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Abstract

The general process- and adaptive specialization hypotheses represent two contrasting
explanations for understanding intelligence in non-human animals. The general process
hypothesis proposes that associative learning underlies all learning, whereas the
adaptive specialization hypothesis suggests additional distinct learning processes
required for intelligent behavior. Here, we use a selection of experimental paradigms
commonly used in comparative cognition to explore these hypotheses. We tested if a
novel computational model of associative learning — A-learning — could solve the
problems presented in these tests. Results show that this formulation of associative
learning suffices as a mechanism for general animal intelligence, without the need for
adaptive specialization, as long as adequate motor- and perceptual systems are there to
support learning. In one of the tests, however, the addition of a short-term trace
memory was required for A-learning to solve that particular task. We further provide a
case study showcasing the flexibility, and lack thereof, of associative learning, when
looking into potential learning of self-control and the development of behavior sequences.
From these simulations we conclude that the challenges do not so much involve the
complexity of a learning mechanism, but instead lie in the development of motor- and
perceptual systems, and internal factors that motivate agents to explore environments
with some precision, characteristics of animals that have been fine-tuned by evolution
for million of years.

Author summary

What causes animal intelligence? One hypothesis is that, among vertebrates,
intelligence relies upon the same general processes for both memory and learning. A
contrasting hypothesis states that important aspects of animal intelligence come from
species- and problem specific cognitive adaptations. Here, we use a recently formulated
model of associative learning and subject it, through computer simulations, to a battery
of tests designed to probe cognitive abilities in animals. Our computer simulations show
that this associative learning model can account well for how animals learn these
various tasks. We conclude that a major challenge in understanding animal and
machine intelligence lies in describing behavior systems. Specifically, how motor
flexibility and perceptual systems together with internal factors allow animals and
machines to navigate the world. As a consequence of our results, together with current
progress in both animal- and machine learning, we cannot reject the idea that
associative learning provides a general process for animal intelligence.
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Introduction 1

Where does animal intelligence come from? This longstanding question has been 2

approached by many and has given rise to a separation between ideas about a general 3

process and ideas regarding adaptive specialization [1]. Within this central dichotomy, 4

the general process approach proposes that associative learning underlies all learning. In 5

contrast, adaptive specialization suggests there are additional learning processes, 6

distinct from associative learning, that support intelligent behavior. 7

More specifically, the general process hypothesis posits that intelligence stems from a 8

few general learning and memory mechanisms. These mechanisms are alike in different 9

species and enable animals to solve a wide variety of problems. Observations of similar 10

learning and memory functions among vertebrates have been brought up to support this 11

view [1–4]. For example, the observation that regardless of species, the same training 12

methods based on general concepts of learning can be used to train animals successfully 13

on a diversity of tasks [6–8]. Training principles are the same for bees, chimpanzees, 14

pigeons, rats, ravens and dogs. Although learning is generally considered to be 15

associative, the exact content of what exactly is learned is still up for debate [9–11]. 16

While the general process view argues for universal learning and memory mechanisms, it 17

does not exclude species differences. Variation is explained in terms of genetically 18

guided learning. Animals are genetically predisposed to learn/attend to specific stimuli 19

and/or responses. This has also been referred to as ’constraints of learning’ or ’genetic 20

predispositions’ [12, 13]. The general process approach has been criticized for not 21

acknowledging the evolutionary history of species under investigation, which is 22

important in order to compare species and to expand findings from one species to 23

another [14]. 24

The literature on adaptive specialization, instead, argues that intelligence arises from 25

species specific mechanisms that evolved through natural selection in response to niche 26

specific problems [15]. The idea of general process is replaced by species unique 27

collections of computational mechanisms for learning and problem solving. This 28

ecological view on intelligence is supported by, for example, observations of specialized 29

behaviors that fit a species niche. Examples of this are rats possessing a unique type of 30

learning about olfactory cues [16, 17], some species processing quantities of stimuli 31

(numerosity) [18], or that some species, through convergent evolution, have evolved 32

planning capacities [19]. It is argued that general learning mechanisms are insufficient 33

for explaining these distinct capacities, which suggests that species evolve specific 34

mechanisms for solving specific problems. Due to the species specific nature of the 35

adaptive specialization framework, this hypothesis does not yet allow for an overarching 36

theory on how different learning mechanisms work, so that the understanding of, for 37

example, olfactory learning in rats cannot be extended to studies on numerosity. This 38

has led to critique in that such ‘ecological’ accounts may be ultimately untestable [1]. 39

Whether animal intelligence arises from general processes or adaptive specializations 40

is still unresolved, as evidenced by a recent special issue in Frontiers in Psychology. 41

Here, a total of 20 articles discussed general process versus adaptive specialization under 42

the title ”The Comparative Psychology of Intelligence: Macphail Revisited” [20]. One of 43

the key issues raised here is the role of associations and associative learning in animal 44

cognition. According to the general process view, animal intelligence depends at large 45

upon associative learning. However, many researchers remain skeptic of the power of 46

associative learning, particularly within comparative cognition and cognitive ethology 47

where associative learning is regularly seen as too elementary to account for complex 48

behaviors [19, 21,22]. Researchers, therefore, suggest that animal intelligence does not 49

arise from associative learning exclusively, but from additional components, such as 50

”mental representation”, ”rule-based learning” and ”symbolic processing” [22], or for 51

instance ”sophisticated technical intelligence”, ”complex problem solving” and 52
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”future-directed thought” [19]. No consensus was reached in this special issue, and the 53

debate on general process versus adaptive specializations is still ongoing. 54

As a general understanding of intelligence in both AI and animal cognition is still 55

out of reach, Matthew Crosby, Benjamin Beyret, and Marta Halina created The 56

Animal-AI Olympics [23]. They pointed out limits in modern artificial intelligence 57

models and argued that a radical change in research methodology is needed to better 58

understand intelligence. They provide a testbed where agents are subjected to simple 59

environments with objects of different kinds and rewards, all obeying physics rules (see 60

http://animalaiolympics.com/AAI). For the testbed, they collated standardised and 61

representative animal tests that together probe a general set of cognitive abilities, 62

representing simplified and complex examples of natural challenges animals have 63

evolved to solve [24].Submitted agents competed in a series of environments inspired by 64

animal studies [24]. By combining AI and animal intelligence research, their focus on 65

general aspects of intelligence based on comparative cognition research may provide a 66

fruitful approach for synthetic work. In addition, their work highlights the need for 67

theoretical approaches to understand animal intelligence [25–27]. 68

Most entries that were submitted to The Animal-AI Olympics used Deep 69

Reinforcement Learning algorithms [24]. The winner used a common three-step 70

approach where first training environments were made, after which an agent received 71

training, ending with a validation step involving behavior analysis. These Reinforcement 72

Learning algorithms and recent models in animal learning research have much in 73

common [28–30], and by taking both general process and adaptive specialization into 74

account they may provide useful tools for working towards a synthesis of animal 75

intelligence. By bridging the gap between comparative cognition and AI, The Animal-AI 76

Olympics provide a new benchmark selection of tests different from other AI tests 77

investigating intelligence, such as Arcade Learning Environment (ALE) [31], OpenAI 78

Gym [32], and General Video Game AI [33]. We believe Crosby et al. provide a novel 79

starting point for studies of intelligence [23, 24], by welcoming theoretical studies that 80

can be compared with results from the empirically driven field of comparative cognition. 81

In this paper, we take advantage of the benchmark tests selected for The Animal-AI 82

Olympics [23,24] and subject a new associative learning model — A-learning — to these 83

tests [30, 34]. This recently developed model can produce long behavioral sequences and 84

can yield optimal solutions to problems encountered by an agent. Besides, it can 85

account for general observations of social learning in animals [35] and planning behavior 86

observed in great apes and ravens [26]. In addition, this model can reproduce core 87

features of results from animal psychology, for example instrumental and Pavlovian 88

acquisition, conditioned reinforcement, and different kinds of higher-order 89

conditioning [30]. The general nature of the included benchmark tests can further our 90

knowledge of what role associative learning can play for animal intelligence. We also 91

aim to inform the long-lasting conflict between general process and adaptive 92

specialization as explanations for animal intelligence. 93

To subject this new model to the different tests, we translated the tasks included in 94

