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Highlights 

- We provide systematic reusable benchmarks for brain age from M/EEG signals 

- The benchmarks were carried out on M/EEG from four countries > 2500 recordings 

- We compared machine learning pipelines capable of handling the non-linear regression task 

of relating biomedical outcomes to M/EEG dynamics, based on classical machine learning and 

deep learning 

- Next to data-driven methods we benchmarked template-based source localization as a 
practical tool for generating features less affected by electromagnetic field spread 

- The benchmarks are built on top of the MNE ecosystem and the braindecode package and can 

be applied on any M/EEG dataset presented in the BIDS format 
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Abstract 

Population-level modeling can define quantitative measures of individual aging by applying 

machine learning to large volumes of brain images. These measures of brain age, obtained 

from the general population, helped characterize disease severity in neurological populations, 

improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and 

Electroencephalography (EEG) have the potential to further generalize this approach towards 

prevention and public health by enabling assessments of brain health at large scales in 

socioeconomically diverse environments. However, more research is needed to define 

methods that can handle the complexity and diversity of M/EEG signals across diverse real-

world contexts. To catalyse this effort, here we propose reusable benchmarks of competing 

machine learning approaches for brain age modeling. We benchmarked popular classical 

machine learning pipelines and deep learning architectures previously used for pathology 

decoding or brain age estimation in 4 international M/EEG cohorts from diverse countries and 

cultural contexts, including recordings from more than 2500 participants. Our benchmarks 

were built on top of the M/EEG adaptations of the BIDS standard, providing tools that can be 

applied with minimal modification on any M/EEG dataset provided in the BIDS format. Our 

results suggest that, regardless of whether classical machine learning or deep learning was 

used, the highest performance was reached by pipelines and architectures involving spatially 

aware representations of the M/EEG signals, leading to R^2 scores between 0.60-0.71. Hand-

crafted features paired with random forest regression provided robust benchmarks even in 

situations in which other approaches failed. Taken together, this set of benchmarks, 

accompanied by open-source software and high-level Python scripts, can serve as a starting 

point and quantitative reference for future efforts at developing M/EEG-based measures of 

brain aging. The generality of the approach renders this benchmark reusable for other related 

objectives such as modeling specific cognitive variables or clinical endpoints. 

Introduction 

Aging-related disorders of the central nervous system affect hundreds of millions of patients, 1 

their caregivers and national health services. Over the past decades, important progress has 2 

been made in clinical neuroscience, resulting in improvements to clinical diagnosis and 3 

treatment (Walhovd et al. 2010; Ewers et al. 2011). Backed by increasingly advanced 4 

analytical methods, this has enabled fine-grained characterization of neurodegenerative 5 

conditions (Gaubert et al. 2019; Schumacher et al. 2021; Güntekin et al. 2021). Yet, from a 6 

public-health perspective, rather than focusing on pathology, it is essential to detect risk 7 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472691doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472691
http://creativecommons.org/licenses/by/4.0/


 
 

 
  3 / 38 
 

factors early within the general population in order to provide actionable feedback for 8 

preventive medicine, e.g., by targeting life-style changes. Such predictions are still 9 

challenging. Could it be helpful to look at biological rather than chronological age to better 10 

estimate the risk of declining brain health? 11 

Recently, brain age has emerged as a concept for estimating biological aging in the general 12 

population (James H. Cole and Franke 2017; Liem et al. 2017; Dosenbach et al. 2010). 13 

Biological aging can be inferred from the genome via telomere length, mitochondrial function, 14 

epigenetics and other cellular features (Ferrucci et al. 2020; Mather et al. 2011). Yet, the age 15 

of a person is only a noisy measure of these cellular processes (people of the same 16 

chronological age can have different biological ages). At the same time, biological aging 17 

affects brain structure and function (K. S. King et al. 2014), inducing loss of brain volume 18 

(Driscoll et al. 2009; Scahill et al. 2003) and characteristic changes in neuronal activity 19 

(Cabeza et al. 2002; Damoiseaux et al. 2008; Babiloni et al. 2006). A proxy of biological aging 20 

can, thus, be obtained by mapping chronological age to brain data from large populations of 21 

subjects using machine learning (Liem et al. 2017; Dadi et al. 2021). The resulting models 22 

can be used to compute an expectation of a person's age given her brain data. This is 23 

achieved by quantitatively comparing that person’s brain data to the distribution of brain data 24 

across different ages within the general population. This statistical expectation can tell how 25 

old (or young) a brain “looks” (Spiegelhalter 2016), hence, predicting the risk of neurological 26 

complications potentially more precisely than the chronological age. 27 

This empirical measure of biological aging derived from the general population has proven a 28 

useful marker of neurodegeneration and cognitive decline in clinical populations (Cole et al. 29 

2018; Raffel et al. 2017; Denissen et al. 2021; Gonneaud et al. 2021). In these cohorts, 30 

patients typically appear to have older brains than their chronological age would suggest. 31 

Importantly, similar trends emerge when evaluating brain age in the general population where 32 

elevated brain age, compared to chronological age, has been associated with lower cognitive 33 

capacity, well-being, and general health (Dadi et al. 2021; Cole 2020; Wrigglesworth et al. 34 

2021). Yet, so far, this approach has mainly been based on anatomical brain scans and 35 

hemodynamic signals obtained from magnetic resonance imaging (MRI). This limits the broad 36 

utility of brain age for public health, as cerebral MRI scans are usually collected when there is 37 

an indication, which can be too late. Even when people from the general population are 38 

motivated to participate in brain research, this only concerns a small fraction of society: MRI 39 

devices and neuroscientific studies are not equally accessible in all regions of the world and 40 

do not attract all people equally from within society, potentially leading to selection bias (Fry 41 

et al. 2017). 42 

New hope to generalize this approach has been sparked by advances in large-scale modeling 43 

of biomedical outcomes from non-invasive electrophysiological data including 44 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472691doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472691
http://creativecommons.org/licenses/by/4.0/


 
 

 
  4 / 38 
 

magnetoencephalography (MEG) and electroencephalography (EEG) (Gaubert et al. 2019; 45 

Engemann et al. 2018). This line of research in clinical neurology may help develop 46 

assessments of brain health in many additional contexts in which MRI cannot be applied. First 47 

MEG-based brain-age models have allowed to validate MEG-derived brain age against MRI-48 

derived brain age. Results from several studies have shown that the MEG- and MRI-derived 49 

brain age are statistically related, leading to overlapping correlations between ensuing brain 50 

age estimates (Engemann et al. 2020; Sabbagh et al. 2020; Xifra-Porxas et al. 2021) and 51 

individual differences in cognition and health. This overlap can be explained by 52 

electromagnetic field spread, independently of neuronal activity: As brain structure changes 53 

due to aging, cortical activity, even if unchanged, will project differently onto the M/EEG sensor 54 

array, making age indirectly decodable (Sabbagh et al. 2020). Importantly, multiple articles 55 

have found that neuronal activity captured by MEG adds specific information not present in 56 

MRI-derived brain age (Engemann et al. 2020; Xifra-Porxas et al. 2021), leading to improved 57 

prediction performance and richer neurocognitive characterization (Engemann et al. 2020).  58 

While MEG can provide an important discovery context, it is unlikely to be the right instrument 59 

for addressing the availability issues of MRI-based brain age as MEG scanners are even rarer 60 

than MRI scanners. In this context, EEG can make a true difference as EEG is economical 61 

and allows for flexible instrumentation for neural assessments in a wide range of clinical and 62 

real-world situations including at-home assessments. First evidence suggests that MEG-63 

based strategies for brain-age modeling can be translated to EEG. In an earlier publication 64 

(Engemann et al. 2020) we found that among many alternative features of varying data-65 

processing complexity, the spatial distribution of cortical power spectra in the beta (13-30Hz) 66 

and alpha (8-13Hz) frequency band explained most of the MEG's performance as brain-age 67 

regressor. This type of information can be well accessed without source localization from the 68 

sensor-space covariance using spatial filtering approaches or Riemannian geometry 69 

(Sabbagh et al. 2020; D. Sabbagh et al. 2019), which has led to successful translation of this 70 

MEG-derived strategy to clinical EEG with around 20 electrodes (David Sabbagh et al. 2020). 71 

In clinical and real-world contexts in which EEG is frequently collected, fine-grained spatial 72 

information may not be present as only a few electrodes are used. This has favored alternative 73 

EEG-derived brain-age models focusing on a wealth of spectral and temporal features (Al 74 

