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Abstract  
 Human organ-on-a-chip (Organ-Chip) technology has the potential to disrupt preclinical drug 
discovery and improve success in drug development pipelines as it can recapitulate organ-level 
pathophysiology and clinical responses. The Innovation and Quality (IQ) consortium formed by multiple 
pharmaceutical and biotechnology companies to confront this challenge has published guidelines that 
define criteria for qualifying preclinical models, however, systematic and quantitative evaluation of the 
predictive value of Organ-Chips has not yet been reported. Here, 870 Liver-Chips were analyzed to 
determine their ability to predict drug-induced liver injury (DILI) caused by small molecules identified as 
benchmarks by the IQ consortium. The Liver-Chip met the qualification guidelines across a blinded set of 
27 known hepatotoxic and non-toxic drugs with a sensitivity of 87% and a specificity of 100%. A 
computational economic value analysis suggests that with this performance the Liver-Chip could generate 
$3 billion annually for the pharmaceutical industry due to increased R&D productivity.  
 
Introduction 
 Despite billion-dollar investments in 
research and development, the process of 
approving new drugs remains lengthy and costly 
due to high attrition rates1,2,3. Failure is common 
because the models used preclinically—which 

include computational, traditional cell culture, 
and animal models—have limited predictive 
validity4. The resulting damage to productivity in 
the pharmaceutical industry causes concern 
across a broad community of drug developers, 
investors, payers, regulators, and patients, the last 
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of whom desperately need access to medicines 
with proven efficacy and improved safety 
profiles. Approximately 75% of the cost in 
research and development is the cost of failure5—
that is, money spent on projects in which the 
candidate drug was deemed efficacious and safe 
by early testing but was later revealed to be 
ineffective or unsafe in human clinical trials. 
Pharmaceutical companies are addressing this 
challenge by learning from drugs that failed and 
devising frameworks to unite research and 
development organizations to enhance the 
probability of clinical success6,7,8,9. One of the 
major goals of this effort is to develop preclinical 
models that could enable a “fail early, fail fast” 
approach, which would result in candidate drugs 
with greater probability of clinical success, 
improved patient safety, lower cost, and a faster 
time to market.   
 There are significant practical challenges 
in ascertaining the predictive validity of new 
preclinical models, as there is a broad diversity of 
chemistries and mechanisms of action or toxicity 
to consider, as well as significant time needed to 
confirm the model’s predictions once tested in the 
clinic.  Consequently, arguments for the adoption 
of these new models are often based on features 
that are presumed to correlate with human 
responses to pharmacological interventions—
realistic histology, similar genetics, or the use of 
patient-derived tissues. But even here there is a 
common problem in much of the academic 
literature: the important model features are 
chosen post-hoc by the authors and not 
prospectively by an independent third party that 
has expertise in the therapeutic problem at hand10. 
 The Innovation and Quality (IQ) 
consortium is a collaboration of pharmaceutical 
and biotechnology companies that aims to 
advance science and technology to enhance drug 
discovery programs. To further this goal, the 
consortium has described a series of performance 
criteria that a new preclinical model must meet to 
become qualified. Within this consortium is an 

affiliate dedicated to microphysiological systems 
(MPS), which include organ-on-a-chip (Organ-
Chip) technology that employs microfluidic 
engineering to recapitulate in vivo cell and tissue 
microenvironments in an organ-specific 
context11,12. This is achieved by recreating tissue-
tissue interfaces and providing fine control over 
fluid flow and mechanical forces13,14, optionally 
including supporting interactions with immune 
cells15 and microbiome16, and reproducing 
clinical drug exposure profiles17. Recognizing the 
promise of MPS for drug research and 
development, the IQ MPS affiliate has provided 
guidelines for qualifying new models for specific 
contexts of use to help advance regulatory 
acceptance and broader industrial adoption18; 
however, to this date, there have been no 
publications describing studies that carry out this 
type of performance validation for any specific 
context of use or that demonstrate an MPS 
capable of meeting these IQ consortium 
performance goals. 
 Guided by the IQ MPS affiliate’s 
roadmap on liver MPS19, which states that in vitro 
models for predicting drug-induced liver injury 
(DILI) that meet its guidelines are more likely to 
exhibit higher predictive validity than those that 
do not, we rigorously assessed commercially 
available human Liver-Chips (from Emulate, 
Inc.) within the context of use of DILI prediction. 
In this study, we tested 870 Liver-Chips using a 
blinded set of 27 different drugs with known 
hepatotoxic or non-toxic behavior recommended 
by the IQ consortium (Table 1). We compared the 
results to the historical performance of animal 
models as well as 3D spheroid cultures of primary 
human hepatocytes, which are preclinical models 
that are frequently employed in this context of use 
in the pharmaceutical industry20. In addition, we 
analyzed the Liver-Chip results from an 
economic perspective by estimating the financial 
value they could offer through their use in 
preclinical development in supporting toxicity-
related decisions. We conclude with  
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recommendations on how this type of platform 
might be implemented in pharmaceutical industry 
screening programs.    
 
Results 
Liver-Chip satisfies IQ MPS affiliate guidelines  
 The IQ guidelines for assessment of an in 
vitro liver MPS within the DILI prediction 
context of use requires evidence that the model 
replicates key histological structures and 
functions of the liver; furthermore, the model 
must be able to distinguish between 7 pairs of 
small molecule toxic drugs and their non-toxic 

structural analogs. If the model passes through 
these hurdles, it must demonstrate its ability to 
predict the clinical responses of 6 additional 
selected drugs.   

The Liver-Chips that we evaluated 
against these standards contain two parallel 
microfluidic channels separated by a porous 
membrane. Following the manufacturer’s 
instructions, primary human hepatocytes are 
cultured between two layers of extracellular 
matrix (ECM) in the upper ‘parenchymal’ 
channel, while primary human liver sinusoidal 
endothelial cells (LSECs), Kupffer cells, and 
stellate cells are placed in the lower ‘vascular’ 

 
 

Table 1. Small Molecule Drug Compounds used in the Liver-Chip evaluation. The 27 small molecule drugs are 
listed according to the IQ MPS affiliate classification and their ranking in the Garside DILI severity category, where 
1 corresponds to drugs with severe clinical DILI and 5 to those with no DILI26,42. Structurally related toxic and non-
toxic pairs are indicated as well using bold, italic text. 

 

Drug IQ MPS List Tested in 
Spheroid

Spheroid 
False 
Negative

Garside DILI Rank

Ambrisentan Yes, matched with Sitaxsentan Yes No 5
Asunaprevir Yes, no matched pair No No 2
Benoxaprofen No Yes Yes 1
Beta-Estradiol No Yes Yes 3
Buspirone Yes, matched with Nefazodone Yes No 4
Chlorpheniramine No Yes Yes 3
Clozapine Yes, matched with Olanzapine Yes No 2
Diclofenac Yes, no matched pair Yes No 2
Entacapone Yes, matched with Tolcapone Yes No 4
Fialuridine Yes, matched with FIRU Yes No 1
FIRU Yes, matched with Fialuridine No No 5
Labetalol No Yes Yes 1
Levofloxacin Yes, matched with Trovafloxacin Yes Yes 2
Lomitapide No, Mipomersen substitute No No 3
Nefazodone Yes, matched with Buspirone Yes No 1
Olanzapine Yes, matched with Clozapine No No 5
Pioglitazone Yes, matched with Troglitazone Yes Yes 3
Simvastatin No Yes Yes 2
Sitaxsentan Yes, matched with Ambrisentan Yes No 1
Stavudine No Yes Yes 1
Tacrine No Yes Yes 2
Telithromycin Yes, no matched pair No No 1
Tolcapone Yes, matched with Entacapone Yes No 1
Troglitazone Yes, matched with Pioglitazone Yes No 1
Trovafloxacin Yes, matched with Levofloxacin Yes No 1
Ximelagatran No Yes Yes 1
Zileuton Yes, no matched pair Yes Yes 2
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channel in ratios that approximate those observed 
in vivo (Figure 1). All cells passed quality control 
criteria that included post-thaw viability >90%, 
low passage number (preferably P3 or less), and 
expression of cell-specific markers. Similar 
results were obtained using hepatocytes from 
three different human donors, which were 
procured from the same commercial vendor 
(Supplementary Table S1).   

 
Live microscopy of the Liver-Chips revealed a 
continuous monolayer of hepatocytes displaying 
cuboidal and binucleated morphology in the 
upper ‘parenchymal’ channel of the chips, as well 
as a monolayer of polygonal shaped LSECs in the 
bottom ‘vascular’ channel, on the opposite side of 
the porous membrane (Figure 2a). Confocal 
fluorescence microscopy also confirmed liver-
specific morphological structures as indicated by 
the presence of differentiation markers, including 
bile canaliculi containing a polarized distribution 
of F-actin and multidrug resistance-associated 
protein 2 (MRP2; Figure 2b), hepatocytes rich 

with mitochondrial membrane ATP synthase beta 
subunit (ATPB; Figure 2b), PECAM-1 (CD31) 
expressing LSECs, CD68+ Kupffer cells, 
and desmin-containing stellate cells (Figure 2c). 
In addition, transmission electron microscopy 
confirmed the existence of similar cell-cell 
relationships and structures to those found in 
human liver, including well developed junction-
lined bile canaliculi and adhesions between 
Kupffer cells and sinusoidal endothelial cells 
(Supplementary Figure S1).  
 Albumin and urea production are widely 
accepted as functional markers for cultured 
hepatocytes with the goal of reaching computed 
production levels observed in human liver in vivo 
(~ 20-105 µg and 56-159 µg per 106 hepatocytes 
per day, respectively)19,21. Liver-Chips fabricated 
with cells from three different hepatocyte donors 
were able to maintain physiologically relevant 
levels of albumin and urea synthesis over 1 week 
in culture (Figure 2d and 2e). Importantly, in line 
with the IQ MPS guidelines, the coefficient of 
variation for the mean daily production rate of 
urea was always below 5% in all donors on day 1 
but increased to 20% on day 7; however, it was 
higher for albumin production across all donors 
on day 1 but was between 14 to 27% by day 7. 
These data corroborate the reproducibility and 
robustness of the Liver-Chip across experiments 
and highlight variability across donors that is not 
unlike the variability observed in humans. In fact, 
it is important to be able to analyze and 
understand donor-to-donor variability when 
evaluating cell-based platforms for the prediction 
of clinical outcome22 or when a drug moves into 
clinical studies. 
 Because hepatocytes maintained in 
conventional static cultures rapidly reduce 
transcription of relevant liver-specific genes23, 
the IQ MPS guidelines require confirmation that 
the genes representing major Phase I and II 
metabolizing enzymes, as well as uptake and 
efflux drug transporters, are expressed and that 
their levels of expression are stable. On days 3  

