
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topics referred to specific cell clusters. Four topics were enriched in the hepatocyte cluster 276 

(Figure 3d). In line with the predicted cell types, GO terms associated with the hepatic topics 277 

centred around lipid and xenobiotic metabolism, the epithelial topic around angiogenesis and 278 

vasculature development, whereas the other topics were mostly associated with regulatory 279 

terms (Figure 3d). Interestingly, topics 2 and 6 correspond to young and old hepatocytes, 280 

respectively, whereas topic 4 was shared between the two age groups. Topics were further 281 

exploited to predict enriched transcription factor motifs. Here, we particularly focused on the 282 

three hepatic topics (Figure 3f, Supplementary Table 5). In topics 2, 4 and 6 well-known 283 

hepatic transcription factors were predicted, such as Hnf1a,b (see also Figure 1h). Each topic 284 

also contained its unique set of transcription factors that were specifically predicted to topic-285 

defining regions. In topic 2, which was enriched predominantly in the young hepatocytes, we 286 

identified unique TFs to be Nr1h2, which is involved in steroid metabolism as well as Nfil3, 287 

which controls Per1 and Per2 and is thus involved in circadian rhythm. Recent work has 288 

highlighted the importance of the circadian clock during the ageing process, and changes in 289 

the clock dynamics are particularly altered in the ageing liver43. The shared topic 4 was 290 

characterised by TFs involved in b-catenin and Wnt signalling, Tcf7l2 and Trhb, which is linked 291 

to b-catenin production through thyroid signalling44. Finally, topic 6, which is enriched in old 292 

hepatocytes, contained Hnf4a as a predicted unique TF. These unique transcription factors 293 

predicted for each of the topics implied very specific regulation of metabolic and signalling 294 

pathways with age. In general, the enriched transcription factor motifs were in good agreement 295 

with the prediction based on the zone-specific and age-dependent differential expression 296 

(Figures 1h and 3f, Supplementary Table 5). The apparent age-dependent separation 297 

between topics 2 and 6 and their respective enrichment in young or old liver prompted us to 298 

investigate whether liver zonation might be associated with the topics’ separation. To test this, 299 

we imputed the gene activity of Glul, Cyp2e1 and Cyp2f2. Remarkably, there is a very clear 300 

separation in the scATAC-seq feature plots (Figure 3g). Using the apparent activity level of 301 

these three marker genes, we concluded that topic 4 represented the pericentral region, 302 

whereas topic 2 described the chromatin state for young periportal hepatocytes and topic 6 303 
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encompassed mostly old hepatocytes. The loss of a clearly defined periportal cluster is 304 

interesting and might be connected to the change in mitochondrial metabolism. Changes in 305 

mitochondrial metabolism have been shown to perturb stem and somatic cell function in 306 

ageing45,46 and may lead to dysfunction of hepatocytes and other resident liver cells in the 307 

periportal area. The differences in accessibility between the zones with respect to peak 308 

enrichment can also be seen in other representative gene loci (Figure 3h).  Taken together, 309 

scATAC-seq is able to reveal changes in the epigenome of single-cells and can resolve 310 

zonation-specific differences in chromatin states. 311 

 312 

Specific Cidea expression in the periportal zone is driven by chromatin architectural 313 

changes 314 

How do chromatin alterations connect to the transcriptional program to drive age-related 315 

phenotypes? To address this question in more detail, we initially inspected the differentially 316 

expressed genes (periportal - 544; pericentral 429) that were changed with age. Intriguingly, 317 

we identified two members of the Cide gene family (Cidea and Cidec, or Fsp27) to be 318 

upregulated specifically in old pericentral hepatocytes (Figure 4a,b). Cideb on the other hand 319 

was expressed across both ages and zones. We used this gene family as paradigm to 320 

understand the connection between chromatin, transcription and phenotype as the expression 321 

showed a very clear distribution. In addition, all three Cide proteins have been shown to bind 322 

to LDs and to modulate LD dynamics47–49. Overexpression of Cidec in hepatocytes was 323 

sufficient to generate large LDs48,50 and using electron microscopy, we found that the median 324 

size of LDs increased 4-fold with age (Figure 4c), which correlated well with the increased 325 

pericentral expression of Cidea and Cidec. We then turned to our scATAC-seq dataset and 326 

probed whether there was an underlying alteration in accessibility at the Cidea locus, 327 

potentially explaining the increase in expression. Indeed, we observed a specific age-328 

dependent increase in accessibility at the Cidea locus (Figure 4d). Co-accessibility analysis 329 

using Cicero51 also identified the enhanced usage of a potential intronic enhancer within Cidea 330 

as marked by H3K27ac (Figure 4d).  331 
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 332 

Figure 4: Connection between chromatin and transcriptional alterations in the ageing liver. a) 333 

H&E staining of one young (upper panel) and one old (lower panel) liver specimen used for spatial 334 

transcriptomics and a plot showing the expression level of Cidea. Please note that H&E stain and 335 
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Cyp2e1 plots are identical to Figure 1b and used here for reference only. The colour gradient represents 336 

normalised gene expression. b) Violin plots indicating the expression levels of Cidea, Cideb and Cidec 337 

across pericentral and periportal regions in young and old liver. c) Transmission electron micrograph of 338 

lipid droplets (LDs) of young and old liver tissue. Representative images at 3000x, scale bar = 2 µm. 339 

ImageJ quantification of the mean LD diameter size in μM from ten randomly selected photos from a 340 

young (LD n=104, mean=0.8771) and ten from an old (LD n=88, mean=2.611) mouse specimen. 341 

Statistical significance was determined using an unpaired two-tailed t-test; ****p-value<0.0001. d) Ccan 342 

values based on Cicero 51 prediction of co-accessibility (upper panel) and the enhancer mark H3K27ac 343 

(lower panel) at the Cidea locus in young and old mouse liver. Highlighted in grey are potential enhancer 344 

and promoter regions from Cidea and its associated antisense long non-coding RNA, respectively. e) 345 

Age-related changes in co-accessibility of loci identified using spatial transcriptomics. Y-axis shows the 346 

differences in predicted contact points between young and old hepatocytes. Colour of the graphs 347 

highlight direction of gene expression change as taken from the spatial transcriptomics data 348 

(Supplementary Table 3) between young and old.  349 

 350 

Given the apparent correlation between locus opening, potential enhancer engagement and 351 

transcription output at the Cidea locus, we next asked whether changes in co-accessibility 352 

might be a good predictor for differential gene expression on a global scale. We used the list 353 

of 482 differentially expressed genes between young and old and calculated the difference in 354 

chromatin accessibility for those genes (Figure 4f, Figure S4). In line with previous reports 52, 355 

we did not detect a general correlation between an increase in co-accessibility and 356 

transcription, indicating that co-accessibility is not a determinant for transcription. We noted 357 

as well that in many cases the levels of H3K27ac did not change with age, indicating that 358 

enhancer marking and co-accessibility do not necessarily go hand-in-hand (Figure S4). Taken 359 

together, integration of scATAC- with scRNA-seq data confirms that alterations in chromatin 360 

states are linked to gene expression differences. However, on a global level, we observed a 361 

disconnect between chromatin alterations and transcriptional output, suggesting some 362 

decoupling of chromatin states and transcription with age. 363 

 364 
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Cellular heterogeneity in gene expression but not in chromatin states increases with 365 

age 366 

The observation that co-accessibility and transcription were not correlated in general (Figure 367 

3f) and the finding that scRNA-seq data did not fully identify the age of cells during cell type 368 

prediction (Figure 3c) suggested that there is a decoupling between chromatin architecture 369 

and steady-state levels of mRNA in ageing hepatocytes. To identify the underlying reason for 370 

this observation, we investigated the decoupling between chromatin and the transcriptome. 371 