Zoubi et al. 2018) which may perform better on sparse EEG-montages and has enabled sleep-75 

based brain age measures (Sun et al. 2019; Ye et al. 2020). 76 

These results provide a sense of the flexibility and future potential of EEG-based brain age as 77 

a widely applicable real-world measure of brain health. Yet, to fully develop this research 78 

program, more and richer evidence is desirable. At this point, comparisons between different 79 

machine learning strategies are difficult. Most models were not only developed and validated 80 

in one specific context, but their implementations and data-processing routines are dataset-81 
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specific. Moreover, general machine learning approaches successful at pathology decoding 82 

should be well-suited for brain age modeling too, yet they have never been tested for that 83 

purpose (Gemein et al. 2020; Banville et al. 2020; Engemann et al. 2018). This makes it hard 84 

to know whether any strategy is globally optimal and where specific strategies have their 85 

preferred niche. As a result, uncertainty is added to comparisons between MEG, EEG and 86 

MRI, slowing down efforts of validating M/EEG-based brain age. Finally, to mitigate the impact 87 

of selection bias concerning the subjects investigated, it will be crucial to analyze many, 88 

socially and culturally diverse M/EEG datasets and find representations that are invariant to 89 

confounding effects that can raise issues of fairness and racial bias if remaining unaddressed 90 

(Choy, Baker, and Stavropoulos 2021). To develop the next generation of M/EEG-derived 91 

brain age models, to facilitate processing of larger numbers of diverse M/EEG-data resources 92 

and to avoid fragmentation of research efforts, standardized software and reusable 93 

benchmarks are needed.  94 

In this paper we wish to make a first step in that direction. We provide reusable brain-age-95 

prediction benchmarks for different machine learning strategies validated on multiple M/EEG 96 

datasets from different countries. The benchmarks are built on top of highly standardized 97 

dataset-agnostic code enabled by the BIDS standard (Gorgolewski et al. 2016; Niso et al. 98 

2018; Appelhoff et al. 2019). This makes the benchmarks easy to extend in the future for 99 

additional datasets. The paper is organized as follows. The method section motivates the 100 

choice of the different machine learning benchmarks. The general data processing approach 101 

and software developed for this contribution are presented in the context of the benchmark. 102 

The selection of datasets is motivated, and datasets are then described in detail and 103 

compared regarding key figures that could provoke differences between benchmarks. 104 

Dataset-specific processing steps and peculiarities are highlighted. Then a model validation 105 

strategy is developed. The results section presents benchmarks on prediction performance 106 

across machine learning models and datasets and different performance metrics. The 107 

discussion inspects differences between models, modalities, and datasets, identifying unique 108 

niches, safe bets as well as unresolved challenges. The work concludes with practical 109 

suggestions on additional benchmarks that can be readily explored using the proposed tools 110 

and resources. The scripts and library code for this benchmark are publicly available on 111 

GithHub1. 112 

 
1 https://github.com/meeg-ml-benchmarks/meeg-brain-age-benchmark-paper 
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Methods 

Brain age benchmarks 

Many different approaches exist for ML in neuroscience, and it can be hard to select among 113 

them. The following categorization may help orient practical reasoning and study design. What 114 

varies in the taxonomy of methods discussed below is how much M/EEG data are statistically 115 

summarized before being presented to the learning algorithm. In other words, ML methods 116 

vary with respect to the extent to which compression and summary of the M/EEG signals is 117 

performed by the learning algorithm vs. feature-defining procedures performed before and 118 

independently of the machine learning algorithm. 119 

A-priori defined, a.k.a. handcrafted, features 

The first category represents approaches in which features are inspired by theoretical and 120 

empirical results in neuroscience or neural engineering. Here, M/EEG is summarized in a rigid 121 

fashion by global aggregation across sensors, time, and frequencies or by visiting specific 122 

regions of interest (Gemein et al. 2020; Sitt et al. 2014; Engemann et al. 2018). A meaningful 123 

composition of features requires prior knowledge of the (clinical) neuroscience literature, 124 

especially when interpretation of the model is a priority. In practice, it is convenient to extract 125 

all or the most relevant features discussed in a given field, apply multiple spatial and temporal 126 

aggregation strategies, and then bet on the capacity of the learning algorithm to ignore 127 

irrelevant features (Sitt et al. 2014). This motivates the use of tree-based algorithms like 128 

random forests (Breiman 2001) that are easy to tune, can fit nonlinear functions (higher-order 129 

interaction effects), and are relatively robust to the presence of uninformative features. As 130 

local methods that can be seen as adaptive nearest neighbors (Hastie et al. 2005), the 131 

predictions of random forests and related methods are bounded by the minimum and 132 

maximum of the outcome in the training distribution. For clinical neuroscience applications, 133 

this has proven to yield robust off-the-shelf prediction models that are relatively unaffected by 134 

noise in the data and in the outcome (Engemann et al. 2018). This approach is also a natural 135 

choice when using sparse EEG-montages with few electrodes. 136 

 Here we implemented a strategy pursued in (Gemein et al. 2020) and (Banville et al. 137 

2020), aiming at a broad set of different summary statistics of the time-series or the power 138 

spectrum. This approach has turned out useful for a pathology detection task in which the 139 

labeling of EEG as pathological can be due to different clinical reasons, hence, affecting many 140 

different EEG signatures in potentially diffuse ways. Features were computed using the MNE-141 

features package (Schiratti, Le Douget, Van Quyen, et al. 2018). More specifically we used 142 

as features (each computed for individual channels and concatenated across channels, and 143 

then averaged across epochs): the standard-deviation, the kurtosis, the skewness, the 144 
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different quantiles (10%, 25%, 75%, 90%), the peak-to-peak amplitude, the mean, the power 145 

ratios in dB among all frequency bands (0 to 2Hz, 2 to 4Hz, 4 to 8Hz, 8 to 13Hz, 13 to 18Hz, 146 

18 to 24Hz, 24 to 30Hz and 30Hz to 49Hz), the spectral entropy (Inouye et al. 1991), the 147 

approximate and sample entropy (Richman and Moorman 2000), the temporal complexity 148 

(Roberts, Penny, and Rezek 1999), the Hurst exponent as used in (Devarajan et al. 2014), 149 

the Hjorth complexity and mobility as used in (Päivinen et al. 2005), the line length (Esteller, 150 

Echauz, et al. 2001), the energy of wavelet decomposition coefficients as proposed in 151 

(Teixeira et al. 2011), the Higuchi fractal dimension as used in (Esteller, Vachtsevanos, et al. 152 

2001), the number of zero crossings and the SVD Fisher Information (per channel) (Roberts, 153 

Penny, and Rezek 1999). 154 

Covariance-based filterbank approaches  

This category represents approaches in which the spatial dimension of M/EEG is fully exposed 155 

to the model, whereas temporal or spectral aspects of the signal are to some extent 156 

summarized before modeling. As M/EEG signals reflect linear superposition of neuronal 157 

activity projected to the sensors through linear field/potential spread, it is natural to use linear 158 

(additive) models for adaptively summarizing the spatial dimension of M/EEG signals (King et 159 

al. 2018; Stokes, Wolff, and Spaak 2015; King and Dehaene 2014). This intuition is driving 160 

the success of linear decoders for evoked response analysis but faces additional challenges 161 

when applied to power spectra (Sabbagh et al. 2020). Computing power features on M/EEG 162 

sensor-space signals renders the regression task a non-linear problem for which linear models 163 

will provide sub-optimal results (Sabbagh et al. 2019). In practice, this can be overcome by 164 

extracting nonlinear features like spectral power after anatomy-based source localization, or 165 

in a data-driven fashion that does not require availability of individual MRI scans. Spatial 166 

filtering techniques provide unmixing of brain sources based on statistical criteria without 167 

using explicit anatomical information, which has led to supervised spatial filtering pipelines 168 

(de Cheveigné and Parra 2014; Dähne et al. 2014). Another related strategy consists in 169 

computing features that are invariant to field spread. This can be achieved by Riemannian 170 

geometry, an approach first applied to M/EEG in the context of brain computer interfaces but 171 

that has also proven effective for biomarker learning (Barachant et al. 2012; Yger, Berar, and 172 

Lotte 2017; Rodrigues, Jutten, and Congedo 2019). These approaches have in common to 173 

favor the covariance of M/EEG sensors as a practical representation of the signals. 174 

Manipulating the covariance allows one to suppress the effects of linear mixing while, at the 175 

same time, exposing the power spectrum and the spatial structure of neuronal activity in each 176 

frequency band (Sabbagh et al. 2020). To scan along the entire power spectrum, one 177 

computes covariances from several narrow-band signals covering low to high frequencies 178 
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(Sabbagh et al. 2020). This provides spatially fine-grained information of frequency-specific 179 

neuronal activity, hence the term filterbank. 180 

 Here we implemented the filterbank models from (Sabbagh et al. 2020; Sabbagh et al. 181 

2019) based on Riemannian geometry that were found to provide a practical alternative to 182 

