










Unknown 
System

Or

SpikesTo left

To right

IAC(t)
or
ITD(t)

Cortical 
Potential

System 
Function

0 0.0005 .001
Time (sec)

-1

0

1

0 2.4
Time (sec)

-1

0

1

Figure 4. A depicts how the m-seq is transformed into the extended m-seq by increasing the duration
of each point in the m-seq. This alters the frequency response of the m-seq to be sinc shaped instead of
white, but that is useful in focusing the characterization energy in the range the system of interest is
active. B depicts the paradigm used to obtain system responses. The extended m-seq modulated either
the IAC or ITD of the noise stimulus and the neural measure, either spikes or voltage potentials (EEG),
were cross correlated with the extended m-seq to obtain an estimate of the system response.
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Supplementary Figure 1. The left column contains an example impulse, frequency, and phase
response from a unit with a center frequency (CF) of 602 Hz for IAC and the right column for ITD of a
unit with a CF of 563 Hz.
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Supplementary Figure 3. Results from one participant where the OSCOR was measured with the
noise band-limited to 0.2-1.5 kHz and with white noise. The OSCOR can be detected out to much
higher frequencies with white noise than band-limited noise.

3.5.1 Perceptual limits for detecting binaural modulations

To measure human ability to detect binaural modulations, we used the method of constant stimuli with the

oscillating-correlation (OSCOR) stimulus. The OSCOR stimulus consists of noise tokens with sinusoidally

varying IAC, and has been used previously in both behavioral and physiological studies (Grantham, 1982;

Joris et al., 2006; Siveke et al., 2008). Each trial was 3-interval 3-alternatives-forced-choice with the target

interval containing the OSCOR stimulus and the other two intervals containing interaurally uncorrelated

noise (IAC =0). We evaluated performance at octave frequencies between 5-320 Hz with 20 trials at each

frequency. The OSCOR stimulus was band-limited between 0.2 – 1.5 kHz because of data suggesting

fine-structure-based binaural cues may not be useful beyond 1.5 kHz (Brughera et al., 2013). However,

we repeated this experiment in one subject with white noise due to physiological data indicating cells

with higher center frequencies can encode the fast OSCORs (Joris et al., 2006). Indeed, one possibility

is that fine-structure-based binaural cues may be detected for higher (beyond 1.5 kHz) carriers but that

these cues don’t inform spatial perception. The results of the measurement in the one participant with

OSCOR applied to bandlimited (0.2-1.5 kHz) and to white noise (extending up to half the sampling rate)

are shown in Supplementary Fig. 3.
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3.5.2 Limits for perceiving dynamic space

Several studies have anecdotally reported that with the OSCOR stimulus and other dynamic binaural

stimuli, the perception of the stimulus appears to change from a spatialized image (i.e., moving in space) to

a flutter around 6-10 Hz (Grantham and Wightman, 1978; Siveke et al., 2008; Zuk and Delgutte, 2017). We

hypothesized that this switch would align with cortical temporal coding limits. Accordingly, we formally

measured this switch in 1 participants using the method of limits with the OSCOR stimulus. There were

10 ascending and descending trials that started randomly between 3-6 Hz or 16-19 Hz respectively. The

participant pushed a button indicating whether the perception of the stimulus had changed or not (either

spatial to flutter or flutter to spatial) in each trial. If the perception had not changed, the frequency was

increased (ascending trials) or decreased (descending trials) by 1 Hz until the change was noted.

3.5.3 Perceptual dynamics of spatial unmasking & comparison to physiology

The third behavioral task probed dynamic binaural unmasking, and was based on a previously published

paradigm (Culling and Summerfield, 1998). In this task the noise is uncorrelated (IAC =0) except for

a window of time in the middle of the stimulus where the noise becomes completely correlated (IAC

=1), see Fig.3 C. While the noise is completely correlated, an anti-correlated (IAC = -1) 850 Hz tone,

20 ms in duration, is played coincidentally with correlated noise. The difference in IAC between the

tone and the noise (i.e., the “N0Sπ” configuration of the mixture) can be used to improve detection of

the tone, i.e. a spatial unmasking effect. We varied the duration of the completely correlated period of

the noise and measured detection thresholds for the tone using an adaptive 2-up-1-down paradigm. The

window durations we evaluated were 0, 50, 75, 100, 125, 150, 200, 400, 800, and 1600 ms. Culling and

Summerfield (1998) used this task to estimate what the underlying binaural temporal analysis window

by comparing the unmasking function (dB masking release vs. window duration function) with levels

of unmasking that different window shapes would predict. Here, we measured the binaural temporal

window physiologically using EEG. Thus, instead of fitting arbitrary window shapes, we analyze how well

the physiologically measured temporal window, the sBTRF, quantitatively explains the entire behaviorally

measured unmasking function. This was done in two steps. First, the sBTRF (normalized and shifted

to sum to 1 and take non-negative values) was convolved with the background noise, and the maximum

“internal” IAC of the noise is estimated in the window of overlap with the tone. Then a binaural masking
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level difference (BMLD), or detection improvement relative to a window duration of 0 is estimated from

the known relationship between static IAC and BMLD (van der Heijden and Trahiotis, 1997), which is

is captured in Equation 1 below. van der Heijden and Trahiotis (1997) found that this equation could

account for 98% of the variance of behavioral BMLD data from Robinson and Jeffress (1963). Here, TNo

is the mean threshold at the largest window size (1600 ms) and TNu is the mean threshold with no window

present.

BMLD = −10 log10

[
(1 − IAC) + (IAC)

TNo

TNu

]
(1)

3.5.4 FM phase difference detection using web-based psychoacoustics

In response to the COVID19 pandemic, we developed and validated a web-based platform for conducting

suprathreshold psychoacoustics experiments (Mok et al., 2021). We recruited 14 participants from Prolific

in the 18-55 year age range. Each participant passed a headphone-use screening test, and a screening for

normal hearing based on a suprathreshold speech-in-babble paradigm (Mok et al., 2021) before partici-

pating in the main FM experiment. One of the authors also completed the task, yielding a total of 15

total participants.

In the main task, participants were instructed to detect the difference between two frequency mod-

ulations at a given modulation rate, but applied to spectrally distant carriers. One carrier was always

between 500-750 Hz, and the other carrier was chosen to be two octaves higher than the first. The mod-

ulation depth of the FM was 10% of the carrier frequency. The FM rates we evaluated were 4,8,16,32,

and 64 Hz and the phase difference between the FMs were 30, 60, 90, or 180 degrees. An example of the

FM phase difference detection stimulus is shown in Fig. 4. The stimulus duration was 1.5 seconds and

had a sampling rate of 44,100 Hz. To eliminate potential onset effects in detecting the phase difference

between the two FMs a discrete prolate-spheroidal sequence (DPSS) window was used to apply a 125 ms

ramp, and the starting phase of the FMs in each interval was randomized. Each trial was organized in

a 3-interval 3-AFC format, with non-target stimulus intervals containing in-phase FMs and the target

interval containing the FMs with a phase difference. Mean and standard error parameters for detection

accuracy were estimated using the median, and the median absolute deviation, respectively.
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Supplementary Figure 4. An example of the FM phase-difference-detection stimulus. In this
example, the carriers are at 0.5 and 2 kHz, and the FM rate is 8 Hz with a phase difference of 180
degrees.
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