We initially projected the available data on liver tissue from the Tabula Muris senis consortium 372 

as a UMAP, which was generated using either the 10x Genomics platform (droplet data) or 373 

using flow cytometry and Smart-seq2 (FACS data). Consistent with the outcome of the cell 374 

type prediction, the clustering based on scRNA-seq data did not resolve the different age 375 

groups, while it clearly separated the different liver tissue cell types (Figure 5a,b). This effect 376 

can also be observed in a PCA (Figure 5c) and remained apparent when focussing exclusively 377 

on hepatocytes (Figure 5d). Such a lack of ageing signature during clustering can be observed 378 

in other reports as well53,54. A few studies have linked organismal and cellular ageing to 379 

transcriptional variability and cell-to-cell gene expression heterogeneity3,55. Thus, we 380 

wondered if an increase in cell-to-cell heterogeneity would potentially mask any underlying 381 

transcriptional ageing signature in scRNA-seq data. For simplicity, we initially focused on the 382 

major cell type of the liver, hepatocytes. First, we fit a linear model for the first three PCs with 383 

age, taking into consideration biological independent experiments in the form of mouse identity 384 

(two mice per condition) as a confounding factor (Figure S5a). We calculated the adjusted R2 385 

to quantify how well each PC explained age (Figure 5e) which remains under 25%. However, 386 

the noise explained as a sum of residual squares significantly increased in old cells (Figure 5f, 387 

Methods). Together, this analysis indicated that on a global level, only ~22% of the expression 388 

patterns (variance) could be explained by age and the heterogeneity of hepatocytes strongly 389 

increased with age. To assess this in all other liver-resident cell types, we fit a linear model 390 

taking into consideration cell type as an additional variable. Noise increased in all cell types 391 

with the notable exception of B cells, which showed a decrease in noise with age (Figure S5b).  392 
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 393 

Figure 5: Transcriptional variability in hepatocytes increases with age. UMAP projection of Tabula 394 

Muris Senis (TMS) male a) 10x Genomics-based and b) FACS data coloured by age. Hepatocytes are 395 

marked with a circle. c) PCA projection of TMS male FACS data coloured by cell types and d) 396 
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hepatocytes coloured by age. e) Adjusted R2 of the linear model fit of age and mouseID with the first 397 

three PCs (see Figure S4A). f) The sum of residual squares for each linear model fit to the first three 398 

PCs colored by age g) The posterior medians of mean expression (mu) and over-dispersion (delta) 399 

parameters estimated by a regression model from BASiCS coloured by age. P-values were calculated 400 

using a Welch Two Sample t-test. h,i) Log2 fold changes (x-axis) of significantly differentially expressed 401 

and over-dispersed genes with the differential accessibility log2 fold changes (y-axis) measured from 402 

scATAC-seq data. j) scATAC-seq gene activity matrix was used to estimate mean expression (mu) and 403 

over-dispersion (delta) parameters using a regression model from BASiCS colored by age. P-values 404 

were calculated using a Welch Two Sample t-test. k) Differential expression and variability was 405 

determined between young and old hepatocytes. For each gene, the difference in mean expression and 406 

over-dispersion is estimated as log2 fold-change (x-axis) and the posterior probability (y-axis) where 407 

the red highlighted genes are significantly differentially expressed or dispersed. l) Top biological 408 

processes (upper panel) and cellular components (lower panel) enriched in the differentially dispersed 409 

(left) and differentially expressed (right) genes (Supplementary Table 6).  410 

 411 

To identify genes that contributed to the age-dependent increase in noise, we used a 412 

regression model implemented within BASiCS 56,57. As shown in our previous analysis, the 413 

overall distribution of mean expression remained similar while dispersion was observed to be 414 

significantly higher in old cells, as suggested by the median posterior estimates of young and 415 

old hepatocytes (Figure 5g). By this means, we were able to compare the differential variability 416 

between young and old cells for the genes with similar mean expression. The differential test 417 

obtained 5545 and 6537 genes significantly differentially expressed and dispersed, 418 

respectively (Supplementary Table 6). 419 

The expression difference was found to be nearly symmetrical, with 2448 up- and 3097 genes 420 

down-regulated in old cells. With respect to variability, virtually all (6487 of 6537) genes 421 

showed significantly higher dispersion in old cells (Figure 5h). We further filtered the 422 

differentially over-dispersed genes for minimum 5% detection rate in each age group and 423 

mean overall expression 5 to account for low expression or detection rate, which retained 2020 424 

significantly over-dispersed genes in old hepatocytes. Strikingly, differentially expressed and 425 
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dispersed genes showed a clear functional separation with respect to pathways affected 426 

(Supplementary Table 6). GO enrichment analysis showed that an increase in cell-to-cell 427 

variability was associated with genes involved in mRNA processing RNP complex biogenesis 428 

(Figure 5i), indicating that genes involved in gene expression regulation showed a particular 429 

increase in variability with age. On the other hand, differentially expressed genes were 430 

enriched for GO terms that deal with metabolic processes, translation and mitochondrial 431 

organisation (Figure 5i). This finding was supported by the similar results from KEGG pathway 432 

enrichment (Figure S5c). When compared to the bulk RNA-seq data (Figure S1a,b), the over-433 

dispersed genes contributed to 27.06% of the differentially expressed genes and 32.4% of the 434 

dispersed genes overlapped with the global ageing genes16. Finally, we carried out the same 435 

analysis with the TMS Droplet and FACS data of female hepatocytes at 3 and 18 months of 436 

age. We observed very similar effects in ageing female hepatocytes regardless of the scRNA-437 

seq approach (Figure S5d). The overall dispersion was higher in aged cells and additionally, 438 

the functional network was found to be the same with >75% of the genes also overlapping 439 

between the datasets.  440 

The cell type prediction of scATAC-seq data with the TMS scRNA-seq data did not resolve 441 

cell type age. Because of this apparent decoupling of chromatin state and transcription, we 442 

next correlated differential expression and dispersion in RNA with differential accessibility in 443 

chromatin. We did not observe any correlation between RNA expression changes and 444 

chromatin states (Figures 5j,k). Finally, we decided to investigate if chromatin itself would 445 

show an increase in dispersion with age and performed BASiCS on the gene activity matrix of 446 

the scATAC-seq data (for details see Materials and Methods). In contrast to scRNA-seq, we 447 

did not observe an apparent increase in dispersion with age (Figure 5i), suggesting that 448 

chromatin states are less heterogeneous than the transcripts. This difference in the dispersion 449 

might also be one underlying reason for the observed decoupling between RNA and chromatin 450 

states in the single-cell data. In summary, we observed a very strong increase in cell-to-cell 451 

variability over age in the regulatory gene network, potentially masking mean expression 452 
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differences and hindering the ageing signature from being detected by single-cell gene 453 

expression analysis.  454 

DISCUSSION 455 

The question of how the direct microenvironment of a cell within a tissue affects the ageing 456 

trajectory has not been extensively explored. A few studies investigated the role of the 457 

microenvironment, particularly on the fate of tissue-resident stem cells, in which age-458 

dependent perturbations of e.g. the vascular niches trigger the loss of functional hematopoietic 459 

stem cells and osteoprogenitors58. Indeed, general attrition of vascularisation has been 460 

recently reported occurring in multiple organs, including the liver22 indicating that tissue 461 

microenvironments experience profound alterations with age. This is in line with the 462 

observation that ageing is accompanied by a decline in blood flow in the liver59. Given the 463 

importance of the vascular system in setting up the division of labour of hepatocytes, the liver 464 

represents an ideal tissue to address the consequences of tissue organisation and location on 465 

one cell type. 466 

Next to the insights into the connection of micronenvironmental changes and metabolic as 467 

well as epigenomic changes in the ageing liver, the data represent a valuable resource for 468 

researchers interested in liver organisation. While the scATAC-seq data will allow the 469 

interrogation of chromatin states in most of liver-resident cell types, the spatial transcriptomics 470 

data will mostly give insight into hepatic functions as the hepatocyte are dominating the 471 

transcriptional profiles on the spots. However, manual inspection of marker cell types indicates 472 

that also the spatial data can be used to interrogate non-parenchymal cells, particularly 473 

Kupffer, endothelial and stellate cells (Figure S6). 474 

The most apparent and macroscopic alteration with ageing to liver physiology is the 475 

accumulation of large LDs in a zonated pattern, with the bulk of LDs being localised in 476 

hepatocytes around the central vein of the liver lobule. Using spatial transcriptomics we 477 

explored the age-dependent changes that occur within the central to portal axis of the liver 478 
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lobule. Interestingly, we identified members of the Cide gene family to be predominantly 479 

upregulated in the central area of the liver lobule. Cidea, Cideb and Cidec are important 480 

regulators of LD dynamic and growth. Indeed, an increase in expression of Cidec has been 481 

shown to lead to growth of LDs60, suggesting that the increase in Cidea and Cidec expression 482 

might be one underlying reason for the increase in LD size with age. The changes in Cidea 483 

expression are also encoded in the epigenome. As our scATAC-data provided enough 484 

resolution to investigate zonation- and age-dependent differences, we could show that the 485 

locus encoding for Cidea is remodelled with age and co-accessibility increased. The presence 486 

of H3K27ac indicated that during ageing, an intronic enhancer is associated with the 487 

pericentral increase of Cidea expression in hepatocytes. Such an increase of expression in 488 