MRI-based source localization, although falling slightly behind in terms of performance. This 183 

may be explained by the model violations arising from computing the Riemannian embedding 184 

across multiple participants. The Riemannian embedding assumes linear field spread but 185 

each recording comes from a different head and different sensor locations, which is explicitly 186 

modeled when computing individual-specific source estimates. It is an open question whether 187 

template-based source localization can improve upon the Riemannian pipeline, observing that 188 

in the case of MEG such a procedure would be informed by the head position in the MEG 189 

dewar. Both average brain templates and Riemannian embeddings mitigate field spread in a 190 

global way with the difference that the average template uses some anatomical information 191 

and approximate sensor locations in the context of MEG, whereas Riemannian embeddings 192 

are purely a data-driven procedure with some whitening based on the average covariance 193 

(across subjects). 194 

To evaluate the benefit of a template-based anatomy, we included a filterbank model 195 

using source localization based on the fsaverage subject from FreeSurfer (Fischl 2012). The 196 

forward model was computed with a 3-layer Boundary Element Method (BEM) model. Source 197 

spaces were equipped with a set of 4098 candidate dipole locations per hemisphere. Source 198 

points closer than 5mm from the inner skull surface were excluded. The noise covariance 199 

matrices used along with forward solutions to compute minimum-norm estimates inverse 200 

operators were taken as data-independent diagonal matrices. Diagonal values defaulted to 201 

the M/EEG-specific expected scale of noise (obtained via the “make_ad_hoc_cov” function 202 

from MNE-Python). All computations were done with MNE (Gramfort et al. 2014, 2013). For 203 

computational efficiency, source power estimates were obtained by applying the inverse 204 

operators to the subjects' covariance data (MNE-Python function “apply_inverse_cov”). 205 

Dimensionality reduction was carried out with a parcellation containing 448 ROIs (Khan et al. 206 

2018). This procedure closely followed the one from (Engemann et al. 2020), with the 207 

difference that here an MRI template was used instead of subject-specific MRIs. Finally, the 208 

448 ROI-wise source power estimates represented as diagonal matrices were the inputs of 209 

the log-diag pipeline from (Sabbagh et al. 2020; D. Sabbagh et al. 2019). Features were 210 

computed using the coffeine package2. 211 

 
2 https://github.com/coffeine-labs/coffeine 
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Deep learning approaches  

This category concerns modeling strategies in which the outcome is mapped directly from the 212 

raw signals without employing separate a priori feature-defining procedures. Instead, multiple 213 

layers of nonlinear but parametric transformations are estimated end-to-end to successively 214 

summarize and compress the input data. This process is controlled by supervision and 215 

enabled by a coherent single optimization objective. In many fields, emerging deep learning 216 

methods keep defining the state of the art in generalization performance, often outperforming 217 

humans. Deep learning models are however greedy for data, and it may take hundreds of 218 

thousands if not millions of training examples until these models show a decisive advantage 219 

over classical machine-learning pipelines. Applied to neuroscience, where the bulk of datasets 220 

is small to medium-sized, deep learning models may or may not outperform classical 221 

approaches (Poldrack, Huckins, and Varoquaux 2020; Schulz et al. 2020; Roy et al. 2019; He 222 

et al. 2020). The success of using a deep-learning model may, eventually, depend on the 223 

amount of energy and resources invested in its development (Gemein et al. 2020).  224 

Apart from high performance on standard laboratory M/EEG datasets and decoding 225 

tasks, deep learning models are attractive for other reasons. First, when very specific 226 

hypotheses about data generators or noise generators are available (Kietzmann, McClure, 227 

and Kriegeskorte 2019). In this setting, the model architecture can be designed to implement 228 

this knowledge, e.g. to explicitly extract band power features in a motor decoding task. 229 

Second, these models have a strategic advantage when the data generating mechanism is 230 

not known at all, hence, few hypotheses about classes of features are available (Schirrmeister 231 

et al. 2017). In this setting, models with a generic architecture can learn and identify relevant 232 

features themselves without requiring expert knowledge of the researcher. With neural 233 

architecture search and automated hyperparameter optimization, there is also intense 234 

research to even reduce the amount of expert knowledge needed to create the network 235 

architecture itself. This flexibility has led neuroscientists to discover the framework as a vector 236 

for hypothesis-driven research probing brain functions and neural computation (Yamins and 237 

DiCarlo 2016; Bao et al. 2020). At the same time, this flexibility is equally beneficial under 238 

complex environmental conditions that degrade the quality of M/EEG recordings (e.g. real-239 

world recordings outside of controlled laboratory conditions), in which the classes of relevant 240 

features are not a priori known and deep learning models can exploit the structure of the data 241 

and noise sources to provide robust predictions. (Banville et al. 2021). 242 

Based on prior work, here we benchmarked two battle-tested general architectures 243 

(Gemein et al. 2020) implemented using the Braindecode package3 (Schirrmeister et al. 2017; 244 

Gramfort et al. 2013). Braindecode is an open-source library for end-to-end learning on EEG 245 

 
3 https://braindecode.org  
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signals. It is closely intertwined with other libraries. One of them is Mother of all BCI 246 

Benchmarks (MOABB) (Jayaram and Barachant 2018), which allows for convenient EEG-247 

data fetching, MNE (Gramfort et al. 2013, 2014), implements well established data structures, 248 

preprocessing functionality, and more. A second key dependency is Skorch (Tietz et al. 2017), 249 

which implements the commonly known scikit-learn (Pedregosa et al. 2011) API for neural 250 

network training (Buitinck et al. 2013). For these reasons, Braindecode is equally useful for 251 

EEG researchers who desire to apply deep learning as well as for deep learning researchers 252 

who desire to work with EEG data. Braindecode builds on PyTorch (Paszke et al. 2019) and 253 

comprises a zoo of decoding models that were already successfully applied to a wide variety 254 

of EEG decoding classification and regression tasks, such as motor (imagery) decoding 255 

(Schirrmeister et al. 2017; Kostas and Rudzicz 2020), pathology decoding (Gemein et al. 256 

2020; van Leeuwen et al. 2019; Tibor Schirrmeister et al. 2017), error decoding (Völker et al. 257 

2018), sleep staging (Chambon et al. 2018; Perslev et al. 2021), and relative positioning 258 

(Banville et al. 2020). 259 

For this benchmark and the task of age regression we used two Convolutional Neural 260 

Networks (ConvNets, sometimes abbreviated CNNs) (LeCun et al. 1999) namely 261 

ShallowFBCSPNet (BD-Shallow) and Deep4Net (BD-Deep) (Schirrmeister et al. 2017). BD-262 

Shallow was inspired by the famous filter bank common spatial pattern (FBCSP) (Ang et al. 263 

2008) algorithm. Initially, it has two layers that represent a temporal convolution as well as a 264 

spatial filter. Together with a squaring and logarithmic non-linearity it was designed to 265 

specifically extract bandpower features. Of note, in the present context this architecture is 266 

closely related to SPoC (Dähne et al 2014) and, in therefore, in principle, has the capacity to 267 

deliver consistent regression models as was formally proven in previous work (Sabbagh et al 268 

2020).  269 

In contrast, BD-Deep is a much more generic architecture. In total, it has four blocks of 270 

convolution-max-pooling and is therefore not restricted to any specific features. While BD-271 

Deep has around 276k trainable parameters and has therefore more learning capacity, BD-272 

Shallow has only about 36k parameters.  273 

It is important to note, that we did neither adjust the model architectures (apart from those 274 

changes required by the regression task) nor run task-specific hyperparameter optimization. 275 

Both ConvNets were used as implemented in Braindecode with hyperparameters that were 276 

already successfully applied to pathology decoding from the TUH Abnormal EEG Corpus 277 

(Gemein et al. 2020; van Leeuwen et al. 2019; Tibor Schirrmeister et al. 2017). For more 278 

information on Braindecode or the ConvNets, please refer to the original publication 279 

(Schirrmeister et al. 2017). For decoding, we converted the MEG input data from Tesla to 280 

Femtotesla, the EEG input data from Volts to Microvolts, and additionally rescaled the data, 281 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472691doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472691
http://creativecommons.org/licenses/by/4.0/


 
 

 
  11 / 38 
 

such that it has roughly zero mean and unit variance by dividing by the standard deviation of 282 

each dataset (see Section Datasets).  283 

General data processing strategy using BIDS and the MNE-BIDS pipeline 

Neuroimaging and behavioral data are stored in many different complex formats, potentially 284 

hampering efforts of building widely usable methods, hence, impeding reproducible research. 285 

Our goal was to provide brain-age prediction models that can be directly applicable to any 286 

new electrophysiological dataset. For this purpose, we used the Brain Imaging Data Structure 287 