 

 
 
Figure 1. Schematic of the Liver-Chip showing 
primary human hepatocytes (3) that are sandwiched 
within an extracellular matrix (2) on a porous 
membrane (4) within the upper parenchymal channel 
(1), while human liver sinusoidal endothelial cells (7), 
Kupffer cells (6), and stellate cells (5) are cultured on 
the opposite side of the membrane in the lower vascular 
channel (8). 
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Figure 2.  Recapitulation of human liver structure and function in the Liver-Chip.  
a) Representative phase contrast microscopic images of hepatocytes in the upper channel of Liver-Chip (left) and 
non-parenchymal cells in the lower vascular channel (right); the regular array of circles are the pores in the 
membrane in the right image. b) Representative immunofluorescence microscopic images showing the phalloidin 
stained actin cytoskeleton (green) and ATPB containing mitochondria (magenta) (left), MRP2-containing bile 
canaliculi (red) (right). c) CD31-stained liver sinusoidal endothelial cells (green) and desmin-containing stellate cells 
(magenta) (left), and CD68+ Kupffer cells (green; right) co-localized with desmin-containing stellate cells (magenta; 
right). All images in b) and c) show DAPI-stained nuclei (blue) (bar, 100 µm; inset is shown at 5 times higher 
magnification). d) Albumin and e) urea levels in the effluent from the upper channels of vehicle-treated Liver-Chips 
created with cells from 3 different donors (light and dark grey bars represent donor one and two respectively, white 
bars represent donor three) on days 1, 3 and 7 post-vehicle administration, measured by ELISA. Data are presented 
as mean + standard error of the mean (S.E.M.) with N = 29 to 46 and N = 7 to 18 chips for albumin and urea 
respectively across all days and donors. f) Levels of key liver-specific genes in control Liver-Chips as determined 
by RNA-seq analysis on days 3 (light grey) and 7 (dark grey) post-vehicle administration with donor two in the 
upper panel and donor three in the lower panel. Data are presented as Log2 (fold change) of the TPM (Transcript 
Per Million) expression relative to freshly thawed hepatocytes with N = 4 chips; statistical significance of values 
between day 3 and 7 was determined using a paired t-test; *, p<0.05, **, p <0.01. 
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and 7 post-vehicle administration, compared to 
freshly thawed hepatocytes, we detected high 
levels of expression in both donors for 13 of the 
17 genes requested by IQ MPS, confirming that 
the chip provides a suitable microenvironment to 
maintain hepatocytes. Gene expression was 
significantly lower on day 7 compared to day 3 
for CYP2D6, CYP2C8, CYP2E1 and MRP2 in 
donor two and only for MRP2 in donor 3 (Figure 
2f). Gene expression levels were lower than 
freshly thawed hepatocytes for genes encoding 
OATP1B3, GSTA1, CYP2E1 and CYP2D6, a 
profile reflected in two donors. Moreover, the 
demonstration that CY2C9 and CYP3A4 gene 
expression is maintained above freshly thawed 
hepatocytes for 7 days post-vehicle or drug 
administration is encouraging as together the 
CYP2C and CYP3A families make up 50% of the 
total CYP population75. CYP3A4 is also the 
major enzyme that metabolizes many marketed 
drugs. Previously, the same Liver-Chip has been 
shown to exhibit Phase I and II functional 
activities that are comparable to freshly isolated 
human hepatocytes and 3D hepatic spheroids21,25 
as well as superior activity relative to hepatocytes 
in a 2D sandwich-assay plate configuration21. 
Taken together, these data support the notion that 
the Liver-Chip provides a good 
microenvironment for hepatocytes to maintain 
functionality.    
 As these data confirmed that the Liver-
Chip meets the major structural characterization 
and basic functionality requirements stipulated 
by the IQ MPS guidelines, we then carried out 
studies to evaluate this human model as a tool for 
DILI prediction. IQ MPS identified 7 pairs of 
small-molecule drugs where one drug has been 
reported to produce DILI in clinical studies and 
their structural analog was inactive or exhibited a 
lower activity and did not produce clinical DILI 
(Table 1). Past work in the MPS field has focused 
on technically accessible endpoints that can be 
easily measured but are unfortunately not 
clinically relevant or translatable (e.g., IC50 for 

reduction in total ATP content)26,27. Furthermore, 
although cytotoxicity measures are fundamental 
in the assessment of a drug’s potential for 
hepatotoxicity in vitro 28,29, gene expression and 
various phenotypic changes can occur at much 
lower concentrations30,31. As the Liver-Chip 
enables multiple measures of drug effects and use 
of multiple measures may provide further 
sensitivity and add value32, we assessed drug 
toxicities on days 1, 3 and 7 post-drug or vehicle 
administration by quantifying both inhibition of 
albumin production as a general measure of 
hepatocellular functionality and increases in 
release of alanine aminotransferase (ALT) 
protein, which is used clinically as a measure of 
liver damage. We also scored hepatocyte injury 
using morphological analysis at 1, 3, and 7 days 
after drug or vehicle exposure, where higher 
injury scores indicated greater cellular injury. 

We tested the 7 toxic drugs across 8 
concentrations that bracket the human plasma 
Cmax for each drug based on free (non-protein 
bound) drug concentrations, with the highest 
concentrations at 300x Cmax (unless not permitted 
by solubility limits as was found for levofloxacin) 
to represent clinically relevant test concentrations 
for in vitro models33 (Supplementary Table S2). 
The known toxic compounds showed clear 
concentration- and time-dependent patterns that 
varied depending on compound. Typically, when 
albumin production was inhibited, morphological 
injury scores and ALT levels also increased, but 
we found that a decrease of albumin production 
was the most sensitive marker of hepatocyte 
toxicity in the Liver-Chip, as shown in sample 
paired comparisons of clozapine and olanzapine, 
troglitazone and pioglitazone, and trovafloxacin 
and levofloxacin (Figure 3a). Importantly, all 7 of 
the toxic drugs reduced albumin production or 
resulted in an increase in ALT protein or injury 
morphology scores at lower multiples of the free 
human Cmax compared to each of their non-toxic 
comparators, a finding that was repeated across 3 
donors (Table 2).  Furthermore, 
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immunofluorescence microscopic imaging for 
markers of apoptotic cell death (caspase 3/7) and 
mitochondrial injury measured by visualizing 
reduction of tetramethylrhodamine methyl ester 
(TMRM) accumulation (Figure 3b) provided 
confirmation of toxicity and, in many cases, 
provided some insight into the potential 
mechanism of toxicity. For example, the third-
generation anti-infective trovafloxacin is 
believed to have an inflammatory component to 
its toxicity, potentially mediated by Kupffer cells, 
but this is only seen in animal models if an 
inflammatory stimulant such as 
lipopolysaccharide (LPS) is co-administered34. 
Interestingly, immunofluorescence microscopic 
imaging of the Liver-Chip revealed that there was 
a concentration-dependent increase in caspase 
3/7 staining following trovafloxacin treatment 
(Figure 3b, top panel); this supports a potential 
apoptotic component to its toxicity. Of note, 
levofloxacin, the lesser toxic structural analog, 
did not cause cellular apoptosis and trovafloxacin 

caused it without an inflammatory stimulant. The 
role of an activated immune system is considered 
to contribute to idiosyncratic DILI where a 
reactive metabolite forms an adduct that behaves 
like a hapten to activate the adaptive immune 
system77 or directly activates innate immune cells 
(e.g., Kupffer cell) to increase inflammatory 
cytokine production such as TNFa76.  To assess 
whether trovafloxacin was able to activate 
Kupffer cells in the absence of an inflammatory 
stimulant we measured IL-6 and TNFa in top 
channel effluent of Liver-Chips from each of the 
three donors. We were unable to see any 
concentration-dependent increase in cytokine 
production (data not shown) suggesting that an 
additional inflammatory stimulus may be 
required, which in turn will likely exacerbate the 
toxicity of trovafloxacin.    
 Together, these data support the Liver-
Chip’s value as a predictor of drug-induced 
toxicity in the human liver and demonstrate that 
this experimental system meets the basic IQ MPS 

 
 
Table 2. Data for the matched pair analysis proposed by IQ MPS guidelines. Data from donors one, two and 
three are presented in terms of multiples of the unbound human Cmax for each drug, to ease comparison within 
each pair. Included is the concentration causing a 50% reduction in albumin production, or the lowest concentration 
causing an increase in ALT protein or cellular morphology score. The dash indicates that the drug was not tested 
in donor 2 or 3. Apoptosis was defined as a concentration-dependent increase in caspase 3/7 staining, mitotoxicity 
was defined as a concentration-dependent reduction in TMRM staining and steatosis reflects an increase in 
Adipored staining. Representative images are contained in Supplementary Figure S3. 