Cidea and Cidec has also been linked to the development of hepatic steatosis61,62 and 489 

prolonged hepatic lipid storage can lead to metabolic dysfunction in the liver and inflammation. 490 

Ultimately, this development can lead to advanced forms of non-alcoholic fatty liver disease 491 

(NAFLD)63. Thus, it is no surprise that ageing is the most common cause for the progression 492 

of NAFLD.  493 

Interestingly, the strong accumulation of large LDs in the pericentral region did not go hand-494 

in-hand with major chromatin rearrangements. In fact, pericentral hepatocytes from young and 495 

old liver were called to belong to one topic only, indicating that their chromatin states were 496 

similar. On the other hand, young and old periportal hepatocytes differed sufficiently enough 497 

in their chromatin state to be enriched for different topics. Our lipidomic and spatial 498 

transcriptomic analysis might provide an explanation for the apparent difference in chromatin 499 

architecture in periportal hepatocytes. Cardiolipins and ubiquinones were altered strongly in 500 

aged cells. Together with measurements of mitochondrial respiratory capacity, the results 501 

indicated a change in efficiency of the electron transport chain and thus, ATP production, 502 

particularly in the periportal region of the liver. As periportal cells are exposed to high levels of 503 

oxygen due to their position close to the artery, they would usually rely on respiration. A 504 

decrease in vasculature22 and blood flow59 might therefore have stronger consequences on 505 

metabolic status in these hepatocytes than pericentral ones. A profound change in 506 
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mitochondrial metabolism might have direct consequences on chromatin. Indeed, several 507 

studies have already connected changes in mitochondrial metabolism with alterations in 508 

chromatin structure64–66. In support of the hypothesis that a decrease in vasculature leads to 509 

changes in liver oxygenation, the spatial transcriptomics highlighted hypoxic signalling 510 

changed with age, specifically in the central region of the lobule. 511 

Spatial transcriptomics and the scATAC data both showed a clear signature of ageing in 512 

hepatocytes. On the other hand, we noted that the scRNA-seq provided by the Tabula Muris 513 

Senis consortium9 was not able to cluster cells based on ageing. Even in hepatocytes, age 514 

explained only around 25% of the variance in the data. This low impact of ageing on clustering 515 

in scRNA-seq data can also be observed in other tissues in the Tabula Muris senis dataset 516 

and in a few studies that were published recently53,54. In addition, while cell type prediction of 517 

the scATAC data worked well using scRNA-seq, different ages were distributed fairly evenly 518 

across the young and old hepatocyte clusters. This indicated a global decoupling of chromatin 519 

and RNA, which we confirmed by correlating changes in accessibility and gene expression. 520 

RNA-sequencing measures the steady-state level of mRNA, thus the technology would not be 521 

able to distinguish between changes in the synthesis and post-transcriptional regulation of 522 

mRNA67. Intriguingly, genes involved in post-transcriptional processing are among the top-523 

dispersed genes, suggesting that this layer of gene expression regulation might be 524 

deregulated and more stochastic with age. One part of this layer would be mRNA splicing and 525 

indeed, there have been several reports over the last years that the process of splicing is 526 

strongly impacted by age and might itself contribute to ageing68–70. Totally unexplored as of 527 

now is the role of mRNA stability and storage with age. The decoupling of chromatin state and 528 

transcription is reminiscent of the decoupling of mRNA and protein levels with age71. Together, 529 

these data suggest that there is a progressive loss of cohesion between the different layers of 530 

gene expression that might contribute to the ageing process.  531 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

24 

MATERIALS AND METHODS 532 

Mice 533 

C57BL/6N male young (3-4 months) and old (18-22months) old mice were bred and 534 

maintained in the mouse facility of Max Planck Institute for Biology of Ageing following ethical 535 

approval by the local authorities. The lights are controlled by timers and set a photoperiod of 536 

12 hours of light from 6 am until 6pm (with a 15min twilight period). The room temperature is 537 

22 +/- 2°C and the relative humidity 50 +/-5 %. All mice were fed with a standard diet ssniff M-538 

Haltung, phyt.-arm (gamma irradiated). 539 

Immunohistochemistry 540 

Livers were excised post-mortem and fixed directly into 4% PFA for 24hrs at 4°C, washed 541 

twice with 1XPBS, embedded into paraffin blocks and cut into 5μm sections. For Oil-Red-O 542 

staining and spatial transcriptomics, freshly-dissected liver tissues were frozen in Tissue-Tek 543 

OCT compound (Sakura) and cut into 7μm and 10μm cryosections, respectively. 544 

For IHC stainings, sections of paraffin-embedded samples were deparaffinised by immersion 545 

of the slides into the following buffers; 20 min in Xylol, 2 min. 100% EtOH, 2 min. 96% EtOH, 546 

75% EtOH and 1x PBS  and washed three times with H2O for 5 min each. Endogenous 547 

peroxidase was quenched by immersion for 15 min in peroxidase blocking buffer (0.04 M 548 

NaCitrate pH 6.0, 0.121 M Na2HPO4, 0.03 M NaN3, 3% H2O2). After three washes with tap 549 

water, slides were subjected to heat-induced epitope retrieval with 10 mM NaCitrate, 0.05% 550 

Tween-20, pH 6.0, washed 5 min with 1X PBS, blocked 60 min with Blocking buffer + 160 551 

µl/ml AvidinD and incubated with primary antibodies diluted (1:200 Plin2) in blocking buffer + 552 

160 µl/ml Biotin overnight at 4°C. After three 5 min washes with PBST the samples were 553 

incubated with the secondary antibody 1:1000 diluted in blocking buffer for 1 h at room 554 

temperature, followed by three 5 min washes with PBST and incubation for 30 min with 1x 555 

PBS + 1:60 Avidin D + 1:60 Biotin. After three 5 min washes with PBST the samples were 556 

stained with 1 drop of DAB chromogen in 1 ml Substrate buffer, washed with 1X PBS and 557 

counterstained with Hematoxylin for 4 min, washed with tap water and distilled H2O and 558 
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dehydrated 1min in each buffer; 75% EtOH, 96% EtOH, 100% EtOH, Xylol and mounted with 559 

Entellan. 560 

H&E staining 561 

Following deparaffinization, slides with tissues washed with distilled and tapped water and 562 

stained with Ηematoxylin for 5 min, followed by 5 washes in tapped water and staining with 563 

Eosin Y for 3 min, followed by 3 washes with tap water, dehydration and mounting in Entellan. 564 

Oil-red-O and Sirius Red staining 565 

Oil-Red-O and Sirius Red staining were used to visualize neutral lipids and collagen, 566 

respectively, and were performed according to standard procedures. Oil-Red-O staining was 567 

performed on 7-μm-thick frozen liver sections that were fixed in 4% paraformaldehyde for 10 568 

min, followed by staining with 0.3% Oil-Red-O (Sigma) in isopropanol/water (60:40 vol/vol) for 569 

15min. Sirius red was performed on deparaffinized liver sections that were incubated for 1h at 570 

RT in Picro Sirius Red solution (ab150681, Abcam), followed by washes in acetic acid and 571 

alcohol solutions. 572 

RNAscope  2.5 HD Duplex 573 

Liver tissue was placed in a cassette, fixed in 4%paraformaldehyde (PFA) dissolved in 574 

phosphate-buffered saline (pH 7.4) for 24hrs at 4°, washed twice with 1XPBS, and embedded 575 

into paraffin blocks. 7μm thick sections were processed as described below. Detection of 576 

Cyp2f2 (Cat No. 451851), Alb (Cat No. 4437691), Cyp2e1 (Cat No. 402781-C2) and Glul (Cat 577 