(BIDS) (Gorgolewski et al. 2016) which allows us to organize neuroimaging data in a 288 

standardized way supporting interoperability between programming languages and software 289 

tools. We used the MNE-BIDS software (Appelhoff et al. 2019) for programmatically 290 

converting M/EEG datasets into the BIDS format (Pernet et al. 2019; Niso et al. 2018). This 291 

has allowed us to access all datasets included in this work in the same way, enabling data 292 

analysis for all these datasets with the same code. We will now summarize the general 293 

workflow (cf. Fig. 1).  294 

For this study, we used the MNE-BIDS-Pipeline for automatic preprocessing of MEG 295 

and EEG data stored in BIDS format4 (Jas et al. 2018). Its main advantage is that we can 296 

implement various custom analyses for different datasets without having to write any 297 

elaborate code. Modifying the overall processing pipeline or adapting a given pipeline to a 298 

new dataset only requires few edits. Controlling the pipeline is achieved through dataset-299 

specific configuration files that specify the desired processing steps and options of the MNE-300 

BIDS-Pipeline while dealing with the peculiarities of the data. The MNE-BIDS-Pipeline scripts 301 

themselves do not need to be modified and are readily applicable on diverse datasets. 302 

We designed configuration files to implement data processing steps common to all 303 

datasets analyzed in this benchmark while handling dataset-specific details. Raw signals 304 

bandpass-filtered between 0.1 and 49Hz using a zero-phase finite impulse response (FIR) 305 

filter with Hamming window. Window length and transition bandwidth were automatically 306 

controlled by default settings of MNE-Python (v0.24). We considered epochs of 10-second 307 

length without overlap. These epochs coincided with eyes-closed or eyes-open resting-state 308 

conditions in some of the datasets. As additional channels measuring ocular and cardiac 309 

activity were not consistently available across datasets, we only implemented amplitude-310 

based artifact rejection using the local autoreject method (Jas et al. 2017). Through 5-fold 311 

cross-validation, autoreject chose channel-specific rejection peak-to-peak-amplitude 312 

thresholds and then decided if a given epoch could be repaired using interpolation, or if it 313 

should be rejected to obtain clean data. We kept the default grid of candidate values for the 314 

 
4 https://github.com/mne-tools/mne-bids-pipeline 
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hyperparameters ‘rho’ (the consensus proportion of bad channels leading to rejection of an 315 

epoch) and ‘kappa’ (maximum number of channels allowed to be interpolated). For ‘rho’ we 316 

considered a linearly spaced grid of 11 points between 0 and 1. For ‘kappa’ we considered 1, 317 

4, or 32 channels. As the local autoreject is not yet supported in the MNE-BIDS pipeline, this 318 

step was implemented in a custom script (see the “compute_autoreject.py” in the code 319 

repository). Apart from preprocessing, we also made use of the MNE-BIDS-Pipeline to 320 

generate forward solutions and inverse operators for the source localization approach based 321 

on template MRI (see section Covariance-based filterbank approaches for detailed 322 

explanations). 323 

Each model of the benchmark is based on features extracted from clean epochs. 324 

Again, the conversion of datasets to BIDS has enabled feature extraction using one general 325 

script for all datasets (“compute_features.py” in the code repository). 326 

Figure 1: Data processing, feature extraction and model construction based on the BIDS standard. This 
benchmark project provides a common data processing and feature extraction code allowing comparisons of 
different classical and deep learning-based machine learning models across different M/EEG datasets. Support 
for new datasets can be added with minimal modifications. For a detailed description consider the main text and 
the open-source code repository supporting this article5. 

Datasets 

Large datasets and biobanks are the backbone of population modeling. In the past 10 years, 327 

this has led to a wealth of publications in cognitive neuroscience on modeling biomedical 328 

outcomes and individual differences in cognition from MRI data (Kernbach et al. 2018; James 329 

H. Cole 2020; Smith et al. 2015). This has been enabled by consortia and large-scale 330 

institutional collaborations (Bycroft et al. 2018; Van Essen et al. 2013) that aim at 331 

recontextualizing existing data for open-ended future usage (Leonelli 2016). More recently, 332 

the first M/EEG datasets have emerged with a focus on characterizing populations (Taylor et 333 

al. 2017; Larson-Prior et al. 2013; Babayan et al. 2019; Obeid and Picone 2016; Niso et al. 334 

 
5 https://github.com/meeg-ml-benchmarks/meeg-brain-age-benchmark-paper 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472691doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472691
http://creativecommons.org/licenses/by/4.0/


 
 

 
  13 / 38 
 

2016; Valdes-Sosa et al. 2021; Bosch-Bayard et al. 2020). The selection of datasets for the 335 

present study did not aim at comprehensiveness but represents an attempt to secure a 336 

minimum degree of diversity. Social bias and fairness are important challenges, not only in 337 

the field of machine learning but also in biomedical research. It has been shown for modern 338 

biobanks that the sample deviates from the general population in important ways, 339 

oversampling Caucasian people with higher education degrees (Fry et al. 2017; Henrich and 340 

Heine 2010). For deployment of predictive biomarkers, this can have tragic consequences as 341 

clinical utility may depend on sex and ethnicity (Duncan et al. 2019). As a result, in EEG 342 

research, specific risks of racial bias have been recognized lately, highlighting the risk of 343 

selection bias and confounding, e.g., due to culture-specific hair style (Choy, Baker, and 344 

Stavropoulos 2021). Taken together, this emphasizes the importance of benchmarking on 345 

socially and culturally different datasets. Our selection includes M/EEG datasets from four 346 

different countries representing culturally and socioeconomically diverse contexts. In the 347 

following we will provide a high-level introduction to the datasets, highlighting characteristic 348 

differences, challenges and opportunities for unique benchmarks. 349 

Cam-CAN MEG data.  

The Cambridge Centre of Ageing and Neuroscience (Cam-CAN) dataset (Taylor et al. 2017; 350 

Shafto et al. 2014) has been the starting point of our efforts in building brain age models 351 

(Engemann et al. 2020; David Sabbagh et al. 2020) and we like to see it as a discovery 352 

context. The combination of a wide, almost uniformly distributed age range and MEG data 353 

alongside MRI and fine-grained neurobehavioral results make it a rich resource for exploring 354 

aging-related cortical dynamics. On the other hand, models developed on this dataset may 355 

not be generalizable to real-world contexts in which EEG is operated. The following two 356 

sections are based on the methods description from our previous publications (Engemann et 357 

al. 2020; Sabbagh et al. 2020).  358 

Sample description. The present work was based on the latest BIDS release of the 359 

Cam-CAN dataset (downloaded February 2021). We included resting-state MEG recordings 360 

from 646 participants (female = 319, male = 327). The age of the participants ranged from 361 

18.5 to 88.9 years with a mean age of 54.9 (female = 54.5, male = 55.4) and a standard 362 

deviation of 18.4 years. Data is provided in Tesla and has a standard deviation of 369.3 363 

Femtotesla. We did not apply any data exclusion. Final numbers of samples reflect successful 364 

preprocessing and feature extraction. For technical details regarding the MEG instrumentation 365 

and data acquisition, please consider the reference publications by the Cam-CAN (Taylor et 366 

al. 2017; Shafto et al. 2014). In the following we highlight a few points essential for 367 

understanding our benchmarks on the Cam-CAN MEG data. 368 
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 Data acquisition and processing. MEG was recorded with a 306 VectorView system 369 

(Elekta Neuromag, Helsinki). This system allowed measuring magnetic fields with 102 370 

magnetometers and 204 orthogonal planar gradiometers inside a light magnetically shielded 371 

room. During acquisition, an online filter was applied between around 0.03Hz and 1000Hz. 372 

After bandpass filtering (0.1 - 49Hz), we applied decimation by a factor of 5, leading to a 373 

sample frequency of 200Hz (at the epoching stage). To mitigate the contamination of the MEG 374 

signal by environmental magnetic interference, we applied the temporal signal-space-375 

separation (tSSS) method (Taulu, Simola, and Kajola 2005). Default settings were applied for 376 

the harmonic decomposition (8 components of the internal sources, 3 for the external sources) 377 

on a 10-s sliding window. To discard segments for which inner and outer signal components 378 

were poorly distinguishable, we applied a correlation threshold of 98%. As a result of this 379 

procedure, the signal was high pass filtered at 0.1Hz and the dimensionality of the data was 380 

reduced to 65, approximately. It is worthwhile to note that Maxwell filtering methods like tSSS 381 

merge the signal from magnetometers and gradiometers into one common low-rank 382 

representation. As a result, after tSSS, the signal displayed on magnetometers becomes a 383 

linear transformation of the signals displayed on the gradiometers. This leads to virtually 384 

identical results when conducting analyses exclusively on magnetometers versus 385 

gradiometers (Garcés et al. 2017). To reduce computation time, we analyzed the 386 

magnetometers for our benchmark. To deal with the reduced data rank, a PCA projection to 387 

the common rank of 65 was applied whenever the machine learning pipeline was sensitive to 388 

the rank (e.g., Riemannian filterbank models). For the full specification of the preprocessing, 389 

please refer to the “config_camcan_meg.py” file in the code repository. 390 

LEMON EEG data. 