The Animal-AI Olympics into script-based description of the environments and their 95

reward structures. As this model does not include perceptual and motor mechanisms, 96

environments and agents’ behaviors are translated into verbal descriptions of key stimuli 97

and actions, as in previous computational analyses of learning phenomena with this 98

model [26, 30, 34, 35]. In computer simulations, the agent learns from actions it performs 99

to navigate the world of stimuli and rewards. These learning simulations can inform us 100

on what is possible to learn through associative learning and what associative learning 101

can do for animal intelligence. Answering detailed questions about species specific 102

performance in different tasks is beyond the scope of this study, although we will touch 103

upon this matter briefly. We will show that this model of associative learning alone 104
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provides a general process that can account for learning in almost all these tasks. One 105

task required an additional memory mechanism for associative learning to perform 106

successfully. To explore general questions about inter-specific variation, we also 107

performed simulations to highlight how genetic factors can affect learning and test 108

performance, and thereby animal intelligence. 109

Materials and methods 110

Here, we first briefly describe A-learning, the associative learning model used for these 111

simulations, and we also introduce the simulation software used in this study. We give 112

detailed accounts of all tasks that have been subjected to computer simulations and end 113

with a description of a case study where we use one of these tasks to explore different 114

parameter settings. 115

Associative learning model 116

To explore what associative learning can achieve if subjected to this collection of tests, 117

we used a new formulation of associative learning called A-learning [30, 34]. Here, we 118

will describe the model briefly, for further details please see [30]. At its basis, this model 119

assumes a subject has a behavior repertoire and behaviors can be used to respond to a 120

world of detectable environmental states. A behavior will take the animal from one 121

state to another. At each such state, every stimulus has a genetically fixed primary 122

reinforcement value, written u. This value can be negative, neutral, or positive, and it 123

guides learning by favoring behaviors that maximize its total value, in line with the 124

assumption that this favors survival and reproduction. Generally, consuming food will 125

have a positive value, whereas something inflicting pain or distress will have a negative 126

value. More importantly, this allows expectations about the value of a state to develop, 127

making goal-directed behavior and learning of behavior sequences possible. The model 128

includes two learning processes and one decision making rule. It is assumed that 129

animals learn after experiencing an event sequence with a behavior b in response to a 130

stimulus s, leading to the next stimulus s0, formalized as: 131

s ! b ! s
0 (1)

in which the model learns that performing behavior b to stimulus s yields a higher 132

value if stimulus s0 is positive, than if s0 is neutral or negative. This value, written 133

v(s ! b), corresponds to the associative strength between stimulus s and behavior b. In 134

functional terms this is stimulus-response (S-R) value learning, where v(s ! b) 135

represents an estimated value of performing behavior b when perceiving stimulus s. 136

The second learning process, stimulus value learning, stores and updates the value of a 137

stimulus. This estimates the value of s, which is updated according to the value of the 138

subsequent stimulus s0, and written as w(s). 139

These two learning processes are integrated through the effect a stimulus value w(s) 140

has on S-R value learning. The S-R value v(s ! b) is updated according to the primary 141

reinforcement value u(s0), the stimulus value w(s), and the previously stored S-R value 142

according to the equation: 143

�v(s ! b) = ↵v[u(s
0) + w(s0)� v(s ! b)] (2)

where �v(s ! b) is the change in v(s ! b) caused by the experience in the event 144

sequence in Eq 1. In addition, ↵v is a positive learning rate determining the rate of 145

updating v(s ! b). The stimulus value w(s) is updated according to the equation: 146
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�w(s) = ↵w[u(s
0) + w(s0)� w(s)] (3)

where ↵w is a positive learning rate for the update of the stimulus value w(s). The 147

stimulus value w(s) affects learning about behaviors and acts as a conditioned 148

reinforcement, or secondary reinforcer. This allows for stimuli lacking an inborn primary 149

reinforcement value to acquire stimulus value. In the above case, if s0 is positive, an 150

animal experiencing the event triplet in Eq 1 will also attribute a positive value to 151

experiencing s, which subsequently reinforces behavior that leads to experiencing s. At 152

decision making a behavior is selected from the behavior repertoire. A-learning uses the 153

softmax decision rule (see [30] for details). The probability of choosing b in response to 154

s is then formally described as: 155

Pr(s ! b) =
exp(�vs!b)P
b0 exp(�vs!b0)

(4)

which includes the parameter � that regulates the amount of exploration. With 156

� = 0, all behaviors are equally likely to be selected, meaning that prior experiences 157

play no role in decision making. As � increases behaviors with the highest estimated 158

value v will have a higher probability of being selected. This decision making process 159

has been shown to match empirical observations [30, 34]. 160

Let us use a practical example from one of the tasks included in The Animal-AI 161

Olympics to exemplify A-learning, and how it can be described in line with Eq 1. For 162

an animal to learn to make a detour it must learn to avoid a barrier. This behavioral 163

sequence can be described in terms of its key events as: 164

s(barrier) ! b(go around) ! s(food) ! b(eat) ! s(reward) (5)

where the animal needs to experience the end of the sequence first to learn how to 165

get food. Initially, only eating in the presence of food is rewarding, so an animal that 166

starts from the beginning of the sequence must first perform initially non-rewarding 167

behaviors, such as walking around the barrier to find the food and eat it, to learn the 168

whole sequence. Let s(food) have an initial value of zero, meaning it is a neutral 169

stimulus that does not act as a reinforcer. Eating the food results in experiencing 170

s(reward) that has positive primary reinforcement value, thereby the animal learns to 171

eat when subjected to s(food). In addition, the positive value of s(reward) makes the 172

stimulus value of the preceding s(food) increase. This changes the situation for the 173

animal, because if it chooses to go around the barrier it will again experience the 174

stimulus s(food), but it has now acquired positive stimulus value. This way, s(food) acts 175

as a reinforcer, making walking around the barrier rewarding in its own right, and the 176

key aspect of this task can be learned (see table 1 for detailed descriptions of all tasks). 177

Learning simulator 178

To perform the simulations we used the newly developed Learning Simulator [36], an 179

open source software designed for simulating learning in animals and humans. The 180

simulator is publicly available at https://www.learningsimulator.org/ where 181

documentation and some example scripts can be found. The Learning Simulator has 182

previously been used to explore planning behavior [26], social learning [35], and general 183

phenomena in experimental psychology [30]. The Learning Simulator frames learning 184

using a subject that interacts with an environment in accordance with an event 185

sequence as described in Eq 1. A subject perceives stimuli from the environment to 186

which it can respond with some behavior, which in turn makes the environment present 187

the next stimulus to the subject. The Learning Simulator can be used with several 188
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different animal- and reinforcement learning algorithms, but here we have used 189

A-learning throughout [30,34]. With the exception of the object permanence task we 190

used the A-learning mechanisms alone throughout. There is no discriminative stimulus 191

present in the choice situation of the object permanence task, making this task 192

impossible for A-learning to solve without some kind of memory of the preceding 193

stimulus (see description in Method section). It is well known that animals can 194

remember arbitrary stimuli for short times through memory traces [37, 38], a short-term 195

memory that is an integrated part of animals’ general processes of learning and 196

memory [39,40]. To explore if associative learning with an integrated trace memory 197

could solve the object permanence task, we used a feature of the Learning Simulator 198

that integrates a trace memory with A-learning. This way, a preceding stimuli can be 199

used for decision making in the present, at exponentially decaying intensities ✓, where 200

✓ < 1. For this task we used the integrated trace memory with ✓ = 0.6. 201

Simulation details 202

The below scripts are available as text-files at the following url: 203

https://doi.org/10.17045/sthlmuni.17068409. These files can be used in the 204

above described Learning Simulator to perform each respective computer simulation. 205

All computer simulations are based on the studies selected for the benchmark tests in 206

The Animal-AI Testbed (http://animalaiolympics.com/AAI/testbed). The order of 207

the tasks is the same as presented there. Based on the descriptions of the tasks in the 208

literature, we identified the key events that are critical for learning each task and 209

included these in scripts. We focused on the stimuli, objects and other components in 210

the environment that are of importance for the animal to perform in the task. All 211

experiments end with some reward. Besides, we looked at what behaviors the animal 212

could respond with towards the stimuli available and what influence these responses 213

have on the environment. In some cases, these key events relied on behaviors that were 214

trained before the start of the experiment (pre-training), for example specific responses 215

to objects. If the test results depended on choices made and behaviors learned during 216

pre-training, these are included in our scripts. 217

In order to make the simulations realistically comparable to what animals experience 218

when they enter the test, we assumed that the animals in our simulations possess 219

general everyday motor and perceptual skills. In terms of motor skills we assumed that 220

the animals are able to move between parts of an experimental area, reach for or explore 221

hidden objects that may be inside some contraption or behind a wall, and to identify 222

and consume food rewards. In terms of perception, we assumed that stimuli could be 223

identified and if overtly distinct could be told apart. Assumptions about perception and 224

motor skills means that these specific abilities did not have to be learned prior to a task. 225