No. 426231-C2) mRNA was performed using a chromogenic in situ hybridization technique 578 

(RNAscope™ 2.5 HD Duplex Assay, Advanced Cell Diagnostics) according to the 579 

manufacturer’s instructions. RNAscope® 2.5 Duplex positive control probes PPIB-C1 and 580 

POLR2A-C2 (Cat No. 321651) were processed in parallel with the target probes. All incubation 581 

steps were performed using the ACD HybEz hybridization system (Cat No. 321462). Sections 582 

were mounted on SuperFrost Plus Gold slides (ThermoFisher), dried at RT, briefly rinsed in 583 

autoclaved Millipore water, air-dried, baked at 60°C for 1hrs and deparaffinized. Afterward, 584 

slides were treated with hydrogen peroxidase for 10 min. and submerged in Target Retrieval 585 
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(Cat No. 322000) at 98.5-99.5°C for 30 min, followed by two brief rinses in autoclaved Millipore 586 

water. A hydrophobic barrier was then created around the sections using an ImmEdge 587 

hydrophobic barrier pen (Cat No. 310018). Sections were incubated with Protease Plus (Cat 588 

No. 322330) for 30 min. The subsequent hybridization, amplification and detection steps were 589 

performed according to the manufacturer’s instructions (2.5 HD Duplex Detection kit 590 

(Chromogenic), Cat No. 322500). Sections were counterstained with 50% Hematoxylin 591 

staining and mounted with VectaMount permanent mounting medium (Cat No. H-5000). 592 

Microscopy 593 

Immunohistochemistry, stainings and RNA scope images were taken using a Nikon Eclipse 594 

Ci microscope, with a colour camera.  595 

Liver perfusion and flow cytometry 596 

Livers were dissociated using the Miltenyi liver perfusion kit (beta-test version) following the 597 

manufacturer’s instructions. The isolated hepatocytes were washed two times with staining 598 

buffer (1x PBS, 2mM EDTA, 0.5%BSA) and 1-7million hepatocytes were stained with 1:50 599 

FcX, 1:100 PE-anti-E-cadherin, 1:100 APC-anti-CD73 for 1hr at room temperature. Cells were 600 

washed two times with staining buffer, cells were filtered through a 100um strainer dead cells 601 

were excluded with DAPI.  Cells were sorted using a BD FACSARIA IIIU or Fusion Cytometer 602 

and 130um nozzle. The data were analysed using the BD FACSDiva and FlowJo softwares. 603 

Mitochondrial function measurement  604 

Mitochondrial function was evaluated by measuring the Oxygen Consumption Rate (OCR) 605 

with the Seahorse XFe96 Extracellular Flux Analyzer (Agilent). XFe96 cell culture plates were 606 

coated with Collagen-I (40 μg/ml) overnight at 4°C and then washed 2x with 1X DPBS before 607 

6,000 murine primary hepatocytes were seeded onto each well. Cells were cultured overnight 608 

in DMEM+GlutaMAX containing 10% FBS and 1x PenStrep under humidified conditions at 609 

37°C with 5% CO2.   Cells were washed 2x with assay media composed of XF DMEM medium 610 

(pH 7.4) supplemented with glucose (10 mM), pyruvate (1 mM) and glutamine (2 mM). Cells 611 

were cultured in assay media and incubated for 1h at 37 °C in a non-CO2 incubator. The 612 

Seahorse XF Mito Stress test was used to measure the OCR response after the sequential 613 
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injection of oligomycin (1.0 μM), FCCP (1.0 μM) and Rot/AA (0.5 μM), according to the 614 

manufacturer’s instructions. The data were normalised to cell numbers.  615 

Genomic DNA extraction and qPCR for mitochondrial content 616 

Cells were trypsinised and genomic DNA was extracted using the NucleoSpin Tissue XS, 617 

Micro kit for DNA (REF 740901.50). Real time PCR was performed with primers specific to 618 

the cyto-b mitochondrial locus (fw: TCCGATATATACACGCAAACG, rv: 619 

ATAAGCCTCGTCCGACATGA) and results were nomalised to total genomic DNA using 620 

primers for actin promoter locus (fw: TGCCCCATTCAATGTCTCGG, rv: 621 

ATCCACGTGACATCCACACC).  622 

mRNA extraction and qPCR for Cyp2f2 and Glul expression 623 

To verify the relative abundance of expression of the respective markers of the sorted cells, 624 

CD73+ pericentral and E-cadherin+ periportal cells were isolated with flow cytometry (see 625 

methods above) from 3 individual (1 young and 2 old) mice and mRNA was extracted with the 626 

Dynabeads™ mRNA DIRECT™ Purification Kit (61011 Thermo Fisher Scientific). Reverse 627 

transcription was performed with the Maxima H Minus Reverse Transkriptase (EP 0751 628 

Thermo Fisher Scientific) and the cDNA was used for qPCR with primers for Cyp2f2 (fw: 629 

CTTCCTGATACCCAAGGGCAC, rv: CTGAGGCGTCTTGAACTGGT) and Glul (fw: 630 

CCACCGCTCTGAACACCTT, rv: TGGCTTGGACTTTCTCACCC). The results were 631 

normalised to Actin expression (fw: ACCGGTGCAGAGACATTGGAGTTCAAC, rv: 632 

GTCGACTCAGATCCCGAGGCAGAGTC). 633 

Lipidomics 634 

Lipid extraction from liver tissue samples or liver duct organoids 635 

For the lipidomic analysis of liver tissue, 20 mg of snap-frozen tissue samples were 636 

homogenised using pre-cooled (liquid N2) metal balls (5 mm diameter) in a Qiagen Tissue 637 

Lyser for 1 min at 25 Hz. The pulverized tissue was resuspended in1 ml pre-cooled (-20°C) 638 

extraction buffer (MTBE (methyl tert-butyl):MeOH 75:25 [v:v]), containing 0.2 µL of EquiSplash 639 

Lipidomix as an internal standard. The re-suspended samples were homogenised for 640 

additional 5 min at 15 Hz in the TissueLyser. 641 
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After efficient tissue lysis, the samples were incubated for additional for 30 min on a 642 

thermomixer at 1500 rpm and at 4°C. To remove precipitated material from the samples, the 643 

Metal balls were removed and all samples were centrifuged for 10 min at 4°C and21.000 x g. 644 

The supernatants was transferred to a new tube and 500 µl H2O:methanol 3:1 [v:v] were added 645 

before further incubating the extracts for additional 10 min at 1500 rpm and 15°C on a 646 

thermomixer. After this final incubation step the polar and lipid phases were separated in a 10 647 

min centrifugation step at 16.000 x g and 15°C. . The upper phase, MTBE-phase was 648 

transferred to a new tube and stored with the obtained insoluble pellets at -80°C for lipidomic 649 

analysis and protein extraction and quantification (BCA). 650 

Liquid Chromatography-High Resolution Mass Spectrometry-based (LC-HRMS) analysis of 651 

lipids 652 

The stored (-80°C) lipid extracts were dried in a SpeedVac concentrator before analysis and 653 

lipid pellets were resuspended in 200 µL of a UPLC-grade acetonitrile: isopropanol (70:30 654 

[v:v]) mixture. Samples were vortexed for 10 seconds and incubated for 10 min on a 655 

thermomixer at 4°C. Re-suspended samples were centrifuged for 5 min at 10.000 x g and 4°C, 656 

before transferring the cleared supernatant to 2 ml glass vials with 200 µl glass inserts. All 657 

samples were placed in an Acquity iClass UPLC sample manager at 6°C. The UPLC was 658 

connected to a Tribrid Orbitrap HRMS, equipped with a heated electrospray ionization (HESI) 659 

ion source (ID-X, Thermo Fischer Scientific). 660 

Of each lipid sample, 1 µl was injected onto a 100 x 2.1 mm BEH C8 UPLC column, packed 661 

with 1.7 µm particles. The flow rate of the UPLC was set to 400 µl/min and the buffer system 662 

consisted of buffer A (10 mM ammonium acetate, 0.1% acetic acid in UPLC-grade water) and 663 

buffer B (10 mM ammonium acetate, 0.1% acetic acid in UPLC-grade acetonitrile/isopropanol 664 

7:3 [v/v]). The UPLC gradient was as follows: 0-1 min 45% A, 1-4 min 45-25% A, 4-12 min 25-665 