The Leipzig Mind-Brain-Body (LEMON) dataset offers rich multimodal EEG, MRI and fMRI 391 

data for a well characterized group of young and elderly adults sampled from the general 392 

population (Babayan et al. 2019). As it was the case for the Cam-CAN data, here the research 393 

was conducted in a research context using high-end equipment accompanied by rich and fine-394 

grained neurocognitive and behavioral assessments. 395 

Sample description. EEG resting-state data from 227 healthy individuals from the 396 

LEMON dataset were included in this study. This sample contains 82 females (mean age = 397 

44.2) and 145 males (mean age = 36), representing a clearly visible difference in the 398 

composition of the sample (Fig. 2). Their age distribution went from 20 to 77 years old with an 399 

average of 38.9 +- 20.3 years. Our sample covers the whole available dataset (downloaded 400 

September 2021) as we did not apply any exclusion criteria. It is a peculiarity of this dataset 401 

is that it is divided into 2 distinct age subpopulations, one between 20-35, the second between 402 

55-77 (Fig. 2), rendering the mean a bad representation of the age distribution. Moreover, the 403 
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public version of the datasets only provides ages in a granularity of 5 years to mitigate the risk 404 

of identifying participants. For the purpose of this study, we included the precise ages obtained 405 

through institutional collaboration. The impact on average modeling results turned out 406 

negligible, however. Data is provided in Volts and has a standard deviation of 9.1 Microvolts.  407 

Data acquisition and processing. EEG was recorded with 62-channel active ActiCAP 408 

electrodes and a bandpass filter between 0.015Hz and 1kHz. We applied additional bandpass 409 

filtering between 0.1Hz and 49Hz. The channel placement implemented the 10-5 system 410 

(Oostenveld and Praamstra 2001). EEG data were sampled at 2500Hz. After bandpass 411 

filtering (0.1 - 49Hz), data were decimated by a factor of 5, yielding a final sampling frequency 412 

of 500Hz. As a peculiarity of the dataset, resting-state recordings encompass samples from 413 

two conditions: eyes-closed and eyes-open. Our pipeline explicitly respected these different 414 

conditions. To include a maximum of data and, potentially, a larger set of distinguishable EEG 415 

sources, we pooled the data prior to feature extraction. For the full specification of the 416 

preprocessing, please refer to the “config_lemon_eeg.py” file in the code repository. 417 

CHBP EEG data. 

The Cuban Human Brain Mapping Project (CHBP) provides rich multimodal EEG and MRI 418 

data sampled from young to middle-aged adults from the general population (Valdes-Sosa et 419 

al. 2021; Hernandez-Gonzalez et al. 2011; Bosch-Bayard et al. 2020). As for the Cam-CAN 420 

and LEMON data, research was carried out using high-end electrophysiological equipment in 421 

a biomedical research context. However, the data was collected in a Latin American mid-422 

income country, (Valdes-Sosa et al. 2021), adding a much-needed opportunity for increasing 423 

the diversity in population-level neuroscience datasets. This diversity expresses itself in the 424 

composition of EEG protocols which contain elements of real-world neurology exams, e.g., a 425 

hyperventilation task. 426 

Sample description. EEG resting-state data from 282 healthy individuals from the 427 

CHBP dataset were included in this study. The sample contained 87 females (mean age = 428 

36.7) and 195 males (mean age = 29.9), representing a clearly visible difference in the 429 

composition of the sample (Fig. 2). The overall age distribution went from 18 to 68 years with 430 

an average of 32 +/- 9.3 years. Data is provided in Volts and has a standard deviation of 6.6 431 

Microvolts. Our sample covers the whole available dataset (download June 2021) as we did 432 

not apply any exclusion criteria. Final numbers reflect successful processing of the data. 433 

Data acquisition and processing. EEG data were recorded using a MEDICID 5 system 434 

and two different electrode caps of either 64 or 128 channels. The channel placement 435 

implemented the 10-5 system (Oostenveld and Praamstra 2001). Here we focused the 436 

analysis on the subset of common channels present in all recordings, leading to 53 channels. 437 

We applied additional bandpass filtering between 0.1Hz and 49Hz. As in the LEMON dataset, 438 
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resting-state recordings encompassed samples from eyes-closed and eyes-open conditions. 439 

Again, we pooled both conditions prior to feature extraction. Note that for the data release 440 

(downloaded July 2021) used in this work, we could not benefit from the expert-based 441 

annotations of clean data. The results obtained on this dataset may therefore be impacted by 442 

quality issues to unknown extents. 443 

For the full specification of the preprocessing, please refer to the “config_chbp_eeg.py” 444 

file in the code repository. 445 

TUAB EEG data. 

The Temple University Hospital Abnormal EEG Corpus (TUAB) provides socially and 446 

ethnically heterogeneous clinical EEG data (Obeid and Picone 2016) mostly from Latin-447 

American and African American participants (personal communication, Joseph Picone). As a 448 

peculiarity, the EEG data is obtained from an archival effort of recovering different EEG exams 449 

from the Temple University Hospital in Philadelphia. The clinical and social diversity render 450 

the TUAB dataset an important resource for electrophysiological population modeling 451 

(Gemein et al. 2020; David Sabbagh et al. 2020). 452 

Sample description. Here, we focused exclusively on the EEG recordings labeled as 453 

not pathological by medical experts comprising a subsample of 1385 subjects (female = 775 454 

and males = 610). This sample contained individuals ranging from newborn children (min age 455 

= 0 for female and min age = 1 for male) to elderly (max age = 95 for female and 90 for male) 456 

people (Fig. 2). The average age is 44.4 +/- 16.5 years. Data is provided in Volts and has a 457 

standard deviation of 9.7 Microvolts. The data processing closely followed our previous work 458 

on the TUAB data (Sabbagh et al. 2020). For further details about the dataset, please refer to 459 

the reference publications (Harati et al. 2014; Obeid and Picone 2016).   460 

 Data acquisition and processing. EEG data were recorded using different Nicolet EEG 461 

devices (Natus Medical Inc.), equipped with between 24 and 36 channels. For channel 462 

placement, the 10-5 system was applied (Oostenveld and Praamstra 2001). All sessions have 463 

been recorded with an average reference. Here we considered a subset of 21 common 464 

channels. As channel numbers differed across recordings, re-referencing was necessary. For 465 

consistency, we also applied re-referencing with an average reference on all other EEG 466 

datasets. As sampling frequencies were inconsistent across recordings, we resampled the 467 

data to 200Hz. For many patients, multiple recordings were available. For simplicity we only 468 

considered the first recording. For the full specification of the preprocessing, please refer to 469 

the “config_tuab_eeg.py” file in the code repository. 470 
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Figure 2: Age distributions by gender by dataset. The kernel density (y axis) is plotted across the age range (x 
axis) for all four M/EEG datasets included in the study, separately for male (blue) and female (red) participants. 
Individual observations are displayed by rug plots at the bottom of each panel. The Cam-CAN data (MEG) show a 
wide age range with a quasi-uniform distribution and no obvious sex imbalance. This situation poses no a priori 
challenges for age prediction while, at the same time, analysis of MEG data may be more complex. The LEMON 
dataset included a group of young participants and a group of old participants, leading to a characteristic bi-modal 
distribution. Sex imbalance is clearly visible with more male participants in the group of young participants and 
fewer male participants in the group of older participants. This may lead to potential sex differences in prediction 
success and renders the average age a bad summary of the age distribution. The CHBP data shows a rather 
reduced age range with a right-skewed age distribution and some sex imbalance (again more young male 
participants). Predicting the age can be expected to turn out more difficult on this dataset for the implied lack of 
density along the age range. Finally, the TUAB data present a symmetric age distribution with minor sex 
differences, however, a less uniform age distribution. This may lead to more pronounced errors in young and 
elderly participants. This may, however, be compensated for by the more generous sample size. To summarize, 
the four datasets investigated here pose unique challenges for M/EEG brain age modeling.  

