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Methods 336 

 337 

Serum samples 338 

Convalescent plasma samples were obtained from patients with documented SARS-CoV-2 339 

infection approximately one month after recovery or later. These samples were collected at the 340 

beginning of the pandemic in early 2020 at Columbia University Irving Medical Center, and 341 

therefore are assumed to be infection by the wild-type strain of SARS-CoV-24. Sera from 342 

individuals who received two or three doses of mRNA-1273 or BNT162b2 vaccine were collected 343 

at Columbia University Irving Medical Center at least two weeks after the final dose. Sera from 344 

individuals who received one dose of Ad26.COV2.S or two doses of ChAdOx1 nCov-19 were 345 

obtained from BEI Resources. Some individuals were also infected by SARS-CoV-2 in addition 346 

to the vaccinations they received. Note that, whenever possible, we specifically chose samples 347 

with high titers against the wild-type strain of SARS-CoV-2 such that the loss in activity against 348 

B.1.1.529 could be better quantified, and therefore the titers observed here should be considered 349 

in that context. All collections were conducted under protocols reviewed and approved by the 350 

Institutional Review Board of Columbia University. Additional information for the vaccinee 351 

samples can be found in Extended Data Table 1. 352 

 353 

Monoclonal antibodies 354 

Antibodies were expressed as previously described22, by synthesis of VH and VL genes 355 

(GenScript), transfection of Expi293 cells (Thermo Fisher), and affinity purification from the 356 

supernatant by rProtein A Sepharose (GE). REGN10987, REGN10933, COV2-2196, and COV2-357 

2130 were provided by Regeneron Pharmaceuticals, Brii-196 and Brii-198 were provided by Brii 358 

Biosciences, CB6 was provided by Baoshan Zhang and Peter Kwong (NIH), and 910-30 was 359 

provided by Brandon DeKosky (MIT). 360 

 361 

Variant SARS-CoV-2 spike plasmid construction 362 

An in-house high-throughput template-guide gene synthesis approach was used to generate spike 363 

genes with single or full mutations of B.1.1.529. Briefly, 5’-phosphorylated oligos with designed 364 

mutations were annealed to the reverse strand of the wild-type spike gene construct and extended 365 

by DNA polymerase. Extension products (forward-stranded fragments) were then ligated together 366 
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by Taq DNA ligase and subsequently amplified by PCR to generate variants of interest. To verify 367 

the sequences of variants, NGS libraries were prepared following a low-volume Nextera 368 

sequencing protocol37 and sequenced on the Illumina Miseq platform (single-end mode with 50 bp 369 

R1). Raw reads were processed by Cutadapt v2.138 with default setting to remove adapters and 370 

then aligned to reference variants sequences using Bowtie2 v2.3.439 with default setting. Resulting 371 

reads alignments were then visualized in Integrative Genomics Viewer40 and subjected to manual 372 

inspection to verify the fidelity of variants. Sequences of the oligos used in variants generation are 373 

provided in Extended Data Table 2. 374 

 375 

Pseudovirus production 376 

Pseudoviruses were produced in the vesicular stomatitis virus (VSV) background, in which the 377 

native glycoprotein was replaced by that of SARS-CoV-2 and its variants, as previously 378 

described24. Briefly, HEK293T cells were transfected with a spike expression construct with PEI 379 

(1 mg/mL) and cultured overnight at 37 °C under 5% CO2, and then infected with VSV-G 380 

pseudotyped ΔG-luciferase (G*ΔG-luciferase, Kerafast) one day post-transfection. Following 2 h 381 

of infection, cells were washed three times, changed to fresh medium, and then cultured for 382 

approximately another 24 h before supernatants were collected, centrifuged, and aliquoted to use 383 

in assays. 384 

 385 

Pseudovirus neutralization assay 386 

All viruses were first titrated to normalize the viral input between assays. Heat-inactivated sera or 387 

antibodies were first serially diluted in 96 well-plates in triplicate. Viruses were then added and 388 

the virus-sample mixture was incubated at 37 °C for 1 h. Vero-E6 cells (ATCC) were then added 389 

at a density of 3 × 104 cells per well and plates were incubated at 37 °C for approximately 10 h. 390 

Luciferase activity was quantified by using the Luciferase Assay System (Promega) according to 391 

the manufacturer’s instructions. Neutralization curves and IC50 values were derived by fitting a 392 

non-linear five-parameter dose-response curve to the data in GraphPad Prism version 9.2. 393 

 394 

Authentic virus isolation and propagation 395 

Authentic B.1.1.529 was isolated from a specimen from the respiratory tract of a COVID-19 396 

patient in Hong Kong by Kwok-Yung Yuen and colleagues at the Department of Microbiology, 397 
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The University of Hong Kong. Isolation of wild-type SARS-CoV-2 was previously described41. 398 

Viruses were propagated in Vero-E6-TMPRSS2 cells and sequence confirmed by next-generation 399 

sequencing prior to use. 400 

 401 

Authentic virus neutralization assay 402 

To measure neutralization of authentic SARS-CoV-2 viruses, Vero-E6-TMPRSS2 cells were first 403 

seeded in 96 well-plates in cell culture media (DMEM + 10% FBS + 1% penicillin/streptomycin) 404 

overnight at 37 °C under 5% CO2 to establish a monolayer. The following day, sera or antibodies 405 

were serially diluted in 96 well-plates in triplicate in DMEM + 2% FBS and then incubated with 406 

0.01 MOI of wild-type SARS-CoV-2 or B.1.1.529 at 37 °C for 1 h. Afterwards, the mixture was 407 

overlaid onto cells and further incubated at 37 °C under 5% CO2 for approximately 72 h. 408 

Cytopathic effects were then visually assessed in all wells and scored as either negative or positive 409 

for infection by comparison to control uninfected or infected wells in a blinded manner. 410 

Neutralization curves and IC50 values were derived by fitting a non-linear five-parameter dose-411 

response curve to the data in GraphPad Prism version 9.2. 412 

 413 

Antibody footprint analysis and RBD mutagenesis analysis 414 

The SARS-CoV-2 spike structure used for displaying epitope footprints and mutations within 415 

emerging strains was downloaded from PDB (PDBID: 6ZGE). The structures of antibody-spike 416 

complexes were also obtained from PDB (7L5B for 2-15, 6XDG for REGN10933 and 417 

REGN10987, 7L2E for 4-18, 7RW2 for 5-7, 7C01 for CB6, 7KMG for LY-COV555, 7CDI for 418 

Brii-196, 7KS9 for 910-30, 7LD1 for DH1047, 7RAL for S2X259, 7LSS for 2-7, and 6WPT for 419 

S309). Interface residues were identified using PISA42 using default parameters. The footprint for 420 

each antibody was defined by the boundaries of all epitope residues. The border for each footprint 421 

was then optimized by ImageMagick 7.0.10-31 (https://imagemagick.org). PyMOL 2.3.2 was used 422 

to perform mutagenesis and to make structural plots (Schrödinger).  423 
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