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Abstract

The meaning of words in natural language depends crucially on context. However, most  

neuroimaging studies of word meaning use isolated words and isolated sentences with little context. 

Because the brain may process natural language differently from how it processes simplified stimuli, 

there is a pressing need to determine whether prior results on word meaning generalize to natural 

language. We investigated this issue by directly comparing the brain representation of semantic 

information across four conditions that vary in context. fMRI was used to record human brain activity 

while four subjects (two female) read words presented in four different conditions: narratives 

(Narratives), isolated sentences (Sentences), blocks of semantically similar words (Semantic Blocks),

and isolated words (Single Words). Using a voxelwise encoding model approach, we find two clear 

and consistent effects of increasing context. First, stimuli with more context (Narratives, Sentences) 

evoke brain responses with substantially higher SNR across bilateral visual, temporal, parietal, and 

prefrontal cortices compared to stimuli with little context (Semantic Blocks, Single Words). Second, 

increasing context increases the representation of semantic information across bilateral temporal, 

parietal, and prefrontal cortices at the group level. However, in individual subjects, only natural 

language stimuli (Narratives) consistently evoke widespread representation of semantic information 

across the cortical surface. These results show that context has large effects on both the quality of 

neuroimaging data and on the representation of meaning in the brain, and they imply that the results 

of neuroimaging studies that use stimuli with little context may not generalize well to the natural 

regime.
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Significance Statement 

Context is an important part of understanding the meaning of natural language, but most 

neuroimaging studies of meaning use isolated words and isolated sentences with little context. Here 

we examined whether the results of neuroimaging studies that use out-of-context stimuli generalize to

natural language. We find that increasing context improves the quality of neuroimaging data and 

changes where semantic information is represented in the brain. These results suggest that findings 

from studies using out-of-context stimuli may not generalize to natural language used in daily life.
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Introduction

Language is our main means of communication and an integral part of daily life. Natural language 

comprehension requires extracting meaning from words that are embedded in context. However, 

most neuroimaging studies of word meaning use simplified stimuli consisting of isolated words or 

sentences (Price, 2012). Natural language differs from isolated words and sentences in several ways.

Natural language contains phonological and orthographic patterns, lexical semantics, syntactic 

structure, and compositional- and discourse-level semantics embedded in social context (Hagoort, 

2019). In contrast, isolated words and sentences only contain a few of these components (e.g., lexical

meaning, local syntactic structure). (For concision, this paper will refer to all differences between 

natural language and isolated words/sentences as differences in “context.”)

Neuroimaging studies that use isolated words and sentences implicitly assume that their results will 

generalize to natural language. However, because the brain is a highly nonlinear dynamical system 

(Wu et al., 2006; Breakspear, 2017), the representation of semantic information may change 

depending on context (Poeppel et al., 2012; Hagoort, 2019; Hamilton and Huth, 2020). Indeed, 

contextual effects have been demonstrated clearly in other domains. For example, many neurons in 

the visual system respond differently to simplified stimuli compared to naturalistic stimuli (Simoncelli 

and Olshausen, 2001; Ringach et al., 2002; David et al., 2004; Touryan et al., 2005). However, few 

studies have examined whether insights about semantic representation from studies using simplified 

stimuli will generalize to natural language.

Results from past studies suggest that context has a large effect on semantic representation. Several 

natural language studies from our lab reported that semantic information is represented in a large, 

distributed network of brain regions including bilateral temporal, parietal, and prefrontal cortices (Huth

et al., 2016; Deniz et al., 2019). In contrast, studies that used isolated words or sentences as stimuli 

only identified a few brain regions that represent semantic information (left IFG, anterior temporal 
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lobe, inferotemporal cortex, and posterior parietal cortex; for reviews see (Binder et al., 2009; Price, 

2010, 2012)). 

One way that context might affect neuroimaging results is by affecting the signal-to-noise ratio (SNR) 

of evoked brain responses. Although no language studies have explicitly looked at evoked BOLD 

SNR, several converging lines of evidence suggest that context does affect evoked SNR in language 

studies. (Lerner et al., 2011) examined how language context affects cross-subject correlations in 

brain responses, and they reported that as the amount of context increased, the number of voxels 

that were correlated across subjects also increased. In addition, several contrast-based fMRI 

language studies reported that increasing context evoked larger and more widespread patterns of 

brain activity (Mazoyer et al., 1993; Xu et al., 2005; Jobard et al., 2007). Finally, most subjects are 

more attentive when reading natural stories than when reading isolated words, and attention affects 

BOLD SNR (Bressler and Silver, 2010).

Another more interesting way that context might affect neuroimaging results is by directly changing 

semantic representations in the brain. Context can change the way that subjects attend to semantic 

information, and semantic representations in many brain areas shift toward attended semantic 

categories (Çukur et al., 2013; Sprague et al., 2015; Nastase et al., 2017). Context also changes the 

statistical structure of language stimuli, and these statistical changes can affect cognitive processes 

and representations in a variety of ways (Wu et al., 2006; Dahmen et al., 2010; Breakspear, 2017). 

To test the hypotheses that context affects evoked SNR and semantic representations, we used fMRI

and a voxelwise encoding model approach to directly compare four stimulus conditions that vary in 

context: Narratives, Sentences, Semantic Blocks, and Single Words (Figure 1). The Narratives 

condition consisted of four narrative stories used in our previous studies (Huth et al., 2016; Deniz et 

al., 2019; Popham et al., 2021). The other three conditions used sentences, blocks of semantically 
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similar words, and individual words sampled from the narratives in Huth et al. (2016), Deniz et al. 

(2019), and Popham et al. (2021). 

Materials and Methods

Experimental Design and Statistical Analysis

Subjects. Functional data were collected from two males and two females: S1 (male, age 31), S2 

(male, age 24), S3 (female, age 24), S4 (female, age 23). All subjects were healthy and had normal 

hearing, and normal or corrected-to-normal vision. All subjects were right handed according to the 

Edinburgh handedness inventory (Oldfield, 1971). Laterality scores were +70 (decile R.3) for S1, +95 

(decile R.9) for S2, +90 (decile R.7) for S3, +80 (decile R.5) for S4.

