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Abstract

Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per-
formed by calculating sliding-window correlations (SWC), followed by k-means clustering in order
to assign each window to a given state. Studies using synthetic data have shown that k-means per-
formance is highly dependent on sliding window parameters and signal-to-noise ratio. Additionally,
sources of heterogeneity between subjects may affect the accuracy of group-level clustering, thus
affecting measurements of dFC state temporal properties such as dwell time and fractional occu-
pancy. This may result in spurious conclusions regarding differences between groups (e.g. when
comparing a clinical population to healthy controls). Therefore, is it important to quantify the
ability of k-means to estimate dFC state temporal properties when applied to cohorts of multiple
subjects, and to explore ways in which clustering performance can be maximised.

Here, we explore the use of dimensionality reduction methods prior to clustering in order to
map high-dimensional data to a lower dimensional space, providing salient features to the subse-
quent clustering step. We assess the use of deep autoencoders for feature selection prior to applying
k-means clustering to the encoded data. We compare this deep clustering method to feature selec-
tion using principle component analysis (PCA), uniform manifold approximation and projection
(UMAP), as well as applying k-means to the original feature space using either L1 or L2 distance.
We provide extensive quantitative evaluation of clustering performance using synthetic datasets,
representing data from multiple heterogeneous subjects. In synthetic data we find that deep clus-
tering gives the best performance, while other approaches are often insufficient to capture temporal
properties of dFC states. We then demonstrate the application of each method to real-world data
from human subjects and show that the choice of feature selection method has a significant effect
on group-level measurements of state temporal properties. We therefore advocate for the use of
deep clustering as a precursor to clustering in dFC.
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1. Introduction

Functional connectivity (FC) analysis is used to characterise and quantify the spatiotemporal
patterns of brain activity, measured non-invasively using functional magnetic resonance imaging
(fMRI). In these analyses, statistical similarities (e.g. correlations) in the blood oxygen level de-
pendent (BOLD) signal between pairs of brain regions, or “nodes”, are used as edges in the con-
struction of FC networks. This facilitates the use of graph theory to quantify whole-brain dynamics
(Bassett and Sporns, 2017; Bullmore and Sporns, 2009; Bullmore and Bassett, 2011; Medaglia
et al., 2015). More recently, dynamic functional connectivity (dFC) has been widely adopted to in-
vestigate the time-varying organisation of resting-state brain activity (Calhoun et al., 2014; Cohen,
2018; Hutchison et al., 2013; Karahanoğlu and Van De Ville, 2017; Lurie et al., 2020; Preti et al.,
2017). A common approach is to calculate sliding-window correlations (SWC), resulting in a set
of FC matrices that can then be clustered into sets of repetitively occurring FC patterns, or “states”
(Allen et al., 2014; Calhoun et al., 2014), as summarised in Fig. 1. For a review, see Preti et al.
(2017). The spatiotemporal dynamics of the brain are then quantified in terms of the stability and
variability of each dFC state, using statistics such as dwell time (the average duration the state is
occupied before a state change) and fractional occupancy (the proportion of time spent in a given
state).

Thus, an important assumption underlying dFC analysis is the ability to segment the dynamics
of the brain into states with particular spatial correlation patterns, and that these patterns remain
stationary for some time period shorter than the length of the scan (analogous to EEG microstates
(Michel and Koenig, 2018)). This is typically achieved in practice using clustering methods (e.g.
k-means) to identify which of the windowed FC matrices belong to each of a finite number of
states, grouping matrices based on a similarity metric. Since the dimensionality of an FC matrix
with N nodes is N(N − 1)/2, and parcellations can have up to hundreds of nodes, clustering FC
matrices into dFC states is a high-dimensional (unsupervised) learning task. Nevertheless, this step
is usually performed using k-means clustering (Allen et al., 2014) (although other studies have used
spectral clustering (Xu et al., 2018) or hierarchical methods (Ou et al., 2015; Yang et al., 2014)).

Several studies have evaluated the ability of SWC to detect dynamic changes in brain activity
(Hindriks et al., 2016; Leonardi and Van De Ville, 2015; Lindquist et al., 2014; Thompson et al.,
2018) and the effect of specific window parameters on its efficacy (Mokhtari et al., 2019; Savva
et al., 2020; Shakil et al., 2016). However, fewer have quantitatively assessed the performance of
the clustering step (Shakil et al., 2016). Some studies have provided validation of dFC cluster-
ing methods using synthetic (Allen et al., 2014; Erhardt et al., 2012; Lin et al., 2021; Mokhtari
et al., 2019) or surrogate data (Shakil et al., 2016). These studies consistently demonstrate that
k-means performance is highly dependent on sliding window shape and length (Lehmann et al.,
2017; Mokhtari et al., 2019; Shakil et al., 2016) and on the signal-to-noise ratio (Lin et al., 2021;
Shakil et al., 2016). Gonzalez-Castillo et al. (2015) used task-based fMRI to enforce switching
between cognitive states, treating each task block (rest, memory, video, maths) as a different dFC
state, therefore providing a “ground truth” in real-world data. They reported high accuracy when
clustering at the subject level, and with a large number of regions in the parcellation (>100), but
diminishing performance with smaller parcellations and shorter sliding window lengths.

