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Abstract

Machine learning (ML) and in particular deep learning techniques have gained popularity
for predicting structures from biopolymer sequences. An interesting case is the prediction of
RNA secondary structures, where well established biophysics based methods exist. These
methods even yield exact solutions under certain simplifying assumptions. Nevertheless, the
accuracy of these classical methods is limited and has seen little improvement over the last
decade. This makes it an attractive target for machine learning and consequently several deep
learning models have been proposed in recent years. In this contribution we discuss limitations
of current approaches, in particular due to biases in the training data. Furthermore, we propose
to study capabilities and limitations of ML models by first applying them on synthetic data that
can not only be generated in arbitrary amounts, but are also guaranteed to be free of biases.
We apply this idea by testing several ML models of varying complexity. Finally, we show that the
best models are capable of capturing many, but not all, properties of RNA secondary structures.
Most severely, the number of predicted base pairs scales quadratically with sequence length,
even though a secondary structure can only accommodate a linear number of pairs.

Keywords: RNA secondary structure, folding prediction, dataset biases, deep learning model,
biophysical model

*To whom correspondence should be addressed: ivo@tbi.univie.ac.at

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472648doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472648
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

Many RNAs rely on a well defined structure to exert their biological function. Moreover, many
RNA functions can be understood without knowledge of the full tertiary structure, relying only
on secondary structure, i.e. the pattern of Watson-Crick type base pairs formed when the RNA
strand folds back onto itself. Prediction of RNA secondary structure from sequence is therefore
a topic of long-standing interest for RNA biology and several computational approaches have
been developed for this task. The most common approach is “energy directed” folding, where (in
the simplest case) the structure of lowest free energy is predicted. The corresponding energy
model is typically the Turner nearest-neighbor model [17], which compiles free energies of small
structure motifs (loops) derived from UV melting experiments.

Under some simplifying assumptions, such as neglecting pseudo-knots and base triples, the
optimal structure can be computed using efficient dynamic programming algorithms that solve
the folding problem in O(n3) time for a sequence of length n. While these algorithms yield an
optimal solution given the model, the accuracy achieved on known secondary structures varies
widely and averages about 67% in a benchmark accompanying the latest Turner parameter set
[9]. While a variety of factors contribute to the inaccuracy of prediction, accuracy has hardly
changed in comparison to the previous iteration of energy parameters [10], suggesting that it
is the simplifying assumptions of the model, rather than measurement errors in the UV melting
experiments, that limits prediction accuracy. It is therefore tempting to forego the simplifying
assumptions necessary for dynamic programming and approach the problem using machine
learning techniques. Inspired by the recent success of deep learning methods in protein structure
prediction, several groups have proposed deep learning methods for the RNA secondary structure
prediction problem [3, 16, 15, 7].

A major problem for all deep learning approaches is the limited availability of training data.
Even before the recent machine learning boom, several works have attempted to replace or
improve the Turner energy parameters by training on a set of known RNA secondary structures
[6, 1, 19]. While these works demonstrated that learning energy parameters is feasible, they
often reported overly optimistic accuracies. While it is common practice to ensure that test and
training sets do not contain very similar sequences (e.g. with more than 80% identity), this is not
sufficient to avoid overtraining. Ideally, test and training sets should be constructed from distinct
RNA families. As shown in [13] setting up test/training sets that are structurally distinct leads to a
significant drop in accuracy and largely eliminates any advantages of the trained over measured
parameters.

Given the data hungry nature of deep networks, this becomes an even more pressing problem
when deep learning is applied to structure prediction. The currently most used training set is the
bpRNA set [5] which contains over 100000 distinct sequences. While the number of sequences in
the set is sufficient to train sophisticated models, the structural diversity of the data set is limited.
55% of the sequences are ribosomal RNAs (rRNAs) from the Comparative RNA website[2]. The

2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472648doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472648
http://creativecommons.org/licenses/by-nc-nd/4.0/


next largest data source is the Rfam database [11], providing 43% of sequences. At first glance,
this subset seems more diverse, since Rfam release 12.0, used for bpRNA, comprises 2450 RNA
families. Again, however, rRNA and tRNAs make up over 90% of the sequences in Rfam 12.0.
The dataset is therefore dominated by just four RNA families (three types of rRNA and tRNAs)
and it seems highly unlikely that it can capture the full variety of the RNA structure space. This
also reflected in the extremely uneven length distribution of sequences in bpRNA, see Fig. S1.