Instead, the simulations focus on the behavior sequence unique to the experiment at 226

hand, adhering to the logical order of stimulus presentation, reward structure, and 227

behaviors performed. 228

In addition to task specific behavior we always included the possibility for a subject 229

to ignore any stimulus, equivalent to not reacting. Apart from in the final case study on 230

variation (see section A case study on variation in learning and test performance), we 231

used the same learning parameters in all tasks to facilitate comparisons between tasks. 232

Learning parameters were set to: learning rate ↵ = 0.2 for updates of both 233

stimulus-response- and stimulus values, exploration was set at � = 0.5, behavior 234

cost=0.1, and rewards u = 10. Simulations were performed with 500 subjects. Any 235

departure from these setting will be highlighted in the text. We would also like to 236

mention that replications of these simulations will result in similar but not necessarily 237

identical results due to the stochastic nature of the decision-making equation. 238

Here follows detailed descriptions of all tasks included and the sources that inspired 239
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the tasks in the Animal-AI Olympics. All key experiences and learning outcomes are 240

presented in table 1. 241

Table 1. Summary of the key aspects of the included learning scenarios.

Task What is learned? Experience Outcome

Mazes Enter correct arm Sstart ! Bgo left ! Sfood v(Sstart ! Bgo left) > 0
Delayed gratification Wait in presence of food Sfood ! Bwait ! Smore food v(Sfood ! Bwait) > 0
Detour Go around barrier Sbarrier ! Bgo around ! Sfood v(Sbarrier ! Bgo around) > 0
Cylinder task

* Ignore blocked food Sfood cylinder ! Bbump ! Sno food v(Sfood cylinder ! Bbump) #
Puzzle box 3 behaviors unlock door**

1 Claw string Sstring ! Bclaw ! Sfood v(Sstring ! Bclaw) > 0
2 Press platform Splatform ! Bpress ! Sfood v(Splatform ! Bpress) > 0
3 Lift bar Sbar ! Blift ! Sfood v(Sbar ! Blift) > 0
Spatial elimination Find food under board Sinclined ! Btake inclined ! Sfood v(Sinclined board ! Btake) > 0
Gravity bias 2 behaviors are learned
1 Food falls straight down SfoodX ! Btake atX ! Sfood v(SfoodX ! Btake belowX) > 0
2 Food follows other route SfoodX ! Btake atY ! Sfood v(SfoodX ! Btake atY) > 0
Radial maze

*** Find all food in maze
1 Do not return Scenter ! Breturn ! Slittle food v(Scenter ! Breturn) > 0
2 Do not go straight Scenter ! Bstraight ! Slittle food v(Scenter ! Bstraight) > 0
3 Go even number of steps Scenter ! Bgo even ! Smore food v(Scenter ! Bgo even) > 0
4 Go odd number of steps Scenter ! Bgo uneven ! Smost food v(Scenter ! Bgo uneven) > 0
Object permanence Learn to take correct cup
1 Food left, take left Sfood left ! Btake left ! Sfood v(Sfood left ! Btake left) > 0
2 Food center, take center Sfood center ! Btake center ! Sfood v(Sfood center ! Btake center) > 0
3 Food right, take right Sfood right ! Btake right ! Sfood v(Sfood right ! Btake right) > 0
Numerosity Take bowl with most food Smore/less ! Btakemore ! Smore food v(Smore food ! Btakemore) > 0
Tool use Take cloth with food Scloth food ! Btake cloth ! Sfood v(Scloth food ! Btake cloth) > 0

*The food rewarding behavior is learned in pre-training, in tests, avoiding to bump into cylinder is recorded. **Food can only
be collected after all three behaviors, in any order, have been performed. *** Due to systematic differences in outcomes
between behaviors, this will result in v(Scenter ! Breturn) and v(Scenter ! Bstraight) < v(Scenter ! Bgo even) <
v(Scenter ! Bgo uneven).

⇤

Two-choice mazes (Y- and T-maze) 242

Descriptions from Crosby et al. [24]: ”A Maze in the shape of a Y. One branch contains 243

a preferred reward to the other and usually both can be seen at the same time.” And a 244

T-maze is describes in similar terms, with the key difference that in a T-maze a reward 245

cannot be perceived from the starting point: ”Like a Y-Maze except that both arms are 246

not visible at the same time.” Here, we simulated a case where the animal starts in one 247

arm (the ’start’ arm) and can either make a right or a left turn into the two other arms 248

of the maze. Given the fact that these behaviors would look the same for both the Y 249

and the T-maze, we have grouped these together for our simulations. Either the left or 250

the right arm contains a food reward, as in for example a study on cows [41] and a 251

study on nematodes [42]. To accomplish this we use a ’start stimulus’ to which the 252

behaviors ’go to the left’ and ’go to the right’ are possible. Choosing go to the left 253

results in an opportunity to eat a food reward. (Filename of script: 1-Mazes.txt.) 254
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Delayed gratification 255

Description from Crosby et al. 2020 [24]: ”The ability to forgo an immediate, less 256

preferred reward for a future, more preferred reward. Solving this robustly in the 257

Animal-AI environment requires understanding that there will be a larger delayed 258

reward based on the physics of the environment.” 259

We simulated a case where great apes were presented with a bowl that was within 260

reach, and an experimenter placed pieces of food into the bowl one by one [43]. If the 261

ape pulled the bowl into the cage the trial ended and no more food was given that trial. 262

In a situation where rewards accumulate as long as they are not collected, an animal 263

would gain more rewards by waiting instead of immediately collecting a small reward. 264

In this script, we made it possible to collect more than one food item by including three 265

behaviors: ’take the food’ (meaning that no more food will be collected), and ’wait’, and 266

’eat the food’ (only possible once food has been collected). (Filename of script: 267

2a-Delayed-gratification.txt.). 268

Detour task 269

Description from Crosby et al. 2020 [24]: ”Testing the ability to make a detour around 270

an object to get food and assess the shortest path to the object.” Here we simulated a 271

case inspired by a study on dingoes that were presented with a V-shaped mesh fence [44]. 272

They could see a food reward through the fence, only being able to obtain it by making 273

a detour around the outside of the fence. Going straight towards the fence would not 274

lead to the dingo receiving the food reward. To get to the food, the dingoes had to walk 275

away from the food, reach the end of the fence and then turn around to walk back 276

towards the food. Detour tasks are similar to delayed gratification tasks and self-control 277

studies in that behaviors such as ignoring, waiting, or walking away from food needs to 278

be learned. In detour tasks, in addition to ignoring something, an animal also needs to 279

learn to go around some kind of barrier. In this simulation, going towards the barrier 280

instead of around it needs to be overcome. Behaviors included are getting stuck at the 281

barrier, going around the barrier from two positions (start position and position at the 282

barrier, respectively) and ignore. To capture the difficulty of the task, namely that an 283

animal is initially more likely to go straight towards the food than around the barrier, 284

simulations began with a positive value for going to barrier where food is visible. In 285

addition, to make going around the barrier less likely simulations began with a negative 286

value for going around the barrier to capture the spontaneous response to be attracted 287

to the food, although it is initially out of reach. (Filename of script: 3-Detour.txt.) 288

Cylinder tasks 289

Description from Crosby et al. 2020 [24]: ”In the testbed this includes both opaque and 290

transparent cylinders.” Just like in detour tasks and delayed gratification tasks, to solve 291

cylinder tasks an animal must learn to overcome reaching for a food item that is visible 292

through a transparent cylinder but not possible to grasp directly. We simulated a well 293

known case where an animal first learns to find a piece of food inside an opaque 294

cylinder. Afterwards the animal is subjected to a transparent cylinder with a now 295

visible piece of food in the cylinder. To successfully retrieve the food the animal needs 296

to perform the same behavior as in the opaque phase, and inhibit to try to grasp the 297

food through the transparent cylinder, thereby bumping into the cylinder. The key for 298

an animal to solve this task is to learn the correct behavior, that is reaching for the food 299

from the side at the opening of the cylinder. The simulation follows the procedure of 300

cylinder tasks with a training phase in which the food collecting behavior is learned, 301

and a second phase when it is tested if, and how quickly, the apparent and incorrect 302

behavior is inhibited. We included the incorrect bump the cylinder-behavior and the 303
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food collecting detour response. This situation described a behavior sequence so we let 304

the detour response produce a food item that subsequently needed to be eaten to be 305

rewarding. To capture the difficulty of the cylinder task we used the two phases. The 306

simulation followed the procedure in that first a training phase occurred, whereby the 307

correct behavior was learned to get the reward. Then followed a test phase that 308

simulated the visible food and that an incorrect response towards the food needed to be 309

inhibited to get the food. This was simulated by adding the stimulus food inside the 310

cylinder in the test phase and a response towards that food based on the assumption 311

that the animal recognizes the food and upon its presentation reaches for the food. The 312

value of incorrectly reaching the food was set equal to the primary value of the food. 313