K-means has been widely adopted for dFC analysis in cohort studies, to assess fractional oc-
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Figure 1: Overview of the SWC framework, including constructing FC matrices from BOLD fMRI data, followed by
clustering in order to determine dFC states. Also shown is the modification to this framework assessed in this study,
which consists of applying feature selection to the FC matrices before clustering the low-dimensional representation
of the data.

cupancy and dwell time in a range of neurological disorders including Parkinson’s disease (Dı́ez-
Cirarda et al., 2018; Fiorenzato et al., 2019; Kim et al., 2017), schizophrenia (Bolton et al., 2020;
Damaraju et al., 2014; Du et al., 2016, 2018; Fu et al., 2021; Rashid et al., 2014; Su et al., 2016),
lewy body dementia (Schumacher et al., 2019) and autism (He et al., 2018a; Li et al., 2020; Rabany
et al., 2019), in addition to healthy cognition (Hutchison and Morton, 2015) and sleep (Damaraju
et al., 2020; Zhou et al., 2020). In applications such as these that compare the spatiotemporal dy-
namics of the brain across different groups, sources of heterogeneity between subjects, such as the
shape of the hemodynamic response function (HRF) and levels of noise (Lehmann et al., 2017),
may induce between-subject differences masking underlying dFC states. It is clear that inaccu-
racies in the clustering step would lead to inaccuracies in the measurement of properties such as
fractional occupancy and dwell time, and therefore potentially spurious conclusions regarding the
differences between groups.

It is therefore crucial to assess the ability of k-means to accurately quantify spatiotemporal dFC
patterns and their transition statistics when applied to cohorts of multiple subjects. A particularly
pertinent issue is that distance-based clustering methods like k-means do not perform well in high
dimensional problems (Assent, 2012), and dFC analysis certainly fits into this category. In other
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applications of clustering to high-dimensional data, dimensionality reduction methods are often
applied prior to clustering in order to map the data to a lower dimensional space. This provides
salient features to the subsequent clustering step, reducing the effects of irrelevant or noisy features
(Assent, 2012; Kriegel et al., 2009).

In this study, we evaluate the use of dimensionality reduction methods for feature selection prior
to clustering dFC states (Fig. 1). We propose the use of deep autoencoders for feature selection
prior to applying k-means clustering to the encoded data. We compare this deep clustering method
to feature selection using principle component analysis (PCA), uniform manifold approximation
and projection (UMAP), as well as applying k-means to the original feature space using either
L1 or L2 distance. We provide extensive quantitative evaluation of clustering performance using
synthetic datasets, representing data from multiple, heterogeneous artificial subjects (with subject-
specific state time courses and noise parameters and variable intervals between state transitions).
We measured performance in terms of clustering accuracy, similarity between the FC matrices of
extracted states and those of true states, as well as error in measurements of fractional occupancy
and dwell time. In synthetic data we find that deep clustering outperforms the other approaches. We
then demonstrate the application of each method to real-world data from human subjects and show
that the choice of feature selection method has a significant effect on group-level measurements of
state temporal properties.

2. Methods

2.1. Data
We study both synthetic and real-world fMRI data. In general, data acquired for SWC analysis

typically consist of several minutes of resting state fMRI data per subject. Nodes are defined
either by a predetermined structural (Tzourio-Mazoyer et al., 2002) or functional (Craddock et al.,
2012; Shen et al., 2013) parcellation scheme, or by generating a study-specific map by applying
independent component analysis (ICA) at the group level (Kiviniemi et al., 2009). The timeseries
of T time points by N nodes is then constructed by calculating the average BOLD signal within
each region.

2.1.1. Synthetic Data
We produced synthetic data using SimTB (Erhardt et al., 2012) (https://trendscenter.

org/software/simtb/) to simulate BOLD activity in a set of N nodes under a model of spa-
tiotemporal separability, using code modified from that originally used in Allen et al. (2014). In
this model, timeseries data are constructed by linearly convolving a sequence of neural events with
a HRF. We generated data governed by a time course of underlying dFC states, where the state oc-
cupied at a given time dictates the influence of each node’s activity on all other nodes, as follows.
At each time point, a state-specific neural event occurs with some probability (set to the default
value of 0.5). When a state-specific event occurs in a node, this has an additive or subtractive effect
on the amplitude of events in all nodes which are functionally connected to this node, as defined
by the dFC state occupied at that time step. In addition to these state-specific neural events, unique
events occur randomly and are added to the time course for each node, representing spontaneous
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node-specific fluctuations in brain activity. For validation, the amplitude and probability of oc-
currence of these unique events was varied in order to create synthetic data with different noise
levels.