MRI data collection. MRI data were collected on a 3T Siemens TIM Trio scanner with a 32-channel 

Siemens volume coil, located at the UC Berkeley Brain Imaging Center. Functional scans were 

collected using gradient echo EPI with repetition time (TR) = 2.0045s, echo time (TE) = 31ms, flip 

angle = 70 degrees, voxel size = 2.24 x 2.24 x 4.1 mm (slice thickness = 3.5 mm with 18% slice gap), 

matrix size = 100 x 100, and field of view = 224 x 224 mm. Thirty axial slices were prescribed to cover

the entire cortex and were scanned in interleaved order. A custom-modified bipolar water excitation 

radiofrequency (RF) pulse was used to avoid signal from fat. Anatomical data were collected using a 

T1-weighted multi-echo MP-RAGE sequence on the same 3T scanner. Approximately 3.5 hours 

(214.85 minutes) of fMRI data was collected for each subject.

fMRI data pre-processing.  The FMRIB Linear Image Registration Tool (FLIRT) from FSL 5.0 

(Jenkinson and Smith, 2001; Jenkinson et al., 2002) was used to motion-correct each functional run. 

A high-quality template volume was then created for each run by averaging all volumes in the run 

across time. FLIRT was used to automatically align the template volume for each run to an overall 

template, which was chosen to be the temporal average of the first functional run for each subject. 
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These automatic alignments were manually checked and adjusted as necessary to improve accuracy.

The cross-run transformation matrix was then concatenated to the motion-correction transformation 

matrices obtained using MCFLIRT, and the concatenated transformation was used to resample the 

original data directly into the overall template space.

A 3rd order Savitsky-Golay filter with a 121-TR window was used to identify low-frequency voxel 

response drift. This drift was subtracted from the signal before further processing. Responses for 

each run were z-scored separately before voxelwise modeling. In addition, 10 TRs were discarded 

from the beginning and the end (20 TRs total) of each run.

Cortical surface reconstruction and visualization. Freesurfer (Dale et al., 1999) was used to generate 

cortical surface meshes from the T1-weighted anatomical scans. Before surface reconstruction, 

Blender and pycortex (http://pycortex.org; (Gao et al., 2015)) were used to carefully hand-check and 

correct anatomical surface segmentations. To aid in cortical flattening, Blender and pycortex were 

used to remove the surface crossing the corpus callosum and relaxation cuts were made into the 

surface of each hemisphere. The calcarine sulcus cut was made at the horizontal meridian in V1 as 

identified from retinotopic mapping data.

Pycortex (Gao et al., 2015) was used to align functional images to the cortical surface. The line-

nearest scheme in pycortex was used to project functional data onto the surface for visualization and 

subsequent analysis. The line-nearest scheme samples the functional data at 64 evenly-spaced 

intervals between the inner (white matter) and outer (pial) surfaces of the cortex and averages the 

samples. Samples are taken using nearest-neighbor interpolation, in which each sample is given the 

value of its enclosing voxel.

Stimuli. Stimuli for all four conditions were generated from ten spoken stories from The Moth Radio 
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Hour (used previously in (Huth et al., 2016)). In each story, a speaker tells an autobiographical story 

in front of a live audience. The ten selected stories are 10-15 min long, cover a wide range of topics, 

and are highly engaging. Transcriptions of these stories were used to generate the stimuli.

Story transcription. Each story was manually transcribed by one listener, and this transcription was 

checked by a second listener. Certain sounds (e.g., laughter, lip-smacking, and breathing) were also 

transcribed in order to improve the accuracy of the automated alignment. The audio of each story was

downsampled to 11.5 kHz and the Penn Phonetics Lab Forced Aligner (P2FA; (Yuan and Liberman, 

2008)) was used to automatically align the audio to the transcript. P2FA uses a phonetic hidden 

Markov model to find the temporal onset and offset of each word and phoneme. The Carnegie Mellon

University pronouncing dictionary was used to guess the pronunciation of each word. The Arpabet 

phonetic notation was used when necessary to manually add words and word fragments that 

appeared in the transcript but not in the pronouncing dictionary. 

After automatic alignment was complete, Praat (Boersman and Weenink, 2014) was used to manually

check and correct each aligned transcript. The corrected, aligned transcript was then spot-checked 

for accuracy by a different listener.  Finally, Praat's TextGrid object was used to convert the aligned 

transcripts into word representations. The word representation of each story is a list of pairs (W, t), 

where W is a word and t is the time in seconds.

Stimulus Conditions. To evaluate the effect of context on evoked SNR and semantic representation in

the brain, four stimulus conditions with different amounts of context were created. These four 

conditions were Narratives, Sentences, Semantic Blocks, and Single Words. 

The Narratives condition consisted of four narratives from The Moth Radio Hour ("undertheinfluence",

"souls", "life", “wheretheressmoke”). These four narratives were chosen from the ten narratives used 
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in (Huth et al., 2016). Each narrative was presented in a separate ~10-minute scanning run. One 

narrative (“wheretheressmoke”) was used as the model validation stimulus, and it was presented 

twice for each subject. 

The Sentences condition consisted of sentences randomly sampled from the ten narratives used in 

(Huth et al., 2016). Sentence boundaries were marked manually, resulting in 1450 sentences with a 

median sentence length of 13 words (min=5 words, max=40 words). Sentences were presented in 

four unique ~10-minute scanning runs. One run was used as the model validation stimulus, and it 

was presented twice for each subject.

The Semantic Blocks condition consisted of blocks of clustered words from the ten narratives used in 

(Huth et al., 2016). The word clusters were designed to elicit maximally different voxel responses. To 

create the clusters, each word was first transformed into its semantic model representation (see 

Voxelwise model fitting below). The semantic model representation for each word was then projected 

onto the first ten principal components of the semantic model weights estimated in (Huth et al., 2016).