Model evaluation and comparison 

To gauge model performance, we first defined a baseline model that should not provide any 471 

intelligent prediction. As in previous work (Sabbagh et al. 2020; Sabbagh et al. 2019; 472 

Engemann et al. 2020), we employed a dummy regressor model as a low-level baseline in 473 

which the outcome is guessed from the average of the outcome on the training data. This 474 
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approach is fast and typically converges with more computationally demanding procedures 475 

based on permutation testing that we shall briefly outline.  476 

This is particularly relevant for the present benchmark where the combinatorial matrix 477 

of machine learning models (including deep learning) versus datasets would lead to 478 

unpleasant computation times when applying tens of thousands of permutations. The same 479 

can be said for other approximations focusing on ranking statistics across hundreds of Monte 480 

Carlo cross-validation iterations (Sabbagh et al. 2019). Finally, another approach relies on 481 

large left-out datasets, entirely independent from model construction, in which predictions can 482 

be treated like random variables, hence, classical inferential statistics are valid. In previous 483 

work (Dadi et al. 2021), permutation tests and the non-parametric bootstrap were employed 484 

on more than 4000 left-out data points to assess performance above chance and pairwise 485 

differences between models. Such generous held-out datasets are not available in the present 486 

setting, nor can we readily compute statistics across folds, as cross-validation iterations are 487 

not statistically independent. We therefore implemented a less formal approach comparing 488 

competing models against dummy regressors and against each other based on standard 10-489 

fold cross-validation based on fixed random seeds. This ensured that for any model under 490 

consideration, identical data splits were used. Of note, our reusable benchmark code allows 491 

interested readers to implement more exhaustive model comparison strategies. 492 

For scoring prediction performance, we focused on two complementary metrics. The 493 

coefficient of determination (R2) score and the mean absolute error (MAE). Considering the 494 

dummy regressor, the R2 score is a natural choice as it quantifies the incremental success of 495 

a model over a regressor returning the average of the training-data as a guess for the 496 

outcome. Compared to Pearson correlations that are sometimes used in applied neuroscience 497 

studies, the R2 metric is more rigorous as it is sensitive to the scale of the error and the 498 

location: Predictions that are entirely biased, e.g, shifted by a large offset, could still be 499 

correlated with the outcome. In contrast, the R2 metric clearly penalizes systematically wrong 500 

predictions by assigning scores smaller than 0. Positive predictive success thus falls into a 501 

range of R2 between 0 and 1. This facilitates comparisons across models within the same 502 

dataset while posing challenges when comparing models across datasets. 503 

We therefore considered the MAE which has the benefit of expressing prediction errors 504 

at the scale of the outcome. This is particularly convenient for scientific interpretation when 505 

the outcome has some practical meaning as is the case in the present benchmarks on age 506 

prediction. Importantly, the MAE does not per se resolve the problem of comparisons across 507 

datasets as the meaning of errors entirely depend on the distribution of the outcome: Small 508 

errors in years are good for datasets with wide age distributions but bad in datasets with 509 

narrow age distributions. This obviously calls for contextualizing the MAE against a dummy 510 

baseline regression model. While this does not necessarily facilitate comparisons across 511 
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datasets, it helps make visible situations in which one cannot rely solely on the R2 for model 512 

comparisons. 513 

 

Computational considerations and software 
 

M/EEG data processing. BIDS conversion and subsequent data analysis steps were carried 514 

out in Python 3.7.1, the MNE-Python software (v0.24, Gramfort et al. 2014, 2013), the MNE-515 

BIDS package (v0.9, Appelhoff et al. 2019) and the MNE-BIDS-pipeline on a 48-core Linux 516 

high-performance server with 504 GB RAM. The joblib library (v1.0.1) was used for parallel 517 

processing. For artifact removal, the latest development version (v0.3dev) of the autoreject 518 

package (Jas et al. 2017) was used. 519 

Classical machine learning benchmarks. For future computation, the mne-features 520 

(0.2, Schiratti, Le Douget, Le Van Quyen, et al. 2018), PyRiemann (v0.2.6) and the coffeine 521 

(0.1, Sabbagh et al. 2020) libraries were used. Analyses were composed in custom scripts 522 

and library functions based on the Scientific Python Stack with NumPy (v1.19.5, Harris et al. 523 

2020), SciPy (v1.6.3, Virtanen et al. 2020) and pandas (v.1.2.4, McKinney and Others 2011). 524 

Machine-learning specific computation was composed using the scikit-learn package 525 

(Pedregosa et al. 2011). Analysis was carried out on a 48-core Linux high-performance server 526 

with 504 GB RAM. Feature extraction, depending on the dataset, completed within several 527 

hours to days. Model training and evaluation completed within a few minutes to hours. 528 

However, feature computation could last several days, depending on the dataset and the 529 

types of features. 530 

Deep learning benchmarks. A high-performance Linux server with 72 cores, 376 GB 531 

RAM and 1 or 2 Nvidia Tesla V100 or P4 GPUs was used. Code was implemented using the 532 

PyTorch (Paszke et al. 2019) and braindecode (Schirrmeister et al. 2017) packages. Model 533 

training and evaluation completed within 2-3 days. 534 

Data visualization. Graphical displays and tables were composed on an Apple Silicon 535 

M1 Macbook Pro (space gray) in R (v4.0.3 “Bunny-Wunnies Freak Out”) using the ggplot2 536 

(v3.3.5, Wickham 2011), patchwork (v1.1.1, Pedersen 2019), ggthemes (v4.2.4) and scales 537 

(v1.1.1, Arnold 2017) packages with their respective dependencies. 538 

Results 

For the age prediction benchmark, we considered five alternative approaches: heterogeneous 539 

handcrafted features & random forest (‘handcrafted’), filterbank features based on 540 

Riemannian embeddings & ridge regression (‘filterbank-riemann’), filterbank features based 541 
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on source localization with MRI-average template & ridge regression (‘filterbank-source’), a 542 

shallow deep learning architecture (“shallow”) and a 4-layer deep-learning architecture 543 

(‘deep’). These approaches were benchmarked across four M/EEG datasets: The Cambridge 544 

Centre of Ageing and Neuroscience (Cam-CAN) dataset (Taylor et al. 2017), the Cuban 545 

Human Brain Mapping Project (CHBP) dataset (Valdes-Sosa et al. 2021), the Leipzig Mind-546 

Brain-Body (LEMON) dataset (Babayan et al. 2019) and the Temple University Hospital 547 

Abnormal EEG Corpus (TUAB) dataset (Obeid and Picone 2016). Generalization 548 

performance was estimated using 10-fold cross validation after shuffling the samples (fixed 549 

random seed). The coefficient of determination (R2) was used as a metric enabling 550 

comparisons between datasets independently of the age distribution, mathematically 551 

quantifying the additional variance explained by predicting better than the average age. A 552 

dummy model empirically quantifies chance-level prediction by returning the average age of 553 

the training data as prediction. The results are displayed in Fig. 3. One can see that on most 554 

of the datasets all machine learning models achieved R2 scores well beyond the dummy 555 

baseline. The highest scores were observed on the Cam-CAN MEG dataset, followed by the 556 

LEMON EEG dataset. Caution is warranted though to avoid premature conclusions: The R2
 557 

offers a common scale that explicitly compares the incremental model performance over the 558 

average predictor. This is achieved by dividing the sum of squares of the model’s prediction 559 

by the sum of squares of the average predictor but, in turn, depends on the distribution of age. 560 

As a result, this can be misleading in cross-dataset comparisons when the variance of the 561 

outcome is not the same, which is the case here (cf. Fig. 2). We therefore also computed 562 

results using the mean absolute error as a performance metric (Fig 4). One can now see that 563 

the overall distribution of scores, including the scores of the dummy model, depend not only 564 

on the dataset but also on its age range. Where the range is small, improvements over the 565 

baseline models are harder to observe. Moreover, comparing MAE scores across datasets 566 

without taking into account the baseline can yield misleading conclusions. For example, the 567 

same score of e.g. an MAE = 10 can be way above chance in one dataset (Cam-CAN) but 568 

below chance in another dataset (CHBP). To alleviate this problem, normalized MAE scores 569 

have been suggested in which the MAE scores are related to the range of the age distribution 570 

(Cole, Franke, and Cherbuin 2019). This does not come without its own problems, as then 571 

outliers in non-uniform distributions could drive the scores. As research keeps evolving on this 572 

topic and the community has not yet agreed on the best metric, we recommend considering 573 

multiple classical machine learning metrics when comparing model performance – in critical 574 

awareness of their respective limitations. 575 

Confronting the relative performances of models to the dummy baseline in Fig. 3 and 576 

Fig. 4, one can see overall similar performance rankings between the models, regardless of 577 

the metric. See Table 1 for side-by-side comparisons of the aggregated cross-validation 578 
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distributions. The big-picture results argue in favor of the importance of fine-grained spatial 579 

features for M/EEG prediction while considering important between-dataset heterogeneity. 580 

Both filterbank pipelines provide features based on spatially aware representations of the 581 