We aimed to assess dFC clustering performance when applied to cohorts containing multiple
subjects, so we created artificial subjects with simulated FC time courses. For each artificial sub-
ject, the underlying time course of dFC states was sampled from a hidden Markov model (HMM).
Between-subject differences in dFC can be caused by individual differences in properties such as
noise levels (i.e. neural noise and measurement noise) and HRF shape (Lehmann et al., 2017).
Therefore, the probability and amplitude of unique neural events, the amplitude of the gaussian
noise added to the BOLD signal, and the parameters of the HRF were varied across artificial sub-
jects. The functionality to randomise HRF parameters is built into SimTB (Erhardt et al., 2012).
The probability and amplitude of unique neural events and gaussian noise were sampled from
normal distributions shown in Supplementary Table 1. We also aimed to ensure that clustering
performance was independent of the state FC matrices and state transition matrix, so we grouped
subjects into separate datasets. State FC matrices, and the transition matrix governing the HMM,
were randomly generated in order to be unique to each dataset. Supplementary Fig. 1 summarises
the structure of the synthetic datasets.

Each dataset was generated with a repetition time (i.e. the sampling rate), TR, of 2 s and an
overall duration of 270 TR (9 minutes). The method used to randomly generate the state FC matrices
and transition matrix are described in the Supplementary Materials. Fig. 2a shows examples of
randomly generated sets of dFC states. Fig. 2b shows examples of randomly generated transition
matrices, with examples of corresponding state time courses shown in Fig. 2c. Note that we did not
alter the functionality of the SimTB model, we simply automated the process of generating batches
of synthetic data.

This model was used to generate training datasets to tune parameters of the dimensionality
reduction methods (see Section 2.3), as well as validation datasets with different noise levels, num-
ber of nodes, number of states, number of subjects and HRF model in order to assess clustering
performance in a range of experimental conditions (see Section 2.4.1).

2.1.2. Human Data
For application to real-world data, we obtained resting-state fMRI data from the HCP1200 re-

lease from the Human Connectome Project (Van Essen et al., 2013) (https://www.humanconnectome.
org). These data are provided as fully-processed subject-specific BOLD timeseries using a parcel-
lation derived with spatial ICA. Briefly, processing steps which have already been applied to these
data include spatial preprocessing according to Glasser et al. (2013) and temporal preprocessing
according to Smith et al. (2013). Spatial preprocessing included correction for spatial distortions
caused by gradient nonlinearity, correction for head motion, correction for B0 distortion global
intensity normalisation, and 2 mm full-width at half maximum (FWHM) smoothing. Temporal
preprocessed included high-pass temporal filtering (>2000s FWHM) and regression of artefact
and motion-related time courses (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) followed by
temporal demeaning and variance normalisation (Beckmann and Smith, 2004). Following prepro-
cessing, spatial ICA was applied using MELODIC (Beckmann and Smith, 2004; Hyvarinen, 1999;
Smith et al., 2014) from FSL (Smith et al., 2004), to obtain group-level parcellations. The set
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Figure 2: Examples of randomised states, transition matrices and time courses. a) Each row shows a set of five
randomly generated dFC states, with functional connectivity indicated by the colour bar. b) Randomly generated
transition matrices are shown, with the value in position (i, j) indicating the probability of switching from state i to state
j, with probability indicated by the colour bar. For each transition matrix, the corresponding row in c) shows three
examples of state time courses sampled from a HMM.

of ICA spatial maps was then mapped onto each subject’s BOLD timeseries to derive the node
timeseries for each individual. We used the parcellation with N = 50 brain regions. We selected
data which had no notable quality control issues recorded and used the first acquisition from each
subject. These data had TR = 720 ms and a duration of 1200 TR (14 minutes 24 seconds).

2.2. Sliding-Window Correlations
The multivariate timeseries consisting of T time points and N brain regions were converted into

a series of FC matrices using SWC, as follows. A window was used to select a short segment of
the timeseries for all nodes. The window was then shifted in time by a given step size to extract
overlapping segments, of the same length, for the whole timeseries of a given subject. In the
synthetic data, we tested both rectangular and tapered (Hamming and Hanning) window shapes,
and window lengths in the range 30–60 s (see Section 2.4.1) with a step size of 1 TR (2 s). We
measured FC in each window by estimating covariance from the precision matrix, regularised with
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the L1-norm (Allen et al., 2014; Smith et al., 2011; Varoquaux et al., 2010), where the regularisation
parameter, λL1, was estimated for each subject using cross-validation.

2.3. Clustering & Dimensionality Reduction
As the FC matrices are symmetric, the upper triangle was extracted and vectorised. Thus, after

windowing and vectorisation, the BOLD data were transformed into an X by Y matrix, where
X represents the number of subjects multiplied by the number of windows per subject, and Y
represents the pair-wise correlations (equal to N(N − 1)/2). The clustering task that we focus on is
then the assignment of each column of this data to a cluster.