Finally, the projections were clustered with k-means clustering (k=12) to create 12 word clusters. 

During each scanning run, subjects saw 12 different blocks of 114 words each. The words in each 

block were sampled from one of the word clusters, and eight different word clusters were sampled in 

each run. The frequency with which each cluster was sampled was matched to the frequency with 

which words from that cluster appeared in the ten narratives. Blocks were presented in four unique 

~10-minute long runs. One run was used as the model validation stimulus, and it was presented twice

for each subject.

The Single Words condition consisted of words randomly sampled without replacement from the ten 

narratives used in (Huth et al., 2016). There were 21743 appearances of 2868 unique words across 

the narratives, and each appearance was sampled uniformly. Words were presented in four unique 
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10-minute scanning runs. One run was used as the model validation stimulus, and it was presented 

twice for each subject.

For the Sentences, Semantic Blocks, and Single Words conditions, text descriptions of auditory 

sounds (e.g., laughter and applause) in the ten narratives were removed. In addition, obvious 

transcription errors were removed from the list of narrative words for the Semantic Blocks and Single 

Words conditions. Words that did not make sense by themselves (e.g., “tai”, “chi”) were also 

removed. There were five such words: “tai”, “chi”, “deja”, “vu”, and “sub.”

Stimulus presentation. In all conditions, words were presented individually at the center of the screen 

using Rapid Serial Visual Presentation (RSVP) (Forster, 1970; Buchweitz et al., 2009). Words in the 

Narratives and Sentences conditions were presented with the same timing and duration as in the 

original spoken stories. Words in the Semantic Blocks and Single Words conditions were presented 

for a baseline of 400 ms with an additional 10 ms for every character. For example, the word “apple” 

would be presented for 400 ms + 10 ms/character * (5 characters) = 450 ms.

The pygame library in Python was used to display black text on a gray background at 34 horizontal 

and 27 vertical degrees of visual angle. Letters were presented at average 6 (min=1, max=16) 

horizontal and 3 vertical degrees of visual angle. A white fixation cross was present at the center of 

the display. Subjects were asked to fixate while reading the text. Eye movements were monitored at 

60 Hz throughout the scanning sessions using a custom-built camera system equipped with an 

infrared source (Avotec) and the ViewPoint EyeTracker software suite (Arrington Research). The eye 

tracker was calibrated before each session of data acquisition. 

Explainable variance (EV). To measure the functional SNR of each stimulus condition, we computed 

the explainable variance (EV). EV was computed as the amount of variance in the response of a 
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voxel that can be explained by the mean response of the voxel across multiple repetitions of the 

same stimulus. Formally, if the responses of a voxel to a repeated stimulus is expressed as a matrix 

Y with dimensions (# of TRs in each repetition, # of stimulus repetitions), then EV is given by

1 - [variance(Y - mean(Y, axis=1)) / variance(Y)].

Note that this is the same as the coefficient of determination (R2) where the model prediction is the 

mean response across stimulus repetitions. For each condition, EV was computed from the two 

repeated validation runs.

Voxelwise model fitting and validation. To identify voxels that represent semantic information, a 

linearized finite impulse response (FIR) encoding model (Nishimoto et al., 2011; Huth et al., 2012, 

2016) was fit to every cortical voxel in each subject's brain. The linearized FIR encoding model 

consisted of one feature space designed to represent semantic information in the stimuli, and four 

feature spaces designed to represent low-level linguistic information. In the semantic feature space, 

the semantic content of each word was represented by the word’s co-occurrence statistics with the 

985 words in Wikipedia's List of 1000 basic words (Huth et al., 2016). Thus, each word was 

represented by a 985-long vector in the semantic feature space. The co-occurrence statistics were 

computed over a large text corpus that included the ten narrative stories used in Huth et al. (2016), 

several books from Project Gutenberg, a wide variety of Wikipedia pages, and a broad selection of 

reddit.com user comments (Huth et al., 2016). The four low-level feature spaces were word rate (1 

parameter), letter rate (1 parameter), letters (26 parameters), and word length variation per TR (1 

parameter). Together, the five feature spaces had 1014 features. 

The features passed through three additional preprocessing steps before being fit to BOLD 

responses. First, to account for the hemodynamic response, a separate linear temporal filter with four 

delays was fit for each of the 1014 features, resulting in 4056 final features. This was accomplished 

by concatenating copies of the features delayed by 1, 2, 3, and 4 TRs (approximately 2, 4, 6, and 8 
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seconds). Taking the dot product of this concatenated feature space with a set of linear weights is 

functionally equivalent to convolving the undelayed features with a linear temporal kernel that has 

non-zero entries for 1-, 2-, 3-, and 4-time point delays. Second, 10 TRs were discarded from the 

beginning and the end (20 TRs total) of each run. Third, each feature was z-scored separately within 

each run. This was done so that the features would be on the same scale as the BOLD responses, 

which were also z-scored within each run.  

A single joint model consisting of the 4056 features were fit to BOLD responses using banded ridge 

regression (Nunez-Elizalde et al., 2019) and the himalaya Python package (see Code Accessibility). 

A separate model was fit for every voxel in every subject and condition. For every model, a 

regularization parameter was estimated for each of the five feature spaces using a random search. In 

the random search, 1000 normalized hyperparameter candidates were sampled from a Dirichlet 

distribution and scaled by 30 log-spaced values ranging from 10^-5 to 10^20. The best normalized 

hyperparameter candidate and scaling were selected for each feature space for each voxel. Finally, 

models were fit again on the BOLD responses with the selected hyperparameters.