(Filename of script: 4-Cylinder-tasks.txt.) 314

Thorndike’s puzzle box 315

Description from Crosby et al. 2020 [24]: ”These are recreations (of different realism) of 316

Thorndike’s experiments on cats, dogs, and chicks where the agent must escape from a 317

confined area and food is placed outside.” 318

Here we simulated one of the classic puzzle boxes designed by Thorndike for his 319

thesis work [45]. An animal is confined in a box and it can ’escape’ the box and collect 320

a food reward outside by performing a set of specific behaviors. We used one of the 321

more complex puzzle boxes (Box ’k’) that required the animal to perform three separate 322

actions to open the door. The door would only open after all three behaviors were 323

performed, that is pulling/clawing a wire, press a platform on the floor, and lift/push 324

down a bar on the door. The order in which the behaviors are performed does not 325

matter. This introduces the problem that correct responses, such as lifting one of the 326

bars, can be made without having a direct positive consequence. The animal needs to 327

keep exploring and perform all three actions in order to associate any of these actions 328

with the reward. To capture the large amount of possible actions the animal can explore 329

once inside the box, the following behaviors are included in the script: lift, claw, press, 330

go out, ignore, approach. Pressing and clawing behaviors are possible to all stimuli, 331

lifting is not possible for the walls, the floor and the door. (Filename of script: 332

5-Thorndike-puzzle-box.txt.) 333

Spatial elimination 334

Description from Crosby et al. 2020 [24]: ”Spatial properties can be used to infer the 335

location of food. For example, it can not be in the open space so if there is any it must 336

be behind that wall.” To simulate this task we used a case where great apes were 337

presented with two plastic boards. One plastic board was inclined because a food 338

reward was hidden underneath. They were rewarded if touching the inclined board that 339

hid food. (The test called Shape, see supplementary information in [46].) This 340

translates to a situation where an animal needs to choose between two different stimuli, 341

where choosing one stimulus results in food. Logically, this test resembles a two-choice 342

maze. We included the following behaviors: take an inclined board, take a flat board 343

and eat the reward (and ignore). If the inclined board was taken, a food reward could 344

be collected, if the flat board was chosen a new trial started without any reward. 345

(Filename of script: 7-Spatial-elimination.txt.) 346

Support and gravity bias 347

Description from Crosby et al. 2020 [24]: ”Tasks involving gravity and food supported 348

on other objects.” Here, our simulations aim to explore the crux of these experiments, 349

namely that animals expect objects to fall straight down if they are used to them doing 350

December 14, 2021 9/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


so, even in novel situations. Crosby et al. (2020) use a study by [47] which involves 351

cotton top tamarins performing a gravity bias task. Since the study at hand here is a 352

follow up to the original gravity bias studies done in [48], we have used the original 353

description for our simulations. Therefore, we mimicked the study by [48] that involved 354

an apparatus consisting of two levels. The upper level has three openings that can be 355

connected to three food boxes on a lower level. Food can be dropped through the 356

openings in the top and end up in one of the boxes on the bottom, depending on the 357

configuration of the tubes. This way, a food item dropped in the tube opening on the 358

far left side may end up in the right container on the bottom, and so on. These 359

experiments aimed to test if cotton top tamarins behave as if they expect food to fall 360

straight down, which would be expected if they have a gravity bias. Contrary to this, 361

the tamarins were expected to make the correct choice, and obtain the food, if they 362

would use information about the bends and connections of the tubes. To simulate this 363

in a faithful way, we designed a script including 3 phases. The first phase is constructed 364

so the subjects learn about gravity. This is comparable to animals in reality, 365

experiencing objects in their surroundings falling down. Rewards fall from openings in 366

the upper level straight down to the bottom level. No Tubes are connected in this phase. 367

In the second phase, the subjects experience the same training as the animals in [48] 368

and learn to collect food that is hidden behind doors. Phase 3 only contains one 369

configuration of the tube, the same as in the test phase of the study, where the tube 370

goes from opening 1 on the top of the apparatus to door 3 on the bottom. The stimuli 371

used in this script are s(up1), s(up2) and s(up3) for the food being dropped from the 372

top level openings. s(d1), s(d2), and s(d3) represent food being put directly behind the 373

doors in the lower level locations. s(b1), s(b2), and s(b3) represent the actual boxes. 374

Food can get there through the tube or by being put in there directly. The behaviors 375

used are b(go1), b(go2), and b(go3), which represent the animal opening the lower level 376

doors. (Filename of script : 8-Gravity-bias.txt) 377

Radial mazes 378

Description from Crosby et al. 2020 [24]: ”Mazes with a number of spokes radiating out 379

from a central hub.” Here we simulated an animal navigating a radial maze with eight 380

arms where one food item per arm can be collected in each trial [49]. During a trial, the 381

consumed food is not replaced. This way, the task tests if the animal learned to avoid 382

already visited and thereby depleted arms. This simulation investigate two facets of the 383

experiment. Firstly, if solving the task is possible for the subjects, and secondly whether 384

a regular ”algorithmic” behavior pattern emerges. This means that an individual would 385

systematically perform just one out of several possible correct behaviors. As food items 386

were hidden underneath cups in each arm, the maze looks the same irrespective of 387

which arm the animal exits. Our script focuses on the behavioral options available and 388

we therefore included the following behaviors: go one, two, or three steps to the left or 389

to the right, go straight or return to the last visited arm. We also included a behavior 390

to approach the cup where food was collected. Importantly, a food reward can only be 391

collected upon the first instance an arm is visited, afterwards the arm is depleted. The 392

stimuli used represent the start of the trial, the center of the maze and the inside of the 393

arms with a cup under which the food is hidden. (Filename of script: 9a-radial-maze.txt 394

and 9b-radial-maze-1ind.txt.) 395

Object permanence 396

Description from Crosby et al. 2020 [24]: ”These tests all involve food that moves out 397

of sight that the agent needs to still attain.” We simulated the test called ”Object 398

permanence” [46] where great apes were presented with two or three empty cups on a 399
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platform. After presentation, an experimenter put a food reward under a smaller 400

additional opaque cup. Subsequently, the smaller cup was moved underneath one of the 401

larger cups. Now, the ape was allowed to choose one of the cups, and if the large cup 402

with the smaller cup hidden underneath was chosen, the ape could collect the food 403

reward. If one of the wrong cups was chosen the trial ended. We included the following 404

behaviors: take left cup, take the right cup and take the center cup. However, an 405

important aspect of this experiment is the disappearance of a stimulus. Therefore, when 406

the choice is made the situation is identical for all conditions. In this case there is no 407

information for A-learning available at the time of decision making it impossible for this 408

mechanism to solve this task at a higher level than random choice. For this reason, we 409

add trace memory to the learning mechanism, and this simulation therefore combines 410

A-learning with a trace memory. That animals represent past stimuli – such as the 411

location of the small cup – as a fading trace is well described in the literature [37,38,40]. 412

Practically, this means that the location of the small cup is stored in memory and is 413

available in time steps after it was perceived, but at a fading intensity. (Filename of 414

script: 10-Object-permanence.txt.) 415

Numerosity 416

Description from Crosby et al. 2020 [24]: ”These tests all involve counting to navigate 417

to the compartment with the most food.” To simulate a numerosity test we used the 418

