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SUMMARY 

A hallmark of type 2 diabetes (T2D), a major cause of world-wide morbidity and mortality, is 

dysfunction of insulin-producing pancreatic islet β cells1–3. T2D genome-wide association 

studies (GWAS) have identified hundreds of signals, mostly in the non-coding genome and 

overlapping β cell regulatory elements, but translating these into biological mechanisms has 

been challenging4–6. To identify early disease-driving events, we performed single cell spatial 

proteomics, sorted cell transcriptomics, and assessed islet physiology on pancreatic tissue from 

short-duration T2D and control donors. Here, through integrative analyses of these diverse 

modalities, we show that multiple gene regulatory modules are associated with early-stage T2D 

β cell-intrinsic defects. One notable example is the transcription factor RFX6, which we show is 

a highly connected β cell hub gene that is reduced in T2D and governs a gene regulatory 

network associated with insulin secretion defects and T2D GWAS variants. We validated the 

critical role of RFX6 in β cells through direct perturbation in primary human islets followed by 

physiological and single nucleus multiome profiling, which showed reduced dynamic insulin 

secretion and large-scale changes in the β cell transcriptome and chromatin accessibility 

landscape. Understanding the molecular mechanisms of complex, systemic diseases 

necessitates integration of signals from multiple molecules, cells, organs, and individuals and 

thus we anticipate this approach will be a useful template to identify and validate key regulatory 

networks and master hub genes for other diseases or traits with GWAS data. 
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INTRODUCTION 

Type 2 diabetes mellitus (T2D), a metabolic disease defined by hyperglycemia, is a major cause 

of macro and microvascular morbidity and mortality for more than 460 million individuals 

worldwide1. Clinically heterogenous, T2D involves genetic, environmental, and physiologic 

components that impact multiple molecular pathways and tissues2,3. Initial management 

frequently involves diet and lifestyle alterations but often escalates to require multiple oral or 

injectable medications and ultimately exogenous insulin to lower blood glucose7,8. T2D is 

associated with obesity and age, both of which reduce peripheral tissue sensitivity to insulin; 

however, most individuals with insulin resistance do not develop T2D. Instead, the key defining 

feature of those who develop T2D is impaired insulin secretion7,9. Insulin is secreted 

endogenously by the β cell within the pancreatic islet. In addition to β cells, the islet also 

contains other endocrine cells (α, δ, γ, and ε), vascular structures (endothelial cells and 

pericytes), and immune cells, which collectively function as a mini-organ to control glucose 

homeostasis in a coordinated fashion10,11. While islet dysfunction is a hallmark of T2D, it 

remains unclear whether this is the result of an intrinsic β cell defect, a reduction in β cell 

number, systemic signals from altered levels of fatty acids, glucose, or lipids, or some 

combination of these. 

T2D has a strong genetic component with more than 400 signals identified through genome-

wide association studies (GWAS)4. Loci linked to T2D through GWAS are enriched in β cell-

specific open chromatin regions, suggesting impaired β cell processes as a key determinant for 

whether T2D develops and how quickly it progresses5,6. Further, 90% of GWAS-identified single 

nucleotide polymorphisms (SNPs) are located in non-coding parts of the genome, and they are 

enriched in predicted islet enhancer regions where many likely modulate cell-specific gene 

expression regulatory networks by altering transcription factor binding12–16. How personalized 

genetic variation causes changes in cell-specific gene and protein expression, tissue 

architecture, and cellular physiology in T2D islets is not well understood. 

Postulated T2D disease processes include β cell loss and/or dedifferentiation, endoplasmic 

reticulum (ER) stress, amyloid deposition, oxidative stress, glucotoxicity, lipotoxicity, and islet 

inflammation17–20. These processes have been primarily studied in rodent models of T2D due to 

difficulty in obtaining and studying human pancreatic tissue and islets. Importantly, human islets 

show several key differences from mouse islets, including endocrine and non-endocrine cell 

composition and arrangement, basal and stimulated insulin secretion, response to dyslipidemia 
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and hyperglycemia, and expression of key islet-enriched transcription factors21–24, highlighting 

the need for studies to define initiating and sustaining mechanisms of islet dysfunction in 

primary human islets. 