Drug Albumin IC50 ALT Morphology IF imaging
Donor 

1
Donor 

2
Donor 

3
Donor 

1
Donor 

2
Donor 

3
Donor 

1
Donor 

2
Donor 

3
Donor 

1
Donor 

2
Donor

3

Clozapine 33 91 67 300 > 300 100 100 100 100 Apoptosis Apoptosis Apoptosis

Olanzapine > 300 > 300 > 300 > 300 > 300 > 300 > 300 > 300 > 300 Apoptosis No findings No findings

Fialuridine < 0.1 < 1 - > 300 > 300 - > 300 > 300 - No findings Steatosis -

FIRU > 300 > 300 - > 300 > 300 - > 300 > 300 - No findings Steatosis -

Nefazodone 140 - - 300 - - 300 - - No findings - -

Buspirone 282 - - > 300 - - > 300 - - Apoptosis - -

Sitaxsentan 4.4 164 > 100 300 300 100 100 100 100 Mitotoxicity Mitotoxicity Mitotoxicity

Ambrisentan > 300 > 1000 > 300 > 300 > 1000 > 300 > 300 > 1000 > 300 No findings No findings No findings

Tolcapone 3 39 - 100 30 - 10 100 - Mitotoxicity Mitotoxicity -

Entacapone > 300 - - > 300 - - > 300 - - No findings - -

Troglitazone 24 122 - 300 300 - 300 300 - Apoptosis Apoptosis -

Pioglitazone 277 > 300 - > 300 > 300 - > 300 > 300 - Apoptosis No findings -

Trovafloxacin 82 78 31 100 100 30 100 100 30 Apoptosis Apoptosis Apoptosis

Levofloxacin > 15 > 45 > 45 > 15 > 45 > 45 > 15 > 45 > 45 No findings No findings No findings
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criteria for preclinical model functionality. 
However, in addition to the seven matched pairs, 
the IQ MPS guidelines require that an effective 
human MPS DILI model can predict liver 
responses to six additional small-molecule drugs 
associated with clinical DILI. We only analyzed 
the effects of five of these drugs (diclofenac, 
asunaprevir, telithromycin, zileuton, and 
lomitapide) because the reported mechanism of 
toxicity of one of them (pemoline) is immune-
mediated hypersensitivity35, and this would 
potentially require a more complex configuration 
of the Liver-Chip containing additional immune 
cells. We also were unable to obtain one of the 
uggested drugs, mipomersen, from any 
commercial vendor; however, we tested 
lomitapide as an alternate, as both produce 
steatosis by altering triglyceride export, and 
lomitapide is known to induce elevated ALT 
levels36. 
 Results obtained with these drugs are 
presented in Table 3, with toxicity values 
indicating the lowest concentration at which 
toxicity was detected. Lomitapide was highly 
toxic when tested over all included 
concentrations down to 0.1x human plasma Cmax, 

with all Liver-Chips showing signs of toxicity 
following five days of dosing. While 
telithromycin displayed a decrease in albumin 
along with a concomitant increase in ALT and 
morphological injury score, diclofenac and 
asunaprevir induced concentration and time-
dependent changes in albumin and injury scores, 
but no elevation of ALT was seen with these 
drugs. Hepatotoxicity was also confirmed with 
immunofluorescence microscopy, which 
revealed apoptosis-mediated cell death following 
exposure to diclofenac, asunaprevir, or 
telithromycin. However, the Liver-Chip was 
unable to detect hepatotoxicity caused by 
zileuton, a treatment intended for asthma. The 
exact mechanism of toxicity of zileuton is 
unknown, but it likely involves production of 
intermediate reactive metabolites due to 
oxidative metabolism by the cytochrome P450 
isoenzymes 1A2, 2C9, and 3A437. Although 
zileuton is >93% plasma protein bound38, we do 
not believe this was responsible for the lack of 
toxicological effect, as we were able to detect 
toxicities induced by other highly protein-bound 
drugs in the test set. 
 

 

 
 
Table 3. Results obtained with the expanded drug list. Data are presented as the lowest unbound human Cmax 
multiplier causing a 50% reduction in albumin production, or the lowest concentration causing an increase in ALT 
release or morphology score.  The dash indicates that the drug was not tested in donor 2. Apoptosis was defined as 
a concentration-dependent increase in caspase 3/7 staining and mitotoxicity was defined as a concentration-
dependent reduction in TMRM staining. Representative images are contained in Supplementary Figure S3. 

Drug Albumin IC50 ALT Morphology IF imaging
Donor 1 Donor 2 Donor 1 Donor 2 Donor 1 Donor 2 Donor 1 Donor 2

Asunaprevir 190 - > 1000 - 1000 - Apoptosis -
Benoxaprofen 8 20 > 100 100 < 0.1 100 Apoptosis Apoptosis
Beta-Estradiol > 300 - > 300 - > 300 - No findings -
Chlorpheniramine > 300 - > 300 - > 300 - Apoptosis -

Diclofenac 384 - > 1000 - 1000 - Apoptosis -
Labetalol 26 40 > 100 100 > 100 100 Apoptosis Apoptosis
Lomitapide 4 - > 1000 - < 0.1 - No findings -
Simvastatin < 0.1 < 10 > 300 > 300 > 300 >300 No findings Apoptosis
Stavudine >60 132 300 > 300 300 300 No findings Mitotoxicity
Tacrine 76 > 25 > 300 > 1000 > 300 > 1000 Apoptosis Apoptosis
Telithromycin 13 - 30 - 100 - Apoptosis -
Ximelagatran 32 > 300 30 > 300 100 300 No findings No findings
Zileuton > 100 210 > 100 > 300 > 100 > 300 No findings No findings
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Improved sensitivity for DILI prediction 
compared to spheroids and animal models  

After fulfilling the major criteria of the 
IQ MPS affiliate guidelines, we considered the 
Liver-Chip to be qualified as a suitable tool to 
predict DILI during preclinical drug 

development. However, we wished to also 
quantify the performance of the Liver-Chip in the 
predictive toxicology context. To do so, we 
expanded the drug test to include eight additional 
drugs (benoxaprofen, beta-estradiol, 
chlorpheniramine, labetalol, simvastatin, 

 
Figure 3. Detection of drug concentration-dependent toxicity and liver injury. a) Albumin (left), ALT 
(middle) and morphological injury score (right) for known non-toxic drugs (open circles) and their closely related 
toxic partner compounds (open circles) measured on day 3. Clozapine and olanzapine are shown at the top, 
troglitazone and pioglitazone below, and trovafloxacin and levofloxacin in the bottom row. b) 
Immunofluorescence microscopic images showing concentration-dependent increases in caspase 3/7 staining 
(green) indicative of apoptosis after treatment with trovafloxacin at 0,1,10, and 100 times the unbound human 
Cmax for 7 days (top). The bottom panel shows a concentration-dependent decrease in TMRM staining (yellow) 
indicative of mitotoxicity in response to treatment with sitaxsentan under similar conditions.  
 

a

b
Dose (Cmax):        0 1x 10x 100x
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stavudine, tacrine, and ximelagatran) that were 
found to induce liver toxicity clinically, despite 
having gone through standard preclinical 
toxicology packages involving animal models 
prior to first-in-human administration. 
Importantly, the toxicities of these 8 drugs have 
been shown to be poorly predicted by hepatic 
spheroids26,27. 

We proceeded to quantify any observed 
toxicity across the combined and blinded 27-drug 
set as a margin of safety (MOS)-like figure by 
taking the ratio of the minimum toxic 
concentration observed to the clinical Cmax. We 
obtained the minimum toxic concentration by 

taking the lowest concentration identified by each 
of the primary endpoints—i.e., IC50 values for the 
decrease in albumin production, the lowest 
concentration at which we observed an increase 
in ALT protein, and the lowest concentration at 
which we observed injury via morphology 
scoring (Table 4). Minimum toxic concentrations 
generally corresponded to day seven values, 
although day three values were occasionally 
lower. We then compared the MOS-like figures 
against a threshold value of 50 to categorize each 
compound as toxic or non-toxic, as previously 
reported for 3D hepatic spheroids, which used a 
similar threshold26. Analyzed in this manner, we 

 

 
 
Table 4. Calculation of Margin of Safety (MOS)-Like Figures. The analysis was carried out as described 
previously26, that is, the free IC50 concentration of the drug tested in the assay divided by the total concentration 
of drug in human plasma at Cmax. 

Drug Chip MOS
Donor 1

Chip MOS 
Donor 2

Chip MOS
Both Donors

Spheroid 
MOS

Ambrisentan > 3 > 10 > 10 > 127
Asunaprevir 4 - - -
Benoxaprofen 0.001 0.3 0.001 > 0.7
Beta-Estradiol > 5 - - 22500
Buspirone > 15 - - 16300
Chlorpheniramine > 200 - - 2141
Clozapine 1.8 5 1.8 14.5
Diclofenac 1.8 - - 6.1
Entacapone > 6 - - 46.5
Fialuridine 0.1 2.8 0.1 12.3
FIRU > 108 > 108 > 108 -
Labetalol 26 22 22 0.41
Levofloxacin > 11.3 > 33.7 > 33.7 > 20
Lomitapide 0 - - -
Nefazodone 1.4 - - 6.8
Olanzapine > 20 > 2 > 20 -
Pioglitazone 2.8 > 2.8 2.8 > 5.3
Simvastatin 17 45 17 460
Sitaxsentan 0.04 1.6 0.04 8.7
Stavudine 247 107 107 > 144
Tacrine > 12 > 12 > 12 696
Telithromycin 6 - - -
Tolcapone 0.004 0.05 0.004 0.3
Troglitazone 0.03 0.1 0.03 2.3
Trovafloxacin 20 19 19 > 24.9
Ximelagatran 30 300 30 335
Zileuton > 7 15 15 > 7.7
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found that, in addition to the drugs assessed as 
part of the IQ MPS-related analysis, the Liver-
Chip correctly determined labetalol and 
benoxaprofen to be hepatotoxic, a response that 
was consistent across donors one and two and 
was indicated primarily by a reduction in albumin 
production. However, we found that simvastatin 
and ximelagatran were only toxic in one of the 
donors tested, again showing the importance of 
including multiple donors during the risk 
assessment process. Overall, the Liver-Chip 
correctly predicted toxicity in 12 out of 15 toxic 
drugs that were tested using two donors, yielding 
a sensitivity of 80% on this drug set. This was 
almost double the sensitivity of 3D hepatic 
spheroids for the same drug set (42%) based on 
previously published data26,39,40, a preclinical 
model that is currently widely used in pharma and 
was only able to correctly identify 8 out of the 19 

toxic drugs in the set (Table 5a). Importantly, the 
Liver-Chip also did not falsely mark any drugs as 
toxic (specificity of 100%), whereas the 3D 
hepatic spheroids did (only 67% specificity)26; 
such false positives can significantly limit the 
usefulness of a predictive screening technology 
because of the profound consequences of 
erroneously failing safe and effective 
compounds. Interestingly, the three drugs not 
detected by Liver-Chip—levofloxacin, 
stavudine, and tacrine—were not detected as 
toxic drugs in spheroids either, suggesting that 
the Liver-Chip may subsume the sensitivity of 
spheroids and that their toxicities could involve 
other cells or tissues not present in these models. 
It is important to note that each of the toxic drugs 
tested was historically evaluated using animal 
models, and in each case the considerations and 
thresholds were deemed relevant for that drug to 

 
Figure 4. Economic value model for assessing the financial impact of improved preclinical testing. Illustrated 
is the model’s “base case”, which tracks a representative portfolio of candidate drugs as it progresses and erodes 
through clinical trials, culminating in a single drug approval.  The model bases phase-by-phase attrition rates 
(“attrition during phase”), discovery and preclinical costs, development costs (“cost per candidate”) and cost of 
capital on Paul et al. (2010)5 to compute a portfolio-wide discounted cashflow. In contrast with prior approaches, 
the model tracks the underlying causes of clinical trial failure (safety-related, efficacy-related, and other failures) 
using parameters derived from literature7,9, 46,72, a feature that permits us to determine the composition of the drug 
portfolio in each stage of development in terms of candidates that are safe and effective, safe and ineffective, 
unsafe and effective, and unsafe and ineffective, as illustrated. Improvements in the predictive validity of 
preclinical safety testing can be captured through their impact on the makeup of the portfolio entering Phase I 
clinical trials: better preclinical safety testing reduces the proportion of unsafe drugs that enter the clinic relative 
to the “base case”; the model permits analyzing the impact of such changes on the discounted cashflow and the 
portfolio’s profitability. The model is provided in full in the supplementary materials as a formula-driven 
Microsoft Excel file. 
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have an acceptable therapeutic window and thus 
progress into clinical trials. The ability of the 
Liver-Chip to flag 80% of these drugs for their 
DILI risk at their clinical concentrations 
represents a significant improvement in model 
sensitivity that could drive better decision making 
in preclinical development.  