”Relative numbers” test [46] where great apes were presented with two dishes baited 419

with different amounts of food rewards of equal size. The subject was allowed to chose 420

one of the two dishes. We followed the same sequence as in that test with trials in the 421

following order: 5:1, 6:3, 6:2, 6:4, 4:3, 3:2, 2:1, 4:1, 4:2, 5:2, 3:1 and 5:3. This was a 422

two-choice task and the following behaviors were included: take the dish with fewer 423

pieces of food or take the dish with more food. Thus, it was assumed that the great 424

apes could identify that a dish with five or two pieces of food is different from a dish 425

with one food item. In the first trial one dish contained one food reward and the other 426

dish zero (1:0). (Filename of script: 11-Numerosity.txt.) 427

Tool use behavior 428

Description from Crosby et al. 2020 [24]: ”These test are based on the ability to use the 429

pushable objects in the arena as makeshift tools to get food. They are the most 430

complicated in the testbed and extend to the ability to perform simple causal reasoning 431

about the outcome of actions.” We simulated the test in which cotton-top tamarins 432

were subjected between a forced-choice between a cloth on which food was located vs. a 433

cloth with food laying beside it (problem: ”On” in [50]). If a tamarin pulled the cloth 434

on which food was located it could collect the food reward. A tamarin pulling the cloth 435

without food on top it received no food reward. This experiment represents a two-choice 436

situation and to simulate the discrimination between choosing a cloth with and without 437

food on top the following behaviors were included: take a cloth, ignore a cloth, and eat 438

a reward. The simulation is based on experiencing either of two compound stimuli, 439

s(cloth, food outside cloth) or s(cloth, food on top of cloth). Here, if ignoring one of the 440

compound stimuli the subjects will experience the next compound stimulus. If choosing 441

to take the cloth it can result in the opportunity to eat a reward if 442

s(cloth, food on top of cloth) was taken, but no reward and the end of the trial followed 443

a choice of s(cloth, food outside cloth). (Filename of script: 12-Tool-use.txt.) There are 444

many known instances of more complicated tool use in animals, see Enquist et al. [34] 445

(section 5.1.: ”Chaining in nature”) for an associative learning account of the ontogeny 446

of stone tool use in chimpanzees. 447
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A case study on variation in learning and test performance 448

To supplement the above proof-of-concept simulations we here performed simulations 449

varying parameter settings to address overall questions about variation, both between 450

species but also within studies. We used the script from the delayed gratification task 451

above and we performed four additional simulations. In case one we varied the level of 452

exploration and ran simulations with �-values from 0.1 to 2 (cf. default value=1). In a 453

second case we varied the learning rate of stimulus-response value learning using 454

↵-values from 0.2 to 2 (cf. default value=0.2). Thirdly we varied the size of the 455

behavior repertoire to explore the effect of having a larger selection of behavior 456

available. We varied the number of behaviors from 2 to 10. In the final case we used all 457

default values (identical parameter values as in section Delayed gratification) to explore 458

individual variation due the probabilistic nature of decision making. (Filename of script: 459

2b-Delayed-gratification-Case-study.txt. See notes in script on how to vary parameters.) 460

Results 461

Simulations of tasks from Animal AI Olympics 462

Overall, simulation results show that when subjecting a general associative learning 463

mechanism, such as A-learning ( [30, 34, 35]), to this array of tests it successfully learns 464

most tasks. However, the nature of one task prevents this learning mechanism from 465

extracting information from the current stimulus situation required for learning to take 466

place (object permanence task). When adding a biologically plausible representation of 467

an animal short-term memory to the learning algorithm that task was also solved 468

successfully. See table 1 for key aspects needed to learn each respective task. 469

Two-choice mazes 470

In both T- and Y-mazes few behaviors need to be explored to find the food reward, and 471

learning to choose the right arm develops quickly. After 10 trials the correct arm is 472

chosen predominantly (Fig. 1A) and the probability to choose the correct arm increases 473

from the first correct choice (Fig. 1B). 474

Fig 1. Results from two-choice mazes. A: Number of responses (cumulative) per
trial, and B: probability of response per trial.

Delayed Gratification 475

The delayed gratification task requires inhibiting behaviors initially directed towards 476

food, and this task cannot be learned until such an inhibiting behavior is first selected 477

and has a positive outcome. This is shown by initial incorrect behavior both in terms of 478

the number of incorrect behaviors (Fig. 2A) and that the likelihood of incorrect 479

behavior at first grows rapidly (Fig. 2B). However, if the behavior repertoire of an 480

organism includes some inhibiting behavior, such as waiting, then an associative 481

learning mechanism can learn to delay a gratification if waiting is selected and results in 482

some reward (Fig. 2). This is driven by the fact that stimulus-response value for 483

waiting becomes larger than the stimulus-response value for taking the food 484

immediately (see supplementary information for stimulus-response value figures). This 485

way, self-control defined as suppressing an immediate drive in favour of delayed rewards, 486

can emerge through associative learning [26,51]. 487
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Fig 2. Results from delayed gratification. A: Number of responses (cumulative)
per trial, and B: probability of response per trial.

Detour task 488

Like in delayed gratification tasks, for detour tasks to be solved some apparently 489

non-rewarding behavior must first be explored, such as ignoring the sight of food or 490

navigate around some barrier, and at a later time step produce some reward. Initially, 491

incorrect behaviors are more common leading to few rewards in initial trials (Fig 3A) 492

and initially higher probabilities for errors than correct behaviors (Fig 3B). However, 493

results show than an associative learning mechanism can support solving detour tasks as 494

long as detour behaviors are explored and have positive outcomes. 495

Fig 3. Results from detour task. A: Number of responses (cumulative) per trial,
and B: probability of response per trial.

Cylinder task 496

Solving a cylinder task is related to both delayed gratification- and detour tasks in that 497

reaching for inaccessible food must be inhibited to solve the task. However, a cylinder 498

task is different in that it depends on initial training of a reward collecting behavior, 499

that needs to be exhibited in the test phase. Initial training is transparent in that a 500

correct behavior immediately results in a reward (Fig 4). Correct behavior in the test 501

phase will increase in probability (Fig 4B) as soon as a correct behavior is selected, 502

instead of the apparent incorrect behavior, reaching for the inaccessible food (see 503

also [51] for training effects of self-control). 504

Fig 4. Results from cylinder task. A: Number of responses (cumulative) per trial,
and B: probability of response per trial.

Thorndike’s Puzzlebox 505

To solve Thorndike’s box ’k’ requires performing three behaviors, in no particular order, 506

before a reward can be gained. The fact that correct behaviors are not immediately 507

rewarding makes this task relatively difficult which is shown by the high number of 508

behaviors that are required initially to solve this task (Fig 5A), and that the probability 509

of performing the correct behaviors stabilize at relatively low levels (Fig 5B). 510

Fig 5. Results from Thorndike’s puzzlebox ’k’. A: Number of responses
(non-cumulative) per trial, and B: probability of response per trial.

Spatial Elimination 511

This task required choosing between two different stimuli, and a reward was presented 512

immediately after a correct choice. This resembles the logical structure of the Y- and 513

T-mazes, and the results are similar to that task, in that after approximately 10 trials 514

the correct stimulus is predominantly chosen (Fig 6A) and the probability to choose the 515

correct stimulus increases from the first correct choice (Fig 6B). 516
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Fig 6. Results from spatial elimination. A: Number of responses (cumulative) per
trial, and B: probability of response per trial.

Gravity Bias 517

The gravity bias task was simulated in three phases, first to see if it could be learned to 518

collect a reward straight below where it was dropped, in line with what is expected from 519

gravity (Fig 7A, D). Then a training phase was included for learning to collect food 520

hidden behind doors (Fig. 7B, E). Finally, a test phase was included to see if a new 521

behavior, that did not adhere to gravity as in phase 1, could be learned (Fig 7A, D). 522

Simulations show that a gravity bias can emerge from associative learning (Fig 7D) and 523

that a test in conflict with a previously learned gravity bias can also be mastered 524

(Fig 7F). In phase 2, the new behavior to get food in boxes was crucial for the test in 525

phase 3. However, note that training in phase 2 has no effect on the previously learned 526

gravity bias, that is later altered in phase 3. 527

Fig 7. Results from gravity bias. Number of responses (cumulative) per trial for
simulation of A: phase 1, B: phase 2, and C: phase 3. D: Probability of response per
trial for the simulation of D: phase 1, E: phase 2, and F: phase 3.