To validate the models, estimated feature weights were used to predict responses to a separate, 

held-out validation dataset. Validation stimuli for the Narratives condition consisted of two repeated 

presentations of the narrative “wheretheressmoke” (Huth et al., 2016). Validation stimuli for the 

Sentences, Semantic Blocks, and Single Words conditions consisted of two repeated presentations of

one run for each condition. Prediction accuracy was then computed as the Pearson’s correlation 

coefficient between the model-predicted BOLD response and the average BOLD response across the

two validation runs. Statistical significance for each condition was computed with permutation testing. 

A null distribution was generated by permuting 10-TR blocks of the average validation BOLD 

response 5000 times and computing the prediction accuracy for each permutation. Resulting p values

were corrected for multiple comparisons within each subject using the false discovery rate (FDR) 
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procedure (Benjamini and Hochberg, 1995).

All model fitting and analysis was performed using custom software written in Python, making heavy 

use of NumPy (Oliphant, 2006) and SciPy (Jones et al., 2001). Analysis and visualizations were 

developed using iPython (Perez and Granger, 2007), and the interactive programming and 

visualization environment jupyter notebook (Kluyver et al., 2016).

Code Accessibility. The himalaya package is publicly available on GitHub 

(https://github.com/gallantlab/himalaya). 

Results

The goal of this study was to understand whether context affects evoked SNR and semantic 

representations in the brain. Previous studies suggest that both evoked SNR and semantic 

representations will differ across the four experimental conditions (Single Words, Semantic Blocks, 

Sentences, and Narratives). Here, we analyzed evoked SNR and semantic representations for each 

of the four conditions in individual subjects. 

To estimate evoked SNR, we computed the reliability of voxel responses across repetitions of the 

same stimulus. Several different sources of noise can influence the variability of voxel responses 

across stimulus repetitions: magnetic inhomogeneity, voxel response variability, and variability in 

subject attention or vigilance. Because these sources are independent across stimulus repetitions, 

pooling voxel responses across repetitions averages out the noise and provides a good estimate of 

the evoked SNR. In this study, we used explainable variance (EV) as a measure of reliability and 

computed the EV for two repetitions of one run in each condition to estimate evoked SNR (see 

Methods).
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Figure 3 shows EV for the four conditions in one typical subject (S1) (see Extended Data Figure 3-1 

for voxels with significant EV; see Extended Data Figure 3-2 for unthresholded EV for subjects 2-4). 

In the Single Words condition, appreciable EV is only found in a few scattered voxels located in 

bilateral primary visual cortex, STS, and IFG (Figure 3a). The number of voxels with significant EV 

(p<0.05, FDR-corrected) in the Single Words condition is 256, 1198, 0, and 0 for subjects 1-4, 

respectively. A similar pattern is seen in the Semantic Blocks condition, where appreciable EV is only 

found in a few scattered voxels located in bilateral primary visual cortex, STS, and IFG (Figure 3b). 

The number of voxels with significant EV (p<0.05, FDR-corrected) in the Semantic Blocks condition is

324, 1613, 1201, and 0 for subjects 1-4, respectively. In contrast, both the Sentences and Narratives 

conditions produce high EV in many voxels located in bilateral visual, parietal, temporal, and 

prefrontal cortices (Figures 3c and 3d). The number of voxels with significant EV (p<0.05, FDR-

corrected) in the Sentences condition is 4225, 11697, 2359, and 7251 for subjects 1-4, respectively. 

The number of voxels with significant EV (p<0.05, FDR-corrected) in the Narratives condition is 7622,

8062, 7059, and 2931 for subjects 1-4, respectively. Together, these results show that increasing 

context increases evoked SNR in bilateral visual, temporal, parietal, and prefrontal cortices.

To quantify semantic representation, we used a voxelwise encoding model (VM) procedure and a 

semantic feature space to identify voxels that represent semantic information in each condition 

(Figure 2). We first extracted semantic features from the stimulus words in each condition separately 

(see Methods). We then used banded ridge regression (Nunez-Elizalde et al., 2019) to fit a separate 

semantic encoding model for each voxel, subject, and condition. Here we refer to voxels that were 

predicted significantly by the semantic model (see Methods) as “semantically selective voxels.” 

Figure 4 shows semantic model prediction accuracy for semantically selective voxels for the four 

conditions in one typical subject (S1) (see Extended Data Figure 4-1 for additional subjects; see 

Extended Data Figure 4-2 for unthresholded semantic model prediction accuracy for all subjects). In 
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the Single Words condition, no voxels are semantically selective in any of the four subjects (Figure 

4a, p<0.05, FDR corrected). In the Semantic Blocks condition, scattered voxels along the left STS 

and left IFG are semantically selective (Figure 4b, p<0.05, FDR corrected). The number of 

semantically selective voxels (p<0.05, FDR corrected) in the Semantic Blocks condition is 652, 0, 

811, and 0 for subjects 1-4, respectively. In the Sentences condition, voxels in the left angular gyrus, 

left STG, bilateral STS, bilateral ventral precuneus, bilateral ventral premotor speech area (sPMv), 

bilateral superior frontal sulcus (SFS), and left superior frontal gyrus (SFG) are semantically selective 

(Figure 4c, p<0.05, FDR corrected). The number of semantically selective voxels (p<0.05, FDR-

corrected) in the Sentences condition is 1626, 3099, 0, and 0 for subjects 1-4, respectively. Finally, in 

the Narratives condition, voxels in bilateral angular gyrus, bilateral STS, bilateral STG, bilateral 

temporal parietal junction (TPJ), bilateral sPMv, bilateral ventral precuneus, bilateral SFS, bilateral 

SFG, bilateral inferior frontal gyrus, left inferior parietal lobule (IPL), and left posterior cingulate gyrus 

are semantically selective (Figure 4d, p<0.05, FDR corrected). The number of semantically selective 

voxels (p<0.05, FDR-corrected) in the Narratives condition is 4505, 7340, 7607, and 1791 for 

subjects 1-4, respectively. Together, these results suggest that increasing context increases the 

representation of semantic information in bilateral temporal, parietal, and prefrontal cortices. These 

results also suggest that this effect is highly variable in individual subjects for non-natural language 

stimuli (Semantic Blocks, Sentences) but not for natural language stimuli (Narratives).