We examined each of the toxic drugs that 
were missed by the Liver-Chips to identify 
opportunities for future improvement. Using the 
threshold of 50 for determining toxicity, which 
we chose to compare our results to those from a 
past hepatic spheroid study, led to stavudine 
being classified as a false negative. In fact, Liver-
Chips do capture stavudine’s toxicity at a higher 
threshold without introducing false positives, as 
described below. Tacrine is a reversible 
acetylcholinesterase inhibitor that undergoes 
glutathione conjugation by the phase II 
metabolizing enzyme glutathione S-transferase in 
liver. Polymorphisms in this enzyme can impact 
the amount of oxidative DNA damage, and the 
M1 and T1 genetic polymorphisms are associated 
with greater hepatotoxicity41. It is not known if 
either of the two hepatocyte donors used in this 
investigation have these polymorphisms, but the 
Liver-Chip was able to detect increased caspase 
3/7 staining—indicative of apoptosis at the 
highest tested concentrations—although these 
changes were not associated with any release of 
ALT or decline in albumin. Levofloxacin, a 
fluoroquinolone antibiotic, was proposed by the 
IQ MPS affiliate as a lesser hepatotoxin 
compared to its structural analog trovafloxacin, 
but it is classified as high clinical DILI concern 
in Garside’s DILI severity category labeling42. 
Indeed, there are documented reports of 
hepatotoxicity with levofloxacin, but these 
occurred in individuals aged 65 years and 
above,43 and a post-market surveillance report 
documented the incidence of DILI to be less than 
1 in a million people44. It is therefore reasonable 
to assume that the negative findings in both the 

Liver-Chip and spheroids may correctly represent 
clinical outcome. 
 
Accuracy improved by accounting for drug-
protein binding 

When calculating the MOS-like values in 
the preceding section, we followed the published 
methods used for evaluating 3D hepatic 
spheroids26, but these do not consider protein 
binding. Because the fundamental principles of 
drug action dictate that free (unbound) drug 
concentrations drive drug effects, we explored an 
alternative methodology for calculating the 
MOS-like values by accounting for protein 
binding using a previously reported approach31. 
Accordingly, we reanalyzed the findings for the 
27 drugs in our study by accounting for protein 
binding. We compared the free fraction of drug 
concentration dosed in the Liver-Chip employing 
a medium containing 2% fetal bovine serum to 
the free fraction of the plasma Cmax. By 
reanalyzing the Liver-Chip results using this 
approach and setting the threshold value to 375 
(which we selected to maximize sensitivity while 
avoiding false positives), we obtained improved 
chip performance: a true positive rate (sensitivity) 
of 77% and 73% in donors one and two, 
respectively, and a true negative rate (specificity) 
of 100% in both donors (Table 5b). Importantly, 
the sensitivity increased to 87% when including 
the 18 drugs tested in both donors, and this 
enabled detection of stavudine’s toxicity. 
Applying the same analysis to spheroids and 
similarly selecting a threshold to maximize 
sensitivity while maintaining 100% specificity 
yielded a sensitivity of only 47%. Remarkably, 
the Spearman correlation between the two-donor 
Liver-Chip assay and the Garside DILI severity 
scale yielded a value of 0.78 when using the 
protein binding-corrected analysis, whereas it 
was only 0.43 when using the lower threshold. 
Thus, the protein-binding-corrected approach not 
only produces higher sensitivity but also rank-
orders the relative toxicity of drugs in a manner 
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that corresponds better with the DILI severity 
observed in the clinic. This observation supports 
the validity of this analysis approach and its 
superiority over the uncorrected version. In short, 
these results provide further confidence that the 
Liver-Chip is a highly predictive DILI model and 
is superior in this capacity to other currently used 
approaches. 
 
The economic value of more predictive toxicity 
models in preclinical decision making  
 In addition to increasing patient safety, 
better prediction of candidate drug toxicity can 
improve the economics of drug development by 
reducing clinical trial attrition and increasing 
pharma research and development (R&D) 
productivity. We sought to quantify the potential 
economic impact of the Liver-Chip resulting 
from its enhanced predictive validity by 
constructing an economic value model of drug 
development that captures decision quality 
during preclinical development (Figure 4).  We 
describe the structure of this model in the 
Methods section and provide an interactive form 
of the full model in the Supplementary Materials. 
 To estimate the economic impact of 
incorporating the Liver-Chip into preclinical 
research, we observed that DILI currently 
accounts for 13% of clinical trial failures that are 
due to safety concerns46. The present study 
revealed that the Liver-Chip, when used with two 
donors and analyzed with consideration for 
protein binding, provides a sensitivity of 87% 
when applied to compounds that evaded 
traditional safety workflows. Combining these 
figures suggests that using the human Liver-Chip 
to test for DILI risk could lead to 11.3% fewer 
toxic drugs entering clinical trials. We modeled 
this improvement by correspondingly lowering 
the model’s false negative rate (FNR) parameter 
that describes the toxicology testing that occurs 
between preclinical testing and Phase I clinical 
trials. We then computed the net present value 
(NPV) of the new simulated portfolio and 

compared it to the NPV of the base case to 
capture the increase in R&D productivity as 
described in the Methods section. This 
computation resulted in a predicted NPV uplift of 
2.8% (1.9% - 3.1%, CI 95%) due to the 
incorporation of the Liver-Chip in DILI 
prediction (Supplementary Table S2 lists results 
for a broad range of FNR values).  

We next estimated the impact of this 
uplift on the broader small-molecule drug-
development industry by applying it the global 
Pharma investment in R&D, which currently 
approximates $196m per year73 of which around 
56%74 is related to small-molecule drugs. 
Remarkably, the model predicts that utilizing the 
Liver-Chip across all small-molecule drug 
development programs for this single context of 
use could generate the industry around $3 billion 
annually due to increased R&D productivity 
($2.1B - $3.4B, CI 95%). Since the model relies 
on historical attrition rates and costs, we assessed 
the robustness of the above predictions with 
respect to the model’s inputs by performing a 
sensitivity analysis as described in the Methods 
section. This analysis revealed that model outputs 
vary in a near-linear fashion across reasonable 
input parameter sets, thereby retaining the 
qualitative conclusions regardless of parameter 
choices. The details of this analysis and its results 
are included in the model as part of the 
Supplementary Materials. 

The economic model also permits us to 
estimate the financial impact of Organ-Chip 
technology as the predictive validity of additional 
toxicology models is evaluated similarly to our 
work here on the Liver-Chip. We were 
particularly interested in the potential impact of 
four additional Organ-Chips that address the 
remaining top causes of safety failures—
cardiovascular, neurological, immunological, 
dermatological, and gastrointestinal toxicities, 
which together with DILI account for 80% of trial 
failures due to safety concerns46. If we assume 
similar sensitivity for these four additional 
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models as we found for the Liver-Chip (87%), the 
model estimates that Organ-Chip technology 
could generate the industry over $24 billion 
annually through increased R&D productivity. 
These figures present a compelling economic 
incentive for the adoption of Organ-Chip 
technology alongside considerations of patient 
safety and the ethical concerns of animal testing. 
 
Discussion  
 Organ-Chip technology has tremendous 
potential to revolutionize drug discovery and 
development47, and many major pharmaceutical 
companies have already invested in the 
technology, but routine utilization is limited48. 
This may be due to several factors, but the 
overriding fact is either that there has not been an 
end-to-end investigation showing that Organ-
Chips replicate human biological responses in a 
robust and repeatable manner, that its 
performance exceeds that of existing preclinical 
models, or that there is a way to implement the 
technology into routine drug screening projects. 
This investigation directly addressed these three 
concerns. Furthermore, the broader stakeholder 
group—especially budget holders—need 
assurance that there will be a return on investment 
and that such technologies will help reverse the 
pharmaceutical industry’s widely documented 
productivity crisis.   