Radial Maze 528

Although the choice situation is identical when returning from each of the eight arms, 529

the task can still be learned in several ways. Overall, choosing to move an uneven 530

amount of steps to the left or right (-3, -1, +1,or +3) was learned, and this is the 531

quickest way to collect all food hidden in the maze (Fig 8B). This solution to the 532

problem has been called ”algorithmic” behavior [49] and these simulations show how 533

such learned patterns of movement emerge through associative learning. That learning 534

takes place is also shown by the reduction in number of arm visits per trial (Fig 8C). It 535

may seem counter-intuitive that even steps (-2 and +2) are the most frequent responses 536

(Fig 8A). However, this comes from even steps being frequently rewarding but at the 537

same time preventing subjects from finishing a trial. In addition, as the maze had eight 538

arms with one reward in each arm, going straight and returning back to the arms 539

visited last were the least chosen behaviors. To show more clearly that ”algorithmic 540

behavior” develops through associative learning we included a figure with an individual 541

run(Fig 8D). This shows how one behavior quickly can become a dominant strategy 542

(Fig 8D). 543

Fig 8. Results from the radial maze simulation. A: Number of responses
(cumulative) per trial for simulation of 500 subjects. B: Probability of response per trial
for the simulation of 500 subjects. C: Number of visited arms per trial for 500 subjects.
D: Probability of response for a single subject.

Object Permanence 544

This task involved a sequence of steps prior to the choice situation where three large 545

cups were present. This task could not be solved above chance level by the associative 546

learning mechanism alone because the choice situation was identical irrespective of 547

where the reward was located. The only discriminative information available was in a 548

time step prior to the choice situation. However, when using an integrated memory (a 549

standard animal short-term memory ( [11, 37,38,40]) that provides the associative 550
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learning mechanism with information about the time step prior to the choice situation, 551

the task could be solved. Correct behaviors became more common than errors after 552

some 100 trials (Fig 9A) and the probability of choosing the correct cup increased well 553

above chance levels before 100 trials (Fig 9B). 554

Fig 9. Results from object permanence. A: Number of responses (cumulative)
per trial, and B: probability of response per trial for the object permanence simulation

Numerosity 555

In this numerosity task, a two choice situation between bowls with different quantities 556

of food, from one to six, was presented. The associative learning mechanism developed a 557

preference rapidly for the bowl with the largest number of food items (Fig. 10A, B). In 558

general, associative learning is expected to result in preferences for the largest quantities 559

of food as long different quantities can be told apart, and A-learning will given sufficient 560

information result in optimal behavior ( [34]). 561

Fig 10. Results from numerosity. A: Number of responses (cumulative) per trial,
and B: probability of response per trial.

Tool use 562

In this tool task the problem was to choose between two cloths that could be pulled to 563

get a reward. One cloth had food on top of it whereas the other cloth had food next to 564

it. Results show that learning to choose the cloth with food emerge after some 20 trials 565

(Fig 11A), and that the probability of ignoring the cloth without food increased rapidly 566

as it did not yield a positive outcome (Fig 11B). 567

Fig 11. Results from tool use. A: Number of responses (cumulative) per trial for
the tool use simulation, and B: probability of response per trial.

A case study on variation in learning and test performance 568

All previous simulations were performed using identical parameter values. Here we show 569

the impact of varying parameter values on learning, using the script from the Delayed 570

gratification task above. First we varied the �-parameter that regulates exploration. A 571

low value makes it less likely that the behavior with the highest estimated value is 572

chosen, allowing previously non-rewarding, or only little rewarded, behavior to be 573

exhibited1. Results show that learning to delay the gratification, that is exert some 574

self-control and learn to wait in the presence of a reward, can be learned at intermediate 575

and high levels of exploration (low �-values). But, lower levels of exploration (higher 576

�-values) results in choosing immediate rewards because they were initially rewarding 577

and low levels of exploration makes it less likely to choose non-rewarding behaviors. Too 578

little exploration prevents learning to wait for a larger reward as the waiting behavior is 579

initially non-rewarding and becomes a hurdle that can only be overcome with higher 580

levels of exploration (Fig 12A). We then varied the learning rate, the ↵-value that 581

determines the update rate of stimulus-response values. Varying the ↵-value shows that 582

learning can potentially be very rapid (Fig 12B). As a third step we varied the behavior 583

1At the extreme � = 0 behaviors are chosen randomly and memories from prior experiences do not
affect decision making
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repertoire size. This simply shows that as more behavioral options are available, all else 584

being equal, more learning time is necessary for productive behavior to develop because 585

as there are more behaviors to choose finding a rewarding behavior is less likely 586

(Fig 12C). Even small increases in behavior repertoire size can prolong learning a 587

behavior. Finally we performed the same simulation using only five subjects, showing 588

that the probabilistic nature of decision making can have a large impact on performance 589

with some subjects finding rewards rapidly making learning possible, whereas other 590

individuals do not even learn after several hundreds of trials (Fig 12D). This mechanism 591

can generate different behavior outcomes purely by chance. Please note that 592

performance in all tasks above will vary similarly to how performance varied here. 593

Learning can be quicker, in some cases even instantaneous after one successful trial, and 594

slower dependent on parameter settings in exploration, learning rate, and behavior 595

repertoire. 596

Fig 12. Results from the case study. These simulations were based on the Delayed
gratification-task script. A: Probability of performing wait behavior as a response to
food with different values for exploration. B: Probability of performing wait behavior as
a response to food with different values for memory update rate of behaviors. C:
Probability of performing wait behavior depending on behavior repertoire size. D:
Variation between five individual runs with identical parameter settings.

Discussion 597

Our computer simulations show that associative learning as a mechanism can 598

potentially solve the animal intelligence tests selected by Crosby et al. [23, 24]. It is not 599

surprising that relatively simple tests such as T- and Y-mazes are mastered. However, 600

our simulations prove associative learning to be a powerful mechanism, that can solve 601

problems of higher complexity. In general, as long as rewards can be found and tasks 602

allow backwards chaining, associative learning can be sufficient for mastering tasks [34]. 603

In backwards chaining, the final step yielding a reward is learned first. Subsequently, a 604

neutral stimuli that precedes a food reward can acquire conditioned reinforcement value 605

through stimulus value-learning and drive the learning of a behavior sequence [6, 34]. 606

That associative learning can give rise to behavior sequences, makes apparently complex 607

behaviors possible and enable animals to master tasks that are generally considered 608

complex. For example the delayed gratification-, cylinder-, and tool use task. This 609

corresponds well with analyses showing how tool-use [34], planning with self-control [26], 610

and social learning [35] can emerge through associative learning. Although associative 611

learning is often considered too simple for explaining animal intelligence in 612

general [22, 52–55], modern models of associative learning are more powerful and more 613

cognitive, than 50 years ago [56, 57]. Our results, together with current progress in both 614

animal and AI learning [28–30,58], makes it increasingly difficult to reject the idea that 615

associative learning is a general mechanism that underlies animal intelligence. 616

The A-learning model alone could not solve the object permanence test because at 617

the time of decision, no discriminatory information about the reward was available (see 618

section on Object Permanence). However, animals remember arbitrary stimuli at least 619

in the magnitude of seconds to a few minutes [40]. Thus, by adding a well described 620

trace memory [37,38] to the A-learning model, information becomes available at the 621

final choice point, and the task can be solved. This shows that expanding associative 622

learning models with other parts of behavior systems, such as a trace memory, is a 623

tangible way for future research into animal intelligence. Internal variables, such as 624

memory and motivational states, can potentially provide information to associative 625
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learning just like external variables. 626

The fact that some animals, obviously capable of associative learning, fail to learn 627

some of these tasks may seem to contrast with our overall results. However, this 628

formulation of associative learning generates considerable variability, which is 629

potentially consistent with the variation that is observed between species (Fig 12). We 630

addressed three factors that can cause variation in performance. First, in order to learn 631

something new, previously non-rewarding behaviors must be tried out. Exploration 632

varies greatly between species, and species less inclined to try new behaviors will in 633

general suffer from lower performance [59,60]. Low levels of exploration can even 634

completely prevent the learning of a new task (Fig 12A). The costs of curiosity and high 635

levels of exploration should, however, not be ignored. Exploring too much comes with 636

costs, for example by wasting limited resources and through putting an individual in 637

dangerous situations. Levels of exploration are likely a compromise between contrasting 638

selection pressures that vary between species. Secondly, learning rates of both 639

stimulus-response values (Fig 12B) and stimulus values will affect learning speed. Even 640

rapid insight-like ’one shot learning’ is possible through associative learning. Finally, all 641

else equal, a greater behavior repertoire size makes it less likely to find a new solution to 642

a problem (Fig 12C). A larger behavior repertoire comes with higher learning costs and 643

requires certain circumstances to be favorable, for example a longer juvenile period as 644

seen in great apes [61]. A-learning integrates genetic predispositions with general 645

learning processes and can, therefore, account for between species variation and 646

questions of domain-specific adaptations [34]. However, detailed explanations of 647

empirical results are beyond the scope of this study. 648

Due to the stochastic nature of decision making, individual simulation runs can 649

differ greatly in performance (Fig 12D). This is in line with findings that choice 650

behavior is affected by stochastic processes [62, 63] and may provide a null hypothesis 651

for tests of animal intelligence. This provides a reasonable alternative to interpretations 652

of individual variation as caused by individual differences in intelligence or unidentified 653

contextual variables [64]. The fact that some individuals fail whereas others do not may 654

not be caused by some individuals being smarter than others, as it is often 655

suggested [65–68]. However, as mentioned above, the level of exploration may vary 656

consistently between individuals and affect performance in problem solving [69]. 657