11% A, 12-15 min 11-1% A, 15-18 min 1% A, 20-18.1 min 1-45% A and 18.1-22 min re-666 

equilibrating at 45% A. This leads to a total runtime of 22 min per sample. 667 

The ID-X mass spectrometer was operating either for the first injection in positive ionization 668 

mode or for the second injection in negative ionization mode. In both cases, the analyzed 669 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

29 

mass range was between m/z 160-1600. The resolution (R) was set to 120.000, leading to 670 

approximately 4 scans per second. The RF lens was set to 60%, while the AGC target was 671 

set to 250%. The maximal ion time was set to 100 ms and the HESI source was operating with 672 

a spray voltage of 3.5 kV in positive ionization mode, while 3.2 kV were applied in negative 673 

ionization mode. The ion tube transfer capillary temperature was 300°C, the sheath gas flow 674 

60 arbitrary units (AU), the auxiliary gas flow 20 AU and the sweep gas flow was set to 1 AU 675 

at 340°C. 676 

All samples were measured in a randomized run-order and targeted data analysis was 677 

performed using the quan module of the TraceFinder 4.1 software (Thermo Fischer Scientific) 678 

in combination with a sample-specific in-house generated compound database. Peak areas 679 

of each peak were normalized to the internal standards from the extraction buffer and to either 680 

the fresh weight of the tissue or the protein concentration of the organoids. 681 

Spatial transcriptomics 682 

Tissue and library preparation 683 

Liver specimen from 2 young and 2 old mice were cryopreserved and sections of 8 mm x 8 684 

mm x 10µm specimens. Libraries were prepared using the Visium Spatial Gene Expression 685 

solution from 10x Genomics using 30 minutes permeabilization time. Libraries were prepared 686 

according to the manufacturer’s instruction and sequenced on an Illumina NovaSeq 6000. 687 

Sequencing data was initially quality controlled and pre-processed using the 10X Genomics 688 

CellRanger framework. 689 

Dimensionality reduction and individual analysis of datasets  690 

Young and old liver tissue slides were analyzed individually in R (V. 4.0.0) using the Seurat 691 

package (V. 4.0.4)41. Count matrices were normalized and scaled using the SCTransform 692 

function with standard parameters. Relative gene expression visualization of known hepatic 693 

pericentral and periportal marker genes on the spots of the tissue slides was performed with 694 

the SpatialFeaturePlot function.  695 

Dataset integration  696 
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To assess batch effects between tissue slides, we merged the processed slides using the 697 

merge function and normalized and scaled without any further batch correction. Principal 698 

component analysis for Figure 2B was performed on the 2000 most variable features. The top 699 

50 genes associated with the first principal PCA component were visualized with the 700 

VizDimLoadings functions and intersected with the hepatocyte specific aging genes list from 701 

Ref. 1416. Integration of young and old liver tissue slides was performed in a stepwise manner 702 

as an integration of all datasets together would remove all potential differences between young 703 

and old datasets. First, the pre-processed young and old tissue slide datasets were integrated 704 

separately per age group using canonical correlation analysis described in 15. Second, both 705 

combined datasets were merged and filtered for spots to have at least 1000 and at most 7000 706 

genes expressed. Subsequently, the joined count matrix was scaled and normalized together 707 

using the NormalizeData and ScaleData function.  708 

Dimensionality reduction of integrated datasets 709 

We performed principal components analysis on the preprocessed data (RunPCA function). 710 

The first 10 principal components covered most of the data set’s variance, and were 711 

considered a good approximation to the data as assessed by an elbowplot (Elbowplot 712 

function). The first 10 principal components, therefore, served as input to UMAP for further 713 

dimension reduction and visualization. Known canonical liver zonation marker genes were 714 

visualized with the Featureplot function.  715 

Differential expression testing between young and old liver tissue slides 716 

Differential expression testing was done by using the FindMarkers function. Genes had to 717 

show at least an average log2-fold change of ±0.25 to be considered for testing. Testing was 718 

performed using the MAST library by17. Bonferroni correction was applied for multiple testing 719 

adjustments of p-values. Go-term enrichment analysis for combinatorial categories was 720 

performed with the enrichGO function from the clusterProfiler library72. Results were 721 

summarised using REVIGO (http://revigo.irb.hr/)73. Heatmap visualization of genes from 722 

categories of interest was done with pheatmap74. Genes of GO-terms were extracted from the 723 

org.Mm.eg.db library 75. Log2 fold changes were calculated using the FoldChange function.  724 
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Cytoscape 725 

The Cytoscape18 apps ClueGo19 and iRegulon23 were used to calculate gene ontology 726 

networks and transcription factor predictions, respectively. All differentially expressed genes 727 

in old (Supplementary Table 4) were used as input for all analysis. ClueGo parameters were 728 

as follows: Biological Pathways were selected as ontologies and only pathways with pV 	≤	729 

0.001. GO Tree Interval was between 6 and 12. Cluster #1 was set at 2 minimum genes that 730 

represented 5% of genes, while the network connectivity was set at 0.4. iRegulon was run 731 

using Mus musculus MGI symbols using the following motif collection: 10k (9712PWMs). 732 

Putative regulatory regaion as well as motif ranking database were set as 20kb centered 733 

around TSS. NES scores for all TFs reported were > 4. 734 

Liver tissue preparation for scATAC-seq  735 

Liver nuclei (n=4) were prepared from frozen tissue specimens by crushing and dounce 736 

homogenising the tissue in 1 ml EZbuffer (SIGMA) (20 strokes with loose and a tight pestle, 737 

respectively) and spun 5 min at 300 g. The pellet was incubated on ice for 20 min in EZ-buffer 738 

supplemented with DNAseI NEB M0303S (4 units/ml) and 1X DNAseI buffer. Equal volume of 739 

EZ-buffer was added and samples were spun 5 min at 500 g and incubated again 10 min on 740 

ice in EZ-buffer supplemented with DNAseI NEB M0303S (8 units/ml) and 1X DNAseI buffer. 741 

Equal volume of EZ-buffer was added, and samples were spun 5min at 500g, resuspended in 742 

NSB (1087.5 µl 1XPBS, 5.5µl 2% BSA, 1.5 µl RNase Inhibitor) and filtered 3 times through a 743 

0.22 µm strainer. For scATAC-seq, 100,000 nuclei were resuspended in 50 µl tagmentation 744 

mix (10X Genomics)).  745 

scATAC-seq library preparation and sequencing 746 

scATAC-seq targeting 4000 cells per sample was performed using a beta version of Chromium 747 

Single Cell ATAC Library and Gel Bead kit (10x Genomics, 1000110) according to the 748 

manufacturer’s instructions. Libraries were then pooled and loaded on an Illumina NovaSeq 749 

sequencer and sequenced to 18,904 median reads per cell for the young dataset and 21,139 750 

median reads per cell for the old dataset. Sequencing data was initially quality controlled and 751 

pre-processed using the 10X Genomics CellRanger framework. 752 
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scATAC-seq analysis of young and old liver tissue 753 

Region accessibility count data were analyzed using the cisTopic library (V. 3.039. Cells without 754 

any accessible regions were removed, leaving 4838 cells from young mice and 3361 cells 755 

from old mice. We included 117,290 regions into our analysis that were accessible in at least 756 

one cell. The latent Dirichlet allocation model was learned by the runWarpLDAModels function 757 

for topic numbers ranging from 2 to 15 topics. An appropriate number of topics for our data 758 

was selected as the topic number with the highest second derivative of the likelihood function. 759 

This was the case for 6 topics, and all downstream analyses use the LDA model learned for 6 760 

topics. Non-linear dimensionality reduction by UMAP was performed for visualization 761 

purposes only by applying the built-in runUmap function in cisTopic to the topic-distributions 762 

of all cells. Topic defining regions were derived via the getRegionsScores- and 763 

binarizecisTopics-function. GO-term and transcription factor motif analysis of the topic defining 764 

regions was done using rGREAT (V.1.22.0)76 and RcisTarget (V.1.10)77. Transcription factor 765 

motifs shown in Fig 3F and Fig 6B were downloaded from the JASPAR database 766 

(http://jaspar.genereg.net).  767 

To check the robustness of the cisTopic results, we performed a complementary analysis of 768 

the ame data with Signac (V.1.0)40. The cell region count matrix was normalized using the 769 

term frequency-inverse document frequency (TF-IDF) normalization method from the Signac 770 

library (RunTFIDF). Initial linear dimensionality reduction was performed with singular value 771 

decomposition (RunSVD). As recoded in the Signac workflow, the first component of the 772 

singular value decomposition was excluded from all downstream analyses as it was highly 773 

correlated with the sequencing depth. Non-linear dimensionality reduction (UMAP) for Fig. 774 