We tested the performance of “raw” k-means against k-means applied after a dimensionality
reduction step (Fig. 1). The dimensionality reduction procedures we used (described in detail
below) are PCA, UMAP and deep clustering (autoencoder followed by k-means). The same k-
means procedure was used in all methods. We compared our results to “chance” clustering by
randomly assigning state labels to each window.

As the dimensionality reduction methods required parameter tuning, we generated training
datasets with 50 subjects, 5 states, canonical HRF and medium noise, processed with a rectan-
gular window of length 40 s. These data were used to tune the parameters of each method, using
a grid search of parameter values to maximise clustering accuracy. A coarse grid of parameter
values was used in order to prevent overfitting. Separate training datasets were generated with 15,
25 and 50 nodes, to re-tune clustering methods for the different input data dimensionality for these
scenarios.

2.3.1. k-means
We followed a k-means clustering methodology commonly used in dFC analysis (Allen et al.,

2014). We selected exemplar FC windows at local maxima in variance and applied 128 repeti-
tions of k-means (max 1000 iterations) to the FC matrices corresponding to these windows, each
initialised with the k-means++ algorithm (Arthur and Vassilvitskii, 2006). The set of centroids
which gave the lowest sum of squared error between each data point and its nearest centroid was
then used to initialise k-means clustering (max 10000 iterations) for all windows. As well as the
‘default’ Euclidian (L2) distance metric, we also tested the Manhattan (L1) distance metric, as this
is often used in dFC analysis due to high dimensionality (Aggarwal et al., 2001; Allen et al., 2014).

2.3.2. Principle Component Analysis
PCA was applied to all FC matrices, then the first p principle components were used as features

for k-means clustering, where p was chosen to maximise clustering accuracy using synthetic train-
ing data, as described above. The parameter values searched are shown in Supplementary Table 2.
The resulting p for each parcellation is shown in Table 1.

2.3.3. Uniform Manifold Approximation and Projection
UMAP is a nonlinear dimension reduction technique which projects data onto a low-dimensional

manifold by constructing a high-dimensional graph representation, then optimising a low-dimensional
graph to have a structure as similar as possible to the high-dimensional graph (McInnes et al., 2018).
The structure of the high-dimensional graph is determined locally based on distances to the nearest
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Number of nodes Dimensionality PCA UMAP Deep Clustering
N N(N−1)

2 p m v u d1 d2 d3

15 105 16 30 1.0 32 512 256 16
25 300 32 30 1.0 64 512 256 32
50 1225 256 40 1.0 32 1024 256 64

Table 1: Parameters of each feature selection method for each size parcellation tested, as determined by a coarse grid
search to maximise clustering accuracy using synthetic training data. The values searched are shown in Supplementary
Tables 2–4. p is the number of principle components used for PCA. For UMAP, m is the number of neighbours used to
determine the local connectivity of the high-dimensional graph before optimising the low-dimensional representation,
v is the minimum permissible distance between points in the low-dimensional representation, and u is the number of
dimensions. For deep clustering, d1, d2 and d3 are the number of units in the layers of the symmetric autoencoder
(giving d3-dimensional encoded data).

m neighbours. Higher m results in a low-dimensional projection which more accurately captures
the global structure of the data rather than preserving local distances to neighbours. Additional pa-
rameters which must be chosen are the number of dimensions, u, in the low-dimensional subspace,
and the minimum permissible distance, v, between points in the low-dimensional representation.
We used UMAP to embed all FC matrices into a low-dimensional subspace, then applied k-means
clustering to the embedded data. The values of u, v and m were chosen to maximise clustering ac-
curacy using synthetic training data, as described above. The parameter values searched are shown
in Supplementary Table 3. The tuned parameters for each size parcellation are shown in Table 1.

2.3.4. Deep Clustering
Deep learning has provided powerful tools for neuroimaging analysis, including segmentation

of anatomical structures or lesions in structural MRI (Akkus et al., 2017), annotation of cognitive
states in task-based fMRI data (Zhang et al., 2021), or clinical diagnosis from functional connec-
tivity networks (He et al., 2018b; Kam et al., 2019; Vieira et al., 2017; Wang et al., 2020) (for an
overview of deep learning concepts and methodology, and a review of applications to studies of
neurological disorders, see Vieira et al. (2017)). Whereas these supervised applications of deep
learning require a large amount of ground truth data for training (Quaak et al., 2021), autoencoders
can be used as a feature selection method for unsupervised applications.