The results presented in Figure 4 were obtained in each subject’s native brain space. To determine 

how the representation of semantic information varies across subjects for the four conditions, we 

transformed the semantic encoding model results obtained for each subject into the standard MNI 

brain space (Deniz et al., 2019). Figure 5 shows the mean unthresholded model prediction accuracy 

across subjects (Figure 5a-d) and the number of subjects for which each voxel is semantically 

selective (Figure 5e-h) for each condition. In the Single Words condition, no voxels are semantically 

selective in any of the four subjects (Figure 5a and 5e, p<0.05, FDR corrected). In the Semantic 
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Blocks condition, scattered voxels in left STS are semantically selective in two out of four subjects 

(Figure 5b and 5f, p<0.05, FDR corrected). In the Sentences condition, voxels in the bilateral STS, 

left STG, bilateral ventral precuneus, bilateral angular gyrus, bilateral SFS, and bilateral premotor 

cortex are semantically selective in two out of four subjects (Figure 5c and 5g, p<0.05, FDR 

corrected). Finally, in the Narratives condition, voxels in bilateral angular gyrus, bilateral STS, right 

STG, right anterior temporal lobe, bilateral SFS and SFG, left IFG, left IPL, bilateral ventral 

precuneus, and bilateral posterior cingulate gyrus are semantically selective in all subjects (Figure 5d 

and 5h, p<0.05, FDR corrected), and voxels in left STG and right IFG are semantically selective in 

three out of four subjects (Figure 5d and 5h, p<0.05, FDR corrected). These results are consistent 

with those in Figure 4, and they suggest that increasing stimulus context increases the representation

of semantic information across the cortical surface at the group level. In addition, this effect is 

inconsistent across individual subjects for non-natural stimuli (Semantic Blocks, Sentences) but not 

natural stimuli (Narratives). 

Because the Narratives condition contains more contextual information than the other three 

conditions, we hypothesized that we would find more semantically selective voxels in the Narratives 

condition than in the other three conditions. To test this, we calculated the difference in the number of

semantically selective voxels between the Narratives condition and each of the other three conditions.

The difference between the Narratives and Single Words conditions is 4505, 7340, 7607, and 1791 

voxels for subjects 1-4, respectively (p<0.05 for all subjects). The difference between the Narratives 

and Semantic Blocks conditions is 3853, 7340, 6796, and 1791 voxels for subjects 1-4, respectively 

(p<0.05 for all subjects). Finally, the difference between the Narratives and Sentences conditions is 

2879, 4241, 7607, and 1791 voxels for subjects 1-4, respectively (p<0.05 for all subjects). The 

difference between the Narratives and Single Words conditions partly reflects the fact that most 

voxels have low evoked SNR in the Single Words condition and high evoked SNR in the Narratives 

condition (Figure 3). Because it is impossible to model noise, differences in evoked SNR across 
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conditions directly affect the number of voxels that achieve a significant model fit. The difference 

between the Narratives and Semantic Blocks conditions also partly reflects differences in evoked 

SNR -- for most voxels, evoked SNR is low in the Semantic Blocks condition and high for the 

Narratives condition (Figure 3). In contrast, the evoked SNR is high for many voxels in both the 

Narratives and the Sentences conditions (Figure 3), so the difference in the number of semantically 

selective voxels is unlikely to be due to differences in evoked SNR. Instead, this result suggests that 

semantic information is represented more widely across the cortical surface in the Narratives 

condition than in the Sentences condition. 

Discussion

The aim of this study was to determine whether and how context affects semantic representations in 

the human brain. Our results show that both evoked SNR and semantic representations are affected 

by the amount of context in the stimulus. First, stimuli with relatively more context (Narratives, 

Sentences) evoke brain responses with higher SNR compared to stimuli with relatively less context 

(Semantic Blocks, Single Words) (Figure 3). Second, increasing the amount of context increases the 

representation of semantic information across the cortical surface at the group level (Figures 4, 5). 

However, in individual subjects, only the Narratives condition consistently increased the 

representation of semantic information compared to the Single Words condition (Figures 4, 5). These 

results imply that neuroimaging studies that use isolated words or sentences do not fully map the 

functional brain representations that underlie natural language comprehension.

Our observations that increasing context increases both the evoked SNR and the cortical 

representation of semantic information at the group level are fully consistent with results from 

previous neuroimaging studies. Several previous studies found that stimuli with more context evoke 

larger, more widespread patterns of brain activity (Mazoyer et al., 1993; Xu et al., 2005; Jobard et al., 

2007), that brain activity evoked for individual words is modulated by context (Just et al., 2017), and 
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that brain activity evoked by stimuli with more context are more reliable than those evoked by stimuli 

with less context (Lerner et al. 2011). Furthermore, previous studies that used narrative stimuli 

(Wehbe et al., 2014; Huth et al., 2016; Pereira et al., 2018; Deniz et al., 2019; Hsu et al., 2019; 

Popham et al., 2021) identified many more voxels involved in semantic processing than studies that 

used isolated words or sentences (for reviews see (Binder et al., 2009; Price, 2010, 2012)). 

