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The de Bruijn graph is a key data structure in modern com-
putational genomics, and construction of its compacted variant
resides upstream of many genomic analyses. As the quantity of
genomic data grows rapidly, this often forms a computational
bottleneck.
We present CUTTLEFISH 2, significantly advancing the state-of-
the-art for this problem. On a commodity server, it reduces
the graph construction time for 661K bacterial genomes, of
size 2.58Tbp, from 4.5 days to 17–23 hours; and it constructs
the graph for 1.52Tbp white spruce reads in ∼10 hours, while
the closest competitor requires 54–58 hours, using considerably
more memory.
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1. Background
Rapid developments in the throughput and affordability of
modern sequencing technologies have made the generation of
billions of short-read sequences from a panoply of biological
samples highly time- and cost-efficient. The National Cen-
ter for Biotechnology Information (NCBI) has now moved
the Sequence Read Archive (SRA) to the cloud, and this
repository stores more than 14 petabytes worth of sequencing
data (NCBI Insights). Yet, this is only a fraction of the total
sequencing data that has been produced, which is expected
to reach exabyte-scale within the current decade (2). In ad-
dition to the continued sequencing of an ever-expanding cat-
alog of various types and states of tissues from reference or-
ganisms, metagenomic sequencing of environmental (3) and
microbiome (4) samples is also expected to enjoy a similar
immense growth.
Given the expansive repository of existing sequencing data
and the rate of acquisition, Muir et al. (5) argue that the abil-
ity of computational approaches to keep pace with data ac-
quisition has become one of the main bottlenecks in contem-
porary genomics. These needs have spurred methods devel-
opers to produce ever more efficient and scalable computa-
tional methods for a variety of genomics analysis tasks, from
genome and transcriptome assembly to pan-genome analy-
sis. Against this backdrop, the de Bruijn graph, along with
its variants, has become a compact and efficient data repre-
sentation of increasing importance and utility across compu-
tational genomics.
The de Bruijn graph originated in combinatorics as a math-
ematical construct devised to prove a conjecture about bi-
nary strings posed by Ir. K. Posthumus (6, 7). In bioinfor-
matics, de Bruijn graphs were introduced in the context of
genome assembly algorithms for short-reads (8, 9), although

the graph introduced in this context adopts a slightly differ-
ent definition than in combinatorics. Subsequently, the de
Bruijn graph has gradually been used in an increasing va-
riety of different contexts within computational biology, in-
cluding but not limited to: read correction (10, 11), genomic
data compression (12), genotyping (13), structural variant
detection (14), read mapping (15, 16), sequence-similarity
search (17), metagenomic sequence analysis (18–20), tran-
scriptome assembly (21, 22), transcript quantification (23),
and long-read assembly (24–26).
In the context of fragment assembly—whether in form-
ing contigs for whole-genome assembly pipelines (27, 28),
or in encapsulating the read set into a summary represen-
tative structure for a host of downstream analyses (29–
32)—de Bruijn graphs continue to be used extensively.
The non-branching paths in de Bruijn graphs are uniquely-
assemblable contiguous sequences (known as unitigs) from
the sequencing reads. Thus, they are certain to be present in
any faithful genomic reconstruction from these reads, have no
ambiguities regarding repeats in the data, and are fully con-
sistent with the input. As such, maximal unitigs are excellent
candidates to summarize the raw reads, capturing their essen-
tial substance, and are usually the output of the initial phase
of modern de novo short-read assembly tools. Collapsing a
set of reads into this compact set of fragments that preserve
their effective information can directly contribute to the effi-
ciency of many downstream analyses over the read set.
When constructed from reference genome sequences, the
unitigs in the de Bruijn graphs correspond to substrings in
the references that are shared identically across subsets of
the genomes. Decomposing the reference collection into
these fragments retains much of its effective information,
while typically requiring much less space and memory to
store, index, and analyze, than processing the collection of
linear genomes directly. The ability to compactly and ef-
ficiently represent shared sequences has led many modern
sequence analysis tools to adopt the de Bruijn graph as a
central representation, including sequence indexers (33), read
aligners (15, 16), homology mappers (34, 35), and RNA-seq
analysis tools (23, 36, 37). Likewise, pan-genome analysis
tools (38–43) frequently make use of the maximal unitigs of
the input references as the primary units upon which their
core data structures and algorithms are built.
The vast majority of the examples described above make use
of the compacted de Bruijn graph. A de Bruijn graph is
compacted by collapsing each of its maximal, non-branching
paths (unitigs) into a single vertex. Many computational
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genomics workflows employing the (compacted) de Bruijn
graph are multi-phased, and typically, their most resource-
intensive step is the initial one: construction of the regular
and/or the compacted de Bruijn graph. The computational
requirements for constructing the graph are often consider-
ably higher than the downstream steps—posing major bot-
tlenecks in many applications (13, 30). As such, there has
been a concerted effort over the past several years to develop
resource-frugal methods capable of constructing the com-
pacted graph (44–51). Critically, solving this problem effi-
ciently and in a context independent from any specific down-
stream application yields a modular tool (45, 47) that can be
used to enable a wide variety of subsequent computational
pipelines.

To address the scalability challenges of constructing the com-
pacted de Bruijn graph, we recently proposed a novel algo-
rithm, CUTTLEFISH (44), that exhibited faster performance
than pre-existing state-of-the-art tools, using (often multi-
ple times) less memory. However, the presented algorithm
is only applicable when constructing the graph from exist-
ing reference sequences. It cannot be applied in a num-
ber of contexts, such as fragment assembly or contig extrac-
tion from raw sequencing data. In this paper, we present
a fast and memory-frugal algorithm for constructing com-
pacted de Bruijn graphs, CUTTLEFISH 2, applicable both on
raw sequencing short-reads and assembled references, that
can scale to very large datasets. It builds upon the novel idea
of modeling de Bruijn graph vertices as Deterministic Finite
Automata (DFA) (52) from Khan and Patro (44). However,
the DFA model itself has been modified, and the algorithm
has been generalized, so as to accommodate all valid forms
of input. At the same time, in the case of constructing the
graph from reference sequences, it is considerably faster than
the previous approach, while retaining its frugal memory pro-
file. We evaluated CUTTLEFISH 2 on a collection of datasets
with diverse characteristics, and assess its performance com-
pared to other leading compacted de Bruijn graph construc-
tion methods. We observed that CUTTLEFISH 2 demonstrates
superior performance in all the experiments we consider.

Additionally, we demonstrate the flexibility of our approach
by presenting another application of the algorithm. The com-
pacted de Bruijn graph forms a vertex-decomposition of the
graph, while preserving the graph topology (47). However,
for some applications, only the vertex-decomposition is suf-
ficient, and preservation of the topology is redundant. For ex-
ample, for applications such as performing presence-absence
queries for k-mers or associating information to the con-
stituent k-mers of the input (53, 54), any set of strings that
preserves the exact set of k-mers from the input sequences
can be sufficient. Relaxing the defining requirement of unit-
igs, that the paths be non-branching in the underlying graph,
and seeking instead a set of maximal non-overlapping paths
covering the de Bruijn graph, results in a more compact rep-
resentation of the input data. This idea has recently been ex-
plored in the literature, with the representation being referred
to as a spectrum-preserving string set (55), and the paths
themselves as simplitigs (56). We demonstrate that CUTTLE-

FISH 2 can seamlessly extract such maximal path covers by
simply constraining the algorithm to operate on some spe-
cific subgraph(s) of the original graph. We compared it to the
existing tools available in the literature (57) for constructing
this representation, and observed that it outperforms those in
terms of resource requirements.

2. Results

2.1. CUTTLEFISH 2 overview. We present a high-level
overview of the CUTTLEFISH 2 algorithm here. A complete
treatment is provided in Sec. 3.3.
CUTTLEFISH 2 takes as input a set R of strings, that are either
short-reads or whole-genome references, a k-mer length k,
and a frequency threshold f0 ≥ 1. As output, it produces
the maximal unitigs of the de Bruijn graph G(R,k). Fig. 1
highlights the major steps in the algorithm.
CUTTLEFISH 2 first enumerates the set E of edges ofG(R,k),
the (k+1)-mers present at least f0 times in R. This way the
potential sequencing errors, present in case in which read sets
are given as input, are discarded. Then the set V of vertices of
G(R,k), which are the k-mers present in these (k+1)-mers,
are extracted from E. Next, a Minimal Perfect Hash Func-
tion (MPHF) f over these vertices is constructed, that maps
them bijectively to [1, |V |]. This provides a space-efficient
way to associate information to the vertices through hash-
ing. Modeling each vertex v ∈ V as a Deterministic Finite
Automaton (DFA), a piecewise traversal on G(R,k) is made
using E, computing the state Sv of the automaton of each
v ∈ V—associated to v through f(v). The DFA modeling
scheme ensures the retention of just enough information per
vertex, such that the maximal unitigs are constructible after-
wards from the automata states. Then, with another piece-
wise traversal on G(R,k) using V and the states collection
S, CUTTLEFISH 2 retrieves all the non-branching edges of
G(R,k)—retained by the earlier traversal—and stitches them
together in chains, constructing the maximal unitigs.

2.2. Experiments. We performed a number of experiments
to characterize the various facets of the CUTTLEFISH 2 algo-
rithm, its implementation, and some potential applications.
We evaluated its execution performance compared to other
available implementations of leading algorithms on de Bruijn
graphs solving—(1) the compacted graph construction and
(2) the maximal path cover problems, applicable on shared-
memory multi-core machines. Although potentially feasible,
CUTTLEFISH 2 is not designed as a method to leverage the
capability of being distributed on a cluster of compute-nodes.
Therefore, we did not consider relevant tools operating in
that paradigm. We assessed its ability to construct compacted
graphs and path covers for both sequencing reads and large
pan-genome collections. By working on the (k+ 1)-mer
spectrum, the new method performs a substantial amount of
data reduction on the input sequences, yielding considerable
speedups over the CUTTLEFISH algorithm (44) that, instead,
requires multiple passes over the input sequences.
Next, we assess some structural characteristics of the al-
gorithm and its implementation. Given an input dataset
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Figure 1: An overview of the CUTTLEFISH 2 algorithm. It is capable of constructing the compacted de Bruijn graph from a collection of
either reference sequences or raw sequencing reads. The edges ((k+ 1)-mers) of the underlying de Bruijn graph are enumerated from the
input, and optionally filtered based on the user-defined threshold. The edges are then used to enumerate the vertices (k-mers) they contain.
An MPHF is constructed over the set of vertices, to associate the DFA-state of each vertex to it. Then the edge set is iterated over to determine
the state of the DFA of each vertex in the graph, by transitioning the DFA through appropriate states, based on the edges in which the vertex
is observed. Then an iteration over the original vertices to stitch together appropriate edges allows the extraction of the maximal unitigs.

and a fixed internal parameter γ, the time- and the space-
complexity of CUTTLEFISH 2 depend on k (see Sec. 3.4).
We evaluated the impact of k on its execution performance,
and also assessed some structural properties of the compacted
graph that change with the parameter k. Moreover, we ap-
praised the parallel scalability of the different steps of the
algorithm, characterizing the ones that scale particularly well
with increasing processor-thread count, as well as those that
saturate more quickly.

A diverse collection of datasets has been used to conduct the
experiments. We delineate the pertinent datasets for the ex-
periments in their corresponding sections. The commands
used for executing the different tools are available in Suppl.
Sec. 1.10.

We compared the outputs of CUTTLEFISH 2 to those of sev-
eral other tools used throughout our experiments. A detailed
discussion of this is present at Suppl. Sec. 1.5.
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Computation system for evaluation. All experiments were
performed on a single server with two Intel Xeon E5-2699 v4
2.20 GHz CPUs having 44 cores in total and enabling up-to
88 threads, 512 GB of 2.40 GHz DDR4 RAM, and a num-
ber of 3.6 TB Toshiba MG03ACA4 ATA HDDs. The sys-
tem is run with Ubuntu 16.10 GNU/Linux 4.8.0-59-generic.
The running times and the maximum memory usages were
measured with the GNU time command, and the interme-
diate disk-usages were measured using the Linux commands
inotifywait and du.