Recent advances in cadaveric pancreas procurement and processing have increased 

availability of human tissue for histological analysis as well as ex vivo molecular and functional 

profiling of islets isolated from individuals with diabetes. However, many studies utilize only 

tissue or islets, and further, do not differentiate study outcomes based on T2D duration. Since 

different stages of T2D may involve different processes, studies that combine cases with 

different T2D duration make it difficult to discern cellular and molecular causes from disease 

consequences. The association of physiological measurements with transcriptomic profiles of 

islet cells have begun to identify key pathways for β cell function25,26, but integration of these 

studies with disease stage, tissue-based analyses, and genetic risk remains a challenge. 

Here, we used an integrated approach to study the pancreas and isolated islets from donors 

with short-duration T2D and nondiabetic controls to identify disease-driving molecular defects 

early in the course of T2D. We analyzed islet function both ex vivo and in vivo using a transplant 

system and performed comprehensive transcriptional analysis by bulk RNA-sequencing (RNA-

seq) of whole islets and purified β cells and α cells, correlating these profiles to functional 

parameters and GWAS variants using weighted gene co-expression network analysis 

(WGCNA). Concurrently, we described changes in the pancreatic islet microenvironment via 

traditional and multiplexed imaging approaches, including assessing spatial cell relationships. 

We found that dysfunction in short-duration T2D is defined primarily by β cell-intrinsic defects, 

including an RFX6-governed and GWAS-enriched transcriptional regulatory network.  
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RESULTS 

Identification, collection, and processing of short-duration T2D donor pancreata 

To identify early, disease-driving mechanisms in islets, we focused on short-duration T2D as 

defined by a combination of disease duration and treatment approach (Fig. 1a). Using a 

national network, we identified high-quality organs to ensure minimal ischemic time and 

consistently applied multiple tissue processing and fixation methods, including simultaneous 

collection of isolated islets and tissue from the same pancreas when possible. Twenty 

pancreata were obtained from individuals with T2D aged 37-66y (mean 52y) with T2D duration 

of 0-10y (mean 3.5y). Of these donors, 25% were without pharmaceutical treatment (HbA1c 

range 6.2-9.9; mean 7.6) and 75% were on diabetes medication, mostly oral agents (HbA1c 

range 6.3-11.2; mean 8.0) (Fig. 1a). Pancreata from nondiabetic (ND) donors (n=17) were also 

collected and processed for multi-modality study. Partnerships with the Integrated Islet 

Distribution Program (IIDP) and the Alberta Diabetes IsletCore provided access to additional 

islets from ND donors (n=19) to assist with matching of donor characteristics. Detailed 

information, including sample types and experimental usage for each case, is available in 

Extended Data Table 1. Application of multiple modalities allowed for integrative analysis of ex 

vivo and in vivo islet function, tissue architecture and microenvironment including spatial 

relationships, and cell type-specific gene expression (Fig. 1b). 

Short-duration T2D islets show reduced stimulated insulin secretion 

To investigate islet function, we assessed dynamic hormone secretion in isolated islets from 

age- and body mass index (BMI)-matched T2D and ND donors (Extended Data Fig. 1a-1b) by 

a standardized perifusion approach that interrogates multiple steps of the insulin secretory 

pathway and has been adopted by the Human Islet Phenotyping Program of the IIDP to assess 

over 400 human islet preparations27. When normalized by islet volume, stimulated insulin 

secretion was substantially reduced in response to high glucose, cyclic AMP (cAMP)-evoked 

potentiation, and potassium chloride (KCl)-mediated depolarization (Fig. 1c-1f and Extended 
Data Fig. 1c). Both first and second phases of insulin secretion were reduced, with the first 

phase showing a more significant reduction (Extended Data Fig. 1d-1e). Inhibition of insulin 

secretion by low glucose and epinephrine was similar between ND and T2D islets, as was 

insulin content (Fig. 1g and Extended Data Fig. 1f); as such, normalization of response by islet 

insulin content showed similar reductions in stimulated insulin secretion but also showed 
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reduced basal insulin secretion (Extended Data Fig. 1g-1l). Together, these data suggest that 

short-duration T2D islets ex vivo maintain insulin production and storage but have defects at 

multiple steps of the insulin secretory pathway, including those distal to glucose metabolism, 

which persist after islet isolation from the in vivo environment.  