However, there are several important differences between the results we reported here and those 

reported in previous neuroimaging studies. First, the 2011 study by Lerner et al. only found voxels 

with reliable responses in bilateral temporal gyrus and posterior inferior frontal sulcus when using 

isolated sentences. In contrast, we found many voxels with high EV across bilateral temporal, 

parietal, and frontal cortices in the Sentences condition (Figure 3). Second, past studies that used 

isolated sentences found left IFG involved in semantic processing (Constable et al., 2004; Rodd et 

al., 2005; Humphries et al., 2007). In contrast, we did not find any semantically selective voxels in the 

Sentences condition for two out of four subjects. Of the remaining two subjects, only one subject had 

semantically selective voxels in left IFG in the Sentences condition (Figures 4 and 5). Third, past 

studies that used isolated words found bilateral STS, bilateral lateral sulcus, left IFG, left MTG, and 

left ITG involved in semantic processing (Mazoyer et al., 1993; Booth et al., 2002; Xu et al., 2005; 

Jobard et al., 2007; Lerner et al., 2011). In contrast, we did not find any semantically selective voxels 

in the Single Words condition (Figures 4 and 5). Finally, one previous study looked at brain activity 

evoked by a stimulus conceptually similar to Semantic Blocks (Mollica et al., 2020). In the study, 

Mollica et al. (2020) used sentences that were scrambled such that nearby words could be combined 

into meaningful phrases. They found that the brain activity evoked by scrambled sentences was 

similar to the brain activity evoked by unscrambled sentences in left IFG, left middle frontal gyrus, left 

temporal lobe, and left angular gyrus. In contrast, we only found voxels that were semantically 

selective in both the Semantic Blocks and Sentences conditions in left STS (Figures 4 and 5).
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The inconsistencies between this study and past studies most likely stem from four major 

methodological differences between this study and those earlier studies. First, we avoided smoothing 

our data before performing analyses. We performed our analyses for each subject in their native brain

space, and we did not perform any spatial smoothing across voxels. In contrast, most previous 

studies performed normalization procedures to transform their data into a standard brain space and 

applied a spatial smoothing operation across voxels (Lindquist, 2008; Carp, 2012). Spatial smoothing 

and normalization procedures can incorrectly assign signal to voxels and average away meaningful 

signal and individual variability in language processing (Steinmetz and Seitz, 1991; Fedorenko and 

Kanwisher, 2009; Fedorenko et al., 2012; Huth et al., 2016; Deniz et al., 2019). Thus, brain regions 

identified by past studies may be more relevant at the group level than in individual subjects. These 

smoothing procedures likely contribute to the inconsistencies observed between past studies and this

study.

Second, we used an explicit computational model to identify semantically selective voxels. In 

contrast, most previous studies identified semantic brain regions by contrasting different experimental

conditions (Binder et al., 2008, 2009; Price, 2012). Although past studies designed their experimental 

conditions to isolate brain activity involved in semantic processing (Binder et al., 2008, 2009), there 

could be unexpected differences unrelated to semantic processing between the conditions. For 

example, experiments that contrast a semantic task with a phonological task (Binder et al., 2008, 

2009) may have task difficulty as a confound. As a result, it is possible that some semantic brain 

areas identified by past studies are actually involved in processing the unexpected differences rather 

than semantics. We would likely not have identified such brain areas in this study, since our semantic 

model only contains information about semantics. 

Third, we evaluated semantic model prediction accuracy on a separate, held-out validation dataset. In

contrast, most previous studies drew inferences from analyses performed on only one dataset without
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a validation dataset (Binder et al., 2009). Performing analyses on only one dataset can lead to 

inflated results that are overfit to the dataset (Soch et al., 2016). Thus, some semantic brain areas 

identified by past studies may only be relevant for the specific stimuli, experimental design, or data 

used in those studies. Such study-specific brain areas would not generalize to other studies, such as 

this study.

Finally, subjects in our study passively read the stimulus words, which allowed us to directly compare 

the Narratives condition with the other three conditions. In contrast, many past studies of semantic 

processing used active tasks involving lexical decisions (Binder et al., 2003), matching 

(Vandenberghe et al., 1996), or monitoring (Démonet et al., 1992). Active tasks are thought to 

increase subject engagement, which can increase evoked BOLD SNR. Thus, if we had used an 

active task, the effect of context on evoked SNR might have been even larger than the differences 

that we report here. In addition, different active tasks can affect semantic processing differently in the 

brain (Toneva et al., 2020). Therefore, task effects likely contributed to the inconsistencies observed 

between past studies and this study. 

Our study used only one semantic model, and that model determined which specific voxels were 

identified as semantically selective. Because this model likely captures some narrative information 

that is correlated with word-level semantic information, some of the brain activity predicted by our 

semantic model may actually reflect higher-level linguistic or domain-general representations 

(Fedorenko et al., 2012; Blank and Fedorenko, 2017). Furthermore, other studies have proposed 

alternative models that integrate contextual semantic information differently than the model used here

(Jain and Huth, 2018; Toneva and Wehbe, 2019), and it is possible that these other models might 

predict voxel activity better than the semantic model used here. The voxelwise modeling framework 

provides a straightforward method for evaluating alternative semantic models directly by construction 

of appropriate feature spaces. Therefore, a valuable direction for future research would be to examine
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other semantic models, and to include language models that explicitly account for factors such as 

narrative structure, metaphor, and humor.

In conclusion, our results show that increasing the amount of stimulus context increases both the 

SNR of evoked brain responses and the representation of semantic information in the brain at the 

group level. In addition, we find that only natural language stimuli (Narratives) consistently evoke 

widespread representation of semantic information across the cortical surface in individual subjects. 

These results imply that neuroimaging studies that use isolated words or sentences to study semantic

processing may provide a misleading picture of semantic language comprehension in daily life. 

Although natural language stimuli are much more complex than isolated words and sentences, the 

development and validation of the voxelwise encoding model framework for language processing 

(Huth et al., 2016; de Heer et al., 2017; Deniz et al., 2019; Popham et al., 2021) has made it possible 

to rigorously test hypotheses about semantic processing with natural language stimuli. To ensure that

the results of neuroimaging study generalize to natural language processing, we suggest that future 

studies of semantic processing should use more naturalistic stimuli.
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Figures and Figure legends

Figure 1: Stimulus conditions. The experiment contained four stimulus conditions that were based 

on the ten narratives used in Huth et al. (2016). The Single Words condition consisted of words 

sampled randomly from the ten narratives. The Semantic Blocks condition consisted of blocks of 

words sampled from clusters of semantically similar words from the ten narratives. There were 12 

distinct clusters of semantically similar words, and blocks of words were created by randomly 

sampling 114 words from one word cluster for each block. The Sentences condition consisted of 

sentences sampled randomly from the ten narratives. Finally, the Narratives condition consisted of 

the ten original narratives. 
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Figure 2: Voxelwise Modeling. Four subjects read words from the four stimulus conditions while 