2.3. Compacted graph construction for sequencing
data. We evaluated the performance of CUTTLEFISH 2 in
constructing compacted de Bruijn graphs from short-read
sequencing data compared to available implementations of
other leading compaction algorithms: (1) ABYSS-BLOOM-
DBG, the maximal unitigs assembler of the ABYSS 2.0
assembly-pipeline (27), (2) BIFROST (45), (3) DEGSM (46),
and (4) BCALM 2 (47).
The performances were tested on a number of short-read
datasets with varied characteristics: (1) Mammalian dataset:
(i) a human read set (NIST HG004) from an Ashkenazi white
female Homo Sapiens (paired-end 250 bp Illumina reads
with 70x coverage, SRA3440461–95, 148 GB compressed
FASTQ), from Zook et al. (58); (ii) an RNA sequencing
dataset (ENA PRJEB3365) of 465 human lymphoblastoid
cell line samples from the 1000 Genomes project (single-
end 36 bp small-RNA-seq Illumina reads, ERP001941, 140
GB compressed FASTQ), from Lappalainen et al. (59).
(2) Metagenomic datasets: (i) a gut microbiome read set
(ENA PRJEB33098) from nine individuals (paired-end 150
bp Illumina reads with high coverage, ERP115863, 45
GB compressed FASTQ), from Mas-Lloret et al. (60); and
(ii) a soil metagenome read set (Iowa Corn) from 100-
years-cultivated Iowa agricultural corn soil (paired-end 76 bp
and 114 bp Illumina reads with low coverage, SRX100357
and SRX099904–06, 152 GB compressed FASTQ), used
by Howe et al. (61); and (3) Large organism dataset: a
white spruce read set (NCBI PRJNA83435) from a Canadian
Picea glauca tree (paired-end 150 bp and 100 bp Illumina
reads with high coverage, SRA056234, 1.14 TB compressed
FASTQ), from Birol et al. (62). Table 1 contains the sum-
mary results of the benchmarking.
The frequency threshold f0 of k-mers ((k+ 1)-mers in case
of CUTTLEFISH 2 1) for the algorithms was approximated
using k-mer frequency distributions so as to roughly mini-
mize the misclassification rates of weak and solid k-mers 2 in
these experiments (See Suppl. Sec. 1.1). In many practical
scenarios, it might be preferable to skip computing an (ap-
proximate) frequency distribution, setting f0 through some
informed choice based on the properties of the input data
(e.g. the sequencing depth and protocol). This can incorpo-

1From our observations, the distributions of k-mer frequencies and of (k+
1)-mer frequencies on real data tend to agree closely, resulting in the same f0
for these experiments for both CUTTLEFISH 2 and the rest of the algorithms,
as per the setting-policy used.
2k-mers occurring frequently enough in input NGS reads are said to be

solid k-mers, and the other ones are said to be weak (65).

rate more weak k-mers into the graph. We present the results
for such a scenario in Suppl. Table 2 on the human read set,
setting f0 to just 2.
Across the different datasets and algorithms evaluated, sev-
eral trends emerge, notable from Table 1. First, we observe
that for every dataset considered, CUTTLEFISH 2 is the fastest
tool to process the data, while simultaneously using the least
amount of memory. If we allow CUTTLEFISH 2 to match
the memory used by the second most memory-frugal method
(which is always BCALM 2 here), then it often completes
even more quickly. We note that CUTTLEFISH 2 retains its
performance lead over the alternative approaches across a
wide range of different data input characteristics.
Among all the methods tested, CUTTLEFISH 2 and BCALM
2 were the only tools able to process all the datasets to com-
pletion under the different configurations tested, within the
memory and disk-space constraints of the testing system.
The rest of the methods generally required substantially more
memory, sometimes over an order of magnitude more, de-
pending on the dataset.
Of particular interest is CUTTLEFISH 2’s performance com-
pared against BCALM 2. Relative to BCALM 2, CUTTLE-
FISH 2 is 1.7–5.3x faster on the human read set, while using
2.1–2.8x less memory. On the RNA-seq dataset, it is 8.3–
5.9x faster, with 1.3x less memory. For the metagenomic
datasets, it is 4.1–5.9x faster and uses 2.2–3.1x less memory
on the gut microbiome data, and is 2.8–8.5x faster using 2.5–
2.7x less memory on the soil data. On the largest sequencing
dataset here, the white spruce read set, CUTTLEFISH 2 is 5.4–
5.7x faster and is 1.3–2.6x memory-frugal—taking about 10
hours, compared to at least 54 hours for BCALM 2.
The timing-profile of BCALM 2 and CUTTLEFISH 2 exclud-
ing their similar initial stage: k-mer and (k+1)-mer enumer-
ation, respectively, are shown in Suppl. Table 4. We also note
some statistics of the de Bruijn graphs and their compacted
forms for these datasets in Suppl. Table 5.

2.4. Compacted graph construction for reference col-
lections. We assessed the execution performance of CUT-
TLEFISH 2 in constructing compacted de Bruijn graphs
from whole-genome sequence collections in comparison
to the available implementations of the following lead-
ing algorithms: (1) BIFROST (45), (2) DEGSM (46), and
(3) BCALM 2 (47). TWOPACO (48) is another notable al-
gorithm applicable in this scenario, but we did not include
it in the benchmarking as its output step lacks a parallelized
implementation, and we consider very large sequence collec-
tions in this experiment.
We evaluated the performances on a number of datasets with
varying attributes: (1) Metagenomic collection: 30,691 rep-
resentative sequences from the most prevalent human gut
prokaryotic genomes, gathered by Hiseni et al. (66) (≈ 61B
bp, 18 GB compressed FASTA); (2) Mammalian collection:
100 human genomes—7 real sequences from Baier et al. (49)
and 93 sequences simulated by Minkin et al. (48) (≈ 294B bp,
305 GB uncompressed FASTA); and (3) Bacterial archive:
661,405 bacterial genomes, collected by Blackwell et al. (67)
from the European Nucleotide Archive (≈ 2.58T bp, 752 GB
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Table 1: Time- and memory-performance results for constructing compacted de Bruijn graphs from short-read sets.

ABYSS-BLOOM-DBG BIFROST DEGSM BCALM 2 CUTTLEFISH 2

Dataset k
Thread-
count

Small-
memory

Large-
memory

Default
memory

Match
second-best

memory

Un-
restricted
memory

Human
27

8 22h 18m
(39.3)

20h 23m
(71.3)

11h 43m
(48.5)

10h 36m
(235.8)

04h 23m
(6.7)

01h 13m
(3.2)

01h 10m
(6.2)

01h
(11.3)

16 11h 38m
(39.3)

11h 02m
(71.3)

09h 39m
(48.6)

07h 08m
(235.8)

04h 58m
(8.9)

56m
(3.3)

56m
(7.6)

51m
(11.3)

55
8 16h 32m

(34.0)
15h 58m

(66.0)
05h 43m

(43.8)
16h 50m
(293.2)

04h 01m
(7.4)

02h 20m
(3.5)

01h 08m
(7.1)

01h 03m
(11.3)

16 09h 28m
(34.1)

08h 37m
(66.1)

04h 16m
(43.9)

15h 54m
(293.3)

04h 26m
(10.5)

02h 02m
(3.7)

01h 11m
(9.5)

51m
(11.3)

Human
RNA-seq 27 8 11h 47m

(33.7)
11h 22m

(65.7)
06h 04m

(7.2)
01h 35m

(87.1)
02h 58m

(3.8)
30m
(2.9) – 18m

(80.1)

16 11h 38m
(39.3)

07h 38m
(65.7)

07h 24m
(7.2)

01h 37m
(87.2)

02h 46m
(3.9)

20m
(3.0) – 12m

(80.1)

Gut
microbiome

27 16
18h 47m

(42.0)
20h 12m

(74.0)
03h 54m

(38.1)
02h 28m
(157.2)

02h 34m
(7.7)

26m
(3.5)

23m
(6.7)

20m
(26.8)

55
1d 17h 43m

(35.9)
1d 08h 09m

(67.8)
02h 44m

(46.7)
06h 53m
(293.3)

03h 02m
(12.5)

44m
(4.0)

25m
(11.3)

20m
(69.9)

Soil 27 16
1d 18h 35m

(150.4)
14h 24m
(275.0)

15h 28m
(274.1)

1d 14h 29m
(235.8)

19h 39m
(52.0)

02h 01m
(19.2))

02h 18m
(40.9)

01h 35m
(40.9)

55
07h 57m
(128.9)

06h 36m
(256.8)

05h 49m
(157.0)

1d 11h 05m
(293.3)

08h 30m
(27.5)

03h 02m
(11.1)

02h 43m
(23.3)

01h 38m
(23.3)

White
spruce

27 16 * X X † 2d 06h 12m
(36.8)

10h 05m
(14.0)

07h 47m
(35.2)

07h 13m
(204.2)

55 * X X † 2d 09h 59m
(31.6)

10h 12m
(23.8)

10h 08m
(31.1)

07h 24m
(279.3)

Each cell contains the running time in wall clock format, and the maximum memory usage in gigabytes, in parentheses. The frequency thresholds f0 used
are as follows: (i) human: 14 (k = 27) and 9 (k = 55); (ii) human RNA-seq, gut microbiome and soil: 2; and (iii) white spruce: 11 (k = 27) and 7 (k = 55).
Some details on executing the different tool implementations are as follows: (1) ABYSS-BLOOM-DBG has two tunable parameters significantly affecting its
performance: a Bloom filter (63) memory budget and the number of hash functions for the filters. We executed it with two configurations: small-memory
(with 4 hashes) and large-memory (with 3 hashes). The memory budgets used in these configurations are as follows: (i) human, human RNA-seq, and gut
microbiome: 32 GB and 64 GB; (ii) soil: 64 GB and 128 GB; and (iii) white spruce: 400 GB, and no large-memory execution due to hardware limitations.
(2) BIFROST does not support the usage of arbitrary f0, and uses a default f0 = 2. For a uniform comparison across the tools with f0 = 2 on the human
dataset, see Suppl. Table 2. We did not execute BIFROST on the white spruce dataset due to this limitation—while on the human dataset the increases in the
vertex-count for BIFROST are approximately 26% (k = 27) and 19% (k = 55), these are 91% and 45% respectively on the white spruce dataset. (3) DEGSM
has a maximum-memory parameter, with an upper-limit of 128 GB. We observed that its internal k-mer enumeration steps using JELLYFISH (64) use more
memory than this limit in all the experiments, and therefore we used 128 GB for DEGSM in all its executions. (4) BCALM 2 also has a maximum-memory
option, which we set to the best memory usage obtained from the rest of the algorithms. It also has a maximum disk usage option, which we set to the entire
usable space (3.4 TB) of the disk used for its working directory, for maximum efficiency. (5) The CUTTLEFISH 2 implementation also supports tunable memory
up-to a certain extent, and we executed it with three settings: (i) default memory: using the default minimum memory of ≈ 9.7 bits/vertex (see Sec. 3.4.2);
(ii) match second-best memory: using up-to the memory amount found best in executions other than CUTTLEFISH 2 strict-memory mode; and (iii) unrestricted
memory: using no strict upper-limit for memory.
The best performance with respect to each metric in each row is highlighted, where only the default-memory mode is considered for CUTTLEFISH 2. The *’s
and the †’s denote that the corresponding executions could not complete due to hardware shortage of memory and disk-space, respectively. The X’s denote that
the corresponding executions were not run for reasons noted earlier. Suppl. Table 1 also includes the intermediate disk-usages incurred by the tools, besides
time and memory.

compressed FASTA). Table 2 conveys the summary results of
the benchmarking.
Evaluating the performance of the different tools over these
pan-genomic datasets, we observe similar trends to what was
observed in Table 1, but with even more extreme differences
than before. For a majority of the experiment configurations
here, only BCALM 2 and CUTTLEFISH 2 were able to fin-
ish processing within time- and machine-constraints. Again,
CUTTLEFISH 2 exhibits the fastest runtime on all datasets,
and the lowest memory usage on all datasets except the hu-
man gut genomes (where it consumes 1–2 GB more mem-
ory than BCALM 2, though taking 6–7 fewer hours to com-
plete).
CUTTLEFISH 2 is 2.4–8.9x faster on the 30K human gut
genomes compared to the closest competitors, using simi-
lar memory. On the 100 human reference sequences, CUT-
TLEFISH 2 is 4.3–4.7x faster, using 5.4–8.4x less memory.
The only other tools able to construct this compacted graph
successfully are DEGSM for k = 27 (taking 4.3x as long

and requiring 8.4x as much memory as CUTTLEFISH 2) and
BCALM 2 for k = 55 (taking over 4.7x as long and 5.4x as
much memory as CUTTLEFISH 2). Finally, when construct-
ing the compacted graph on the 661,405 bacterial genomes,
CUTTLEFISH 2 is the only tested tool able to construct the
graph for k = 27. For k = 55, BCALM 2 also completed,
taking about 4.5 days, while CUTTLEFISH 2 finished under
a day, with similar memory-profile. Overall, we observe that
for large pan-genome datasets, CUTTLEFISH 2 is not only
considerably faster and more memory-frugal than alternative
approaches, but is the only tool able to reliably construct the
compacted de Bruijn graph under all the different configura-
tions tested, within the constraints of the experimental sys-
tem.