To counteract the R&D productivity 
crisis49, the pharmaceutical industry is seeking 
physiologically relevant models that can be 
incorporated into the early-stage drug discovery 
programs in which the cost of attrition is lower 
and, ultimately, the quality of drug candidates 
progressing into the clinic will be higher50,51. 
Organ-on-a-chip technology utilizes 
microengineering to develop physiologically 
complex, human-relevant models; therefore, this 
technology should be implemented into programs 
to achieve this goal. To date, there has been no 
systematic evaluation of the validity of Organ-
Chips or any other MPS for DILI prediction 

against criteria designed by a third party of 
experts. To our knowledge, no MPS has been 
evaluated against 27 small-molecule drugs in a 
single study involving three different human 
donors and hundreds of experiments, making this 
study the largest reported evaluation of Organ-
Chip performance. The Liver-Chip has 
demonstrated that it can correctly distinguish 
toxic drugs from their non-toxic structural 
analogs, and, across a blinded set of 27 small 
molecules, has a true positive rate of 87%, a 
specificity of 100%, and a Spearman correlation 
of 0.78 against the Garside DILI severity scale 
when two donors are used, and data are corrected 
for protein binding. Importantly, these data were 
independently verified by two external 
toxicologists. Said differently, the Liver-Chip 
detected nearly 7 out of every 8 drugs that proved 
hepatoxic in clinical use despite having been 
deemed to have an appropriate therapeutic 
window by animal models; the Liver-Chip 
similarly detected 2 out of 4 such drugs that were 
additionally missed by 3D hepatic spheroids. 
Hence, we believe that these findings advocate 
the routine use of the human Liver-Chip in drug 
discovery programs to enhance the probability of 
clinical success while improving patient safety 
(Figure 5). This would be achieved by more-
accurately categorizing risk associated with a 
candidate drug to provide valuable data to 
support a ‘weight-of-evidence’ argument both for 
entry into the clinic as well as for starting dose in 
phase I. Such added evidence could potentially 
remove any safety factor applied because of a 
liver finding in an animal model52,53. In turn, this 
would reduce overall cost and time in the 
preclinical development process.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2021.12.14.472674doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472674
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 A unique feature of this work is the 
demonstration of the throughput capability of 
Organ-Chip technology using automated culture 
instruments, as a total of 870 chips were created 
and analyzed. In terms of establishing effective 
workflows, scientists were placed into three 
teams: the first team prepared the drug solutions 
and supplied them in a blinded manner to the 
second team. The second team seeded, 
maintained, and dosed the Liver-Chips while 
carrying out various morphological, biochemical, 
and genetic analyses at the end of the experiment. 
The third team collected the effluents and 
performed real-time analyses of albumin and 
ALT as well as terminal immunofluorescence 
imaging using an automated confocal microscope 
(Opera Phenix; Perkin Elmer). In this manner, we 
were able to analyze and report the hepatotoxic 
effects of 27 drugs in 870 Liver-Chips that used 
cells from three human donors in a period of 20 
weeks. 

Based on this experience, we believe that 
the Liver-Chip could be employed in the drug 
development pipeline during the lead 
optimization phase where projects have identified 
three-to-five chemical compounds that have the 
potential to become the candidate drug. If data 
emerge showing that a chemical compound 
produces a toxic signal in the Liver-Chip, this will 
indicate to toxicologists that there is a high 
(~87%) probability that the compound would 
similarly cause toxicity in humans. This, in turn, 
would enable scientists to deprioritize these 
compounds from early in vivo toxicology studies 
(such as the maximum tolerated dose/dose range 
finding study) and, consequently, reduce animal 
usage and advance the “fail early, fail fast” 
strategy. Importantly, the absence of false 
positives strengthens the argument that the Liver-
Chips should also be adopted within the early 
discovery phase, as stopping drug candidates that 
are falsely determined to be toxic by less-robust 

 
 

Figure 5. Proposed positioning of the Liver-Chip within a typical pharma pre-clinical workflow. Typically, 
pharma utilizes a series of in vitro tests to guide chemical optimization ahead of animal testing. Promising drug 
candidates then progress to dose-range finding studies ahead of the required studies to enable regulatory approval to 
enter clinical trial. With the data presented in this investigation, Liver-Chip would be best placed in between the in 
vitro tests and dose-range finding animal studies. A drug candidate that did not show toxicity in the Liver-Chip, 
would increase confidence of the scientist that it can pass through animal testing without a liver toxicity flag and 
proceed into the clinic with a lower likelihood of clinical hepatic signals. A drug candidate that did show toxicity in 
the Liver-Chip would encourage scientists to stop and think about the relevance of the toxicity to the therapeutic 
indication and whether there was a potential margin between this finding and the exposure required for clinical 
efficacy. This would continue to increase the confidence that candidate drugs are entering the phase I clinical trial 
process with a greater likelihood of approval and may also reduce animal usage by not conducting dose-range finding 
or regulatory studies. 
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preclinical models could result in good 
therapeutics never reaching patients. 
 Despite these positive findings, it should 
be acknowledged that the current chip material 
(PDMS) used in the construction of the Liver-
Chip may be problematic for a subset of small 
molecules that are prone to non-specific binding. 
Although this study demonstrates that the 
material binding issue does not in practice 
significantly reduce the predictive value of the 
Liver-Chip DILI model, work is currently 
underway to develop chips using materials that 
have a lower binding potential. Until such a chip 
is available, we recommend users assess potential 
PDMS binding using an acellular chip and 
measuring drug in the effluent channel using 
LC/MS to enable adjustment of workflow if 
required. It should also be recognized that many 
pharmaceutical companies have diversified 
portfolios, with only 40 to 50% now being small 
molecules. Consequently, further investigation of 
the Liver-Chip performance against large 
molecules and biologic therapies should be 
carried out. Integration of resident and circulating 
immune cells should add even greater predictive 
capability.  
 Finally, predictive models that 
demonstrate concordance with clinical outcomes 
should provide scientists and corporate 
leadership with greater confidence in decision-
making at major investment milestones. 
Impressively, our economic analysis revealed $3 
billion in improved R&D productivity that could 
be generated by replacing or supplementing 
existing preclinical in vitro models with human 
Liver-Chips for this single context of use (DILI 
prediction). Moreover, an additional productivity 
value of $24 billion could be gained if a similar 
approach is used to develop predictive models for 
the other most common toxicities that result in 
drug attrition. Taken together, these results 
suggest that Organ-Chip technology has great 
potential to benefit drug development, improve 
patient safety, and enhance pharmaceutical 

industry productivity and capital efficiency.  This 
work also provides a starting point for other 
groups that hope to validate their MPS models for 
integration into commercial drug pipelines. 
 
Methods 
Cell Culture  
            Cryopreserved primary human 
hepatocytes, purchased from Gibco (Thermo 
Fisher Scientific), and cryopreserved primary 
human liver sinusoidal endothelial cells (LSECs), 
purchased from Cell Systems, were cultured 
according to their respective vendor/Emulate 
protocols. The LSECs were expanded at a 1:1 
ratio in 10-15 T-75 flasks (Corning) that were 
pre-treated with 5mL of Attachment Factor (Cell 
Systems). Complete LSEC medium includes Cell 
Systems medium with final concentrations of 1% 
Pen/Strep (Sigma), 2% Culture-Boost (Cell 
Systems), and 10% Fetal Bovine Serum (FBS) 
(Sigma). Media was refreshed daily until cells 
were ready for use. Cryopreserved human 
Kupffer cells (Samsara Sciences) and human 
Stellate cells (IXCells) were thawed according to 
their respective vendor/Emulate protocols on the 
day of seeding. See Supplementary Table S1 for 
further information.  
   
Liver Chip Microfabrication and Zoë® 
Culture Module  
            Each chip is made from flexible 
polydimethylsiloxane (PDMS), a transparent 
viscoelastic polymer material. The chip 
compartmental chambers consist of two parallel 
microchannels that are separated by a porous 
membrane containing pores of 7 µm diameter 
spaced 40 µm apart.  
            On Day -6, chips were functionalized 
using Emulate proprietary reagents, ER-1 
(Emulate reagent: 10461) and ER-2 (Emulate 
reagent: 10462), mixed at a concentration of 1 
mg/mL prior to application to the microfluidic 
channels of the chip. The platform is then 
irradiated with high power UV light (peak 
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wavelength: 365nm, intensity: 100 µJ/cm2) for 20 
minutes using a UV oven (CL-1000 Ultraviolet 
Crosslinker AnalytiK-Jena: 95-0228-01). Chips 
were then coated with 100 µg/mL Collagen I 
(Corning) and 25 µg/mL Fibronectin 
(ThermoFisher) in both channels. The top 
channel was seeded with primary human 
hepatocytes on Day -5 at a density of 3.5 x 
106 cells/mL. Complete hepatocyte seeding 
medium contains Williams’ Medium E (Sigma) 
with final concentrations of 1% Pen/Strep 
(Sigma), 1% L-GlutaMAX (Gibco), 1% Insulin-
Transferring-Selenium (Gibco), 0.05 mg/mL 
Ascorbic Acid (Sigma), 1 µM dexamethasone 
(Sigma), and 5% FBS (Sigma). After four hours 
of attachment, the chips were washed by 
gravitational force. Gravity wash consisted of 
gently pipetting 200 µL fresh medium at the top 
inlet, allowing it to flow through, washing out any 
unbound cells from the surface, and inserting a 
pipette tip on the outlet of the channel.  
            On Day -4, a hepatocyte Matrigel overlay 
procedure was executed with the purpose of 
promoting a three-dimensional matrix for the 
hepatocytes to grow in an ECM sandwich culture. 
The hepatocyte overlay and maintenance 
medium contains Williams’ Medium E (Sigma) 
with final concentrations of 1% Pen/Strep 
(Sigma), 1% L-GlutaMAX (Gibco), 1% Insulin-
Transferrin-Selenium (Gibco), 50 µg/mL 
Ascorbic Acid (Sigma), and 100 nM 
Dexamethasone (Sigma). On Day -3, the bottom 
channel was seeded with LSECs, 
stellate cells and Kupffer cells, further known as 
non-parenchymal cells (NPCs). NPC seeding 
medium contains Williams’ Medium E (Sigma) 
with final concentrations of 1% Pen/Strep 
(Sigma), 1% L-GlutaMAX (Gibco), 1% Insulin-
Transferrin-Selenium (Gibco), 50 µg/mL 
Ascorbic Acid (Sigma), and 10% FBS (Sigma). 
LSECs were detached from flasks using Trypsin 
(Sigma) and collected accordingly. These cells 
were seeded in a mixture volume ratio of 1:1:1 
with LSECs at a density range of 9-12 x 

106 cells/mL, stellates at a density of 0.3 x 
106 cells/mL, and Kupffer cells at 6 x 
106 cells/mL followed by a gravity wash four 
hours post-seeding.  
            On Day -2, chips were visually inspected 
under the ECHO microscope (Discover Echo, 
Inc.) for cellular maturation and attachment, 
healthy morphology, and a tight monolayer. The 
chips that passed visual inspection had both 
channels washed with their respective media, 
leaving a droplet on top. NPC maintenance media 
was composed of the same components prior, 
with a reduction of FBS to 2%. To minimize 
bubbles within the system, one liter of complete, 
warmed top and bottom media was added 
to Steriflip-connected tubes (Millipore) in the 
biosafety cabinet. All media was then degassed 
using a -70 kPa vacuum (Welch) and stored in the 
incubator until use. Pods were primed twice with 
3 mL of degassed media in both inlets, and 200 
µL in both outlets. Chips were then connected to 
pods via liquid-to-liquid connection. Chips and 
pods were placed in the Zoë® (Emulate Inc.) for 
their first regulate cycle, which minimizes 
bubbles within the fluidic system by increasing 
the pressure for two hours. After this, normal 
flow resumed at 30 µL/h. On Day -1, Zoës® were 
set to regulate once more.  
   