BOLD responses were recorded. Each stimulus word was projected into a 985-dimensional word 

embedding space that was independently constructed using word co-occurrence statistics from a 

large corpus (Semantic Features). A finite impulse response (FIR) regularized regression model was 

estimated separately for each voxel in every subject and condition using banded ridge regression 

(Nunez-Elizalde et al. 2019). The estimated model weights were then used to predict BOLD 

responses to a separate, held-out validation stimulus. Model prediction accuracy was quantified as 

the correlation (r) between the predicted and recorded BOLD responses to the validation stimulus. 
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Figure 3. Explainable variance (EV) for the four conditions across the cortical surface. EV for 

the four conditions is shown for one subject (S1) on the subject’s flattened cortical surface. EV was 

computed as an estimate of the evoked signal-to-noise ratio (SNR). Here EV is given by the color 

scale shown in the middle, and voxels that have high EV (i.e., high evoked SNR) appear yellow. (LH: 

Left Hemisphere, RH: Right Hemisphere) The format is the same in all panels. a. EV was computed 

for the Single Words condition and is shown on the flattened cortical surface of subject S1. Scattered 

voxels in bilateral primary visual cortex, superior temporal sulcus (STS), and inferior frontal gyrus 

(IFG) have high EV. b. EV was computed for the Semantic Blocks condition. Similar to the Single 

Words condition, scattered voxels in bilateral primary visual cortex, STS, and IFG have high EV. c. 

EV was computed for the Sentences condition. Many voxels in bilateral visual, parietal, temporal, and

prefrontal cortices have high EV. d. EV was computed for the Narratives condition. Similar to the 

Sentences condition, voxels in bilateral visual, parietal, temporal, and prefrontal cortices have high 

EV. Together, these results show that increasing context increases evoked SNR in bilateral visual, 
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temporal, parietal, and prefrontal cortices. (See Extended Data Figure 3-1 for significant EV voxels for

subject S1 and Extended Data Figure 3-2 for EV for all subjects.) 
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Figure 4. Semantic model prediction accuracy for the four conditions across the cortical 

surface. Semantic model prediction accuracy in the four conditions is shown on the flattened cortical 

surface of one subject (S1; see Extended Data Figure 4-1 and 4-2 for all subjects). Voxelwise 

modeling was first used to estimate semantic model weights in the four conditions. Semantic model 

prediction accuracy was then computed as the correlation (r) between the subject’s recorded BOLD 

activity to the held-out validation stimulus and the BOLD activity predicted by the semantic model. In 

each panel, only voxels with significant semantic model prediction accuracy (p<0.05, FDR corrected) 

are shown. Prediction accuracy is given by the color scale in the middle, and voxels that have a high 

prediction accuracy appear yellow. Voxels for which the semantic model prediction accuracy is not 

statistically significant are shown in gray. (LH: Left Hemisphere, RH: Right Hemisphere) a. Semantic 

model prediction accuracy was computed for the Single Words condition. No voxels are significantly 

predicted in the Single Words condition. b. Semantic model prediction accuracy was computed for the

Semantic Blocks condition. The format is the same as panel a. Voxels in left STS and IFG are 
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significantly predicted. c. Semantic model prediction accuracy was computed for the Sentences 

condition. The format is the same as panel a. Voxels in left angular gyrus, left STG, bilateral STS, 

bilateral ventral precuneus, bilateral ventral premotor speech area (sPMv), bilateral superior frontal 

sulcus (SFS), and left superior frontal gyrus (SFG) are significantly predicted. d. Semantic model 

prediction accuracy was computed for the Narratives condition. The format is the same as panel a. 

Voxels in bilateral angular gyrus, bilateral STS, bilateral STG, bilateral temporal parietal junction 

(TPJ), bilateral sPMv, bilateral ventral precuneus, bilateral SFS, bilateral SFG, bilateral IFG, left 

inferior parietal lobule (IPL), and left posterior cingulate gyrus are significantly predicted. Together, 

these results suggest that increasing context increases the representation of semantic information in 

bilateral temporal, parietal, and prefrontal cortices.  
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Figure 5. Semantic model prediction accuracy across all subjects for the four conditions in 

standard brain space. Semantic model prediction accuracy was first computed for each subject and 

for each condition as described in Figure 4. These individualized predictions were then projected into
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the standard MNI brain space. a.-d. Average prediction accuracy across the four subjects is 

computed for each MNI voxel and shown for each condition on the cortical surface of the MNI brain. 

Average prediction accuracy is given by the color scale, and voxels with higher prediction accuracy 

appear brighter. a. In the Single Words condition, average prediction accuracy is low across the 

cortical surface. b. In the Semantic Blocks condition, average prediction accuracy is high in voxels in 

left anterior STS. c. In the Sentences condition, average prediction accuracy is high in bilateral STS, 

STG, anterior temporal lobe, angular gyrus, ventral precuneus, SFS, and SFG. d. In the Narratives 

condition, average prediction accuracy is very high in bilateral STS, STG, MTG, anterior temporal 

lobe, angular gyrus, IPL, ventral precuneus, posterior cingulate gyrus, Broca’s area, IFG, SFS, SFG, 

and left posterior inferior temporal sulcus. e.-h. For each condition, statistical significance of 

prediction accuracies was determined in each subject’s native brain space and then projected into the

MNI brain space. The number of subjects with significant prediction accuracy is shown for each voxel 

on the cortical surface of the MNI brain. The number of significant subjects is given by the color scale 

shown at bottom. Dark red voxels are significantly predicted in all subjects, and dark blue voxels are 

not significantly predicted in any subjects. e. In the Single Words condition, no voxels are 

semantically selective for any subjects. f. In the Semantic Blocks condition, scattered voxels in left 