Table 4 notes the timing-profiles for BCALM 2 and CUT-
TLEFISH 2 without their first step of k-mer and (k+ 1)-mer
enumerations, and Table 5 shows some characteristics of the
(compacted) de Bruijn graphs for these pan-genome datasets.
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2 RESULTS

Table 2: Time- and memory-performance results for constructing compacted de Bruijn graphs from whole-genome reference collections.

BIFROST DEGSM BCALM 2 CUTTLEFISH 2
Dataset

(genome count) k
Thread-
count

Default
memory

Unrestricted
memory

Human gut
(30K)

27
8 06h

(155.1)

∆

10h 06m
(21.5)

01h 39m
(15.2)

01h 39m
(32.5)

16 05h 30m
(155.1)

09h 05m
(22.0)

01h 01m
(15.5)

59m
(32.5)

55
8 08h 47m

(279.2)
11h 49m

(18.6)
04h 14m

(20.6)
03h 42m

(44.4)

16 08h 20m
(279.2)

09h 45m
(19.2)

03h 50m
(20.9)

03h 10m
(44.3)

Human
(100)

27
8 35h 45m

(355.9)
19h 23m
(235.8) ‡ 04h 32m

(27.7)
04h 09m

(59.7)

16 32h 14m
(355.9)

14h 07m
(235.8) ‡ 03h 19m

(28.1)
02h 49m

(59.7)

55
8 * † 2d 23h 31m

(302.9)
15h 08m

(56.0)
13h 47m
(121.8)

16 * † *
12h

(56.2)
11h 33m
(121.8)

Bacterial
archive (661K)

27 16 X X
‡ 16h 38m

(48.7)
16h 24m
(104.9)

55
4d 10h 11m

(63.3)
22h 44m

(59.9)
22h 20m
(129.5)

Each cell contains the running time in wall clock format, and the maximum memory usage in gigabytes, in parentheses. All the inputs being genomic sequences,
the frequency threshold f0 is used as 1 with all the tools. The relevant execution details, i.e. setting policy of the maximum memory usage (and maximum disk
usage, if applicable) for DEGSM, BCALM 2, and CUTTLEFISH 2 are the same as described in Table 1.
The best performance with respect to each metric in each row is highlighted, and only the default-memory mode is considered for CUTTLEFISH 2 for such.
The *’s and the †’s denote that the corresponding executions failed to complete due to hardware shortage of memory and disk-space, respectively. The ‡’s in
the BCALM 2 executions denote abnormal terminations, reporting an encountered logic-error. The ∆ in the DEGSM cells for the human gut genomes dataset
indicate that the DEGSM executions were stuck in an intermediate stage indefinitely, and they were allowed to run for at least 2 days before being explicitly
terminated. For the bacterial archive, we did not execute BIFROST and DEGSM (denoted with the X’s) as it is anticipated that insufficient resources would
be available for the executions, given their resource-usages on the smaller datasets. Suppl. Table 3 also includes the intermediate disk-usages incurred by the
tools, besides time and memory.

2.5. Maximal path cover construction. The execution
performance of CUTTLEFISH 2 in decomposing de Bruijn
graphs into maximal vertex-disjoint paths was assessed com-
pared to the only two available tool implementations in litera-
ture (57) for this task: (1) PROPHASM (56) and (2) UST (55).

For sequencing data, we used: (1) a roundworm read
set (ENA DRR008444) from a Caenorhabditis elegans ne-
matode (paired-end 300 bp Illumina reads, 5.6 GB com-
pressed FASTQ); (2) the gut microbiome read set (ENA PR-
JEB33098) noted earlier; and (3) the human read set (NIST
HG004) noted earlier. For whole-genome data, we used se-
quences from: (1) a roundworm reference (Caenorhabditis
elegans, VC2010) (68); (2) a human reference (Homo sapi-
ens, GRCh38); and (3) 7 real humans, collected from Baier
et al. (49). Table 3 presents the summary results of the bench-
marking.

We note that CUTTLEFISH 2 outperforms the alternative tools
for constructing maximal path covers in terms of the time and
memory required. In the context of this task, CUTTLEFISH 2
also offers several qualitative benefits over these tools. For
example, PROPHASM exposes only a single-threaded imple-
mentation. Further, it is restricted to values of k ≤ 32 and
only accepts genomic sequences as input (and thus is not ap-
plicable for read sets). UST first makes use of BCALM 2 for
maximal unitigs extraction—which we observed to be out-
performed by CUTTLEFISH 2 in the earlier experiments—
and then employs a sequential graph traversal on the com-
pacted graph to extract a maximal path cover. For this prob-
lem, CUTTLEFISH 2 bypasses the compacted graph construc-
tion, and directly extracts a maximal cover.

We observe that compared to the tools, CUTTLEFISH 2
is competitive on single-threaded executions. While on
moderate-sized datasets using multiple threads, it was 2–3.8x
faster than UST using 2.2–12.6x less memory on sequencing
data, and for reference sequences it was 2.8–6.1x faster than
UST using 2.9–6.3x less memory.
We also provide a comparison of the maximal unitig-based
and the maximal path cover-based representations of de
Bruijn graphs in Suppl. Table 6. We observe that, for the
human read set, the path cover representation requires 19–
24% less space than the unitigs. For the human genome
reference and 7 humans pan-genome references, these re-
ductions are 14–22%, and 20–25%, respectively. From the
statistics of both the representations on the gut microbiome
read set, it is evident that the corresponding de Bruijn graphs
are highly branching, as might be expected for metagenomic
data. The space reductions with path cover in these graphs
are 33–36%.

2.6. Structural characteristics. Given an input dataset R
and a fixed frequency threshold f0 for the edges (i.e. (k+1)-
mers), the structure of the de Bruijn graph G(R,k) is com-
pletely determined by the k-mer-size—the edge- and the
vertex-counts depend on k, and the asymptotic characteris-
tics of the algorithm are dictated only by the k-mer size k and
the hash function space-time tradeoff factor γ (see Sec. 3.4).
We evaluated how CUTTLEFISH 2 is affected practically by
changes in the k-value. The human read set (NIST HG004)
noted earlier was used for these evaluations.
For a range of increasing k-values (and a constant γ), we
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Table 3: Time- and memory-performance results for decomposing de Bruijn graphs into maximal vertex-disjoint paths.

Short-read sets
UST CUTTLEFISH 2

Dataset k
Thread-
count

Default
memory

Un-
restricted
memory

Round-
worm

27
1 22m

(3.7)
11m
(2.9)

09m
(11.2)

8 07m
(3.6)

02m
(2.9)

02m
(11.1)

55
1 24m

(3.2)
19m
(2.9)

15m
(11.2)

8 08m
(3.3)

02m
(2.9)

02m
(11.2)

Gut
micro-
biome

27
1 09h 02m

(39.2)
04h 30m

(3.1)
04h 02m

(26.8)

8 03h 10m
(39.2)

53m
(3.3)

37m
(26.9)

55
1 10h 36m

(34.8)
06h 59m

(3.6)
05h 51m

(69.9)

8 03h 24m
(34.8)

01h 13m
(3.8)

49m
(69.9)

Human
27 8

04h 56m
(13.1)

01h 18m
(3.2)

01h 01m
(11.3)

55
04h 56m

(7.7)
02h 29m

(3.5)
01h 11m

(11.3)

Whole-genome references
PROPHASM UST CUTTLEFISH 2

Dataset k
Thread-
count

Default
memory

Un-
restricted
memory

Round-
worm

27
1 03m

(3.9)
08m
(5.6)

03m
(2.0)

03m
(3.1)

8

--

02m
(0.8)

01m
(2.0)

01m
(2.0)

55
1 10m

(7.3)
04m
(2.8)

04m
(3.9)

8 02m
(1.2)

01m
(2.8)

01m
(3.4)

Human

27
1 01h 54m

(91.8)
03h 59m

(38.6)
01h 28m

(3.1)
01h 29m

(11.2)

8

--

01h 09m
(10.3)

14m
(3.2)

12m
(11.3)

55
1 04h 55m

(30.2)
02h 16m

(3.2)
02h 07m

(11.3)

8 01h 02m
(10.0)

22m
(3.4)

19m
(11.2)

7-
humans

27
1 *

04h 38m
(20.7)

01h 58m
(3.1)

01h 46m
(11.2)

8

--

01h 49m
(20.2)

18m
(3.2)

15m
(11.2)

55
1 05h 55m

(20.7)
02h 48m

(3.4)
02h 28m

(11.2)

8 01h 38m
(20.2)

27m
(3.6)

21m
(11.2)

Each cell contains the running time in wall clock format, and the maximum memory usage in gigabytes, in parentheses. The frequency thresholds f0 used for
the read sets are as follows: (i) roundworm: 12 (k = 27) and 8 (k = 55); (ii) gut microbiome: 2; and (iii) human: 14 (k = 27) and 9 (k = 55). For the reference
sequences, f0 is 1.
The best performance with respect to each metric in each row is highlighted, where for CUTTLEFISH 2 only its default-memory mode is considered. The *
denotes that the corresponding PROPHASM execution could not complete due to hardware memory shortage.

measured the execution performance of CUTTLEFISH 2, and
the following metrics of the maximal unitigs it produced:
the number of unitigs, the average and the maximum unitig
lengths, along with the N50 3 and the NGA50 4 scores for
contig-contiguity. Across the varying k’s, Table 4 reports the
performance- and the unitig-metrics.
The unitig-metrics on this data convey what one might
expect—as k increases, so do the average and the maximum
lengths of the maximal unitigs, and the N50 and NGA50
metrics, since the underlying de Bruijn graph typically gets
less tangled as the k-mer size exceeds repeat lengths (70). It
is worth noting that, since we consider here just the extrac-
tion of unitigs, and no graph cleaning or filtering steps (e.g.
bubble popping and tip clipping), we expect the N50 to be
fairly short.
Perhaps the more interesting observation to be gleaned from
the results is the scaling behavior of CUTTLEFISH 2 in terms
of k. While the smallest k-value leads to the fastest overall
graph construction, with increase in the machine-word count
to encode the k-mers, the increase in runtime is rather mod-
erate with respect to k, which follows the expected asymp-
totics (see Sec. 3.4.1). On the other hand, we observe
that this increase can be offset by allowing CUTTLEFISH 2
to execute with more memory (which helps in the bottle-
neck step, (k+ 1)-mer enumeration). We also note that,

3Length ` of the longest contig such that all the contigs having lengths≥ `
sum in size to at least 50% of the sum size of the contigs.
4Analogous to N50, except for: (1) breaking the contigs into their con-

stituent blocks that can be aligned to an associated reference sequence, and
(2) replacing the sum size of contigs with the reference length.

while the timing-profile exhibits reasonably good scalabil-
ity over the parameter k, the effect on the required memory
is rather small—it is not directly determined by the k-value,
rather is completely dictated by the distinct k-mer count (see
Sec. 3.4.2).