In contrast to insulin secretion, neither basal nor stimulated glucagon secretion was different in 

T2D islets when normalized by islet volume (Fig. 1h-1h and Extended Data Fig. 1m), and both 

ND and T2D islets showed glucose-mediated suppression of glucagon secretion (Extended 
Data Fig. 1n). Glucagon content was similar between islets from ND and T2D individuals and 

normalization by glucagon content showed similar secretion dynamics (Fig. 1L and Extended 
Data Fig. 1o-1t). While there is substantial evidence of dysregulated glucagon secretion in 

T2D28,29, these data suggest that either α cell dysfunction is not present in the early stages of 

T2D or defects are present in vivo but not maintained after islet isolation.  

Correlation of donor attributes to functional metrics highlighted a significant negative correlation 

between donor HbA1c and stimulated insulin secretion (r<-0.40, p<0.05; Fig. 1m). To test 

whether the systemic environment contributed to β cell dysfunction in T2D islets, we 

transplanted T2D or ND islets from a subset of donors into normoglycemic, non-insulin resistant 

immunodeficient NOD-scid-IL2rγnull (NSG) mice (Fig. 1n). After six weeks in this environment, 

T2D islets secreted less human insulin than ND islets, especially after stimulation with 

glucose/arginine (Fig. 1o, average per donor and Extended Data Fig. 1u, individual mice), 

consistent with ex vivo findings of impaired stimulated insulin secretion. In sum, these 

experiments highlight that β cell dysfunction in early T2D persists in a normoglycemic, non-

insulin resistant environment and suggest that intrinsic β cell dysregulation and/or cellular and 

molecular alterations within the islet microenvironment are key features driving reduced insulin 

secretion. 

Broad transcriptional dysregulation revealed through integrated transcriptome analysis of islets 

and purified α and β cells 

To assess both the β and α cell-specific transcriptional landscapes as well as global islet 

dysregulation in the short-duration T2D cohort, we purified β and α cells by fluorescence-

activated cell sorting (FACS) using well-characterized cell surface antibodies and hand-picked 

isolated islets for RNA-sequencing (Fig. 1p and Extended Data Fig. 1v). Studying sorted β and 

α cells together with whole islets, which has not been done in prior studies, allowed detailed 
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appreciation of both cell type-specific and islet-wide transcriptional changes in T2D. As 

collection of these rare tissues spanned more than 3.5 years, we used a latent variable analysis 

to discern biological variation from technical variation and then examined the datasets by both 

differential gene expression (Fig. 1p and Extended Data Fig. 1w, 2a-2f) and gene network 

analyses. Differential expression analysis yielded 352, 248, and 564 differentially expressed 

genes in β cells, α cells, and whole islets, respectively (Extended Data Fig. 2g-2i), highlighted 

by genes involved in stimulated insulin secretion in β cells (G6PC2, GLP1R) and changes in 

non-endocrine components in islets (CXCL8, ADAMTS4). Numerous metabolic and 

mitochondrial, exocytosis, ion transport and protein secretion pathways were enriched in T2D β 

cells (Extended Data Fig. 2j), while α cell gene changes were in amino acid and steroid 

signaling pathways and regulation of blood vessel morphology (Extended Data Fig. 2k). In T2D 

islets, cytokine signaling and immune terms were enriched, as were pathways related to ER 

processing and unfolded proteins (Extended Data Fig. 2l). These were less prominent in 

isolated α or β cells (Extended Data Fig. 2j-2k). Despite diverse differentially expressed genes 

across sample types (Fig. 1q), there was considerable overlap at the level of biological 

pathways in which these genes are involved – among the most enriched across samples were 

hormone secretion, lipid metabolism, and cilia organization (Fig. 1r). In sum, analysis of 

differential gene expression of sorted β and α cells and whole islets emphasizes common 

dysregulated pathways among sample types as well as cell-specific transcriptomic changes. 