Autoencoders are a type of artificial neural network which copy the input data to the output, via
a low-dimensional encoding layer (Goodfellow et al., 2016; Vincent et al., 2008). The bottleneck
formed by this low-dimensional encoding layer forces the network to extract features from which
the original data can be reproduced via the decoding layers. In this case, the input data is used as
the training target, thus autoencoders can be used for feature selection or dimensionality reduction
in unsupervised clustering applications with no ground truth (Guo et al., 2017; Xie et al., 2016).
Here, we use autoencoders as a data-driven approach to determining feature space at the group
level, allowing clustering to be applied to the salient features provided by the low-dimensional
encoding layer. This framework is known as deep clustering (Caron et al., 2018; Guo et al., 2017).

The proposed deep clustering framework consists of training an autoencoder on all FC windows
before applying k-means clustering to the encoded data (Fig. 3). We used a fully-connected autoen-
coder with three encoding layers and a symmetric decoder. Weights were trained using the Adam
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Figure 3: Autoencoder architecture. The architecture, shown here for a parcellation with N = 25 nodes, was determined
by a coarse grid search to maximise clustering accuracy using a synthetic training dataset. The upper triangle of each
FC matrix is taken as an input. Each layer shows the number of units and the activation function. The encoded data is
used for clustering. ReLU = rectified linear unit.

optimiser (Kingma and Ba, 2014) to minimise the mean-squared error (MSE) between the input and
output, trained for 100 epochs with a batch size of 50. Rectified linear unit (ReLU) activation func-
tions were used for hidden layers and linear activation functions were used for the low-dimensional
layer and output layer. The number of units in each layer were chosen to maximise clustering accu-
racy using synthetic training data, as described above. The parameter values searched are shown in
Supplementary Table 4. The number of units in each layer for each parcellation is shown in Table
1.

2.4. Experiments
2.4.1. Clustering Synthetic Data

We varied the parameters of the model and preprocessing steps to assess clustering performance
in each of the following cases:

a) Number of “subjects”: 10, 50 and 100.
b) Number of regions in the parcellation: 15, 25 and 50.
c) Number of states: 3, 5 and 7.
d) Hemodynamic response function (HRF): Both HRF models provided in SimTB were tested; the

canonical HRF, and the Windkessel-Balloon model.
e) Noise: Low, medium and high noise datasets were generated by varying the probability and

amplitude of unique events in the underlying neural time course, and the amplitude of Gaussian
noise added to the BOLD signal. The distributions of these parameters are shown in Supple-
mentary Table 1.

f) Sliding window shape: Rectangle, Hamming and Hanning.
g) Sliding window length: 30, 40 and 60 s.

In each dataset, parameters that were not varied were set to the following default values: 50
subjects; 25 nodes; canonical HRF; high noise; rectangle sliding window length of 40 s. For
validation, clustered states were matched to true states by pairing those with maximum cosine sim-
ilarity between corresponding FC matrices. To allow comparison of dFC state centroids between
clustering methods, the representative FC matrix for a given state was constructed by averaging
all FC windows belonging to that state (rather than using the low-dimensional centroid derived by
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the k-means step). Clustering performance was then measured by accuracy (fraction of correctly
labelled windows), dwell time MSE, fractional occupancy MSE, and the mean cosine similarity
between cluster centroids and true states. To calculate dwell time MSE and fractional occupancy
MSE, these properties were calculated for each state in every subject, then the squared error be-
tween these measurements and the true values were calculated and averaged across subjects and
states. For each parameter set, we constructed five datasets (each with a unique set of state FC
matrices and a unique transition matrix) and performed 10 runs of each method on each dataset.
We then averaged performance metrics over all 50 runs of each method on the given parameter set.

To demonstrate the differences between measurements of temporal properties across subjects
in each dataset, we took results from one run of each method and performed an unpaired two-tailed
t-test to test for significant differences from the true distribution of fractional occupancy and dwell
time measurements for each state.

2.4.2. Clustering Real-World Data
We selected five non-overlapping groups of 100 subjects from the Human Connectome Project

dataset (see Section 2.1.2). In each group, we applied SWC with a rectangular window of length
55 TR (39.6 s) with a step size of 2 TR (1.44 s), giving 573 windows per subject. This was based
on previous work suggesting that, where motion noise is not excessive, a rectangular window is
suitable for detecting dFC (Savva et al., 2020). The number of clusters, k, was selected for each
dataset using the elbow criterion of the within-cluster to between-cluster distance when clustering
exemplar FC windows (Allen et al., 2014). In all groups of 100 subjects, we identified the optimal
number of clusters to be k = 4. We then applied clustering with each method to each group, using
the parameters shown in Table 1 for 50 nodes. For subsequent comparison, states were matched
between methods by pairing those with maximum cosine similarity between the corresponding FC
matrices.

To assess the measurements of state temporal properties provided by each method, we calcu-
lated the fractional occupancy and dwell time of each state in each subject. To determine whether
the stochasticity introduced by training the autoencoder affected measurements of state temporal
properties across repeated runs of deep clustering, we performed 10 runs of deep clustering on each
dataset and used a one-way analysis of variance (ANOVA) to test for differences between runs in
the fractional occupancy and dwell time of each state.