2.7. Parallel scaling. We assessed the scalability of CUT-
TLEFISH 2 across a varying number of processor-threads. For
this experiment, we downsampled the human read set NIST
HG004 from 70x to 20x coverage and used this as input.
We set k to 27 and 55, and executed CUTTLEFISH 2 with
thread-counts ranging in 1–32. For k = 27, Fig. 2a shows
the time incurred by each step of the algorithm, and Fig. 2b
demonstrates their speedups (i.e. factor of improvement in
the speed of execution with different number of processor-
threads). Suppl. Fig. 2 shows these metrics for k= 55.
On the computation system used, we observe that all steps of
CUTTLEFISH 2 scale well until about 8 threads. Beyond 8
threads, most steps but the minimal perfect hash construction
continue to scale. Fig. 2a shows that the most time-intensive
step in the algorithm is the initial edge set enumeration. This
step, along with vertex enumeration and DFA states computa-
tion, continue to show reasonably good scaling behavior until
about 20 threads, then gradually saturating. The final step of
unitigs extraction seems to scale well up to the maximum
thread-count we tested with (32 in this case).
It is worth reiterating that all experiments were performed
on standard hard drives, and that the most resource-intensive
step of edge enumeration can be quite input-output (IO)
bound, while the rest of the steps also iterate through the in-
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2 RESULTS

Table 4: Time- and memory-performance of CUTTLEFISH 2 for constructing the compacted de Bruijn graph from the human read set NIST
HG004, and some corresponding metrics of the output maximal unitigs, over a range of k-mer sizes.

Performance-metrics Unitig-metrics

k k-mer count Default
memory

Unrestricted
memory Count Avg. length

(bp)
Max. length

(bp)
N50
(bp)

NGA50
(bp)

27 2,547,479,119 1h 12m
(3.19)

54m
(11.29) 80,465,421 58 20,648 62 425

41 2,771,918,177 2h 19m
(3.48)

1h 05m
(11.26) 44,768,246 102 29,381 186 769

55 2,900,387,834 2h 12m
(3.54)

1h 04m
(11.28) 28,510,532 156 32,725 386 1,030

69 2,978,629,926 2h 42m
(3.66)

1h 11m
(19.49) 20,361,009 214 45,495 552 1,256

83 3,029,739,673 2h 39m
(3.68)

1h 04m
(22.34) 16,220,627 269 45,359 645 1,435

97 3,066,350,056 3h 05m
(3.78)

1h 06m
(30.57) 13,938,567 316 57,338 675 1,543

111 3,093,353,953 2h 53m
(3.75)

1h 08m
(32.18) 12,683,849 354 57,402 660 1,596

125 3,111,450,986 3h 01m
(3.80)

1h 16m
(42.18) 11,855,026 386 57,416 634 1,617

In performance-metrics, the running times are in wall clock format, and the maximum memory usages are in gigabytes, in parentheses. The frequency threshold
f0 for the (k+1)-mers is kept fixed at 5. The number of threads used in all the executions is 8. The setting policy of the execution modes (i.e. default-memory
and unrestricted-memory) for CUTTLEFISH 2 is as described in Table 1. NGA50 is calculated using the tool abyss-samtobreak, having aligned the output
contigs to the genome reference GRCh38 using BWA-MEM (69).
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Figure 2: Parallel-scaling metrics for CUTTLEFISH 2 across 1–32 processor threads, using k = 27 on the (downsampled) human read set
NIST HG004, with the frequency threshold f0 = 4.

disk set of edges or vertices—bound by disk-read speed. So
one might expect different (and quite possibly better) scal-
ing behavior for the IO-heavy operations when executing on
faster external storage, e.g. in the form of SSD or NVMe
drives (71). This is further evidenced by Kokot et al. (72),
who show that KMC 3, the method used for the edge and
the vertex enumeration steps in CUTTLEFISH 2, could have
considerable gains in speed on large datasets when executed
on SATA SSDs.

In this paper, we present CUTTLEFISH 2, a new algorithm
for constructing the compacted de Bruijn graph, which is
very fast and memory-frugal, and highly-scalable in terms
of the extent of the input data it can handle. CUTTLEFISH
2 builds upon the work of Khan and Patro (44), which al-
ready advanced the state-of-the-art in reference-based com-
pacted de Bruijn graph construction. CUTTLEFISH 2 si-
multaneously addresses the limitation and the bottleneck of
CUTTLEFISH, by substantially generalizing the work to al-
low graph construction from both raw sequencing reads and
reference genome sequences, while offering a more efficient

performance profile. It achieves this, in large part, through
bypassing the need to make multiple passes over the original
input for very large datasets.

As a result, CUTTLEFISH 2 is able to construct com-
pacted de Bruijn graphs much more quickly, while using
less memory—both often multiple times—than the numerous
other methods evaluated. Since the construction of the graph
resides upstream of many computational genomics analysis
pipelines, and as it is typically one of the most resource-
intensive steps in these approaches, CUTTLEFISH 2 could
help remove computational barriers to using the de Bruijn
graph in analyzing the ever-larger corpora of genomic data.

In addition to the advances it represents in the compacted
graph construction, we also demonstrate the ability of the al-
gorithm to compute another spectrum-preserving string set of
the input sequences—maximal path covers that have recently
been adopted in a growing variety of applications in the lit-
erature (57). A simple restriction on the considered graph
structure allows CUTTLEFISH 2 to build this construct much
more efficiently than the existing methods.
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Though a thorough exploration of the potential benefits of
improved compacted de Bruijn graph construction to the
manifold downstream analyses is outside the scope of the cur-
rent work, we present a proof of concept application (Suppl.
Sec. 1.9), demonstrating the benefits of our improved algo-
rithm to the task of constructing an associative k-mer index.
As the scale of the data on which the de Bruijn graph and its
variants must be constructed increases, and as the de Bruijn
graph itself continues to find ever-more widespread uses in
genomics, we anticipate that CUTTLEFISH 2 will enable its
use in manifold downstream applications that may not have
been possible earlier due to computational challenges, paving
the way for an even more widespread role for the de Bruijn
graph in high-throughput computational genomics.
CUTTLEFISH 2 is implemented in C++14, and is
available open-source at https://github.com/
COMBINE-lab/cuttlefish.

3. Methods

3.1. Related work. Here we briefly discuss the other com-
pacted de Bruijn graph construction algorithms included in
the experiments against which we compare CUTTLEFISH 2.
The BCALM algorithm (50) partitions the k-mers from the
input that pass frequency filtering into a collection of disk-
buckets according to their minimizers (73), and processes
each bucket sequentially as per the minimizer-ordering—
loading all the strings of the bucket into memory, joining
(or, compacting) them maximally while keeping the result-
ing paths non-branching in the underlying de Bruijn graph,
and distributing each resultant string into some other yet-to-
be-processed bucket for potential further compaction, or to
the final output. As is, BCALM is inherently sequential.
BCALM 2 (47) builds upon this use of minimizers to parti-
tion the graph, but it modifies the k-mer partitioning strategy
so that multiple disk-buckets can be compacted correctly in
parallel, and then glues the further compactable strings from
the compacted buckets.
ABYSS-BLOOM-DBG is the maximal unitigs assembler of
the ABYSS 2.0 assembly tool (27). It first saves all the k-
mers from the input reads into a cascading Bloom filter (63)
to discard the likely-erroneous k-mers. Then it identifies the
reads that consist entirely of retained k-mers, and extends
them in both directions within the de Bruijn graph through
identifying neighbors using the Bloom filter, while discard-
ing the potentially false-positive paths based on their spans—
producing the maximal unitigs.
DEGSM first enumerates all the (k+2)-mers of the input that
pass frequency filtering. Then using a parallel external sort-
ing over partitions of this set, it groups together the (k+ 2)-
mers with the same middle k-mer, enabling it to identify the
branching vertices in the de Bruijn graph. Then it merges the
k-mers from the sorted buckets in a strategy so as to produce
a Burrows-Wheeler Transform (74) of the maximal unitigs.
BIFROST (45) constructs an approximate compacted de
Bruijn graph first by saving the k-mers from the input in a
Bloom filter (63), and then for each potential non-erroneous

k-mer, it extracts the maximal unitig containing it by extend-
ing the k-mer in both directions using the Bloom filter. Then
using a k-mer counting based strategy, it refines the graph by
removing the false edges induced by the Bloom filter.

3.2. Definitions. A string s is an ordered sequence of sym-
bols drawn from an alphabet Σ. For the purposes of this
paper, we assume all strings to be over the alphabet Σ =
{A,C,G,T }, the DNA alphabet where each symbol has a re-
ciprocal complement—the complementary pairs being {A,T }
and {C,G}. For a symbol c ∈ Σ, c denotes its complement.
|s| denotes the length of s. A k-mer is a string with length
k. si denotes the i’th symbol in s (with 1-based indexing).
A substring of s is a string entirely contained in s, and si..j
denotes the substring of s located from its i’th to the j’th in-
dices, inclusive. pre`(s) and suf`(s) denote the prefix and
the suffix of s with length ` respectively, i.e. pre`(s) = s1..`
and suf`(s) = s|s|−`+1..|s|, for some 0 < ` ≤ |s|. For two
strings x and y with suf`(x) = pre`(y), the `-length glue
operation �` is defined as x�` y= x ·y`+1..|y|, where · de-
notes the append operation.
For a string s, its reverse complement s is the string ob-
tained through reversing the order of the symbols in s, and
replacing each symbol with its complement, i.e. s= s|s| · . . . ·
s2 · s1. The canonical form ŝ of s is defined as the string
ŝ = min(s,s), according to some consistent ordering of the
strings in Σ|s|. In this paper, we adopt the lexicographic or-
dering of the strings.
Given a set S of strings and an integer k > 0, let K and
K+1 be respectively the sets of k-mers and (k+ 1)-mers
present as substrings in some s ∈ S. The (directed) node-
centric de Bruijn graph G1(S,k) = (V1,E1) is a directed
graph where the vertex set is V1 = K, and the edge set
E1 is induced by V1: a directed edge e = (u,v) ∈ E1 iff
sufk−1(u) = prek−1(v). The (directed) edge-centric de
Bruijn graph G2(S,k) = (V2,E2) is a directed graph where
the edge set is E2 = K+1: each e ∈ K+1 constitutes a di-
rected edge (v1,v2) where v1 = prek(e) and v2 = sufk(e),
and the vertex set V2 is thus induced by E2. 5

In this work, we adopt the edge-centric definition of de Bruijn
graphs. Hence, we use the terms k-mer and vertex and the
terms (k+ 1)-mer and edge interchangeably. We introduce
both variants of the graph here as we compare (in Sec. 2) our
algorithm with some other methods that employ the node-
centric definition.
We use the bidirected variant of de Bruijn graphs in the pro-
posed algorithm, and redefine K+1 to be the set of canon-
ical (k+ 1)-mers ẑ such that z or z appears as substring in
some s ∈ S. 6 For a bidirected edge-centric de Bruijn graph
G(S,k) = (V,E) — (i) the vertex set V is the set of canonical
forms of the k-mers present as substrings in some e ∈K+1,
and (ii) the edge set is E=K+1, where an e∈ E connects the

5As per this definition, V2 = K. We describe in Sec. 3.3 a practical con-
sideration that implies that V2 need not necessarily be the same as K when
some filtering is applied on the input S to generate K+1.
6This is to account for the DNA being double-stranded, and a genomic

string may come from either of these oppositely-oriented complementary
strands.
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3 METHODS

vertices ̂prek(e) and ̂sufk(e). A vertex v has exactly two
sides, referred to as the front side and the back side.
For a (k+1)-mer z such that ẑ ∈K+1, let u = p̂rek(z) and
v= ̂sufk(z). z induces an edge from the vertex u to the ver-
tex v, and it is said to exit u and enter v. z connects to u’s
back iff prek(z) is in its canonical form, i.e. prek(z) = u,
and otherwise it connects to u’s front. Conversely, z con-
nects to v’s front iff sufk(z) = v, and otherwise to v’s back.
Concisely put, z exits through u’s back iff z’s prefix k-mer
is canonical, and enters through v’s front iff z’s suffix k-mer
is canonical. The edge corresponding to z can be expressed
as
(
(u,ψu),(v,ψv)

)
: it connects from the side ψu of the

vertex u to the side ψv of the vertex v.
We prove in Lemma 1 (see Suppl. Sec. 3) that the two
(k+ 1)-mers z and z correspond to the same edge, but in
reversed directions: z induces the edge

(
(v,ψv),(u,ψu)

)
—

opposite from that of z. The two edges for z and z constitute
a bidirected edge e =

{
(u,ψu),(v,ψv)

}
, corresponding to

ẑ ∈ E. While crossing e during a graph traversal, we say that
e spells the (k+1)-mer z when the traversal is from (u,ψu)
to (v,ψv), and it spells z in the opposite direction.
A walk w = (v0,e1,v1, . . . ,vn−1,en,vn) is an alternating
sequence of vertices and edges in G(S,k), where the vertices
vi and vi+1 are connected with the edge ei+1, and ei and
ei+1 are incident to different sides of vi. |w| denotes its
length in vertices, i.e. |w| = n+ 1. v0 and vn are its end-
points, and the vi for 0 < i < n are its internal vertices. The
walks (v0,e1, . . . ,en,vn) and (vn,en, . . . ,e1,v0) denote the
same walk but in opposite orientations. If the edge ei spells
the (k+ 1)-mer li, then w spells l1�k l2�k . . .�k ln. If
|w| = 1, then it spells v0. A path is a walk without any re-
peated vertex.
A unitig is a path p= (v0,e1,v1, . . . ,en,vn) such that either
|p|= 1, or in G(S,k):

1. each internal vertex vi has exactly one incident edge at
each of its sides, the edges being ei and ei+1

2. and v0 has only e1 and vn has only en incident to their
sides to which e1 and en are incident to, respectively.