When both test and training set are derived from bpRNA, they will exhibit the same biases
leading to unrealistically good benchmark results. The MXfold2 paper [15] addressed this
problem by generating an additional data set, bpRNAnew, containing only sequences from Rfam
families added after the 12.0 release. The bpRNAnew set was also used in the Ufold paper
[7] to distinguish between within-family and cross-family performance. Arguably, within-family
performance is largely irrelevant. Structure prediction for sequences belonging to a known family,
should always proceed by identifying the RNA family and mapping the novel sequence to the
consensus structure, e.g. using covariance models and the Infernal software [12]; this is in fact
how most of the structures in the bpRNA set were generated. Only sequences that cannot be
assigned to a known family should be subjected to structure prediction from sequence.

2 Training on artificial data

The fact that most known RNA structures are derived from a very small set of RNA families
makes it hard to distinguish between shortcomings due to the biased training data and more
fundamental problems in deep learning for RNA structures. To become independent of available
structures we therefore propose to test deep learning methods on completely synthetic data
sets generated by classical energy directed structure prediction methods. This allows to test the
capabilities of neural network (NN) architectures to learn the essential characteristics of RNA
secondary structure, and to explore their learning behavior without worrying that the network
learns to exploit biases of the training set. The most promising architectures can, of course, be
re-trained later with real world data.

In this contribution we use RNAfold from the ViennaRNA package [8] to fold random se-
quences allowing us to generate arbitrary large data sets and guarantee complete independence
of all sequences in training and evaluation data sets. Most results shown below use a training
set consisting of random sequences (equal A,U,C,G content) with a homogeneous length of
70 nt, but we also constructed further data sets with four different length distributions, to study
scenarios where test and evaluation set follow different length distributions.
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3 Predicting pairedness

In order to examine what can and cannot be easily predicted by deep learning approaches, we
first consider a simplified problem. Rather than predicting base pairs, we restrict ourselves to
predict whether a nucleotide is paired or unpaired, in other words if the nucleotide, in the context
of RNA secondary structure, belongs to a helix or a loop region. Since this results in a much
smaller structure space, one might expect the prediction problem to become easier to learn. This
also corresponds to the traditional approach in protein secondary structure prediction, where
each amino acid is predicted to be in one of three states (alpha helix, beta sheet, or coil) while
ignoring which residues form hydrogen bonds to each other in a beta sheet. Note also that
chemical probing of RNA structures [18] typically yields information on pairedness only.

...

...

RNA Sequence

concatenated output

  

  

concat

  

  

concat

  

  

concat

A C U C C U A G C ...

0 1 1 0 0 0 1 1 0 ...

1
0
0
0

0
1
0
0

0
0
0
1

0
1
0
0

0
1
0
0

0
0
0
1

1
0
0
0

0
0
1
0

0
1
0
0

...

Figure 1: Paired / unpaired prediction approach: (left) sliding-window: A window, consisting of
a central symbol and context in the form of a fixed number of leading and tailing symbols is slid
along the sequence. The output sequence is a concatenation of the single predictions per window
position. (right) schematic representation of the input / output encoding for the bidirectional long
short term memory (BLSTM) neural network. The detailed network architectures can be seen in
Fig. S2.

We implemented three different types of predictors: (i) a simple feed forward network (FFN)
that examines sequence windows and predicts the state of the central residue, (ii) a more
complex 1D convolutional neural network (CNN), again working on sequence windows, and (iii) a
bi-directional long short term memory (BLSTM) network, see Fig. 1. We tested several window
sizes for the sliding window approaches (i and ii) and varied the number of layers and neurons in
the BLSTM. The FFN architecture is inspired by classical protein secondary structure predictors,
such as PHD [14].

The resulting performance when training on sequences of length 70 is shown in Table 1.
While the BLSTM performed slightly better than the simpler sliding window approaches, none of
the predictors achieve a satisfactory performance. This is most obvious when focusing on the
Matthews Correlation Coefficient (MCC) [4]. For this task, an accuracy of 0.5 corresponds to
pure chance and thus the networks did little more than learn that “A” nucleotides have a higher
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Modeltype Parameters Epochs Accuracy F1 Loss MCC
BLSTM 1 Layer, 40 Neurons 43 0.667 0.594 0.609 0.166

1 Layer, 80 Neurons 27 0.664 0.589 0.612 0.168
3 Layers, 40 Neurons 38 0.676 0.609 0.604 0.207

Sliding Window Window 15 89 0.654 0.559 0.623 0.120
Window 35 94 0.659 0.559 0.620 0.118
Window 71 59 0.661 0.569 0.618 0.118

CNN Sliding Window Window 15 67 0.660 0.588 0.616 0.156
Window 35 65 0.666 0.586 0.609 0.166
Window 71 30 0.668 0.580 0.608 0.170

Table 1: Performance of the paired / unpaired prediction: The performances on the validation
set of 2000 sequences of length 70 for all models trained on 80000 sequences of length 70
for 100 epochs. After 100 epochs the best performing model is chosen based on maximum
validation MCC. The epoch in which this performance is reached can also be seen in the table.
The metrics used are accuracy, F1, loss and MCC. All values are rounded to three decimal
places.

propensity to be unpaired than “G”s. Our results also indicate that the performance does not
improve by increasing the number of neurons, or by using more training data (results not shown).
The results were also consistent for different datasets and different training runs.