How do these results inform the general process vs. adaptive specialization debate? 658

Like others [4, 26, 30,34,35,56,57], we conclude that associative learning is an 659

underestimated general mechanism that can account for a large array of behavioral 660

phenomena observed in animals. Take the numerosity task, here associative learning 661

may provide an alternative to the hypothesized specialized module for numerosity, the 662

approximate number sense [70, 71]. However, this suggestion requires further analyses 663

(see e.g. special issue on the origin of a number sense [5]). Furthermore, our results 664

favor the idea that species differences emerge from genetic differences in general 665

processes rather than due to adaptive specialization of separate cognitive traits each 666

with its own unique evolutionary trajectory. Assumptions of adaptive specialization may 667

inflate estimates of cognitive traits subject to convergent evolution. For instance, it is 668

not self evident that similarities in how ravens and great apes solve similar tasks means 669

that they independently evolved similar cognitive mechanisms, when an associative 670

learning account is plausible [26, 72, 73]. We do not, however, reject the idea of adaptive 671

specialization of cognition. If the development of some behavior does not adhere to 672

descriptions of associative learning, they may be better described in terms of adaptive 673

specialization. This may include phenomena where a high performance is required from 674

scratch, for example navigation in desert ants [74], and when first-time migratory birds 675

use celestial cues for flight direction [75] or the Earth’s magnetic field for foraging 676

decision [76]. 677
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Conclusion 678

In conclusion; we can not reject that current models of animal learning may suffice to 679

generate flexible and intelligent behavior in animals, with learning being guided by 680

species-specific behavior systems. Interestingly, models in animal psychology and 681

machine learning share many similarities [30]. As long as motor/perceptive systems are 682

accounted for (as in our simulations), associative learning mechanisms can solve 683

apparently complex tasks. This aligns well with results from the Animal-AI 684

Olympics [24]. Agents generally did not struggle with learning about the value of 685

rewards and how to interact with the environment. Instead they were limited by not 686

having the appropriate perceptive/motor systems. For example, many agents struggled 687

to do well on the tool-use tasks, because they were not equipped with the right code to 688

be able to manipulate objects. So, perhaps it is not the sophistication of learning 689

algorithms per se that limits intelligent behavior of AI systems. Take, for example, a 10 690

gram bird that has evolved the ability to use starry nights for migration, or a bolas 691

spider that makes bolas at the end of a silk thread and uses this as a lasso to catch prey. 692

Here, evolution has resulted in integrated learning-, motor-, attentional- and perceptual 693

capacities that together make up autonomous organisms that we still struggle to 694

describe. Therefore, the challenge for AI to approach animal-like intelligence may not 695

lie in creating new, clever algorithms, but in understanding the complexity of biological 696

systems in terms of perception, motor flexibility, and behavior regulation. To further 697

progress, future research could benefit from integrating embodied aspects of 698

cognition [77,78] with a general mechanism of associative learning. 699

Supporting information 700

S1 Appendix Includes information on the simulator scripts and where to find them, 701

as well as additional figures belonging to the simulations discussed in the paper. 702
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41. Pajor E, Rushen J, De Passillé A. Dairy cattle’s choice of handling treatments in
a Y-maze. Applied Animal Behaviour Science. 2003;80(2):93–107.

42. Qin J, Wheeler AR. Maze exploration and learning in C. elegans. Lab on a Chip.
2007;7(2):186–192.

43. Beran MJ. Maintenance of self-imposed delay of gratification by four
chimpanzees (Pan troglodytes) and an orangutan (Pongo pygmaeus). The Journal
of General Psychology. 2002;129(1):49–66.

44. Smith BP, Litchfield CA. How well do dingoes, Canis dingo, perform on the
detour task? Animal Behaviour. 2010;80(1):155–162.

45. Thorndike EL. Animal intelligence: An experimental study of the associative
processes in animals. The Psychological Review: Monograph Supplements.
1898;2(4):1–109.

46. Herrmann E, Call J, Hernández-Lloreda MV, Hare B, Tomasello M. Humans
have evolved specialized skills of social cognition: The cultural intelligence
hypothesis. Science. 2007;317(5843):1360–1366.

47. Hauser MD, Williams T, Kralik JD, Moskovitz D. What guides a search for food
that has disappeared? Experiments on cotton-top tamarins (Saguinus oedipus).
Journal of Comparative Psychology. 2001;115(2):140.

48. Hood BM, Hauser MD, Anderson L, Santos L. Gravity biases in a non-human
primate? Developmental Science. 1999;2(1):35–41.

49. Hughes RN, Blight CM. Algorithmic behaviour and spatial memory are used by
two intertidal fish species to solve the radial maze. Animal Behaviour.
1999;58(3):601–613.

50. Hauser MD, Kralik J, Botto-Mahan C. Problem solving and functional design
features: experiments on cotton-top tamarins, Saguinus oedipus oedipus. Animal
Behaviour. 1999;57(3):565–582.

51. Isaksson E, Urhan AU, Brodin A. High level of self-control ability in a small
passerine bird. Behavioral ecology and sociobiology. 2018;72(7):1–7.

52. Tomasello M, Call J. Primate cognition. Oxford University Press; 1997.

53. van Horik JO, Clayton NS, Emery NJ. Convergent evolution of cognition in
corvids, apes and other animals. In: Vonk J, Shackleford T, editors. Oxford
handbook of comparative evolutionary psychology. Oxford University Press; 2012.
p. 80–101.

54. Völter CJ, Call J. Causal and inferential reasoning in animals. In: Call J,
Burghardt GM, Pepperberg IM, Snowdon CT, Zentall T, editors. APA Handbook
of Comparative Psychology: Perception, Learning, and Cognition. American
Psychological Association; 2017.

55. Povinelli DJ. Can comparative psychology crack its toughest nut? Animal
Behavior and Cognition. 2020;7(4):589–652.

56. Rescorla RA. Pavlovian conditioning: It’s not what you think it is. American
psychologist. 1988;43(3):151.

57. Haselgrove M. Overcoming associative learning. Journal of Comparative
Psychology. 2016;130(3):226.

December 14, 2021 21/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


58. Dayan P, Niv Y. Reinforcement learning: the good, the bad and the ugly.
Current opinion in neurobiology. 2008;18(2):185–196.

59. Glickman SE, Sroges RW. Curiosity in zoo animals. Behaviour.
1966;26(1):151–188.

60. Mettke-Hofmann C, Winkler H, Leisler B. The significance of ecological factors
for exploration and neophobia in parrots. Ethology. 2002;108(3):249–272.

61. Ghirlanda S, Enquist M, Lind J. Coevolution of intelligence, behavioral
repertoire, and lifespan. Theoretical population biology. 2014;91:44–49.

62. Russell DF, Wilkens LA, Moss F. Use of behavioural stochastic resonance by
paddle fish for feeding. Nature. 1999;402(6759):291–294.

63. Tervo DG, Proskurin M, Manakov M, Kabra M, Vollmer A, Branson K, et al.
Behavioral variability through stochastic choice and its gating by anterior
cingulate cortex. Cell. 2014;159(1):21–32.

64. Thornton A, Lukas D. Individual variation in cognitive performance:
developmental and evolutionary perspectives. Philosophical Transactions of the
Royal Society B: Biological Sciences. 2012;367(1603):2773–2783.

65. Horner V, Whiten A. Learning from others’ mistakes? Limits on understanding a
trap-tube task by young chimpanzees (Pan troglodytes) and children (Homo

sapiens). Journal of Comparative Psychology. 2007;121(1):12.

66. Girndt A, Meier T, Call J. Task constraints mask great apes’ ability to solve the
trap-table task. Journal of Experimental Psychology: Animal Behavior Processes.
2008;34(1):54.

67. Taylor AH, Hunt GR, Medina FS, Gray RD. Do New Caledonian crows solve
physical problems through causal reasoning? Proceedings of the Royal Society B:
Biological Sciences. 2009;276(1655):247–254.