A maximal unitig is a unitig p = (v0,e1,v1, . . . ,en,vn)
such that it cannot be extended anymore while retaining it-
self a unitig: there exists no x,y,e0, or en+1 such that
(x,e0,v0, . . . ,en,vn) or (v0,e1, . . . ,vn,en+1,y) is a unitig.
Fig. 3a illustrates an example of the de Bruijn graph and the
relevant constructs defined.
A compacted de Bruijn graph Gc(S,k) is obtained through
collapsing each maximal unitig of the de Bruijn graph
G(S,k) into a single vertex, through contracting its con-
stituent edges (75). Fig. 3b shows the compacted form of the
graph in Fig. 3a. Given a set S of strings and an integer k> 0,
the problem of constructing the compacted de Bruijn graph
Gc(S,k) is to compute the maximal unitigs of G(S,k). 7

A vertex-disjoint path cover P of G(S,k) = (V,E) is a set
of paths such that each vertex v ∈ V is present in exactly

7Discarding orientations: the two unitigs (v0, . . . , vn) and (vn, . . . , v0)
are topologically the same.

one path p ∈ P. Unless stated otherwise, we refer to this
construct simply as path cover. A maximal path cover is
a path cover P such that no two paths in P can be joined
into one single path, i.e. there exists no p1,p2 ∈ P such that
p1 = (v0,e1, . . . ,en,x), p2 = (y,e ′

1, . . . ,e
′
n,v

′
n), and there

is some edge
{
(x,sx),(y,sy)

}
∈ E connecting the sides of x

and y that are not incident to en and e ′
n, respectively. Fig. 3a

provides examples of such.

3.3. Algorithm. Given a set R, either of short-reads se-
quenced from some biological sample, or of reference se-
quences, the construction of the compacted de Bruijn graph
Gc(R,k) for some k > 0 is a data reduction problem in
computational genomics. A simple algorithm to construct
the compacted graph Gc involves constructing the ordinary
de Bruijn graph G(R,k) at first, and then applying a graph
traversal algorithm (76) to extract all the maximal non-
branching paths in G. However, this approach requires con-
structing the ordinary graph and retaining it in memory for
traversal (or organizing it in a way that it can be paged into
memory for efficient traversal). Both of these tasks can be
infeasible for large enough input samples. This prompts the
requirement of methods to construct Gc directly from R, by-
passing G. CUTTLEFISH 2 is an asymptotically and practi-
cally efficient algorithm performing this task.
Another practical aspect of the problem is that the sequenced
reads typically contain errors (77). This is offset through in-
creasing the sequencing depth—even if a read r ∈R contains
some erroneous symbol at index i of the underlying sequence
being sampled, a high enough sequencing depth should en-
sure that some other reads in R contain the correct nucleotide
present at index i. Thus, in practice, these erroneous symbols
need to be identified—usually heuristically—and the vertices
and the edges of the graph corresponding to them need to be
taken into account. CUTTLEFISH 2 discards the edges, i.e.
(k+1)-mers, that each occur less than some threshold param-
eter f0, and only operates with the edges having frequencies
≥ f0.

3.3.1. Implicit traversals over G(R,k). When the input is a
set S of references, the CUTTLEFISH algorithm (44) makes
a complete graph traversal on the reference de Bruijn graph 8

G(S,k) through a linear scan over each s ∈ S. Also, the con-
cept of sentinels 9 in G(S,k) ensures that a unitig can not
span multiple input sequences. In one complete traversal, the
branching vertices are characterized through obtaining a par-
ticular set of neighborhood relations; and then using another
traversal, the maximal unitigs are extracted.
For a set R of short-reads however, a linear scan over a read
r ∈ R may not provide a walk in G(R,k), since r may con-
tain errors, which break a contiguous walk. Additionally, the

8Introduced by Khan and Patro (44), based on the input to the de Bruijn
graph constructions being either reference sequences or sequencing reads,
the graphs are distinguished as either reference or read de Bruijn graphs.
9A vertex v is a sentinel if the first or the last k-mer x of an input string cor-

responds to v. Let v’s empty side in x be sv. The graph G(S,k) is modified
such that sv connects to a special branching vertex Υ—preventing unitigs
containing v to span farther through sv.
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CTA TAA AAG AGA

CTA ATG ACGCGA

CTC AGG

GCT GAT TAC TGC

GAT ATT TTC TCT

GAG TCC

(a)

CTAAGA

GATGC

CTCC

CGA

GCT CTACG

GATTCT

GAGG

(b)
Figure 3: A (bidirected) edge-centric de Bruijn graph G(S,k) for a set S = {CTAAGAT,CGATGCA,TAAGAGG} of strings and k-mer
size k = 3 in (a), and its compacted form Gc(S,k) in (b).
In the graphs, the vertices are denoted with pentagons—the flat and the cusped ends depict the front and the back sides respectively, and
each edge corresponds to some 4-mer(s) in s ∈ S. In (a), the vertices are the canonical forms of the k-mers in s ∈ S. The canonical string
t̂ associated to each vertex v is labelled inside v, to be spelled in the direction from v’s front to its back. Using t̂, we also refer to v. The
label beneath v is t̂, and is to be spelled in the opposite direction (i.e. back to front). For example, consider the 4-mer CGAT , an edge
e in G(S,3). e connects the 3-mers x = pre3(e) = CGA and y = suf3(e) = GAT , the vertices being u = x̂ = CGA and v = ŷ = ATC
respectively. x is canonical and thus e exits through u’s back; whereas y is non-canonical and hence e enters through v’s back.
(CTA,TAA,AAG) is a walk, a path, and also a unitig (edges not listed). (CGA,ATC,ATG) is a walk and a path, but not a unitig—the
internal vertex ATC has multiple incident edges at its back. The unitig (CTA,TAA,AAG) is not maximal, as it can be extended farther
throughAAG’s back. Then it becomes maximal and spells CTAAGA. There are four such maximal unitigs inG(S,3), and contracting each
into a single vertex produces Gc(S,3), in (b).
There are two different maximal path covers of G(S,3): spelling {CTAAGATGC,CGA,CCTC} and {CCTCTTAG,CGATGC}.

concept of sentinels is not applicable for reads. Therefore,
unitigs may span multiple reads. For a unitig u spanning the
reads r1 and r2 consecutively, it is not readily inferrable that
r2 is to be scanned after r1 (or the reverse, for an oppositely-
oriented traversal) while attempting to extract u directly from
R, as the reads are not linked in the input for this purpose.
Hence, contrary to the reference-input algorithm (44) where
complete graph traversal is possible with just |R| different
walks when R consists of reference sequences, CUTTLE-
FISH 2 resorts to making implicit piecewise-traversals over
G(R,k).
For the purpose of determining the branching vertices, the
piecewise-traversal is completely coarse—each walk tra-
verses just one edge. Making such walks, CUTTLEFISH 2 re-
tains just enough adjacency information for the vertices (i.e.
only the internal edges of the unitigs) so that the unitigs can
then be piecewise-constructed without the input R. Avoid-
ing the erroneous vertices is done through traversing only the
solid edges ((k+ 1)-mers occurring ≥ f0 times in R, where
f0 is a heuristically-set input parameter).
Stitching together the pieces of a unitig is accomplished by
making another piecewise-traversal over G(R,k), not by ex-
tracting those directly from the input sequences (opposed to
CUTTLEFISH (44)). Each walk comprises the extent of a
maximal unitig—the edges retained by the earlier traversal
are used to make the walk and to stitch together the unitig.
In fact, the graph traversal strategy of CUTTLEFISH for refer-
ence inputs S is a specific case of this generalized traversal,
where a complete graph traversal is possible through a lin-
ear scan over the input, as each s ∈ S constitutes a complete
walk over G({s},k). Besides, the maximal unitigs are tiled
linearly in the sequences s ∈ S, and determining their termi-
nal vertices is the core problem in that case; as extraction of
the unitigs can then be performed through walking between

the terminal vertices by scanning the s ∈ S.

3.3.2. A deterministic finite automaton model for vertices.
While traversing the de Bruijn graphG(R,k) = (V,E) for the
purpose of determining the maximal unitigs, it is sufficient to
only keep track of information for each side sv of each vertex
v ∈ V that can categorize it into one of the following classes:

1. no edge has been observed to be incident to sv yet

2. sv has multiple distinct incident edges

3. sv has exactly one distinct incident edge, for which there
are |Σ|= 4 possibilities (see Lemma 2, Suppl. Sec. 3).

Thus there are six classes to which each sv may belong, and
since v has two sides, it can be in one of 6× 6 = 36 distinct
configurations. Each such configuration is referred to as a
state.
CUTTLEFISH 2 treats each vertex v∈V as a Deterministic
Finite Automaton (DFA)Mv = (Q,Σ ′,δ,q0,Q

′):

States: Q is the set of the possible 36 states for the automa-
ton. Letting the number of distinct edges at the front with
f and at the back with b for a vertex v with a state q, and
based on the incidence characteristics of v, the states q ∈ Q

can be partitioned into four disjoint state-classes: (1) fuzzy-
front fuzzy-back (f 6= 1,b 6= 1), (2) fuzzy-front unique-back
(f 6= 1,b = 1), (3) unique-front fuzzy-back, (f = 1,b 6= 1),
and (4) unique-front unique-back (f= 1,b= 1).

Input symbols: Σ ′ =
{
(s,c) : s ∈ {front,back}, c ∈ Σ

}
is the set of the input symbols for the automaton. Each in-
cident edge e of a vertex u is provided as input to u’s au-
tomaton. For u, an incident edge e =

{
(u,su),(v,sv)

}
can

be succinctly encoded by its incidence side su and a symbol
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c ∈ Σ—the (k+ 1)-mer ẑ for e is one of the following, de-
pending on su and whether ẑ is exiting or entering u: u · c,
u ·c, c ·u, or c ·u.

Transition function: δ : Q×Σ ′ → Q\ {q0} is the function
controlling the state-transitions of the automaton. Fig. 4 il-
lustrates the state-transition diagram for an automaton as per
δ.

Initial state: q0 ∈ Q is the initial state of the automaton.
This state corresponds to the configuration of the associated
vertex at which no edge has been observed to be incident to
either of its sides.

Accept states: Q ′ = Q \ {q0} is the set of the states
corresponding to vertex-configurations having at least one
edge. 10

3.3.3. Algorithm overview. We provide here a high-level
overview of the CUTTLEFISH 2(R,k,f0) algorithm. The in-
put to the algorithm is a set R of strings, an odd integer k> 0,
and an abundance threshold f0 > 0; the output is the set of
strings spelled by the maximal unitigs of the de Bruijn graph
G(R,k).