M/EEG signals, which either explicitly or implicitly deal with the spatial spread of electrical 582 

potentials and fields characteristic for M/EEG signals. The source-level filterbank 583 

approximates source localization using the average MRI template, whereas Riemannian 584 

embeddings provide non-linear spectral features that are affine invariant, hence, independent 585 

of linear mixing. The deep benchmarks, on the other hand, implied spatial-filtering layers 586 

capable of mimicking source localization by learning an unmixing function. Surprisingly, using 587 

the average MRI template instead of the Riemannian embedding to construct a filterbank 588 

model did not lead to consistent improvements across datasets, suggesting that both 589 

approaches may be equally effective in practice. We would have conjectured that even an 590 

imprecise biophysical head model would provide inverse solutions leading to more accurate 591 

unmixing of M/EEG sources. Compared to our previous benchmarks (Engemann et al. 2020; 592 

Sabbagh et al. 2020) favoring filterbank models based on source-localization, one has to point 593 

out that this finding may reflect at least two differences: The use of an MRI template instead 594 

of individual co-registration and the use of empty-room-based suppression of environmental 595 

noise. The second factor may be less relevant for EEG though where empty room recordings 596 

are not available and data-based covariances are more common in event-related studies 597 

where brain activity induced by stimuli is compared against the background resting-state 598 

activity. As a practical implication, and if inspection of the brain sources is not a priority, the 599 

purely data-driven pipelines may be more practical as no additional MRI-based data 600 

processing is needed (cf. Fig. 1). 601 
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Fig. 3. Age prediction benchmarks across M/EEG datasets (R2 score). Generalization performance was 
assessed by 10-fold cross-validation and the R2 score for five machine learning strategies compared against a 
dummy model (rows) and four datasets (panels). Across datasets, dummy models were mostly well-calibrated with 
R2 scores close to zero. The LEMON dataset was one exception as dummy scores were systematically worse than 
chance, which can be explained by the bimodal age distribution (cf. Fig. 2), rendering the average age a bad guess 
for the age. The ‘handcrafted’ benchmark delivered moderate but systematic prediction success across all 
datasets. The two filterbank models performed well across datasets with similar performances, markedly higher 
than for the ‘handcrafted’ approach. The only exception was the CHBP benchmark for which neither the filterbank 
nor the deep models delivered useful predictions. Note that here, for the ‘filterbank-source’, a single fold with an 
abysmal R2 score of -15 was obtained (x limits constrained to a range between -.3 and 1.0). Overall, the deep 
learning benchmarks performed similarly to the filterbank models. 
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Fig. 4. Age prediction benchmarks across M/EEG datasets (mean absolute error). Same visual conventions 
as in Fig. 3. As the mean absolute error (MAE) is sensitive to the scale and distribution of the outcome, one can 
see characteristic differences across datasets. The distribution of the dummy scores provides an estimate of the 
random guessing. As before, in all but the Cuban datasets all benchmarks achieved MAE scores markedly better 
than the dummy with no overlap between model and dummy distributions. Model rankings resemble the ones 
obtained using the R2. On the LEMON data, the deep benchmark now presented a slight advantage over all other 
benchmarks.  
 

Interestingly, none of these approaches involving spatially fine-grained 602 

representations of the M/EEG signal worked well on the CHBP data, whereas the random 603 

forest on top of hand-crafted features scored systematically better than the dummy baseline. 604 

This may be related to three factors that come together in the CHBP benchmark dataset: Like 605 

the LEMON dataset, the sample size is relatively small. Second, the age distribution is far less 606 

uniform, leading to underrepresentation of elderly participants. This makes the learning task 607 
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at hand harder as models have fewer training examples from elderly populations. These 608 

challenges apply equally to all machine learning benchmarks, hence, do not explain why the 609 

random forest model on hand-crafted features is working to some extent. In this context, it 610 

may be worthwhile to consider that the CHBP uses two different EEG montages, one with 60, 611 

one with 120 electrodes, which may induce strong difference in the covariance structure of 612 

the signals due to montage-specific noise structure related to the number of electrodes. This 613 

may have affected the random-forest pipeline less strongly as the hand-crafted features 614 

extracted marginal channel-wise summary statistics of the time-series or the power spectrum 615 

rather than pairwise interactions. Progress on this specific benchmark may therefore involve 616 

explicit consideration of the montage when selecting samples for cross-validation or even at 617 

the level of the machine learning model (e.g., by including the number of electrodes or 618 

montage type as covariate). Moreover, future availability of samples from older populations in 619 

the CHBP dataset will help disambiguate this point. Finally, once the expert-based quality-620 

control annotations are considered for epochs-selection, the results obtained in this 621 

benchmark may change (see section Datasets/CHBP EEG data for details). 622 

A different type of challenge is illustrated by the benchmarks on the LEMON dataset. 623 

As the age distribution is bimodal here (Fig. 2), the R2 score is not well calibrated as the 624 

average predictor will not provide a reasonable summary of the distribution. This is not 625 

automatically mitigated by considering the MAE as a metric. On the other hand, it will not 626 

affect the ranking of the machine learning models, which compare overall well to results 627 

obtained on the Cam-CAN and the TUAB datasets. To obtain a more rigorous baseline, one 628 

could envision a group-wise average predictor that, depending on the age group, would return 629 

the groups' respective average age from the training data. We did not implement such a 630 

custom baseline here as it was our goal to stick to standard routines provided by the software 631 

libraries our benchmarks were based on. Second, it was our intention to expose such issues 632 

as this may stimulate future research and development. 633 

 
Table 1. Aggregate cross-validation results across benchmarks and datasets 
dataset benchmark R2

(M) R2
(SD) MAE(M) MAE(SD) 

Cam-CAN (MEG) deep 0.66 0.05 8.29 0.74 
Cam-CAN (MEG) shallow 0.69 0.03 8.14 0.90 
Cam-CAN (MEG) filterbank-source 0.69 0.06 8.10 1.11 
Cam-CAN (MEG) filterbank-riemann 0.72 0.05 7.65 0.81 
Cam-CAN (MEG) handcrafted 0.49 0.07 10.65 0.98 
Cam-CAN (MEG) dummy -0.02 0.03 15.90 1.22 
LEMON (EEG) deep 0.65 0.20 7.78 2.25 
LEMON (EEG) shallow 0.69 0.08 8.80 1.58 
LEMON (EEG) filterbank-source 0.65 0.12 8.93 1.56 
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LEMON (EEG) filterbank-riemann 0.51 0.13 11.00 1.73 
LEMON (EEG) handcrafted 0.50 0.13 10.26 1.76 
LEMON (EEG) dummy -0.13 0.17 18.70 1.60 
CHBP (EEG) deep -0.10 0.28 7.14 0.65 
CHBP (EEG) shallow 0.03 0.38 6.74 0.96 
CHBP (EEG) filterbank-source -1.49 4.67 7.76 2.05 
CHBP (EEG) filterbank-riemann -0.01 0.13 7.17 0.63 
CHBP (EEG) handcrafted 0.19 0.19 6.40 0.61 
CHBP (EEG) dummy -0.04 0.05 7.33 0.83 
TUAB (EEG) deep 0.58 0.08 7.99 0.55 
TUAB (EEG) shallow 0.61 0.04 7.82 0.38 
TUAB (EEG) filterbank-source 0.53 0.06 8.58 0.51 
TUAB (EEG) filterbank-riemann 0.58 0.04 8.10 0.26 
TUAB (EEG) handcrafted 0.26 0.04 11.32 0.53 
TUAB (EEG) dummy -0.01 0.01 13.55 0.82 

Discussion 

In this study, we proposed empirical benchmarks for age prediction comparing distinct 634 

machine learning approaches across diverse M/EEG datasets comprising, in total, more than 635 

2500 recordings. The benchmarks were implemented in Python based on the MNE-software 636 

ecosystem, the Braindecode package and the BIDS data standard. The explicit reliance on 637 

the BIDS standard renders these pipelines applicable to any M/EEG data presented in the 638 

BIDS format. This enabled coherent side-by-side comparisons of classical machine learning 639 

models and deep learning methods across M/EEG datasets recorded in different research or 640 

medical contexts.  641 

Our cross-dataset and cross-model benchmarks pointed out stable ranking of model 642 

performance across two metrics, the R2 score and mean absolute error (MAE). R2 scores 643 

have been less consistently reported in the literature, however, the top MAE scores observed 644 

across datasets in this benchmark of 7 to 8 years are well in line with reports from previous 645 

publications (Sun et al. 2019; Sabbagh et al. 2020; Xifra-Porxas et al. 2021). While direct 646 

comparisons against MRI were not performed in this study, the present benchmarks would be 647 

compatible with the impression that for what concerns the overall performance of age 648 

prediction, M/EEG features are slightly weaker than MRI features (Engemann et al. 2020; 649 