S3A+B was generated via the RunUMAP function. The dimensions 2 to 35 were used as input 775 

for the algorithm.  776 

Differential accessibility testing 777 

We employed the FindMarkers function in the logistic regression framework of78 to test for 778 

regions that were differentially accessible between young and old hepatocytes, respectively, 779 

between periportal and pericentral hepatocytes. We considered only regions detected in at 780 
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least 5% of the cells for testing. P-values were Bonferroni adjusted to account for multiple 781 

testing. 782 

Cell type annotation 783 

Our celltype annotation is based on the imputed gene activity of known liver cell marker genes 784 

from CellAtlas79. To calculate the imputed gene activities, fragments mapping to gene bodies 785 

or promoter regions of genes (Up to 2 kb upstream of a gene) were summed up using the 786 

GeneActivity function and subsequently normalized via the NormalizeData function from 787 

Signac. Periportal and pericentral cell populations were annotated based on the gene activity 788 

of Cyp2e1 and Cyp2f2 genes. 789 

Cell classification via canonical correlation analysis  790 

Tabula Muris Senis 9 droplet data were preprocessed as described in the respective section 791 

in the manuscript and filtered for cells for male individuals between 3 and 30 months of age. 792 

Transfer anchors were determined using the FindTransferAnchors function. Cell labels from 793 

the tabula Muris droplet dataset were used as provided in the metadata. Cell labels for the 794 

scATAC-seq dataset were predicted with the TransferData function. For details, see15. 795 

Construction of Cis-regulatory networks 796 

Co-accessibility scores for the interaction network of the Cidea locus were predicted with the 797 

Cicero library51. Reduced dimension coordinates of cells were based on the UMAP projection 798 

from cisTopic. Connections of co-accessible loci were inferred for young and old hepatocytes 799 

separately. 800 

Bulk RNA-seq data processing and analysis 801 

The TMS bulk RNA-seq data was analysed as described above by directly using the count 802 

matrix provided (https://doi.org/10.6084/m9.figshare.8286230.v1). We only used the data from 803 

male mice of the age 3 and 18 months. 804 

scRNA-seq data processing and analysis 805 

Preliminary processing of TMS data 806 

We downloaded metadata and raw count tables from Tabula Muris Senis consortium for liver 807 

FACS and droplets methods. The TMS FACS and droplets data was filtered for genes 808 
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expressed in at least 3 cells, cells containing minimum 250 genes and 2500 counts for droplets 809 

while 500 genes and 5000 UMIs for the FACS data. The filtered count matrix was processed 810 

using Seurat (4.0.4)41 with default parameters as per suggested pipeline using 811 

‘NormalizeData’, ‘FindVariableFeatures’, ‘ScaleData’, ‘RunPCA’, ‘RunUMAP’, ‘FindNeighbors’ 812 

and ‘FindClusters’ functions. The feature and PCA/UMAP plots generated in this manuscript 813 

are through Seurat plotting functions. 814 

Linear model fit of the principal components 815 

We obtained the cell embeddings for each principal component from the processed 816 

Seurat objects. The input parameters are principal components, age and animal 817 

identity of the cells. The linear model for only hepatocytes was fitted using the ‘lm’ 818 

function in R (4.0.1) as lm(PC_n ~ Age + Mouse.id). The model estimates and 819 

predictions were extracted using the R package broom (https://CRAN.R-820 

project.org/package=broom). The model fit with cell types was done in the same 821 

manner with “cell type” as an additional factor for cell identity. We tested the increase in 822 

noise for significance with 10,000 permutations and compared the actual variance in the old 823 

and young cells. This test gave p-values of 0.0002, 0.018 and 0 for the first 3 PCs respectively.  824 

Differential expression and dispersion analysis 825 

The differential analysis was performed using the BASiCS package56,57. Posterior 826 

estimates were computed using a Markov chain Monte Carlo (MCMC) simulation with 20,000 827 

iterations and burn-in period 10000 with a regression model. We used BASiCS to detect 828 

differentially expressed and differentially variable genes between old and young hepatocytes. 829 

For changes in mean expression between ages, we use the ‘BASiCS_TestDE’ function with 830 

EFDR cutoff 0.1. Only genes with no change in mean expression were considered for 831 

interpreting changes in variability. We filtered genes with the detection rate of 0.5 in each 832 

age and mean overall expression of 5. 833 

Obtained sets of genes from each differentially expressed and variability were further 834 

subjected to Gene Ontology Biological Processes enrichment analysis using the ‘enrichGO’ 835 
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function from clusterProfiler (3.14.3) R package72. To remove the redundancy of enriched 836 

terms, we used the ‘simplify’ function from clusterProfiler with the default parameters. The 837 

pathway enrichment was performed using the ‘enrichPathway’ function from the ReactomePA 838 

R package (1.36.0)80. 839 

 840 

DATA AVAILABILITY 841 

All sequencing data generated for this study is available at ENA under curation. H3K27ac for 842 

young and old mice was downloaded from 843 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA28112781. Tabula Muris senis single 844 

cell data is available at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1495909. 845 

Tabula Muris senis bulk RNA-seq data is available at: 846 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1320409. 847 

  848 

AUTHOR CONTRIBUTIONS 849 

Conceptualisation: C.N., S.P., N.K., A.T. and P.T.; Methodology: C.N., S.P., N.K., E.K., T.S., 850 

J.A.; Investigation: C.N., S.P., N.K., T.S., F.S., P.G., M.B., A.J.V., T.W. and E.K.; Formal 851 

Analysis: C.N., S.P., N.K. and P.G.; Supervision: A.T. and P.T.; Funding Acquisition: A.T. and 852 

P.T.; Project Administration: C.N., A.T., P.T.; Writing of Manuscript: P.T., with input from all 853 

authors 854 

 855 

CONFLICT OF INTEREST 856 

The authors do not declare any conflict of interest 857 

 858 

ACKNOWLEDGMENTS 859 

We would like to thank all members of the Tessarz and Tresch labs for continuous discussion. 860 

We are grateful to A. Schaefer and A. Pouikli for critical reading of the manuscript. We are 861 

indebted to the following core facilities of the MPI for Biology of Ageing for superb technical 862 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

36 

assistance: FACS and Imaging for help with FACS analysis, histology and microscopy, 863 

Metabolomics for lipidomic analysis and Comparative Biology for housing mice. Electron 864 

microscopy was performed at the Imaging Core Facility of CECAD, University of Cologne. 865 

scATAC-seq and spatial transcriptomics were performed at the Cologne Center for Genomics, 866 

University of Cologne, Germany. All other libraries were sequenced at the Sequencing Core 867 

Facility of the MPI for Molecular Genetics, Berlin, Germany. This work was funded by the Max 868 

Planck Society (to P.T. and T.W.), the Deutsche Forschungsgemeinschaft (DFG, German 869 

Research Foundation; project no. 415274764 (V.K. and F.S.), the BOOST program of the Max 870 

Planck Society (to C.N.) and the Deutsche Forschungsgemeinschaft (DFG, under Germany's 871 

Excellence Strategy – EXC 2030 – 390661388) (to P.T.). 872 

 873 

REFERENCES 874 

1. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks 875 

of aging. Cell 153, 1194–1217 (2013). 876 

2. Ferrucci, L. & Kuchel, G. A. Heterogeneity of Aging: Individual Risk Factors, 877 

Mechanisms, Patient Priorities, and Outcomes. J. Am. Geriatr. Soc. 69, 610–612 878 

(2021). 879 

3. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse 880 

heart. Nature 441, 1011–1014 (2006). 881 

4. Somel, M., Khaitovich, P., Bahn, S., Pääbo, S. & Lachmann, M. Gene expression 882 

becomes heterogeneous with age. Curr. Biol. 16, R359–R360 (2006). 883 

5. Işıldak, U., Somel, M., Thornton, J. M. & Dönertaş, H. M. Temporal changes in the gene 884 

expression heterogeneity during brain development and aging. Sci. Rep. 10, 4080 885 