CUTTLEFISH 2(R,k,f0)
1 E← ENUMERATE-EDGES(R,k,f0)
2 V← EXTRACT-VERTICES(E)
3 h← CONSTRUCT-MINIMAL-PERFECT-HASH(V)
4 S← COMPUTE-AUTOMATON-STATES(E,h)
5 U← EXTRACT-MAXIMAL-UNITIGS(V,h,S)

CUTTLEFISH 2(R,k,f0) executes in five high-level stages,
and Fig. 1 illustrates these steps. Firstly, it enumerates the
set E of edges, i.e. (k+1)-mers that appear at least f0 times
in R. Then the set V of vertices, i.e. k-mers are extracted
from E. Having the distinct k-mers, it constructs a minimal
perfect hash function h over V. At this point, a hash table
structure is set up for the automata—the hash function being
h, and each hash bucket having enough bits to store a state
encoding. Then, making a piecewise traversal over G(R,k)
using E, CUTTLEFISH 2 observes all the adjacency relations
in the graph, making appropriate state transitions along the
way for the automata of the vertices u and v for each edge
{(u,su),(v,sv) }. After all the edges in E are processed, each
automaton Mv resides in its correct state. Due to the design
characteristic of the state-space Q ofMv, the internal vertices
of the unitigs in G(R,k), as well as the non-branching sides
of the branching vertices have their incident edges encoded
in their states. CUTTLEFISH 2 retrieves these unitig-internal
edges and stitches them together in chains until branching
vertices are encountered, thus extracting the maximal unit-

10Formally, Q ′ is the set of states reachable from q0 through transitions
as per some definite patterns of input symbols. For our purposes, recog-
nizing specific input patterns is not a concern—rendering this parameter
redundant—we define it as the set of the final states an automaton can be
in having fed all its inputs.

igs implicitly through another piecewise traversal, with each
walk spanning a maximal unitig.
These major steps in the algorithm are detailed in the follow-
ing subsections. Then we analyze the asymptotic characteris-
tics of the algorithm in Sec. 3.4. Finally, we provide a proof
of its correctness in Theorem 1 (see Suppl. Sec. 3).

3.3.4. Edge set construction. The initial enumeration of the
edges, i.e. (k+ 1)-mers from the input set R is performed
with the KMC 3 algorithm (72). KMC 3 enumerates the
`-mers of its input in two major steps. Firstly, it partitions
the `-mers based on signatures—a restrictive variant of min-
imizers 11. Maximal substrings from the input strings with
all their `-mers having the same signature (referred to as su-
per `-mers) are partitioned into bins corresponding to the sig-
natures. Typically the number of bins is much smaller than
the number of possible signatures, and hence each bin may
contain strings from multiple signatures (set heuristically to
balance the bins). In the second phase, for each partition,
its strings are split into substrings called (`,x)-mers—an ex-
tension of `-mers. These substrings are then sorted using a
most-significant-digit radix sort (78) to unify the repeated `-
mers in the partition. For ` = k+ 1, the collection of these
deduplicated partitions constitute the edge set E.

3.3.5. Vertex set extraction. CUTTLEFISH 2 extracts the
distinct canonical k-mers—vertices of G(R,k)—from E

through an extension of KMC 3 (72) (See Suppl. Sec. 2.1).
For such, taking E as input, KMC 3 treats each (k+ 1)-mer
e ∈ E as an input string, and enumerates their constituent
k-mers applying its original algorithm. Using E instead of
R as input reduces the amount of work performed in this
phase through utilizing the work done in the earlier phase—
skipping another pass over the entire input set R, which can
be computationally substantial.

3.3.6. Hash table structure setup. An associative data struc-
ture is required to store the transitioning states of the au-
tomata of the vertices of G(R,k). That is, association of
some encoding of the states to each canonical k-mer is re-
quired. Some off-the-shelf hash table can be employed for
this purpose. Due to hash collisions, general-purpose hash
tables typically need to store the keys along with their asso-
ciated data—the key set V may end up taking k log2 |Σ|= 2k
bits/k-mer in the hash table 12. In designing a more efficient
hash table structure, CUTTLEFISH 2 makes use of the facts
that: (i) the set V of keys is static—no alien keys will be
encountered while traversing the edges in E, since V is con-
structed from E; and (ii) V has been enumerated at this point.
A Minimal Perfect Hash Function (MPHF) is applicable in
this setting. Given a set K of keys, a perfect hash function
over K is an injective function h : K→ Z, i.e. ∀k1,k2 ∈
K, k1 6= k2⇔ h(k1) 6= h(k2). h is minimal when its image

11For a given j < `, a j-minimizer of an `-mer x is the smallest j-mer
substring of x according to some specified function.
12This can be improved by having 4p different hash tables for V, for a

fixed prefix length p ≤ k. Each hash table then accounts for keys of length
(k−p).
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q0

Figure 4: The state-transition diagram for an automaton Mv = (Q,Σ ′,δ,q0,Q
′). Each node in the diagram represents a collection of states

q ∈ Q, and q0 is the initial state of Mv. A node may represent multiple states collectively. For example, the node at the center of the
figure with the symbols x and y at its flat and cusped ends respectively represents 16 states (all the ones from the state-class unique-front
unique-back). Thus each node Qk represents a disjoint subset of Q. The pictorial shape of Qk is similar to that of a de Bruijn graph vertex
(see Fig. 3), and denotes the incidence characteristics of the vertices having their automata in states in Qk: for a vertex v with its automaton in
state qk ∈ Qk, a unique symbol at side s of Qk means that v has a distinct edge at side s, ellipsis means multiple unique edges, and absence
of any symbol means no edge has been observed incident to that side.
A directed edge (Qi,Qj) labelled with (s,c) denotes transitions from a state qi ∈Qi to a state qj ∈Qj, and (s,c) symbolizes the corresponding
input fed to an automaton at state qi for that transition to happen. That is, δ

(
qi,(s,c)

)
=qj. Thus these edges pictorially encode the transition

function δ. For the automaton Mv of a vertex v, an input (s,c) means that an edge e is being added to its side s ∈ {f,b}; along with s and v,
the character c ∈ Σ succinctly encodes e. f and b are shorthands for front and back, respectively. Self-transition is possible for each state
q ∈ Q ′, and are not shown here for brevity.

is [0, |K|), i.e. an MPHF is an injective function h : K→
[0, |K|). By definition, an MPHF does not incur collisions.
Therefore when used as the hash function for a hash table,
it obviates the requirement to store the keys with the table
structure. Instead, some encoding of the MPHF needs to be
stored in the structure.

To associate the automata to their states, CUTTLEFISH 2 uses
a hash table with an MPHF as the hash function. An MPHF
h over the vertex set V is constructed with the BBHASH al-
gorithm (79). For the key set V0 = V, BBHASH constructs
h through a number of iterations. It maps each key v ∈ V0
to [1, γ|V0| ] with a classical hash function h0, for a pro-
vided parameter γ > 0. The collision-free hashes in the hash
codomain [1, γ|V0| ] are marked in a bit-array A0 of length
γ|V0|. The colliding keys are collected into a set V1, and the
algorithm is iteratively applied on V1. The iterations are re-
peated until either some Vn is found empty, or a maximum
level is reached. The bit-arrays Ai for the iterations are con-
catenated into an arrayA, which along with some other meta-
data, encode h. A has an expected size of γe1/γ|V| bits (79).
γ trades off the encoding size of h with its computation time.

γ = 2 provides a reasonable trade-off, with the size of h be-
ing ≈ 3.7 bits/vertex. 13 Note that, the size is independent of
k, i.e. the size of the keys.
For the collection of hash buckets, CUTTLEFISH 2 uses a lin-
ear array (81) of size |V|. Since each bucket is to contain some
state q∈Q, dlog2 |Q|e= dlog2 36e= 6 bits are necessary (and
also sufficient) to encode q. Therefore CUTTLEFISH 2 uses
6 bits for each bucket. The hash table structure is thus com-
posed of an MPHF h and a linear array S: for a vertex v, its
(transitioning) state qv is encoded at the index h(v) of S, and
in total the structure uses ≈ 9.7 bits/vertex.

3.3.7. Automaton states computation. Given the set E of
edges of a de Bruijn graph G(R,k) and an MPHF h over
its vertex set V, the COMPUTE-AUTOMATON-STATES(E,h)
algorithm computes the state of the automaton Mv of each
v ∈ V.
It initializes each automaton Mw with q0—the initial state
corresponding to no incident edges. Then for each edge

13It can be as low as ≈ 3 bits/vertex with γ = 1, at the expense of slower
hashing. The theoretical lower limit for MPHFs is ≈ 1.44 bits/key (80).
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COMPUTE-AUTOMATON-STATES(E,h)

1 n← ∣∣keys(h)∣∣ // number of distinct keys for h,
i.e. the vertex-count

2 S← buckets table with n states initialized to q0
3 for each e ∈ E

4 TRANSITION-STATES(e)

TRANSITION-STATES(e)

1 u← prek(e), v← sufk(e)
2 su← EXIT-SIDE(û,u)
3 sv← ENTRANCE-SIDE(̂v,v)
4 cu← ek+1 if su = back, ek+1 o/w
5 cv← e1 if sv = front, e1 o/w
6 S [h(û) ] ← δ

(
S [h(û) ] , (su,cu)

)
7 S [h(̂v) ] ← δ

(
S [h(̂v) ] , (sv,cv)

)

e= {(û,su),(v̂, sv) }∈ E, connecting the vertex û via its side
su to the vertex v̂ via its side sv, it makes appropriate state
transitions for Mu and Mv, the automata of û and v̂ respec-
tively. For each endpoint ŵ of e, (sw,cw) is fed to Mw,
where cw ∈ Σ. Together with ŵ, sw and cw encode e. The
setting policy for cw is described in the following. Technical-
ities relating to loops are accounted for in the CUTTLEFISH 2
implementation, but are omitted from discussion for simplic-
ity.
e has two associated (k+ 1)-mers: z and z. Say that z =
u�k−1 v. Based on whether u= û holds or not, e is incident
to either û’s back or front. As defined (see Sec. 3.2), if it
is incident to the back, then z = û · c; otherwise, z = û · c,
where c = ek+1. In these cases respectively, z = c · û, and
z= c · û. For consistency, CUTTLEFISH 2 always uses a fixed
form of e for û—either z or z—to provide it as input toMu:
the one containing the k-mer u in its canonical form. So if e
is at û’s back, the û · c form is used for e, and (back,c) is
fed to Mu; otherwise, e is expressed as c · û and (front,c)
is the input for Mu. The encoding (sv,c

′) of e for v̂ is set
similarly.