To determine whether the choice of feature selection method affected the measurement of state
temporal properties, we performed one run of each method and used a one-way ANOVA to test for
differences between methods in fractional occupancy and dwell time. False discovery rate (FDR)
correction was applied using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).
If this yielded significant results (FDR-corrected p < 0.05) then post hoc pairwise comparison
between methods was performed using unpaired two-tailed t-tests with FDR correction applied.

2.5. Data Availability Statement
Real-world fMRI data were obtained from the Human Connectome Project (Van Essen et al.,

2013) (https://www.humanconnectome.org). The SimTB model (Erhardt et al., 2012) used
to generate synthetic data was obtained from https://trendscenter.org/software/simtb/.
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The code used in this study is publicly available at https://github.com/apcspencer/dFC_
DimReduction.

3. Results

3.1. Validation
To examine the efficacy of each dimension reduction method, we quantified clustering perfor-

mance using synthetic data. Of the methods tested, deep clustering gave the highest accuracy in
all synthetic datasets overall (Fig. 4). Deep clustering provided the highest mean cosine similarity
between extracted states and true states, the lowest MSE in fractional occupancy, and the lowest
MSE in dwell time in the majority of datasets (Fig. 4). The only exceptions are those with 10 sub-
jects, 15 nodes and 30s windows, where PCA and UMAP give marginally better results for mean
cosine similarity, and lower MSE in dwell time, respectively. Additionally, deep clustering was the
only method to give measurements of fractional occupancy and dwell time better than chance in all
datasets.

Applying k-means to the original feature space, using L1 distance almost always gave the worst
performance. In most datasets, using PCA for feature selection prior to k-means did not offer
any performance improvements over applying k-means with L2 distance to the original feature
space. UMAP gave variable accuracy, with good performance in data with low noise, 30 s window,
Hamming window, or 15 nodes, but performed poorly in the 60 s window and 7 state datasets, in
which fractional occupancy measurements were worse than chance.

The accuracy of each individual run of each method, grouped by dataset, is shown in Supple-
mentary Fig. 2. Repeated runs of each method on a given dataset had tightly grouped accuracy
scores, with the exception of datasets in the 10 subject parameter set, which was highly variable. In
terms of accuracy, the ranking of the methods was similar all five datasets for each set of parameter
values, with deep clustering almost always performing best, and k-means using L1 distance almost
always performing worst.

Fig. 5 shows exemplar data from the results of each clustering algorithm applied to a high noise
dataset. It can be seen that the distribution of dwell time measurements for deep clustering were
not statistically distinguishable from the ground truth. On the other hand, these were significantly
different from the ground truth for states 1, 2 and 5 with PCA or k-means using L1 distance, and for
state 1 with k-means using L2 distance (Fig. 5c). Additionally, fractional occupancy measurements
from k-means using either L1 or L2 distance, PCA and UMAP were significantly different from the
truth for state 3. The high fractional occupancy measurements for state 3 show that a large number
of FC windows were incorrectly assigned to this cluster. This has a visible effect on the state FC
matrices for state 3 for these methods (Fig. 5a), in which most elements are close to zero due to
being averaged over a large number of FC windows. Conversely, all five state FC matrices derived
using deep clustering have visually similar structure to the ground truth.

A similar effect is observed with most parameter sets (see Supplementary Fig. 3–15), which
clearly demonstrates the difference in performance between deep clustering and the other methods.
K-means using either L1 or L2 distance, PCA and UMAP derive state FC matrices that appear to
be very similar to the ground truth for most states (see e.g. states 1, 2, 4 and 5 in Fig. 5a). It appears
this is because these methods only identify the FC windows that very strongly express the state’s
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Figure 4: Results of validation with synthetic data. Performance metrics from each feature selection method plotted
for synthetic validation datasets with varying model parameters. For each set of model parameters, 5 datasets were
generated with the given parameters, each with a unique transition matrix and set of state FC matrices, then 10 runs of
each method were applied to each of these datasets. The performance averaged over these 50 runs is plotted for each
parameters set. The accuracy of each individual run is shown in Supplementary Fig. 2. FO = fractional occupancy;
DT = dwell time; MSE = mean squared error; PCA = principle component analysis; UMAP = uniform manifold
approximation and projection; HRF = hemodynamic response function; Rect = rectangular; Hamm = Hamming; Hann
= Hanning; Canon = canonical; W-B = Windkessel-Balloon.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472680doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472680
http://creativecommons.org/licenses/by/4.0/


pattern of connectivity. Spurious correlations in many other FC windows cause those windows to
be incorrectly assigned to a single state by these methods (state 3 in Fig. 5a). We postulate that for
deep clustering, the autoencoder projects the data to a low-dimensional feature space in which the
salient features allow the FC windows to be assigned to the correct state more accurately, reducing
the effect of the spurious correlations.