Experimental Setup  
            The 870-chip experiment was carried out 
in five consecutive cycles (herein referred to as 
Cycles 1 through 5) to test a selection of 27 drugs 
at varying concentrations relative to the average 
therapeutic human Cmax obtained from literature 
(Supplementary Table S2). Cycles 1 to 4 tested 6-
8 concentrations in duplicate for each of 10-13 
drugs. To determine which sampling strategy was 
optimal for cycles 1 to 4 (16 doses x 1 replicate, 
8x2, 5x3, or 4x4), we generated 3 different “dose-
response” synthetic datasets, each distorted by 
different noise levels (low, medium, or high). For 
each of these datasets, we performed curve-fitting 
analysis and calculated the Root Mean Square 
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Error between the “true” and estimated 
IC50 parameter. The analysis results showed that, 
for all noise levels, the 16x1 sampling strategy 
marginally outperformed the 8x2. However, to 
ensure at least two replicates per concentration, 
the 8x2 strategy was selected. Some drugs were 
also repeated across cycles (on different donors 
or at different concentrations) to ensure 
experimental robustness. However, to replicate a 
more typical study design likely to be carried out 
by scientists in the pharmaceutical industry, we 
created cycle 5 with 6 drugs, where each was 
tested in 4 concentrations in triplicate.  For each 
cycle, chips were dosed with drug over 8 days 
(referred to as Day 0 through Day 7). Drug 
preparation, dosing, and analysis teams were 
divided, creating a double-blind study such that 
those administering the drugs or performing 
analyses did not know the name or concentrations 
of the drugs tested.  
   
Drug Preparation  
            The drug dosing concentrations were 
determined from the unbound human Cmax of 
each drug. First, the expected fraction of drug 
unbound in media with 2% FBS was extrapolated 
from plasma binding data for each drug. Dosing 
concentrations were then back calculated such 
that the unbound fraction in media would reflect 
relevant multiples of unbound 
human Cmax (Supplementary Table S2). For each 
cycle, concentrations ranged from 0.1 to 1000 
times Cmax.  
            Stock solutions were prepared at 1000 
times the final dosing concentration. Drugs in 
powder form were either weighed out with 1 mg 
precision or dissolved directly in vendor-
provided vials. Sterile DMSO (Sigma) was added 
to dissolve the drug. The solution 
was triturated before transferring to an amber vial 
(Qorpak), which was vortexed (Fisher Scientific) 
on high for 60 seconds to ensure complete 
dissolution. A serial dilution was then performed 
in DMSO to prepare each subsequent 1000X 

concentration. These stock solutions were then 
aliquoted in 1.5 mL tubes (Eppendorf) and stored 
at -20˚C until dosing day, allowing a maximum 
of one freeze-thaw cycle prior to dosing.  
            All media was made the day prior to chip 
dosing and stored overnight at 37˚C. On the day 
of chip dosing, one stock aliquot per drug 
concentration was thawed in a 37˚C bead bath. 
The stocks were then vortexed and inspected to 
ensure absence of drug particulate. Dosing 
solutions were prepared by diluting drug stock 
1:1000 in top or bottom media to achieve 0.1% 
DMSO concentration. The dosing solutions were 
then vortexed and stored at 37˚C until dosing.  
            On the first dosing day (Day 0), all chips 
were imaged using the ECHO microscope. 500 
µL of effluent was collected from all four 
reservoirs of the pod and placed in a labelled 96-
well plate. After collection, all the remaining 
media was carefully aspirated before dosing with 
3.8 mL of corresponding dosing solution. Dosing 
occurred on study days 0, 2, and 4 for chips 
flowing at 30 µL/h, and on days 0, 1, 2, 3, 4, 5, 
and 6 for chips flowing at 150 µL/h. Effluent 
collection occurred on days 1, 3, and 7.   
 
Biochemical Assays  
            Top channel outlet effluents were 
analyzed to quantify albumin and alanine 
transaminase (ALT) levels on days 1, 3, and 7, 
using sandwich ELISA kits (Abcam, Albumin 
ab179887, ALT ab234578), according to vendor-
provided protocols. Frozen (-80˚C) effluent 
samples were thawed overnight at 4˚C prior to 
assay. The Hamilton Vantage liquid handling 
platform was used to manage effluent dilutions 
(1:500 for albumin, neat for ALT), preparation of 
standard curves, and addition of antibody 
cocktail. Absorbance at 450nm was measured 
using the SynergyNeo Microplate Reader 
(BioTek).  
            As part of cycles 3, 4 and 5, top channel 
outlet samples from vehicle chips on days 1, 3 
and 7 post-drug or vehicle administration were 
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analyzed to quantify urea levels with a urea assay 
kit (Sigma-Aldrich, MAK006) according to 
vendor-provided protocol. Frozen (-80˚C) 
effluent samples were thawed overnight at 4˚C 
prior to assay. All samples were diluted 1:5 in 
assay buffer and mixed with the kit’s Reaction 
Mix. Absorbance at 570nm was measured using 
the same automated plate reader. 
 Effluent samples from vehicle chips and 
those treated with either trovafloxacin or 
levofloxacin were thawed overnight at 4˚C, and 
effluents from both channels were analyzed for 
IL-6 and TNF-alpha levels using MSD U-PLEX 
kits (Meso Scale Diagnostics, K15067L-2) 
according to vendor-provided protocols. Samples 
were added to plates manually at a 1:2 dilution. 
Plates were read for cytokine release on the 
MESO QuickPlex SQ 120 (Meso Scale 
Discoveries). 
Morphological Analysis  
            At least four to six brightfield images 
were acquired per chip for morphology analysis. 
Brightfield images were acquired on the ECHO 
microscope using these settings: 170% zoomed 
phase contrast, 50% LED, 38% brightness, 41% 
contrast, 50% color balance, color on, and 10X 
objective. Brightfield images were acquired 
across three fields of view on days 1, 3, and 7 for 
each cycle. Cytotoxicity classification was 
performed while acquiring images for both NPCs 
and hepatocytes. Images were then scored zero to 
four by blinded individuals (n=2) based on 
severity of agglomeration of cell debris for both 
channels. The scoring matrix and representative 
images have been included in the supplement 
(Supplementary Figure S2).  
            At the end of the experiment, cells in the 
Liver-Chip were fixed using 4% 
paraformaldehyde (PFA) solution (Electron 
Microscopy Sciences). Chips were detached from 
pods and washed once with PBS. The PFA 
solution was pipetted into both channels and 
incubated for 20 minutes at room temperature. 
Afterwards, chips were washed with PBS and 

stored at 4˚C until staining.  Following fixation, 
chips corresponding to low, medium, and high 
concentrations from each group were cut in half 
with a razor blade perpendicular to the co-culture 
channels. One half was used in the following 
staining protocol, while the other half was stored 
for future staining. All stains and washes utilized 
the bubble method, in which a small amount of 
air is flowed through the channel prior to 
bulk wash media to prevent a liquid-liquid 
dilution of the staining solution. The top channel 
was perfused with 100 µL of AdipoRed (Lonza, 
PT-7009) diluted 1:40 v/v in PBS labeling lipid 
accumulation and 100 µL 
of NucBlue (ThermoFisher, R37605) (100 drops 
in 50 mL of PBS) to visualize cell nuclei. 
Following 15 minutes of incubation at room 
temperature, each channel was washed with 200 
µL of PBS (alternating channels, 2x for top and 
3x for bottom). As an alternative lipid 
accumulation marker, 100 µL of HCS LipidTOX 
Deep Red (ThermoFisher, H34477) was diluted 
1:1000 v/v in PBS with NucBlue counterstain and 
added to the top channel. After a 30-minute 
incubation at room temperature, the chips were 
washed with 200 µL of PBS as described 
previously. Chips were then imaged using the 
Opera Phenix.  
            Following lipid and DAPI staining and 
imaging, chips were stained with a multi-
compound resistant protein 2 (MRP2) antibody to 
visualize the bile canalicular structures 
characteristic of healthy Liver-Chips. First, chips 
were permeabilized in 0.125% Triton-X and 2% 
Normal Donkey Serum (NDS) diluted in PBS 
(100 µL of solution per channel) and incubated at 
room temperature for 10 minutes. Then, each 
channel was washed with 200 µL of PBS 
(alternating channels, 2x for top and 3x for 
bottom). Chips were then blocked in 2% Bovine 
Serum Albumin (BSA) and 10% NDS in PBS 
(100 µL of solution per channel) and incubated at 
room temperature for 1 hour. Next, primary 
antibody Mouse anti-MRP2 (Abcam, ab3373) 
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was prepared 1:100 in the original blocking 
buffer, diluted 1:4 in PBS. 100 µL of solution was 
added to each channel, and chips were stored 
overnight at 4˚C. The following day, each 
channel was washed with 200 µL of PBS 
(alternating channels, 2x for top and 3x for 
bottom). Secondary antibody Donkey anti-Mouse 
647 (Abcam, ab150107) was prepared 1:500 in 
original blocking buffer, diluted 1:4 in PBS. 100 
µL of solution was added to each channel and 
chips incubated at room temperature, protected 
from light, for two hours. Then each channel was 
washed with 200µL of PBS (alternating channels, 
2x for top and 3x for bottom). Chips were imaged 
immediately or stored at 4˚C until ready for 
imaging on the Opera Phenix.  
   
Live Staining  
            Chip replicates designated for live cell 
imaging were washed with PBS utilizing the 
bubble method. Chips were then cut in half 
perpendicular to the co-culture channels. The top 
chip halves were stained 
with NucBlue (ThermoFisher, R37605) to 
visualize cell nuclei and Cell Event Green 
(ThermoFisher, C10423) to visualize activated 
caspase 3/7 for apoptosis. This staining panel was 
prepared in serum-free media (CSC), 
with NucBlue at 2 drops per mL and Cell Event 
Green at a 1:500 ratio and perfused through both 
channels. The bottom chips halves were stained 
with NucBlue (Thermo) to visualize nuclei 
and Tetramethylrhodamine, methyl ester 
(TMRM) (ThermoFisher, I34361) to visualize 
active mitochondria. This staining panel was 
prepared in PBS with 5% FBS, with NucBlue at 
2 drops per mL and TMRM at a 1:1000 ratio in 
original blocking buffer, diluted 1:4 in PBS. 
Chips were incubated in the dark at 37˚C for 30 
minutes, and then each channel was washed with 
200µL of PBS (alternating channels, 2x for top 
and 3x for bottom). The chips were kept at 37˚C, 
protected from light, until ready for imaging with 
the Opera Phenix.  