68. Gruber R, Schiestl M, Boeckle M, Frohnwieser A, Miller R, Gray RD, et al. New
Caledonian crows use mental representations to solve metatool problems. Current
Biology. 2019;29(4):686–692.

69. Benson-Amram S, Holekamp KE. Innovative problem solving by wild spotted
hyenas. Proceedings of the Royal Society B: Biological Sciences.
2012;279(1744):4087–4095.

70. Merritt D, MacLean E, Crawford JC, Brannon EM. Numerical rule-learning in
ring-tailed lemurs (Lemur catta). Frontiers in Psychology. 2011;2:23.

71. Agrillo C, Piffer L, Bisazza A, Butterworth B. Evidence for two numerical
systems that are similar in humans and guppies. PloS one. 2012;7(2):e31923.

72. Redshaw J, Taylor AH, Suddendorf T. Flexible planning in ravens? Trends in
cognitive sciences. 2017;21(11):821–822.

73. Hampton R. Parallel overinterpretation of behavior of apes and corvids. Learning
& behavior. 2019;47(2):105–106.

74. Wehner R. Desert ant navigation: how miniature brains solve complex tasks.
Journal of Comparative Physiology A. 2003;189(8):579–588.

December 14, 2021 22/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


75. Emlen ST. Celestial rotation: its importance in the development of migratory
orientation. Science. 1970;170(3963):1198–1201.

76. Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A. Magnetic
cues trigger extensive refuelling. Nature. 2001;414(6859):35–36.

77. Barrett L. Beyond the brain: How body and environment shape animal and
human minds. Princeton University Press; 2011.

78. Keijzer FA. Evolutionary convergence and biologically embodied cognition.
Interface Focus. 2017;7(3):20160123.

December 14, 2021 23/23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


0 5 10 15 20 25 30
Trial

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r 

of
 R

es
po

ns
es

Go left (correct)
Go right (incorrect)

0 5 10 15 20 25 30
Trial

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
 o

f R
es

po
ns

e

Go left (correct)
Go right (incorrect)

A) B)

0 100 200 300 400 500
Trial

0

100

200

300

400

N
um

be
r 

of
 R

es
po

ns
es

Wait
Take the immediate food

0 100 200 300 400 500
Trial

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

Wait
Take the immediate food

A) B)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Trial number

0

2

4

6

8

10

N
um

be
r 

of
 R

ew
ar

ds

Food

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

Go around
Go to barrier

A) B)

5 10 15 20
Trial number

0

2

4

6

8

10

12

N
um

be
r 

of
 R

es
po

ns
es

Training

reward
Correct
Incorrect

22 24 26 28 30
Trial number

0

2

4

6

8

10

12

N
um

be
r 

of
 R

es
po

ns
es

Test

Rewards
Correct
Incorrect

5 10 15 20
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f R
es

po
ns

e

Training

Detour response
Grab Cylinder

22 24 26 28 30
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f R
es

po
ns

e

Test

Detour response
Grab Cylinder

A) B)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


0 20 40 60 80 100
Trial number

40

50

60

70

80

N
um

be
r 

of
 R

es
po

ns
es

number of actions

0 20 40 60 80 100
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

claw at string
press at platform
lift at bar

A) B)

0 10 20 30 40 50
Trial number

0

5

10

15

20

25

30

35

40

N
um

be
r 

of
 R

es
po

ns
es

Find hidden food
Incorrect choice

0 10 20 30 40 50
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f R
es

po
ns

e

Find hidden food
Incorrect choice

A) B)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


0 5 10 15 20 25
Trial number

0

5

10

15

20

25

N
um

be
r 

of
 re

sp
on

se
s

Straight below
Other incorrect
Correct

30 35 40 45 50
Trial number

0

5

10

15

20

25

N
um

be
r 

of
 re

sp
on

se
s

Straight below
Other incorrect
Correct

55 60 65 70 75
Trial number

0

5

10

15

20

25

N
um

be
r 

of
 re

sp
on

se
s

Straight below
Other incorrect
Correct

0 5 10 15 20 25
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

Straight below
Other incorrect
Correct

30 35 40 45 50
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

Straight below
Other incorrect
Correct

55 60 65 70 75
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

Straight below
Other incorrect
Correct

A) B) C)

D) E) F)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


0 20 40 60 80 100
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f R
es

po
ns

e +1
+2
+3
-3
-2
-1
straight
return

0 20 40 60 80 100
Trial number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f R
es

po
ns

e
0 20 40 60 80 100

Trial number

0

200

400

600

800

1000

1200

1400

N
um

be
r 

of
 r

es
po

ns
es

+1
+2
+3
-3
-2
-1
straight
go back

A) B)

C) D)

+1
+2
+3
-3
-2
-1
straight
go back

0 20 40 60 80 100
Trial number

0

10

20

30

40

50

60

N
um

be
r 

of
 v

is
ite

d 
ar

m
s

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


0 100 200 300 400 500
Trial

0

5

10

15

20

25

30

35

N
um

be
r 

of
 R

es
po

ns
es

Take left when small cup in left
Take right when small cup in left
Take center when small cup in left

0 100 200 300 400 500
Trial

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f R
es

po
ns

e

Take left when small cup in left
Take left when in center
Take left when in right

A) B)

0 2 4 6 8 10 12
Trial

0

2

4

6

8

N
um

be
r 

of
 R

es
po

ns
es

Take less
Take more

0 2 4 6 8 10 12
Trial

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Take less
Take more

A) B)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


0 20 40 60 80 100
Trial number

0

10

20

30

40

50

60

70

80

N
um

be
r 

of
 R

es
po

ns
es

Choose cloth with food
Choose cloth without food

0 20 40 60 80 100
Trial number

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pr

ob
ab

ili
ty

 o
f R

es
po

ns
e

Choose cloth with food
Choose cloth without food

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


0 50 100 150 200 250 300
Trial

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

�=0.1

�=0.4

�=0.7

�=1.0

�=1.3

�=1.7

0 50 100 150 200 250 300
Trial

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

�=0.2

�=0.8

�=1.4

�=2.0

0 50 100 150 200 250 300
Trial

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

Behavior repertoire size: 2

5

10

0 100 200 300 400 500
Trial

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

A) B)

C) D)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


Supplementary information for "Can associative
learning be the general process for intelligent behavior

in non-human animals?"

Johan Lind1 & Vera Vinken1,2

December 14, 2021

1Centre for Cultural Evolution, Stockholm University, Stockholm, Sweden

2Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom

1 Scripts and Learning Simulator
All scripts needed to run the computer simulations are available as individual text files and
can be downloaded at https://doi.org/10.17045/sthlmuni.17068409. The scripts can
be run in the Learning Simulator [1] available at https://www.learningsimulator.org.
For details see documentation at https://learningsimulator.readthedocs.io.

2 Additional plots of all Simulations
To complement figures in the main manuscript we here present additional figures of all
learning tasks. These additional figures show changes in stimulus-response values v(s ! b)
in the different tasks.
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2.1 Two-choice Mazes

Figure 1: V-plot for the two-choice mazes simulation for two behaviors at s(start)
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2.2 Delayed Gratification

Figure 2: V-plot for the delayed gratification simulation for two behaviors at
s(immediate food)

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.15.472737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.15.472737
http://creativecommons.org/licenses/by/4.0/


2.3 Detour Tasks

Figure 3: V-plot for the detour task simulation for two behaviors at s(start).
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2.4 Cylinder Tasks

Figure 4: V-plot for the cylinder task simulation for s(cylinder) ! b(detour response) and
s(food inside) ! b(grab cylinder)
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2.5 Thorndikes Puzzlebox

Figure 5: V-plot for the Thorndikes puzzlebox simulation for s(string) ! b(claw)
s(platform) ! b(press), and s(bar) ! b(lift).
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2.6 Spatial Elimination

Figure 6: V-plot for the spatial elimination simulation for s(inclined board) !
b(choose inclined) and s(flat board) ! b(choose flat).
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2.7 Gravity Bias

Figure 7: V-plot for the 3 phases of the gravity bias simulation.
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2.8 Radial Maze

Figure 8: V-plot for the radial maze simulation of behaviors at s(center).
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2.9 Object Permanence
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Figure 9: V-plot for the object permanence simulation.
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2.10 Numerosity

Figure 10: V-plot for the numerosity simulation for s(less) ! b(take less) and s(more) !
b(take more).
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2.11 Tool use
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Figure 11: V-plot for the tool use simulation.
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