STS are semantically selective in two out of four subjects. g. In the Sentences condition, voxels in the

bilateral STS, STG, angular gyrus, ventral precuneus, and SFS are semantically selective in two out 

of four subjects. h. In the Narratives condition, voxels in bilateral angular gyrus, bilateral STS, anterior

temporal lobe, SFS, SFG, IFG, ventral precuneus, posterior cingulate gyrus, and right STG are 

semantically selective in all four subjects. The results shown here are consistent with those in Figure 

4, and they suggest that increasing context increases the representation of semantic information 

across the cortical surface at the group level but not for individual subjects.
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Extended Data Figure legends

Figure 3-1. Significant explainable variance (EV) for the four conditions across the cortical 

surface. EV is shown for the four conditions on the flattened cortical surface of one subject (S1). EV 

was computed as an estimate of the evoked signal-to-noise ratio (SNR). Only voxels with significant 

EV (p<0.05, FDR corrected) are shown. EV is given by the color scale shown in the middle, and 

voxels that have high EV appear yellow. Voxels with EV values that are not statistically significant are

shown in gray. (LH: Left Hemisphere, RH: Right Hemisphere) a. EV was computed for the Single 

Words condition, and significant voxels are shown on the flattened cortical surface of subject S1. 

Scattered voxels in bilateral primary visual cortex, left STS, and left IFG have significant EV. b. Same 

as panel a. but for the Semantic Blocks condition. Similar to the Single Words condition, scattered 

voxels in bilateral primary visual cortex, left STS, and left IFG have significant EV. c. Same as panel 

a. but for the Sentences condition. Many voxels in bilateral visual, parietal, temporal, and prefrontal 
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cortices have significant EV. d. Same as panel a. but for the Narratives condition. Similar to the 

Sentences condition, voxels in bilateral visual, parietal, temporal, and prefrontal cortices have high 

EV.  
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Figure 3-2. Explainable variance (EV) for the four conditions across the cortical surface for 

subjects S2, S3, and S4. EV is shown for the four conditions on the flattened cortical surface of 

subjects S2, S3 and S4. The format is the same as Figure 3. EV was computed as an estimate of the

evoked signal-to-noise ratio (SNR). EV is given by the color scale shown in the middle, and voxels 

that have high EV (i.e., high evoked SNR) appear yellow. (LH: Left Hemisphere, RH: Right 

Hemisphere) Across all subjects, EV is low across most of the cortical surface in the Single Words 

and Semantic Blocks conditions. In contrast, EV is high for many voxels in bilateral visual, parietal, 

temporal, and prefrontal cortices in the Sentences and Narratives conditions.
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Figure 4-1. Semantic model prediction accuracy for the four conditions across the cortical 

surface for subjects S2, S3, and S4. Semantic model prediction accuracy in the four conditions is 

shown on the flattened cortical surface of subjects S2, S3 and S4. The format is the same as  Figure 

4. Voxelwise modeling was first used to estimate semantic model weights in the four conditions. 

Semantic model prediction accuracy was then computed as the correlation (r) between the subject’s 

recorded BOLD activity to the held-out validation story and the BOLD activity predicted by the 

semantic model. In each panel, only voxels with significant semantic model prediction accuracy 

(p<0.05, FDR corrected) are shown. Prediction accuracy is given by the color scale in the middle, and

voxels that have a high prediction accuracy appear yellow. Voxels with semantic model prediction 

accuracies that are not statistically significant are shown in gray. (LH: Left Hemisphere, RH: Right 

Hemisphere) In the Single Words condition, no voxels are significantly predicted in all subjects. In the 

Semantic Blocks condition, scattered voxels in left STS, left angular gyrus, left sPMv, and bilateral 

SFS are significantly predicted in subject S3. In the Sentences condition, voxels in bilateral STS, 

bilateral STG, bilateral angular gyrus, bilateral ventral precuneus, bilateral SFS and SFG, bilateral 

IFG, and bilateral sPMv are significantly predicted in subject S2. In the Narratives condition, voxels in 

bilateral angular gyrus, bilateral ventral precuneus, bilateral SFS and SFG, and right STS are 

significantly predicted in all three subjects. In addition, bilateral STG, left STS, bilateral Broca’s area 

and IFG, and bilateral sPMv are significantly predicted in subjects S2 and S3. 
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Figure 4-2. Un-thresholded semantic model prediction accuracy for the four conditions across

the cortical surface for all subjects. Un-thresholded semantic model prediction accuracy in the four

conditions is shown for all subjects on each subject’s flattened cortical surface. Voxelwise modeling 

was first used to estimate semantic model weights in the four conditions. Semantic model prediction 

accuracy was then computed as the correlation (r) between the subject’s recorded BOLD activity to 

the held-out validation story and the BOLD activity predicted by the semantic model. Prediction 

accuracy is given by the color scale in the middle, and voxels that have a high prediction accuracy 

appear yellow. (LH: Left Hemisphere, RH: Right Hemisphere) In the Single Words condition, 

prediction accuracy is high in scattered voxels in primary visual cortex in subjects S1 and S4. In the 

Semantic Blocks condition, prediction accuracy is high in voxels in left STS and left angular gyrus in 

subjects S1 and S3. In addition, prediction accuracy is high in voxels in left Broca’s area and IFG in 

subject S1, and prediction accuracy is high in voxels in bilateral SFS, SFG, and ventral precuneus in 

subject S3. In the Sentences condition, prediction accuracy is high in voxels in bilateral angular gyrus,

STS, STG, MTG, anterior temporal lobe, IFG, sPMv, SFS, SFG, and ventral precuneus in subjects S1

and S2. In the Narratives condition, prediction accuracy is high in voxels in bilateral angular gyrus, 

STS, STG, MTG, anterior temporal lobe, Broca’s area and IFG, sPMv, SFS, SFG, ventral precuneus, 

and posterior cingulate gyrus in all subjects.
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