3.3.8. Maximal Unitigs Extraction. Given the set V of ver-
tices of a de Bruijn graph G(R,k), an MPHF h over V, and
the states-table S for the automata of v ∈ V, the EXTRACT-
MAXIMAL-UNITIGS(V,h,S) algorithm assembles all the
maximal unitigs of G(R,k).
The algorithm iterates over the vertices in V. For some ver-
tex v̂ ∈ V, let p be the maximal unitig containing v̂. p can
be broken into two subpaths: pb and pf, overlapping only
at v̂. The EXTRACT-MAXIMAL-UNITIGS(V,h,S) algorithm
extracts these subpaths separately, and joins them at v̂ to con-
struct p. Then p’s constituent vertices are marked by tran-
sitioning their automata to some special states (not shown in
Fig. 4), so that p is extracted only once.
The subpaths pb and pf are extracted by initiating two walks:
one from each of v̂’s sides back and front, using the WALK-
MAXIMAL-UNITIG(v̂, sv) algorithm. Each walk continues
on until a flanking vertex x̂ is encountered. For a vertex x̂,
let qx denote the state of x̂’s automaton and Cx denote qx’s

EXTRACT-MAXIMAL-UNITIGS(V,h,S)

1 U← φ

2 for each v̂ ∈ V

3 qv← S [h(̂v) ]
4 if not IS-MARKED(qv)
5 pb←WALK-MAXIMAL-UNITIG(̂v, back)
6 pf←WALK-MAXIMAL-UNITIG(̂v, front)

7 p← pf�k pb
8 MARK-VERTICES(p)
9 U← U∪ { p̂ }

10 return U

WALK-MAXIMAL-UNITIG(̂v,sv)

1 anchor← v̂

2 q← S [h(̂v) ]

3 v← v̂ if sv is back, v̂ o/w
4 p← v

5 repeat
6 if IS-FUZZY-SIDE(q,sv)
7 break // at a branching / dead-end side
8 e← EDGE-EXTENSION(q,sv)
9 v← sufk−1(v) ·e // walk to the next vertex

10 if v̂ = = anchor
11 break // a cyclic maximal unitig
12 q← S [h(̂v) ]
13 sv← ENTRANCE-SIDE(̂v,v)
14 if IS-FUZZY-SIDE(q,sv)
15 break // reached a different maximal unitig
16 p← p ·e
17 sv← EXIT-SIDE(̂v,v) // get to the other side
18 return p

state-class. Then x̂ is noted to be a flanking vertex iff:

1) either Cx is not unique-front unique-back;

2) or x̂ connects to the side sy of a vertex ŷ such that:

(a) Cy is fuzzy-front fuzzy-back; or

(b) sy = front and Cy is fuzzy-front unique-back; or

(c) sy = back and Cy is unique-front fuzzy-back.

Lemma 3 (see Suppl. Sec. 3) shows that the flanking vertices
in G(R,k) are precisely the endpoints of its maximal unitigs.
The WALK-MAXIMAL-UNITIG(v̂, sv) algorithm initiates a
walkw from v̂, exiting through its side sv. It fetches v̂’s state
qv from the hash table. If qv is found to be not belonging
to the state-class unique-front unique-back due to sv having
6= 1 incident edges, then v̂ is a flanking vertex of its con-
taining maximal unitig p, and p has no edges at sv. Hence
w terminates at v̂. Otherwise, sv has exactly one incident
edge. The walk algorithm makes use of the fact that, the
vertex-sides su that are internal to the maximal unitigs in
G(R,k) contain their adjacency information encoded in the
states qu of their vertices û’s automata, once the COMPUTE-
AUTOMATON-STATES(E,h) algorithm is executed. Thus, it
decodes qv to get the unique edge e= {(û,su),(v̂, sv)} inci-
dent to sv. Through e, w reaches the neighboring vertex û,
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at its side su. û’s state qu is fetched, and if qu is found not
to be in the class unique-front unique-back due to su having
> 1 incident edges, then both û and v̂ are flanking vertices
(for different maximal unitigs), andw retracts to and stops at
v̂. Otherwise, e is internal to p, and w switches to the other
side of û, proceeding on similarly. It continues through ver-
tices v̂i in this manner until a flanking vertex of p is reached,
stitching together the edges along the way to construct a sub-
path of p.
A few constant-time supplementary procedures are used
throughout the algorithm. IS-FUZZY-SIDE(q,s) determines
whether a vertex with the state q has 0 or > 1 edges at
its side s. EDGE-EXTENSION(q,s) returns an encoding of
the edge incident to the side s of a vertex with state q.
ENTRANCE-SIDE(v̂,v)

(
and EXIT-SIDE(v̂,v)

)
returns the

side used to enter (and exit) the vertex v̂ when its k-mer form
v is observed.

3.3.9. Maximal path-cover extraction. We discuss here how
CUTTLEFISH 2 might be modified so that it can extract a
maximal path cover of a de Bruijn graph G(R,k). For such,
only the COMPUTE-AUTOMATON-STATES step needs to be
modified, and the rest of the algorithm remains the same.
Given the edge set E of the graph G(R,k) and an MPHF
h over its vertex set V, COMPUTE-AUTOMATON-STATES-
PATH-COVER(E,h) presents the modified DFA states com-
putation algorithm.
The maximal path cover extraction variant of CUTTLEFISH
2 works as follows. It starts with a trivial path cover P0 of
G(R,k): each v ∈ V constitutes a single path, spanning the
subgraphG ′(V,∅). Then it iterates over the edges e∈E (with
|E| = m) in arbitrary order. We will use Pi to refer to the
path cover after having visited i edges. At any given point of
the execution, the algorithm maintains the invariant that Pi is
a maximal path cover of the graph G ′(V,E ′), where E ′ ⊆ E

(with |E ′|= i) is the set of the edges examined until that point.
When examining the (i+ 1)’th edge e = {(u,su),(v,sv)}, it
checks whether e connects two different paths in Pi into one
single path: this is possible iff the sides su and sv do not have
any incident edges already in E ′, i.e. the sides are empty in
G ′(V,E ′). If this is the case, the paths are joined in Pi+1 into
a single path containing the new edge e. Otherwise, the path
cover remains unchanged so that Pi+1 = Pi. By definition,
Pi+1 is a path cover ofG ′(V,E ′∪ {e}), as e could only affect
the paths (at most two) in Pi containing u and v, while the
rest are unaffected and retain maximality—thus the invariant
is maintained. By induction, Pm is a path cover of G(V,E)
once all the edges have been examined, i.e. when E ′ = E.
By making state transitions for the automata only for the
edges present internal to the paths p ∈ Pm, the COMPUTE-
AUTOMATON-STATES-PATH-COVER(E,h) algorithm seam-
lessly captures the subgraph GPm of G(R,k) that is in-
duced by the path cover Pm. GPm consists of a col-
lection of disconnected maximal paths, and thus there ex-
ists no branching in GPm . Consequently, each of these
maximal paths is a maximal unitig of GPm . The sub-
sequent EXTRACT-MAXIMAL-UNITIGS algorithm operates
using the DFA states collection S computed at this step, and

therefore it extracts precisely these maximal paths.

COMPUTE-AUTOMATON-STATES-PATH-COVER(E,h)

1 n← ∣∣keys(h)∣∣ // number of distinct keys for h,
i.e. the vertex-count

2 S← buckets table with n states initialized to q0
3 for each e ∈ E

4 u← prek(e), v← sufk(e)
5 su← EXIT-SIDE(e, û)
6 sv← ENTRANCE-SIDE(e, v̂)
7 qu← S [h(û) ] , qv← S [h(̂v) ]
8 if IS-EMPTY-SIDE(qu, su) and

IS-EMPTY-SIDE(qv, sv)
9 TRANSITION-STATES(e)

3.3.10. Parallelization. CUTTLEFISH 2 is highly paralleliz-
able on a shared-memory multi-core machine. The
ENUMERATE-EDGES and the EXTRACT-VERTICES steps,
using KMC 3 (72), are parallelized in their constituent
phases via parallel distribution of the input (k+1)-mers (and
k-mers) into partitions, and sorting multiple partitions in par-
allel.
The COMPUTE-MINIMAL-PERFECT-HASH step using BB-
HASH (79) parallelizes the construction through distributing
disjoint subsets Vi of the vertices to the processor-threads,
and the threads process the Vi’s in parallel.
The next two steps, COMPUTE-AUTOMATON-STATES and
EXTRACT-MAXIMAL-UNITIGS, both (piecewise) traverse
the graph through iterating over E and V respectively. The
processor-threads are provided disjoint subsets of E and V

to process in parallel. Although the threads process dif-
ferent edges in COMPUTE-AUTOMATON-STATES, multiple
threads may access the same automaton into the hash table
simultaneously, due to edges sharing endpoints. Similarly
in EXTRACT-MAXIMAL-UNITIGS, though the threads ex-
amine disjoint vertex sets, multiple threads simultaneously
constructing the same maximal unitig from its different con-
stituent vertices can access the same automaton concurrently,
at the walks’ meeting vertex. CUTTLEFISH 2 maintains ex-
clusive access to a vertex to one thread at a time through a
sparse set L of locks. Each lock l∈L guards a disjoint set Vi
of vertices, roughly of equal size. With p processor-threads
and assuming all p threads accessing the hash table at the
same time, the probability of two threads concurrently prob-
ing the same lock at the same turn is

(
1−(1− 1/|L|)(

p
2)
)
—

this is minuscule with an adequate |L|. 14

3.4. Asymptotics. In this section, we analyze the computa-
tional complexity of the CUTTLEFISH 2(R,k,f0) algorithm
when executed on a set R of strings, given a k value, and a
threshold factor f0 for the edges inG(R,k). E is the set of the
(k+ 1)-mers occurring ≥ f0 times in R, and V is the set of
the k-mers in E. Let ` be the total length of the strings r ∈R,
n be the vertex-count |V|, andm be the edge-count |E|.

14The optimal (in regard to probability) value |L| = |V| is not used due to
the locks’ memory usage.
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3 METHODS

3.4.1. Time complexity. CUTTLEFISH 2 represents j-mers
with 64-bit machine-words—packing 32 symbols into a sin-
gle word. Let wj denote the number of words in a j-mer, i.e.
wj = d j32e.
Note that the number of (k + 1)-mers in R is upper-
bounded by `. The ENUMERATE-EDGES step uses the
KMC 3 (72) algorithm. At first, it partitions the (k+ 1)-
mers into buckets based on their signatures. With a rolling
computation, determining the signature of a (k + 1)-mer
takes an amortized constant time. Assigning a (k + 1)-
mer to its bucket then takes time O(wk+1), and the com-
plete distribution takes O(wk+1`). 15 As each (k+ 1)-
mer consists of wk+1 words, radix-sorting a bucket of size
Bi takes time O(Biwk+1). So in the second step, for
a total of b buckets for R, the cumulative sorting time
is
∑b
i=1O(Biwk+1) = O(wk+1

∑b
i=1Bi) = O(wk+1`).

Thus ENUMERATE-EDGES takes time O(`wk+1).
The EXTRACT-VERTICES step applies KMC 3 (72) with E

as input, and hence we perform a similar analysis as earlier.
Each e∈E comprises two k-mers. So partitioning the k-mers
takes time O(2mwk), and radix-sorting the buckets takes
O(wk

∑
Bi) =O(2mwk). Therefore EXTRACT-VERTICES

takes time O(mwk).
The CONSTRUCT-MINIMAL-PERFECT-HASH step applies
the BBHASH (79) algorithm to construct an MPHF h over
V. It is a multi-pass algorithm—each pass i tries to assign
final hash values to a subset Ki of keys. Making a bounded
number of passes over sets Ki of keys—shrinking in size—
it applies some classical hash hi on the x ∈Ki in each pass.
For some x∈Ki, iff hi(x) is free of hash collisions, then x is
not propagated to Ki+1. Provided that the hi’s are uniform
and random, each key v ∈ V is hashed with the hi’s an ex-
pected O(e1/γ) times (79), an exponentially decaying func-
tion on the γ parameter. Given that hi’s are constant time on
machine-words, computing hi(v) takes time O(wk). Then
the expected time to assign its final hash value to a v ∈ V

is H(k) = O
(
wke

1/γ
)
. Therefore CONSTRUCT-MINIMAL-

PERFECT-HASH takes an expected time O
(
nH(k)

)
. Note

that, querying h, i.e. computing h(v) also takes time H(k),
as the query algorithm is multi-pass and similar to the con-
struction.
The COMPUTE-AUTOMATON-STATES step initializes the n
automata with the state q0, taking time O(n). Then for each
edge e ∈ E, it fetches its two endpoints’ states from the hash
table in time 2H(k), updating them if required. In total there
are 2m hash accesses, and thus COMPUTE-AUTOMATON-
STATES takes time O(n+mH(k)).
The EXTRACT-MAXIMAL-UNITIGS step scans through each
vertex v ∈ V, and walks the entire maximal unitig p contain-
ing v. The state of each vertex in p is decoded to complete the
walk—requiring |p| hash table accesses, taking time |p|H(k).
If the flanking vertices of p are non-branching, then the walk
also visits their neighboring vertices that are absent in p, at
most once per each endpoint. Once extracted, all the vertices
in p are marked so that p is not extracted again later on—this

15This bound is not tight, as KMC 3 actually distributes sequences longer
than (k+1)-mers—reducing computation (see Sec. 3.3.4).

takes time |p|H(k), and can actually be done in time O(|p|)
by saving the hash values of the path vertices while construct-
ing p. Thus traversing all the ui’s in the maximal unitigs
set U takes time

(
H(k)

∑
ui∈U

(|ui|+2)+
∑
ui∈U

|ui|
)
=nH(k).∑

ui∈U |ui| equates to n because the set of the maximal unit-
igs U forms a vertex decomposition of G(R,k) (47). Thus
EXTRACT-MAXIMAL-UNITIGS takes time O

(
nH(k)

)
.