Notably, PCA as well as k-means using either L1 or L2 distance each gave lower measurements
of median dwell time than the ground truth for all states. This was the case for all parameter sets
(see Supplementary Fig. 3–15). This is likely due to occasional spurious switching between states,
as seen in the state time courses of individual subjects plotted in Fig. 5b.

3.2. Application to Real-World Data
We applied each method to real-world data from five groups of 100 subjects from the Human

Connectome Project. Clustering results for the first group are shown in Fig. 6. The estimated state
FC matrices were largely comparable for all methods except for UMAP, though state 4 also differed
for deep clustering compared to the other methods (Fig. 6a). There were significant differences in
the measurements of fractional occupancy for states 1 and 3, and dwell time in states 2–4 (Fig. 6b;
one-way ANOVA, FDR-corrected p < 0.05).

Results for the four additional groups of 100 subjects are shown in Supplementary Fig. 16–19.
Notably, PCA and k-means using either L1 or L2 distance resulted in lower dwell time measure-
ments than deep clustering and UMAP for most states in all groups, which is similar to our finding
when analysing synthetic data (see Fig. 5 and Supplementary Fig. 3–15). State time courses are
plotted for five subjects, demonstrating qualitative differences in the switching characteristics of
each method (Fig. 6c).

To assess whether the stochasticity introduced when training the autoencoder affected measure-
ments of state temporal properties across repeated runs of deep clustering, we performed a one-way
ANOVA to test for differences in the fractional occupancy and dwell time of each state for 10 rep-
etitions applied to each group of 100 participants. Measurements of both fractional occupancy
and dwell time were robust across repeated runs for all states in all groups of participants (lowest
uncorrected p-value = 0.1191). These results are shown in full in Supplementary Fig. 20.

4. Discussion

In this study, we evaluated the use of dimensionality reduction methods prior to clustering dFC
data from SWC. We proposed a deep clustering framework consisting of training a fully-connected
autoencoder on all FC windows, followed by applying k-means clustering to the encoded data. We
quantitatively assessed clustering performance using multiple synthetic datasets, each with unique
sets of state FC matrices and transition probabilities, and each containing multiple timeseries rep-
resenting different subjects with randomised model parameters. We demonstrated that deep clus-
tering gives the highest accuracy across a range of model parameters and preprocessing conditions,
including varying HRF parameters, noise levels (both additive Gaussian noise and spurious neu-
ral events), number of subjects, number of states, number of nodes, and sliding window shape and
length. Further, when measuring the error in estimates of fractional occupancy and dwell time, deep
clustering was the only method to perform better than chance across all experimental conditions.
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Figure 5: Clustering results from one run of each feature selection method applied to synthetic data with high noise.
a) State FC matrices are plotted with connectivity indicated by the colour bar. b) State time courses are shown for
five subjects. c) The distribution across subjects of fractional occupancy and dwell time measurements are plotted
for each state. Boxes show the interquartile range, with a line for the median. The median of the ground truth is
shown as a dashed line across each plot for comparison with other methods. Whiskers extend to the range of the data,
not including outliers which are shown as diamonds. Significant differences from the true distributions, measured by
unpaired two-tailed t-tests, are indicated as follows: *p < 0.01, **p < 0.001, ***p < 0.0001.
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Figure 6: Human Connectome Project clustering results from each feature selection method. a) State FC matrices
resulting from each method, with connectivity indicated by the colour bar. b) Fractional occupancy and dwell time
measurements across subjects are shown for each state. Boxes show the interquartile range with a line for the median.
Whiskers extend to the range of the data, not including outliers which are shown as diamonds. Measurements were
compared using a one-way ANOVA, with post hoc pairwise comparison using two-tailed t-tests. c) State time courses
are shown for five subjects. FDR-corrected: *p < 0.05, **p < 0.001, ***p < 0.0001.
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PCA and both k-means approaches consistently performed worse than deep clustering, with k-
means using L1 distance usually performing worst, and PCA or k-means using L2 distance giving
roughly similar performance. UMAP gave good performance in some tests, with similar accuracy
to deep clustering in the low noise datasets, 30 s window datasets, and 15 node datasets. How-
ever, the performance of UMAP varied widely, giving comparatively lower accuracy in the 7 state
datasets or the datasets with the Windkessel-Balloon HRF, and gave very poor performance in the
60 s window datasets. This is likely due to the fact that UMAP relies on distances between data
points (windowed FC matrices in this case) to construct the low-dimensional feature space. As
such, UMAP parameters are unlikely to generalise to data in which distances between data points,
and the number of data points, are drastically different from the tuning data, which may be the case
for a different window size. As we can’t tune the feature selection methods on real-world data,
these different synthetic validation datasets serve as an indication of how well the performance of a
given method generalises, and therefore its reliability when applied to real-world data which may
be much further from the tuning dataset. As UMAP gives variable performance, declining dramat-
ically in some cases, it is clearly not robust across parameters and is therefore not the most reliable
for application to real-world data.