   
Image Acquisition  
            Fluorescent confocal image acquisition 
was performed using the Opera Phenix High-
Content Screening System and Harmony 4.9 
Imaging and Analysis Software (PerkinElmer). 
Before acquisition, the Phenix internal 
environment was set to 37˚C and 5% CO2. Chips 
designated for imaging were removed from their 
plates, wiped on the bottom surface to remove 
moisture, and placed into the Phenix 12-chip 
imaging adapter. Whole chips were placed 
directly into each slot, while top and bottom half 
chips were matched and combined in one chip 
slot. Chips were aligned flush with the adapter 
and one another. Any bubbles identified from 
visual inspection were washed out with PBS. 
Once ready, the stained chips were covered with 
transparent plate film to seal channel ports and 
loaded into the Phenix. For live imaging, the 
DAPI (Time: 200ms, Power: 100%), Alexa 488 
(Time: 100ms, Power: 100%), and TRITC (Time: 
100ms, Power: 100%) lasers were used. For fixed 
imaging, the DAPI (Time: 200ms, Power: 100%), 
TRITC (Time: 100ms, Power: 100%), and Alexa 
647 (Time: 300ms, Power: 80%) lasers were 
used. Z-stacks were generated with 3.6µm 
between slices for 28-32 planes, so that the 
epithelium was located around the center of the 
stack. Six fields of view (FOVs) per chip were 
acquired, with a 5% overlap between adjacent 
FOVs to generate a global overlay view.  
   
Image Analysis  
            Raw images from fixed and live imaging 
were exported In TIFF format from the Harmony 
software. Using scripts written for FIJI (ImageJ), 
TIFFs across 3 color channels and multiple z-
stacks were compiled into composite images for 
each field of view in each chip. The epithelial 
signal was identified and isolated from the 
endothelial and membrane signals, and the 
composite TIFFs were split accordingly. The 
ideal threshold intensity for each channel in the 
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epithelial “substack” was identified to maximize 
signal, and the TIFFs were exported as JPEGs for 
further analysis.  
   
Gene Expression Analysis  
            RNA was extracted from chips using TRI 
Reagent (Sigma-Aldrich) according to the 
manufacturer’s guidelines. The collected samples 
were submitted to GENEWIZ (South Plainfield, 
NJ) for next-generation sequencing. After quality 
control and RNA-seq library preparation, the 
samples were sequences with 
Illumina HiSeq 2x150 system using sequencing 
depth ~50M paired-ends reads/sample. 
Using Trimmomatic v0.36, the sequence reads 
were trimmed to filter out all poor-quality 
nucleotides and possible adapter sequences. The 
remaining trimmed reads were mapped to the 
Homo sapiens reference genome GRCh38 
using the STAR aligner v2.5.2b. Next, using the 
generated BAM files for each sample, the unique 
gene hit counts were calculated from the Subread 
package v1.5.2. It is worth noting that only 
unique reads within the exon region were 
counted.  
 
Statistical Analysis 
 All statistical analyses were conducted in 
R69 (version 4.1.2) and figures were produced 
using the R package ggplot270 (version 3.3.5). 
The dose-response analysis (Figure 3a) was 
carried out using the popular drc R package 
developed by Ritz et al.71 using the generalized 
log-logistic dose response model. The error bars 
in Figures 2d, 2e, 2f and 3a correspond to the 
standard errors of the mean. The circles in Figure 
2d and 2e correspond to the samples used to 
calculate the corresponding statistics. The 
analysis of significance in Figures 2d and 2e was 
performed using unpaired t-test. In Figure 2f the 
number of samples used were N=3 for donor two, 
and N=4 for donor three. For both donors, the 
number of the freshly thawed hepatocyte samples 
used to estimate the corresponding log2(Fold 

Change) were N=4. Finally, the analysis of 
significance in Figures 2f was performed using 
paired t-test. 
 

Economic Modeling Approach 

An economic model was built to assess 
the impact of improvements in the predictive 
validity of preclinical toxicology models on the 
economics of drug development. This model is 
provided in full in the supplementary materials as 
a formula-driven Microsoft Excel file. The model 
was built by extending the pipeline model of Paul 
et al. (2010)5, which tracks the economics of a 
representative portfolio of candidate drugs as it 
progresses and erodes through clinical trials. 
However, in contrast with conventional models, 
we followed Scannell & Bosley’s (2016)4 
approach by modelling attrition as a function of 
decision quality and candidate quality at each 
development stage. We modelled safety-related 
failures, efficacy-related failures, and other 
failures (e.g., commercial and strategy related) 
with parameters derived from the literature 
(primarily from Harrison 2016, 7,9, 46).  The model 
comprises a “base case”, which describes an 
archetypical drug development portfolio that 
leads to a single drug approval. Development 
costs, timing, cost of capital and attrition rates 
were set in line with Paul et al. (2010)5. The base 
case and its parameters are summarized in Figure 
4.  
         An innovative feature of the economic 
model is that it permits us to determine the 
makeup of the drug portfolio in each stage of 
development in terms of candidates that are safe 
and effective, safe and ineffective, unsafe and 
effective, and unsafe and ineffective. 
Additionally, the model’s structure also allows 
one to estimate decision quality parameters at 
each stage of the process, such as the false 
negative rate (FNR) of the toxicity determination 
– the proportion of toxic drugs erroneously 
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deemed safe. This, in turn, allows one to estimate 
the financial impact of changes in predictive 
validity, something that cannot be done directly 
with conventional attrition-driven pipeline 
models.  

Improvements in the predictive validity 
of preclinical safety testing can be captured 
through their effects on the makeup of the 
portfolio entering Phase I clinical trials: better 
preclinical safety testing reduces the proportion 
of unsafe drugs that enter the clinic. Such 
improvements are captured by reducing the FNR 
for the toxicology testing that occurs between 
preclinical development and Phase I trials (we 
also add Organ-Chip costs to capture the price of 
added testing). If we keep all other model 
parameters unchanged, the model captures a cost-
avoidance strategy: an approach wherein the 
ability to predict certain clinical trial failures in 
advance allows one to start fewer clinical trials 
(skipping those trials that are bound to fail) to 
bring one drug to market, as in the base case. 
However, the ability to have more predictable 
clinical outcomes is not likely to reduce 
investment but rather to increase it. This increase 
in R&D productivity should therefore result at 
least in maintenance of the investment in clinical 
testing (if not in its increase), which we 
conservatively model by setting number of 
projects entering Phase I to its base case value.  

To derive the economic implications of 
this scenario analysis, we calculate the portfolio’s 
new net present value (NPV) and evaluate its 
percentage increase (uplift) over the base case.  
This NPV uplift represents the increase in R&D 
productivity caused by the improved testing. The 
model proceeds to apply this uplift to the world-
wide R&D spending on small molecule drug 
development to estimate the annual financial 
impact that the increase in R&D productivity may 
generate.  

Because the model is parameterized 
using historical estimates of attrition rates and 
their causes, we sought to understand the model’s 
sensitivity to the exact parameter values. To do 
this, we performed a mathematical sensitivity 
analysis for the major input parameters; this 
analysis is included within the Excel file in the 
supplementary materials. The analysis 
demonstrated that reasonable changes in 
parameter choices retain the model’s qualitative 
conclusions. This is in part because the model’s 
output is a percentage uplift relative to the base 
case, making the model robust in the face of 
uncertainty in the financials of the base case. 
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Supplementary Material 

 
 
Supplementary Figure S1. Representative transmission electron microscopy images showing a well-formed bile 
canaliculus (bc) between neighboring hepatocytes (left) and cell-cell contact formation between a Kupffer (K) 
cell and liver sinusoidal endothelial cell (right) (bar, 0.5 µm). 
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Supplementary Figure S2. a) Representative brightfield images to depict the cellular morphology score in the 
top channel of the Liver-Chip which contains hepatocytes. A score of 0 represents no hepatotoxicity detected, 
which is defined by 95-100% healthy hepatocyte morphology, hexagonal shape containing binucleated cells, clear 
cell cytoplasm, distinctive cell junctions and less than 5% dead cells. A score of 1 represents at least 85% healthy 
hepatocyte morphology, a hexagonal shape containing binucleated cells, clear cell cytoplasm, distinctive cell 
junctions but < 15% are dead cells. A score of 2 represents mild hepatotoxicity with > 70% monolayer of 
hepatocytes visible, evidence that cells have begun to lose their distinct cell junctions, many cells contain a 
granulated cytoplasm but < 30% are dead cells. A score of 3 represents moderate hepatotoxicity with severe 
granulation of cytoplasm and most of the cells have lost their junctions. Approximately 50% of the cells are 
considered dead. A score of 4 represents severe hepatotoxicity with agglomeration of cell debris and > 50% of 
the cells are considered dead. The pores on the membrane become visible as there is no longer a cellular 
monolayer. b) Representative brightfield images to depict the cellular morphology score in the bottom channel of 
the Liver-Chip which contains non-parenchymal cells. A score of 0 represents no cytotoxicity detected, with an 
intact monolayer and <1% of the cells are dead. A score of 1 represents at least 90% of the monolayer is present 
and there are <10% dead cells. A score of 2 represents mild cytotoxicity with > 80% of the monolayer present and 
< 20% are dead cells. A score of 3 represents moderate cytotoxicity with > 50% of the monolayer present and < 
50% are dead cells. A score of 4 represents severe cytotoxicity with > 50% of the cells are considered dead.  
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Supplementary Figure S3. Representative immunofluorescent images from day 7 post-vehicle or drug administration 
of the hepatocyte cell layer in the top channel of the chip. Each drug is shown with its free drug concentration and 
corresponding vehicle image that was used for thresholding across each donor the drug was tested in. The data support 
the immunofluorescent findings statement in Table 2 and 3. 
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Supplementary Table S1. Details of the cell sources and their defining characteristics used in the investigation. 
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Drug
Human Cmax 

Total
Expected Fraction 
Unbound in Plasma Multiplier xCmax

Chip Dosing 
Concentration (uM) 

Total

Chip Dosing 
Concentration (uM) 