(2020). 886 

6. He, X., Memczak, S., Qu, J., Belmonte, J. C. I. & Liu, G.-H. Single-cell omics in ageing: 887 

a young and growing field. Nat Metab 2, 293–302 (2020). 888 

7. Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. 889 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

37 

Gastroenterol. Hepatol. 16, 395–410 (2019). 890 

8. Jungermann, K. & Kietzmann, T. Zonation of parenchymal and nonparenchymal 891 

metabolism in liver. Annu. Rev. Nutr. 16, 179–203 (1996). 892 

9. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 893 

583, 596–602 (2020). 894 

10. Petr, M. A. et al. A cross-sectional study of functional and metabolic changes during 895 

aging through the lifespan in male mice. Elife 10, (2021). 896 

11. Chung, K. W. Advances in Understanding of the Role of Lipid Metabolism in Aging. 897 

Cells 10, (2021). 898 

12. Schleicher, J., Dahmen, U., Guthke, R. & Schuster, S. Zonation of hepatic fat 899 

accumulation: insights from mathematical modelling of nutrient gradients and fatty acid 900 

uptake. J. R. Soc. Interface 14, (2017). 901 

13. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in 902 

the mammalian liver. Nature 542, 352–356 (2017). 903 

14. McIntosh, A. L. et al. Direct interaction of Plin2 with lipids on the surface of lipid droplets: 904 

a live cell FRET analysis. Am. J. Physiol. Cell Physiol. 303, C728-42 (2012). 905 

15. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21 906 

(2019). 907 

16. Zhang, M. J., Pisco, A. O., Darmanis, S. & Zou, J. Mouse aging cell atlas analysis 908 

reveals global and cell type-specific aging signatures. Elife 10, e62293 (2021). 909 

17. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional 910 

changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome 911 

Biol. 16, 278 (2015). 912 

18. Shannon, P. et al. Cytoscape: a software environment for integrated models of 913 

biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). 914 

19. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene 915 

ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009). 916 

20. Hunte, C., Palsdottir, H. & Trumpower, B. L. Protonmotive pathways and mechanisms in 917 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

38 

the cytochrome bc1 complex. FEBS Lett. 545, 39–46 (2003). 918 

21. Kadenbach, B. & Hüttemann, M. The subunit composition and function of mammalian 919 

cytochrome c oxidase. Mitochondrion 24, 64–76 (2015). 920 

22. Chen, J. et al. High-resolution 3D imaging uncovers organ-specific vascular control of 921 

tissue aging. Sci Adv 7, (2021). 922 

23. Janky, R. et al. iRegulon: from a gene list to a gene regulatory network using large motif 923 

and track collections. PLoS Comput. Biol. 10, e1003731 (2014). 924 

24. Pontoglio, M. Hepatocyte nuclear factor 1, a transcription factor at the crossroads of 925 

glucose homeostasis. J. Am. Soc. Nephrol. 11 Suppl 16, S140-3 (2000). 926 

25. Bonzo, J. A., Ferry, C. H., Matsubara, T., Kim, J.-H. & Gonzalez, F. J. Suppression of 927 

hepatocyte proliferation by hepatocyte nuclear factor 4α in adult mice. J. Biol. Chem. 928 

287, 7345–7356 (2012). 929 

26. Wangensteen, K. J., Zhang, S., Greenbaum, L. E. & Kaestner, K. H. A genetic screen 930 

reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes Dev. 29, 904–931 

909 (2015). 932 

27. Matsusue, K. et al. Hepatic CCAAT/enhancer binding protein alpha mediates induction 933 

of lipogenesis and regulation of glucose homeostasis in leptin-deficient mice. Mol. 934 

Endocrinol. 18, 2751–2764 (2004). 935 

28. Veum, V. L. et al. The nuclear receptors NUR77, NURR1 and NOR1 in obesity and 936 

during fat loss. Int. J. Obes. (Lond) 36, 1195–1202 (2012). 937 

29. Lin, W.-J. et al. LipidSig: a web-based tool for lipidomic data analysis. Nucleic Acids 938 

Res. 49, W336–W345 (2021). 939 

30. Tan, S. T., Ramesh, T., Toh, X. R. & Nguyen, L. N. Emerging roles of lysophospholipids 940 

in health and disease. Prog. Lipid Res. 80, 101068 (2020). 941 

31. Breslow, D. K. & Weissman, J. S. Membranes in balance: mechanisms of sphingolipid 942 

homeostasis. Mol. Cell 40, 267–279 (2010). 943 

32. Gómez-Fernández, J. C. & Corbalán-García, S. Diacylglycerols, multivalent membrane 944 

modulators. Chem. Phys. Lipids 148, 1–25 (2007). 945 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

39 

33. Erion, D. M. & Shulman, G. I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 946 

400–402 (2010). 947 

34. Li, Z. et al. Reducing plasma membrane sphingomyelin increases insulin sensitivity. 948 

Mol. Cell. Biol. 31, 4205–4218 (2011). 949 

35. Paradies, G., Paradies, V., Ruggiero, F. M. & Petrosillo, G. Role of Cardiolipin in 950 

Mitochondrial Function and Dynamics in Health and Disease: Molecular and 951 

Pharmacological Aspects. Cells 8, (2019). 952 

36. Ben-Moshe, S. et al. Spatial sorting enables comprehensive characterization of liver 953 

zonation. Nat Metab 1, 899–911 (2019). 954 

37. Marchetti, P., Fovez, Q., Germain, N., Khamari, R. & Kluza, J. Mitochondrial spare 955 

respiratory capacity: Mechanisms, regulation, and significance in non-transformed and 956 

cancer cells. FASEB J. 34, 13106–13124 (2020). 957 

38. Hill, B. G. et al. Integration of cellular bioenergetics with mitochondrial quality control 958 

and autophagy. Biol. Chem. 393, 1485–1512 (2012). 959 

39. Bravo González-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell 960 

ATAC-seq data. Nat. Methods 16, 397–400 (2019). 961 

40. Stuart, T., Srivastava, A., Lareau, C. & Satija, R. Multimodal single-cell chromatin 962 

analysis with Signac. bioRxiv 2020.11.09.373613 (2020) 963 

doi:10.1101/2020.11.09.373613. 964 

41. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-965 

3587.e29 (2021). 966 

42. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial 967 

progenitors. Nature (2019) doi:10.1038/s41586-019-1373-2. 968 

43. Sato, S. et al. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of 969 

Aging. Cell 170, 664-677.e11 (2017). 970 

44. Fanti, M., Singh, S., Ledda-Columbano, G. M., Columbano, A. & Monga, S. P. Tri-971 

iodothyronine induces hepatocyte proliferation by protein kinase A-dependent β-catenin 972 

activation in rodents. Hepatology 59, 2309–2320 (2014). 973 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

40 

45. Pouikli, A. et al. Chromatin remodeling due to degradation of citrate carrier impairs 974 

osteogenesis of aged mesenchymal stem cells. Nature Aging vol. 1 810–825 (2021). 975 

46. Reynolds, J. C., Bwiza, C. P. & Lee, C. Mitonuclear genomics and aging. Hum. Genet. 976 

139, 381–399 (2020). 977 

47. Xu, L., Zhou, L. & Li, P. CIDE proteins and lipid metabolism. Arterioscler. Thromb. Vasc. 978 

Biol. 32, 1094–1098 (2012). 979 

48. Xu, W. et al. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like 980 

Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in 981 

Subpopulations of Hepatocytes*♦. J. Biol. Chem. 291, 4282–4293 (2016). 982 

49. Barneda, D. et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via 983 

a phosphatidic acid-binding amphipathic helix. Elife 4, e07485 (2015). 984 

50. Matsusue, K. et al. Hepatic steatosis in leptin-deficient mice is promoted by the 985 

PPARgamma target gene Fsp27. Cell Metab. 7, 302–311 (2008). 986 

51. Pliner, H. A. et al. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell 987 

Chromatin Accessibility Data. Mol. Cell 71, 858-871.e8 (2018). 988 

52. Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine 989 

cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021). 990 

53. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic 991 

niches. Nature 571, 205–210 (2019). 992 

54. Yi, W., Lu, Y., Zhong, S., Zhang, M. & Sun, L. A single-cell transcriptome atlas of the 993 

aging human and macaque retina. National Science (2021). 994 

55. Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability upon 995 

immune stimulation. Science 355, 1433–1436 (2017). 996 

56. Vallejos, C. A., Richardson, S. & Marioni, J. C. Beyond comparisons of means: 997 

understanding changes in gene expression at the single-cell level. Genome Biol. 17, 70 998 