When applied to real-world data, measurements of state temporal properties were dependent
on the choice of feature selection method. For many states, PCA and both k-means approaches
(using either L1 or L2 distance) gave estimates of dwell time that were significantly lower than
those given by deep clustering. This echos the results from synthetic data, in which these methods
consistently underestimated dwell time. UMAP gave longer estimates of dwell time than other
methods. This is likely due to the neighbour embedding algorithm placing consecutive windows,
with high similarity, close to each other in the embedded space. This may not have been an issue
in the simulated data which has sharper transitions between states (Shakil et al., 2016).

Measurements of state temporal properties in real-world data using deep clustering were con-
sistent across repeated evaluations of the algorithm. While this reproducibility does not necessarily
indicate good or meaningful clustering, it does show that deep clustering gives robust results despite
the stochasticity introduced by the deep learning approach.

There are an increasing number of available approaches for dFC analysis of resting state fMRI
data, including methods of extracting brain states directly from voxelwise BOLD data (Lin et al.,
2021), or methods to determine spatially and temporally overlapping states (Karahanoğlu and Van
De Ville, 2015) (for a review, see Preti et al. (2017)). However, applying k-means to SWC data is
the most common approach in studies of dFC in neurological disorders, despite evidence showing
that this method gives poor characterisation of state transitions (Shakil et al., 2016). Our results
show that applying k-means to the original feature space, without the use of feature selection,
may be insufficient for measuring state temporal properties, despite a high similarity between the
FC matrices representing extracted states and true states. Our proposed deep clustering approach
provides accurate measurements of temporal properties in synthetic data, robust to variations in
model parameters and experimental conditions.

In neuroimaging studies, autoencoders have been used for feature selection prior to modelling
(Suk et al., 2016), and for pre-training layers of a classifier (Heinsfeld et al., 2018). A recent study
has applied autoencoders directly to fMRI BOLD data in order to improve individual identifiability
of functional connectomes (Cai et al., 2021). The goals of Cai et al. (2021) were to residualise the
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BOLD data, by applying autoencoders directly to the BOLD timeseries to remove common neural
activities, in order to enhance inter-subject variability for functional connectome ‘fingerprinting’.
Conversely, we used autoencoders as a data-driven approach to determine feature space at the
group level in order to improve clustering of FC windows, thus improving measurements of dFC
state temporal properties. Our deep clustering approach is applied to the FC matrices, such that it
fits into the existing, well-established framework of SWC analysis.

The use of deep learning often raises concerns of overfitting, as the number of parameters
(weights in the neural network) exceeds the number of data points (FC windows) resulting in poor
generalisation to data points outside the training set (Vieira et al., 2017). In the deep clustering
approach used here, the autoencoder is always trained on the data being clustered, therefore the
weights do not have to generalise to unseen data. The only parameters which are not trained
on each data point encountered are hyperparameters such as the number of units in each layer, the
activation function, the batch size and the number of epochs. By demonstrating that deep clustering
performance is robust to model parameters and preprocessing parameters, we have shown that
the autoencoder architecture and hyperparameters, which were tuned with a coarse grid search to
maximise clustering accuracy using a synthetic training dataset, offer good generalisation.

The use of tapered sliding windows when computing SWC has been proposed in order to dimin-
ish the effect of spurious fluctuations causing large discontinuities when entering and leaving the
window (Allen et al., 2014; Mokhtari et al., 2019; Shakil et al., 2016). Our results in synthetic data
showed slightly worse clustering performance with all methods when using tapered windows, in
comparison with a rectangular window. However, as previous suggested (Shakil et al., 2016), this
is likely due to the sharp discontinuities at state transitions in synthetic data, which may not reflect
the characteristics of state changes in real-world data. Additionally, we did not match the different
window types (e.g. by varying window length to match the cuttoff frequency) (Mokhtari et al.,
2019). The purpose of assessing different window shapes in this study was to evaluate clustering
performance across a range of experimental conditions; a comprehensive comparison of sliding
window parameters and preprocessing options is beyond the scope of this work, but can be found
in previous studies (Hindriks et al., 2016; Leonardi and Van De Ville, 2015; Mokhtari et al., 2019;
Shakil et al., 2016).

There is still some debate over whether dFC analysis truly captures underlying neural activity
(Gonzalez-Castillo et al., 2015; Handwerker et al., 2012; Matsui et al., 2019) or simply artefacts
due to head motion (Laumann et al., 2017). The improved performance offered by deep clustering
may allow more refined assessment of the ability of SWC to capture neural activity.

5. Conclusion

We have demonstrated that a deep clustering framework, comprising autoencoders for feature
selection prior to k-means clustering, offers improved dFC clustering performance on synthetic
data. When applied to real-world data, this performance increase resulted in significant differences
in the measurement of temporal characteristics of brain states compared to the standard approach.
These differences qualitatively reflected the differences observed in synthetic clustering results.
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