In the brief analysis for the last three steps, we do not in-
clude the time to read the edges

(
O(mwk+1)

)
and the ver-

tices
(
O(nwk)

)
into memory, as they are subsumed by other

terms.
Thus, CUTTLEFISH 2(R,k,f0) has an expected running
time O

(
`wk+1+mwk+(n+m)H(k)

)
, wherewj = d j32e,

H(k) =O(wke1/γ), and γ> 0 is a constant. It is evident that
the bottleneck is the initial ENUMERATE-EDGES step, and it
asymptotically subsumes the running time.

3.4.2. Space complexity. Here, we analyze the working
memory (i.e. RAM) required by the CUTTLEFISH 2 algo-
rithm. The ENUMERATE-EDGES step with KMC 3 (72) can
work within a bounded memory space. Its partitioning phase
distributes input k-mers into disk bins, and the k-mers are
kept in working memory within a total space limit S, be-
fore flushes to disk. Radix-sorting the bins are done through
loading bins into memory with sizes within S, and larger
bins are broken into sub-bins to facilitate bounded-memory
sort. As we discuss below, the graph traversal steps require a
fixed amount of memory, determined linearly by n. As n is
not computed until the completion of EXTRACT-VERTICES,
we approximate it within the KMC 3 algorithm (see Suppl.
Sec. 2.1), and then bound the memory for the KMC 3 execu-
tion appropriately. The next step of EXTRACT-VERTICES is
also performed similarly within the same memory-bound.
The CONSTRUCT-MINIMAL-PERFECT-HASH step with
BBHASH (79) processes the key set V in fixed-sized chunks.
Each pass i with key set Vi has a bit-array Ai to mark hi(v)
for all the v∈Vi, along with an additional bit-array Ci to de-
tect the hash collisions. Both Ai and Ci have the size γ|Vi|.
The finally concatenated Ai’s is the output data structure A
for the algorithm, and someCi is present only during the pass
i. A has an expected size of γe1/γn bits (79). |C0|= γ|V0|=
γn, and this is the largest collision array in the algorithm’s
lifetime. Thus, an expected loose upper-bound of the mem-
ory usage in this step is O

(
|A|+ |C0|

)
= O

(
(e1/γ+ 1)γn

)
bits.
At this point in the algorithm, a hash table structure is set up
for the automata. Together, the hash function h and the hash
buckets collection S take an expected space of

(
γe1/γn+

ndlog2 |Q|e
)
= (γe1/γ+6)n bits.

The COMPUTE-AUTOMATON-STATES step scans the edges
in E in fixed-sized chunks. For each e ∈ E, it queries and
updates the hash table for the endpoints of e as required.
Similarly, the EXTRACT-MAXIMAL-UNITIGS step scans the
vertices in V in fixed-sized chunks, and spells the containing
maximal unitig of some v ∈ V through successively query-
ing the hash table for the path vertices. The spelled paths
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are dumped to disk at a certain cumulative threshold size.
Thus the only non-trivial memory usage by these steps is
from the hash table. Therefore these graph traversal steps
use
(
(γe1/γ+6)n+O(1)

)
bits.

When γ ≤ 6, the hash table (i.e. the hash function and
the bucket collection) is the the dominant factor in the al-
gorithm’s memory usage, and CUTTLEFISH 2(R,k,f0) con-
sumes expected space O

(
(γe1/γ + 6)n

)
. If γ > 6 is set,

then it could be possible for the hash function construction
memory to dominate. In practice, we adopt γ = 2, and the
observed memory usage is ≈ 9.7n bits, translating to ≈ 1.2
bytes per distinct k-mer.
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24. Barış Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de Bruijn graphs: Whole-
genome assembly of long reads in minutes on a personal computer. Cell Systems, 12(10):
958–968.e6, 2021. ISSN 2405-4712. doi: https://doi.org/10.1016/j.cels.2021.08.009.

25. Jue Ruan and Heng Li. Fast and accurate long-read assembly with wtdbg2. Nature Meth-
ods, 17(2):155–158, February 2020. ISSN 1548-7105. doi: 10.1038/s41592-019-0669-3.

26. Yu Lin, Jeffrey Yuan, Mikhail Kolmogorov, et al. Assembly of long error-prone reads using de
Bruijn graphs. Proceedings of the National Academy of Sciences, 113(52):E8396–E8405,
2016. ISSN 0027-8424. doi: 10.1073/pnas.1604560113.

27. Shaun D. Jackman, Benjamin P. Vandervalk, Hamid Mohamadi, et al. ABySS 2.0: resource-
efficient assembly of large genomes using a bloom filter. Genome Research, 27(5):768–
777, May 2017. ISSN 1549-5469. doi: 10.1101/gr.214346.116. 28232478[pmid].

28. Dinghua Li, Chi-Man Liu, Ruibang Luo, et al. MEGAHIT: an ultra-fast single-node solution
for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics,
31(10):1674–1676, January 2015. ISSN 1367-4803. doi: 10.1093/bioinformatics/btv033.

29. Xiang Li, Qian Shi, and Mingfu Shao. On bridging paired-end RNA-seq data. BioRxiv, 2021.
doi: 10.1101/2021.02.26.433113.

30. C. Titus Brown, Dominik Moritz, Michael P. O’Brien, et al. Exploring neighborhoods
in large metagenome assembly graphs using spacegraphcats reveals hidden sequence
diversity. Genome Biology, 21(1):164, July 2020. ISSN 1474-760X. doi: 10.1186/
s13059-020-02066-4.

31. Laurent David, Riccardo Vicedomini, Hugues Richard, and Alessandra Carbone. Targeted
domain assembly for fast functional profiling of metagenomic datasets with S3A. Bioin-
formatics, 36(13):3975–3981, April 2020. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btaa272.

32. Sven D. Schrinner, Rebecca Serra Mari, Jana Ebler, et al. Haplotype threading: accurate
polyploid phasing from long reads. Genome Biology, 21(1):252, September 2020. ISSN
1474-760X. doi: 10.1186/s13059-020-02158-1.

33. Bo Liu, Yadong Liu, Junyi Li, et al. deSALT: fast and accurate long transcriptomic read
alignment with de Bruijn graph-based index. Genome Biology, 20(1):274, December 2019.
ISSN 1474-760X. doi: 10.1186/s13059-019-1895-9.

34. Ilia Minkin and Paul Medvedev. Scalable multiple whole-genome alignment and locally
collinear block construction with SibeliaZ. Nature Communications, 11(1):6327, December
2020. ISSN 2041-1723. doi: 10.1038/s41467-020-19777-8.

35. Ilia Minkin and Paul Medvedev. Scalable pairwise whole-genome homology mapping of
long genomes with BubbZ. IScience, 23(6):101224, 2020. ISSN 2589-0042. doi: https:
//doi.org/10.1016/j.isci.2020.101224.

36. Hélène Lopez-Maestre, Lilia Brinza, Camille Marchet, et al. SNP calling from RNA-seq data
without a reference genome: identification, quantification, differential analysis and impact
on the protein sequence. Nucleic Acids Research, 44(19):e148–e148, July 2016. ISSN
0305-1048. doi: 10.1093/nar/gkw655.

37. Gustavo AT Sacomoto, Janice Kielbassa, Rayan Chikhi, et al. KIS SPLICE: de-novo calling
alternative splicing events from RNA-seq data. BMC Bioinformatics, 13(6):S5, April 2012.
ISSN 1471-2105. doi: 10.1186/1471-2105-13-S6-S5.

38. Kadir Dede and Enno Ohlebusch. Dynamic construction of pan-genome subgraphs. Open
Computer Science, 10(1):82–96, 2020. doi: doi:10.1515/comp-2020-0018.

39. John A. Lees, T. Tien Mai, Marco Galardini, et al. Improved prediction of bacterial genotype-
phenotype associations using interpretable pangenome-spanning regressions. MBio, 11(4):
e01344–20, 2020. doi: 10.1128/mBio.01344-20.

40. Roland Wittler. Alignment- and reference-free phylogenomics with colored de Bruijn graphs.
Algorithms for Molecular Biology, 15(1):4, April 2020. ISSN 1748-7188. doi: 10.1186/
s13015-020-00164-3.

41. Alan Cleary, Thiruvarangan Ramaraj, Indika Kahanda, et al. Exploring frequented regions
in pan-genomic graphs. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 16(5):1424–1435, 2019. doi: 10.1109/TCBB.2018.2864564.

42. Buwani Manuweera, Joann Mudge, Indika Kahanda, et al. Pangenome-wide association
studies with frequented regions. In Proceedings of the 10th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics, BCB ’19, page 627–632,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366663.
doi: 10.1145/3307339.3343478.

43. Siavash Sheikhizadeh, M. Eric Schranz, Mehmet Akdel, et al. PanTools: representation,
storage and exploration of pan-genomic data. Bioinformatics, 32(17):i487–i493, August
2016. ISSN 1367-4803. doi: 10.1093/bioinformatics/btw455.

44. Jamshed Khan and Rob Patro. Cuttlefish: fast, parallel and low-memory compaction of
de bruijn graphs from large-scale genome collections. Bioinformatics, 37(Supplement_1):
i177–i186, July 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab309.

45. Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing of
colored and compacted de bruijn graphs. Genome Biology, 21(1):249, September 2020.
ISSN 1474-760X. doi: 10.1186/s13059-020-02135-8.

46. H. Guo, Y. Fu, Y. Gao, et al. deGSM: memory scalable construction of large scale de bruijn
graph. IEEE/ACM Transactions on Computational Biology and Bioinformatics, Early Access:
1–1, 2019. ISSN 1557-9964.

47. Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn graphs from

Khan et al. | Cuttlefish 2 17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2021.12.14.472718doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472718
http://creativecommons.org/licenses/by-nc-nd/4.0/


sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, June 2016.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btw279.

48. Ilia Minkin, Son Pham, and Paul Medvedev. TwoPaCo: an efficient algorithm to build the
compacted de bruijn graph from many complete genomes. Bioinformatics, 33(24):4024–
4032, September 2016. ISSN 1367-4803. doi: 10.1093/bioinformatics/btw609.

49. Uwe Baier, Timo Beller, and Enno Ohlebusch. Graphical pan-genome analysis with com-
pressed suffix trees and the Burrows–Wheeler transform. Bioinformatics, 32(4):497–504,
October 2015. ISSN 1367-4803. doi: 10.1093/bioinformatics/btv603.

50. Rayan Chikhi, Antoine Limasset, Shaun Jackman, et al. On the representation of de bruijn
graphs. In Roded Sharan, editor, Research in Computational Molecular Biology, pages
35–55, Cham, 2014. Springer International Publishing. ISBN 978-3-319-05269-4.

51. Shoshana Marcus, Hayan Lee, and Michael C. Schatz. SplitMEM: a graphical algorithm for
pan-genome analysis with suffix skips. Bioinformatics, 30(24):3476–3483, November 2014.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btu756.

52. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,
USA, 2006. ISBN 321455363.

53. Camille Marchet, Mael Kerbiriou, and Antoine Limasset. BLight: efficient exact associative
structure for k-mers. Bioinformatics, 37(18):2858–2865, April 2021. ISSN 1367-4803. doi:
10.1093/bioinformatics/btab217.

54. Giulio Ermanno Pibiri. Sparse and skew hashing of k-mers. bioRxiv, 2022. doi: 10.1101/
2022.01.15.476199.

55. Amatur Rahman and Paul Medvedev. Representation of k-mer sets using spectrum-
preserving string sets. In Russell Schwartz, editor, Research in Computational Molecular
Biology, pages 152–168, Cham, 2020. Springer International Publishing. ISBN 978-3-030-
45257-5.
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