(2016). 999 

57. Eling, N., Richard, A. C., Richardson, S., Marioni, J. C. & Vallejos, C. A. Correcting the 1000 

Mean-Variance Dependency for Differential Variability Testing Using Single-Cell RNA 1001 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

41 

Sequencing Data. Cell Syst 7, 284-294.e12 (2018). 1002 

58. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic 1003 

stem cells. Nature 532, 380–384 (2016). 1004 

59. Wynne, H. A. et al. The effect of age upon liver volume and apparent liver blood flow in 1005 

healthy man. Hepatology 9, 297–301 (1989). 1006 

60. Gong, J. et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at 1007 

lipid droplet contact sites. J. Cell Biol. 195, 953–963 (2011). 1008 

61. Zhou, L. et al. Cidea promotes hepatic steatosis by sensing dietary fatty acids. 1009 

Hepatology 56, 95–107 (2012). 1010 

62. Sans, A. et al. The Differential Expression of Cide Family Members is Associated with 1011 

Nafld Progression from Steatosis to Steatohepatitis. Sci. Rep. 9, 1–12 (2019). 1012 

63. Nassir, F., Rector, R. S., Hammoud, G. M. & Ibdah, J. A. Pathogenesis and Prevention 1013 

of Hepatic Steatosis. Gastroenterol. Hepatol.  11, 167–175 (2015). 1014 

64. Martinez-Pastor, B., Cosentino, C. & Mostoslavsky, R. A tale of metabolites: the cross-1015 

talk between chromatin and energy metabolism. Cancer Discov. 3, 497–501 (2013). 1016 

65. Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin 1017 

biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020). 1018 

66. Wiese, M. & Bannister, A. J. Two genomes, one cell: Mitochondrial-nuclear coordination 1019 

via epigenetic pathways. Molecular Metabolism 38, 100942 (2020). 1020 

67. Nikopoulou, C., Parekh, S. & Tessarz, P. Ageing and sources of transcriptional 1021 

heterogeneity. Biol. Chem. (2019) doi:10.1515/hsz-2018-0449. 1022 

68. Lee, B. P. et al. Changes in the expression of splicing factor transcripts and variations in 1023 

alternative splicing are associated with lifespan in mice and humans. Aging Cell 15, 1024 

903–913 (2016). 1025 

69. Heintz, C. et al. Splicing factor 1 modulates dietary restriction and TORC1 pathway 1026 

longevity in C. elegans. Nature 541, 102–106 (2017). 1027 

70. Lai, R. W. et al. Multi-level remodeling of transcriptional landscapes in aging and 1028 

longevity. BMB Rep. 52, 86–108 (2019). 1029 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

42 

71. Kelmer Sacramento, E. et al. Reduced proteasome activity in the aging brain results in 1030 

ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 16, e9596 (2020). 1031 

72. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R Package for Comparing 1032 

Biological Themes Among Gene Clusters. OMICS: A Journal of Integrative Biology vol. 1033 

16 284–287 (2012). 1034 

73. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes 1035 

long lists of gene ontology terms. PLoS One 6, e21800 (2011). 1036 

74. Kolde, R. Pheatmap: pretty heatmaps. R package version (2012). 1037 

75. Carlson, M., Falcon, S., Pages, H. & Li, N. org. Mm. eg. db: Genome wide annotation 1038 

for Mouse. (2015). 1039 

76. Gu, Z. rGREAT. (Bioconductor, 2017). doi:10.18129/B9.BIOC.RGREAT. 1040 

77. Aibar, S. et al. SCENIC: Single-cell regulatory network inference and clustering. Nat. 1041 

Methods 14, 1083–1086 (2017). 1042 

78. Ntranos, V., Yi, L., Melsted, P. & Pachter, L. A discriminative learning approach to 1043 

differential expression analysis for single-cell RNA-seq. Nature Methods vol. 16 163–1044 

166 (2019). 1045 

79. Zhang, X. et al. CellMarker: A manually curated resource of cell markers in human and 1046 

mouse. Nucleic Acids Res. 47, D721–D728 (2019). 1047 

80. Yu, G. & He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome pathway 1048 

analysis and visualization. Mol. Biosyst. 12, 477–479 (2016). 1049 

81. Benayoun, B. A. et al. Remodeling of epigenome and transcriptome landscapes with 1050 

aging in mice reveals widespread induction of inflammatory responses. Genome Res. 1051 

29, 697–709 (2019). 1052 

  1053 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472593
http://creativecommons.org/licenses/by/4.0/


 

43 

SUPPLEMENTARY FIGURES 1054 

 1055 

Figure S1: a) PCA projection of bulk RNAseq data 9 derived from young and old mouse livers. b) 1056 

Differentially enriched pathways in the aged liver tissue derived from A (Supplementary Table 1). The 1057 
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colour scale represents the number of genes in each term. c) Representative images from H&E (upper 1058 

panel) and Sirius Red (lower panel) stainings on liver sections from a young and an old mouse. Scale 1059 

bar=100µm. d) Representative images of PP (periportal) and CV (central vein areas) of Oil-red-O (O-1060 

R-O, upper panel) and Plin2 immunostainings (lower panel) on liver sections from young and old mice. 1061 

Scale bar = 100 µm. e) PCA plot of the spatial data after integration of the four datasets using canonical 1062 

correlation analysis. Different colours represent the different samples. f) PC plot showing the top 50 1063 

genes that separate the ageing groups in Figure S1e.  1064 
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 1066 

Figure S2: a) PCA of lipidomic data coloured by age. b) Changes of individual cardiolipins between 1067 

young and old livers. c) Gating strategy for isolation of pericentral and periportal hepatocytes. d) qRT-1068 

PCR to validate the enrichment for pericentral and periportal hepatocytes based on expression ratios 1069 

of Glul and Cyp2f2 levels. Shown are individual replicates for young and old mice (as indicated). e) 1070 

Mitochondrial content was measured using primers against genomic copies of cyto-b and b-actin. 1071 

Individual values are given as dots. Error bars represent the SEM. 1072 
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 1074 

Figure S3: a) UMAP projection of scATAC-seq nuclei from young and old livers. Colour-coded are the 1075 

different age groups identified using Signac. b) Same as in a). Colour coded are the different cell types, 1076 

assigned by using marker genes from CellMarker. c) Heatmap showing the accessibility of marker 1077 

genes in each assigned cell type of the scATAC-seq data. d) GO enrichment for genes found in 1078 

differentially accessible loci in young vs. old hepatocytes (TSS+/- 3kb). 1079 
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 1081 

Figure S4: Ccan plots of loci identified to show increased (Slc47a1, a) and decreased (Rgs3, b) co-1082 

accessibility. H3K27ac tracks are shown to indicate potential enhancers. 1083 
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 1085 

Figure S5: a) QQ-plot of the residuals from a linear model fit for the first 3 PCs with age. b) A barplot 1086 

of the sum of residual squares (noise) for each linear model fit to the first 5 PCs with age and cell type 1087 

coloured by age. c) The pathways enrichment for the differentially expressed (left) and differentially 1088 

over-dispersed (right) genes. d) TMS FACS female data from age 3 and 18 was used to estimate mean 1089 

expression (mu) and over-dispersion (delta) parameters using a regression model from BASiCS 1090 

coloured by age. e) Top biological processes (upper panel) and cellular components (lower panel) 1091 

enriched in the differentially dispersed (left) and differentially expressed (right) genes in the TMS FACS 1092 

female dataset. 1093 
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 1095 

Figure S6: Representative plots showing expression levels of Kupffer cell (a), endothelial cell (b) and 1096 

hepatic stellate cell (c) markers as indicated in young and old livers as determined by spatial 1097 

transcriptomics. The colour gradient represents normalised gene expression. 1098 
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