The poor performance suggests that the short cut simply doesn’t work. Pairedness cannot be
predicted independently of the full secondary structure. Moreover, RNA secondary structure is
apparently too non-local for sliding window approaches to succeed. This is also in contrast to
the fact that RNA secondary structure formation is thought to be largely independent of tertiary
structure.

4 Predicting base pair matrices

To account for the non-locality of secondary structure, recent deep learning approaches for RNA
secondary structure have focused on predicting base pairing matrices. In the typical approach a
sequence of length n is expanded to a n× n matrix, where each entry corresponds to a possible
base pair. Convolutional networks (or variants thereof) are then used to predict an output matrix
containing the predicted pairs, i.e. a 1 in row i and column j indicates that nucleotides i and j

form a pair. Various postprocessing steps can be appended to derive a valid secondary structure
from the pair matrix. Since we were interested in analysing the performance of the network, we
avoided any sophisticated postprocessing and either directly analysed the output matrix (with
values between 0 and 1), or obtained a single secondary structure by retaining only the highest
entry per row, rounding to obtain values of 0 or 1, and removing pseudo-knots.

For our experiments we re-implemented the SPOT-RNA network [16], a deep network em-
ploying ResNets (residual networks), fully connected layers and 2D BLSTMs, see Fig. S3. We
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implemented three variants, corresponding to Models 0, 1, and 3, in the SPOT-RNA paper, that
differ in the size of the different blocks (only Model 3 contains the BLSTM part).

We first tested the simple scenario where all sequences in the training and evaluation sets
have the same length of 70 nt. The three models achieved a performance in terms of MCC of
0.554 for model 0, 0.580 for model 1 and 0.640 for model 3. This is quite similar to the values
reported for SPOT-RNA after initial training, though models 0 and 1 perform slightly worse in our
case. Since model 3, the only one containing a BLSTM block, had the best overall performance,
the results below are shown only for model 3.

Figure 2: Length distribution of the four synthetic datasets used for prediction of base pair
matrices.

The bpRNA data set shows a very uneven distribution of sequence lengths, with most
sequences in the range of 70-120 nt, the length of tRNAs and 5S rRNAs (see Fig S1). We
therefore explored scenaria where the length distribution of sequences in test and training set
differs, by generating 4 synthetic data sets with sequences of 25–100 nt, but markedly different
length distributions, see Fig. 2. In each case, the training set consisted of 30000 and the
validation set 5000 different random sequences.

We then trained and evaluated our networks on all 16 combinations of training and evaluation
sets. Results for Model 3 are shown in Table 2. Even though the datasets were restricted to a
rather small range of lengths, from 25 to 100 bases, notable differences are already observable.
In general, performance on validation set 4 is best, simply because it contains mostly very short
sequences whose structures are easier to predict. Conversely, networks trained on set 4 perform
poorly on longer sequences. In addition, we usually observe better performance when training
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Training set Validation set Performance
1 2 3 4 (training set)

1 0.64 0.59 0.61 0.71 0.72
2 0.61 0.58 0.59 0.68 0.66
3 0.64 0.60 0.62 0.70 0.71
4 0.63 0.57 0.59 0.75 0.87

Table 2: The performances of all combinations of training and validation data sets for the four
distributions shown in Figure 2. The diagonal in red shows the performance, when training and
validation dataset have the same distribution.

and evaluation set follow the same length distribution, as seen in the diagonal entries of the table.
This happens even though all sets are perfectly independent.
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Figure 3: Predicted number of base pairs: Average number of base pairs predicted by model 3
(bullets) and in the ground truth data set (crosses) for 2000 sequence per length bin (30-250).
The blue and orange curves are least-square regression fits of the data points. The ML-model
predicts a wrong quadratic growth (blue curve) for the number of base pairs in contrast to a
correct linear growth (orange line).