Xifra-Porxas et al. 2021). We found that, overall, Riemannian filterbank models and deep 650 

learning models achieved the highest scores, whereas random forests based on hand-crafted 651 

features delivered robust performance. In line with previous work (Gemein et al. 2020), these 652 

results suggest that deep learning methods do not necessarily show a consistent advantage 653 

over classical pipeline models: Similar performance may be explained by the fact that our 654 
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filterbank models and the deep models imply similar spatially aware representations of the 655 

M/EEG data (see results section for detailed discussion in context). Moreover, given the 656 

relatively small training datasets, it can be considered good news that these parameter-rich 657 

models did not seem to overfit as was evidenced by comparisons against simpler classical 658 

models. Yet, it may be simply a matter of collecting larger samples until deep learning 659 

approaches may reveal their advantage at extracting more elaborate representations of 660 

M/EEG signals. This may lead to positioning M/EEG-based brain age prediction on par with 661 

MRI-based brain age prediction just as MRI-based deep learning models of brain age have 662 

defined state-of-the-art performance on large datasets (Cole et al. 2017; Bashyam et al. 2020; 663 

Jonsson et al. 2019). However, more importantly, the value of M/EEG-derived brain age 664 

models should not be defined in terms of incremental improvement over MRI-based models 665 

as M/EEG-based models may enhance MRI-derived information (Engemann et al. 2020) or 666 

may be the only option available (Sun et al. 2019). 667 

Our results nicely demonstrate a second critical merit of cross-model and cross-668 

dataset benchmarking. It was sufficient to analyze four different sources of data until we found 669 

a perfectly legitimate EEG dataset from an academic research context (CHBP) in which our 670 

previously favored modeling techniques developed on the Cam-CAN and the TUAB data did 671 

not perform well by default. There may be good reasons for these discrepancies related to the 672 

age distribution found in the CHBP data and the fact that multiple different EEG montages 673 

were used in that dataset (see results section for detailed discussion in context). But more 674 

importantly, we did not anticipate this to happen and would have never learned about it had 675 

we confined the scope to previously analyzed datasets. Such discoveries are favored by 676 

systematic benchmarks with dataset-independent code implementation, which has the 677 

potential to lower the burden threshold for including always more datasets into model 678 

development. In the long run, we hope that this effort will stimulate new research leading to 679 

more generalizable models.  680 

This brings us to some limitations of this work. Our work has been motivated by the 681 

absolute necessity to diversify datasets for development of M/EEG-based measures of brain 682 

health. This has led us to analyzing more than 2500 M/EEG recordings and, yet we only 683 

included four datasets. Other M/EEG datasets come to mind that would have been potentially 684 

relevant. The Human Connectome Project MEG data (Larson-Prior et al. 2013) includes MEG 685 

recordings from less than 100 participants, which we deemed insufficient for predictive 686 

regression modeling. The OMEGA data resource (Niso et al. 2016) was not accessible at the 687 

time of this investigation but would have been a good match for this study. Finally, the LIFE 688 

cohort (Loeffler et al. 2015) includes a large number of EEG recordings of participants 689 

sampled from the general population yet follows a closed / controlled access scheme. The 690 

Healthy-Brain-Network EEG data (Alexander et al. 2017) concerns a developmental cohort. 691 
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Despite potentially relevant similarities between brain development and aging, age prediction 692 

in developmental cohorts would have exceeded the scope of the present study. Even if we 693 

had integrated these resources in the present benchmark, this may have only marginally 694 

enhanced the diversity covered by the current selection datasets as most public neuroscience 695 

datasets come from the wealthiest nations. We hope that this situation will improve as new 696 

promising international consortia and efforts emerge that focus on curating large EEG 697 

datasets from diverse national and cultural contexts (Ibanez et al. 2021; Shekh Ibrahim et al. 698 

2020; “Global Brain Consortium Homepage”). A second limitation of the present study 699 

concerns the depth of validation. To advance our understanding of M/EEG-derived brain age, 700 

more systematic comparisons against MRI-derived brain age (Xifra-Porxas et al. 2021) and 701 

other measures of mental health and cognitive function are important objectives (Anatürk et 702 

al. 2021; Dadi et al. 2021).  703 

In the following we wish to point out a few imminent opportunities for turning the 704 

limitations of the present work into future research projects, potentially, enabled by the results 705 

and tools brought by the current benchmarks. 706 

 

Opportunities and suggestions for follow-up research using the benchmark tools 
 

Model averaging. In many instances, combining prediction models using model averaging 707 

approaches can improve the prediction performance (O’Connor et al. 2021; Dadi et al. 2021; 708 

Varoquaux et al. 2017). This could also be a practical way of combining the benchmarks into 709 

a single model for subsequent generalization testing. Future studies could use this benchmark 710 

to investigate model averaging approaches. 711 

 
The impact of deeper architectures. An important design decision in deep neural networks is 712 

the total depth of the neural network. Here we used previously published architectures 713 

designed for EEG-based pathology decoding (Schirrmeister et al. 2017). Future studies could 714 

build on top of this benchmark to explore the importance of deep architectures for brain age 715 

modeling. Specifically, it would be possible to use methods from neural architecture search, 716 

e.g., AutoPyTorch (Zimmer, Lindauer, and Hutter 2021), to design better-performing 717 

architectures. Since this benchmark does not only provide access to diverse datasets in an 718 

identical file format, but also enables direct comparison to others, it is the optimal starting point 719 

for such an optimization while at the same time avoiding overfitting the architecture to a single 720 

dataset. 721 

 

The role of preprocessing. While data cleaning is of major importance for extracting 722 

physiologically interpretable biomarkers, predictions from machine learning models tend to be 723 
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far less affected by noise (Sabbagh et al. 2020). On the other hand, artifacts and noise may 724 

inform predictions, potentially reducing biological specificity. Future studies could benefit from 725 

this benchmark to quantify the role of artifact signals for brain age predictions and develop 726 

de-confounding strategies (Du et al. 2021; Mehrabi et al. 2021; Lu, Schölkopf, and Hernández-727 

Lobato 2018; Bica, Alaa, and Van Der Schaar 2020).   728 

 729 

Eyes-open versus eyes-closed. Some of the datasets analyzed in this benchmark contain 730 

resting-state signals under different conditions. In the lack of strong a-priori hypotheses, here 731 

we simply pooled both conditions. It is currently unclear whether the relationship between 732 

eyes-closed versus eyes-open resting-state may contain valuable information about brain 733 

aging. It is imaginable, however, that signals induced by transient visual deprivation may 734 

reveal levels of vigilance (Wong, DeYoung, and Liu 2016), which in turn may be altered by 735 

neuropsychiatric conditions (Hegerl et al. 2012). Future work could benefit from the 736 

benchmark to investigate the importance of eyes-closed versus eyes-open resting-state for 737 

brain age modeling. 738 

 

Model inspection. The interpretability of machine learning models is essential for clinical 739 

impact (Rudin 2019; Ghassemi, Oakden-Rayner, and Beam 2021). This benchmark did not 740 

cover methods for explaining the role of variable importance for model predictions. Future 741 

work could validate the relative importance of M/EEG signals or features for brain age 742 

modeling.  743 

 

Exploring the link with MRI and cognitive scores. This study established the tools and methods 744 

for basic benchmarks on prediction performance. However, to build useful brain age models, 745 

it is essential to validate brain-age predictions to cognitive function, measures of health or 746 

clinical endpoints (Dadi et al. 2021; Cole et al. 2018; Liem et al. 2017). To further establish 747 

the relative merit of M/EEG over MRI, comparisons between the modalities are essential 748 

(Engemann et al. 2020). Most of the datasets covered in this benchmark include MRI data, 749 

social details and psychometric scores next to the M/EEG data, providing a wealth of 750 

opportunities for deep cross-dataset validation of brain age measures. 751 

Conclusion 

Computational benchmarks across M/EEG datasets and machine learning methods bear the 752 

potential to enhance applications of machine learning in clinical neuroscience in several ways. 753 

Standardization of data formats, software and analysis pipelines are important factors for the 754 
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scalability of predictive modeling of M/EEG. For stimulating the development of more 755 

generalizable machine learning models it is crucial that a critical mass of M/EEG datasets be 756 

analyzed by the international community. As the diversity of the datasets increases, 757 

generalization gaps will manifest themselves, calling for computation methods for closing 758 

these gaps. The implied learning process may eventually lead to developing more widely 759 

applicable M/EEG-based biomarkers that are clinically robust across a wide range of 760 

sociocultural contexts, clinical populations, recording sites and measurement techniques. We 761 

hope that benchmarks, tools and resources resulting from this study will facilitate investigating 762 

open scientific questions related to learning biomarkers of brain health on an ever-growing 763 

number of M/EEG datasets from increasingly diverse real-world contexts.  764 
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