Free
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

0.1 0.0024 0.00079

0.3 0.0071 0.00237

1 0.0235 0.0079

3 0.0705 0.0237

10 0.2351 0.079

30 0.7054 0.237

100 2.351 0.79

300 7.054 2.37

1000 23.51 7.9

3 0.073 0.0275184

10 0.243 0.091728

30 0.728 0.275184

100 2.428 0.91728

300 7.284 2.75184

1000 24.280 9.1728

0.1 0.444 0.1491

0.3 1.331 0.4473

1 4.438 1.491

3 13.31 4.473

10 44.38 14.91

30 133.13 44.73

100 443.75 149.1

0.1 0 0.00000096

0.3 0 0.00000288

1 0 0.0000096

3 0.0001 0.0000288

10 0.0002 0.000096

30 0.0007 0.000288

100 0.0022 0.00096

300 0.0066 0.00288

0.1 6.25869E-05 0.000045

0.3 0.00019 0.000135

1 0.00063 0.00045

3 0.00188 0.00135

10 0.00626 0.0045

30 0.01878 0.0135

100 0.06259 0.045

300 0.18776 0.135

0.1 0.0028 0.0028

0.3 0.0085 0.0084

1 0.0283 0.028

3 0.0849 0.084

10 0.2831 0.28

30 0.8493 0.84

100 2.8311 2.8

300 8.4934 8.4

0.1 0.0178 0.0132

0.3 0.0535 0.0396

1 0.1784 0.132

3 0.5351 0.396

10 1.7838 1.32

30 5.3514 3.96

100 17.838 13.2

300 53.514 39.6

3 0.7545 0.1515

10 2.5149 0.505

30 7.5448 1.515

100 25.149 5.05

300 75.448 15.15

1000 251.49 50.5

Ambrisentan 0.79µM26 0.01 60

Asunaprevir

Benoxaprofen***

Beta-Estradiol

Buspirone

Chlorpheniramine 
maleate

Clozapine

Diclofenac sodium 10.1µM54 0.005 61

2.4µM54 0.055 61

0.04µM54 0.7 61

0.7644µM51 0.012 61

0.009µM54 0.05 62

0.0006µM53 0.016 61

149.1µM52 0.01 62

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2021.12.14.472674doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472674
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

 

Drug
Human Cmax 

Total
Expected Fraction 
Unbound in Plasma Multiplier xCmax

Chip Dosing 
Concentration (uM) 

Total

Chip Dosing 
Concentration (uM) 

Free
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

0.1 0.0131 0.0066

0.3 0.0392 0.0198

1 0.1307 0.066

3 0.3921 0.198

10 1.3069 0.66

30 3.9208 1.98

100 13.069 6.6

300 39.208 19.8

0.1 0.0239 0.02304

0.3 0.0716 0.06912

1 0.2385 0.2304

3 0.7155 0.6912

10 2.3851 2.304

30 7.1553 6.912

100 23.851 23.04

300 71.553 69.12

0.1 0.0239 0.02304

0.3 0.0716 0.06912

1 0.2385 0.2304

3 0.7155 0.6912

10 2.3851 2.304

30 7.1553 6.912

100 23.851 23.04

300 71.553 69.12

0.1 0.1367 0.134

0.3 0.4102 0.402

1 1.3673 1.34

3 4.1020 4.02

10 13.673 13.4

30 41.020 40.2

100 136.73 134

0.1 1.1934 1.185

0.3 3.5801 3.555

1 11.934 11.85

3 35.801 35.55

5 59.668 59.25

10 119.34 118.5

15 179.00 177.75

30 358.01 355.5

45 537.01 533.25

0.9 3.41906E-05 3.11374E-06

2.6 9.87728E-05 8.99524E-06

5.3 0.0002 1.83365E-05

15.8 0.0006 5.46634E-05

55.3 0.0021 0.000191322

163.2 0.0062 0.000564624

544.9 0.0207 0.001885195

1634.7 0.0621 0.005655585

0.1 0.0128 0.0043

0.3 0.0384 0.0129

1 0.1280 0.043

3 0.3839 0.129

10 1.2798 0.43

30 3.8393 1.29

100 12.798 4.3

300 38.393 12.9

0.1 7.97468E-07 0.00000063

0.3 2.39241E-06 0.00000189

1 7.97468E-06 0.0000063

3 2.39241E-05 0.0000189

10 7.97468E-05 0.000063

30 0.00024 0.000189

100 0.00080 0.00063

300 0.00239 0.00189

Levofloxacin*** 15.8µM33 0.75 61

0.00009µM57 0.07 63

4.3µM54 0.01 62

0.0017µM56 0.002 61

Nefazodone 
hydrochloride

Olanzapine

Entacapone

Fialuridine

FIRU (5-iodo-1-92-
fluoro-2-

deoxyribofuranosyl)ura
cil)*

Labetalol***

Lomitapide

2.68µM27 0.5 61

*0.64µM27 *0.36 62

0.64µM27 0.36 62

3.3µM55 0.02 61
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Drug
Human Cmax 

Total
Expected Fraction 
Unbound in Plasma Multiplier xCmax

Chip Dosing 
Concentration (uM) 

Total

Chip Dosing 
Concentration (uM) 

Free
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

0.1 0.0089 0.003

0.3 0.0268 0.009

1 0.0893 0.03

3 0.2679 0.09

10 0.8929 0.3

30 2.6786 0.9

100 8.9286 3

300 26.786 9

0.1 0.0002 0.00012

0.3 0.0005 0.00036

1 0.0016 0.0012

3 0.0047 0.0036

10 0.0158 0.012

30 0.0473 0.036

100 0.1577 0.12

300 0.4731 0.36

1000 1.5769 1.2

3000 4.7306 3.6

0.1 0.0851 0.0286

0.3 0.2554 0.0858

1 0.8512 0.286

3 2.5536 0.858

10 8.5119 2.86

30 25.536 8.58

90 76.607 25.74

100 85.119 28.6

300 255.36 85.8

0.1 0.346 0.346

0.3 1.038 1.038

1 3.460 3.46

3 10.38 10.38

10 34.60 34.6

30 103.8 103.8

60 207.6 207.6

100 346 346

300 1038 1038

0.1 0.0027 0.0025

0.3 0.0080 0.0075

1 0.0265 0.025

3 0.0795 0.075

10 0.2651 0.25

30 0.7953 0.75

100 2.6511 2.5

300 7.9533 7.5

1000 26.511 25

0.00004 0.0001 0.00012

0.00013 0.0004 0.00036

0.00044 0.0012 0.0012

0.00133 0.0037 0.0036

0.00443 0.0124 0.012

0.01329 0.0371 0.036

0.04429 0.1236 0.12

0.13289 0.3708 0.36

1 1.1307 1.116

3 3.3921 3.348

10 11.307 11.16

30 33.921 33.48

100 113.07 111.6

200 226.14 223.2

Sitax(s)entan sodium 
salt 28.6µM58 0.01 64

Pioglitazone

Simvastatin

Stavudine

Tacrine

Telithromycin 2.79µM59 0.4 61

0.1µM33

3.46µM33

0.25 61

1 61

0.02µM26 0.06 63

3µM33 0.01 62
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*FIRU values assumed same as Fialuridine 
**A calculation error for Troglitazone led to slightly misaligned dosing concentrations such that the Multiplier 
xCmax values aren't exact multiples of Cmax 
***Highest concentration limited by solubility 
 
Supplementary Table S2. Drug information and dosing concentrations used in the investigation. Cycle-specific 
concentrations have been added for further clarity. 
 
 
 
 
 
 
 
 

Drug
Human Cmax 

Total
Expected Fraction 
Unbound in Plasma Multiplier xCmax

Chip Dosing 
Concentration (uM) 

Total

Chip Dosing 
Concentration (uM) 

Free
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

0.1 0.10074 0.005712

0.3 0.30222 0.017136

1 1.00741 0.05712

3 3.02222 0.17136

10 10.0741 0.5712

30 30.2222 1.7136

100 100.741 5.712

200 201.481 11.424

0.1 0.01259 0.000657036

0.29 0.03778 0.001971107

0.98 0.12592 0.006570357

2.95 0.37775 0.019711072

9.82 1.25917 0.065703574

29.47 3.77751 0.197110722

98.2 12.5917 0.65703574

294.72 37.7751 1.971107219

0.1 0.12793 0.12

0.3 0.38380 0.36

1 1.27932 1.2

3 3.83795 3.6

10 12.7932 12

15 19.1898 18

30 38.3795 36

100 127.932 120

300 383.795 360

0.1 0.045 0.045

0.3 0.135 0.135

1 0.45 0.45

3 1.35 1.35

10 4.5 4.5

30 13.5 13.5

100 45 45

300 135 135

0.1 0.1161 0.0917

0.3 0.3482 0.2751

1 1.1608 0.917

3 3.4823 2.751

10 11.608 9.17

30 34.823 27.51

100 116.08 91.7

300 348.23 275.1

0.0011 65

0.24 61

Zileuton

Tolcapone***

Troglitazone

Trovafloxacin mesylate

Ximelagatran

13.1µM33

47.6µM54

6.08µM33

5µM33

0.45µM53 1

0.07 62

0.0012 61
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Supplementary Table S3. Portfolio value and industry profits increase with reductions in the false negative rate 
(FNR) of the preclinical toxicology assessment, which cause fewer toxic drugs to enter the clinic. The leftmost column 
tabulates the proportional improvement in DILI detection versus the base case, and the next column shows the 
improvement in the toxicology FNR relative to the model’s base case. Since DILI is around 13% or tox failure in 
development, near total DILI sensitivity can reduce the FNR to around 87% of its base case value. Subsequent columns 
then show the clinical development success rate from entry into Phase I to launch, the internal rate of return (IRR) of 
the R&D portfolio, the NPV of the portfolio discounted to the time of drug launch, the capitalized cost of Liver-Chips 
used in assessing the portfolio (discounted to the time of launch), and the marginal IRR on the Liver-Chip investment. 
The remaining columns capture the value uplift due to FNR improvement as a percentage uplift of the portfolio’s NPV 
relative to the baseline NPV of R&D, percentage uplift of steady state pre-tax profits, and the estimated increase in 
annual pre-tax profits for the small-molecule drug development industry. The row highlighted in dark gray relates to 
the improvement in FNR that may result from incorporating the Liver-Chip into DILI prediction workflows in 
accordance with the 87% sensitivity estimated by the present study. The rows highlighted in light gray correspond to 
the 95% confidence interval around this point estimate. The economic model behind these calculations is provided in 
full in the Supplementary Materials. 
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