To further analyze how predictions change with sequence length we generated a series of
evaluation sets, varying sequence length from 30 to 250 nt. The number of base pairs is expected
to grow linearly with sequence length, since a structure of length n must form less than n/2 pairs.
The ground truth provided by RNAfold perfectly follows the expected behavior. However, for all
three networks the number of base pairs, as measured by the number of entries in the output
matrix > 0.5, grows quadratically. This happens, because the output matrix has n2 entries and
asymptotically, the networks predict a constant fraction of all possible base pairs.

This failure of the network models to reproduce the correct asymptotic behavior exemplifies
that it is much easier to learn local properties than global ones. We therefore compared the
statistics for several additional structural properties between NN predicted structures and the
RNAfold ground truth.

As can be seen in Table 3, the network almost perfectly recapitulates the relative frequency
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Frequency of bases in context
external loop (EL), bulge loop (BL), hairpin loop (HL), internal loop (IL), multi loop (ML), base pairs (bps)
model / length paired EL BL HL IL ML

VRNA / 70 0.508 0.176 0.033 0.156 0.114 0.014
NN / 70 0.445 0.222 0.027 0.161 0.127 0.019

VRNA / 100 0.541 0.123 0.031 0.143 0.126 0.035
NN / 100 0.433 0.185 0.030 0.146 0.152 0.053

Average number of structural element
model / length helix EL BL HL IL ML

VRNA / 70 4.825 0.992 1.112 1.754 1.841 0.118
NN / 70 4.354 0.993 0.840 1.730 1.686 0.098

VRNA / 100 7.132 0.991 1.586 2.314 2.889 0.343
NN / 100 6.146 0.991 1.080 2.135 2.632 0.299

Relative frequency of base pair types)
model / length GC CG AU UA GU UG NC

VRNA / 70 0.257 0.262 0.169 0.170 0.071 0.071 0.00
NN / 70 0.258 0.260 0.170 0.172 0.070 0.070 9.63 · 10−5

VRNA / 100 0.262 0.255 0.173 0.170 0.068 0.071 0.00
NN / 100 0.257 0.252 0.177 0.175 0.068 0.070 2.30 · 10−5

Table 3: Predicted structural features for RNAfold (VRNA) and Model 3 (NN) trained on
sequences of length 70. The test sets consisted of 2000 sequences each of lengths 70 and 100.

of GC vs AU vs GC pairs and essentially never predicts non-canonical pairs. Frequency and
length of hairpin and interior loops are learned quite well. The largest discrepancy is observed
for multi-loops, where the network predicts more nucleotides in multi-loops even though there it
predicts fewer such loops. Indeed the median length of multi-loops at sequence length 100 is 9
for RNAfold and 16 for model 3. , do we observe some deviations, where the network predicts
fewer but on average longer loops. Mulit-loops are, of course, harder to learn since they are rarer
than the other types and also less local.

5 Conclusion

The performance of deep networks is strongly dependent on quantity and quality of the available
training data. This makes it hard to study the capabilities and shortcomings of the networks
independently of the available data. This problem can be avoided if there is a way to generate
synthetic training data that are statistically sufficiently similar to real data. For RNA secondary
structure prediction, algorithms that compute the minimum free energy structure via dynamic
programming can provide such a data source.

While recent RNA secondary structure data sets provide a large number of training sequences,
this comes at the expense of making the data set extremely unbalanced, with more than 95% of
sequences deriving from ribosomal RNAs or tRNAs.

Our experiments show that networks are sensitive to biases in training sets, in that, for
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example, performance suffers when training set and evaluation set follow a different length
distribution. In general, networks trained on synthetic data can reproduce many local features
of RNA structures, such as the prevalence of different types of base pairs and loops, almost
perfectly. At the same time, the networks struggle to correctly reproduce global properties and
scaling behavior, as exemplified by the fact that for all networks the number of predicted base
pairs scales quadratically with sequence length. While this behavior can easily be addressed
during postprocessing, it is not clear whether that would correct or merely hide the underlying
problem.
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Figure S1: Length distribution of the sequences in the bpRNA-1m dataset Version 1 http:

//bprna.cgrb.oregonstate.edu/. The highest peak correspond to tRNAs of a length of about
75 nucleotides (nts). For the plot the dataset was truncated at length 1600 nts (removing 736
sequences longer than 1600 nts).
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Figure S2: Neural network architectures for the sliding window approach. (left) feed forward
neural (FFN) network (right) 1D convolutional neural network (CNN)
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Figure S3: Detailed view of the reimiplemented network architectures of the SPOT-RNA network
[1] refered to as model 0-3. The repeat numbers for the ResNet (in red), the LSTM (in blue) and
the fully connected layers (in green) are listed in table on the bottom right. How the data is fed
into and retreved from the models is shown in the schematic figure on the top right.
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