Short-duration T2D donors do not show significant changes in endocrine cell mass 

To understand the context in which these functional and transcriptomic changes occur, we 

comprehensively evaluated the islet architecture in pancreatic tissue from T2D donors. High-

throughput traditional immunohistochemistry (IHC) was applied across pancreas head, body, 

and tail regions for the entire donor cohort, and in parallel, a subset of samples was analyzed 

with a 28-marker panel using co-detection by indexing (CODEX) (Fig. 2a). This multiplexed 

technique for fluorescence-based imaging of large tissue sections without tissue destruction 

provided simultaneous visualization of multiple tissue compartments as well as spatially 

resolved cellular phenotypes defined by combined expression/exclusion of multiple markers 

(Extended Data Fig. 3a-3b). 

Because changes in endocrine cell number or ratio could explain the reduced insulin secretion 

in T2D islets, we first evaluated β, α, and δ cell populations. Multiple analyses across pancreas 

head, body, and tail, including evaluation of islet cell area and islet cell count within entire cross-
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sections, revealed that β and α cell mass in short-duration T2D were similar to controls (Fig. 2b 
and Extended Data Fig. 3c-3h), supporting the similar insulin content in the two groups of 

islets. We additionally assessed cell death and found apoptotic and/or necrotic cells to be 

exceedingly rare in both ND and T2D islets (data not shown). Donor-to-donor variability in β and 

α cell ratio was notable underscoring the challenge in working with heterogeneous human 

tissues. CODEX permitted simultaneous assessment of rarer γ and ε cell populations as well as 

identification of cells positive for chromogranin A (CHGA) but negative for all hormones, 

previously suggested to define “dedifferentiated” β cells30,31. These cells were rare but present in 

both ND and T2D at similar proportions (Fig. 2c-2d and Extended Data Fig. 3i). Evidence of 

amyloid deposits, the abnormal buildup of β cell-produced islet amyloid polypeptide (IAPP) that 

manifests in T2D, was detectable in 75% of donors in this cohort but with variable prevalence 

and did not correlate to endocrine cell abundance or area (Extended Data Fig. 4a-4b). Thus, 

tissue analysis suggests that changes in endocrine cell numbers, including β cell mass, are not 

a substantial component of short-duration T2D. Instead, these data point to reduction in β cell 

function as the predominant feature of this disease stage. 

Reduced capillary size, increased T cell populations, and altered cellular neighborhoods 

highlight alterations in T2D islet microenvironment 

Adequate islet vascularization and blood flow are critical for sensing and delivery of hormones 

to systemic circulation, so we next investigated islet capillary endothelial cells (ECs), the most 

abundant non-endocrine islet cell population (Fig. 2e and Extended Data Fig. 3j). Pathway 

analysis from RNA-seq highlighted enrichment in T2D samples for processes controlling blood 

vessel size, particularly in α cells, as well as regulation of growth factors critical to islet capillary 

maintenance (Fig. 2f and Extended Data Fig. 4c). Morphometric analysis demonstrated that 

capillary size, but not density, was reduced in T2D islets (Fig. 2h-2i), resulting in a greater 

distance of endocrine cells to the nearest capillary in T2D islets (Fig. 2i). Interestingly, α and δ 

cells were closer to capillaries than β cells in both ND and T2D islets (Extended Data Fig. 4d), 

aligning with α cells expressing more angiogenic ligands and receptors than β cells (Extended 
Data Fig. 4e). Phenotypic markers CD34, a cell adhesion molecule that is prevalent in 

progenitor capillary ECs32, and HLA-DR, a major histocompatibility class II (MHCII) receptor, 

were unchanged in T2D ECs (Extended Data Fig. 4f).  

In addition to vasculature-related processes, transcriptional profiling also revealed enrichment in 

T2D β cells and islets for cytokine signaling and immune cell recruitment pathways (Fig. 2j and 
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Extended Data Fig. 4g). Macrophages, the largest population of intraislet immune cells, did not 

differ between ND and T2D based on either abundance or phenotypic classification by 

proinflammatory (HLA-DR+) or anti-inflammatory (CD163 and/or CD206+) markers (Fig. 2k-2m 

and Extended Data Fig. 4h). T cells were rarer in the islet than macrophages but elevated in 

T2D islets across CD4+ (helper), CD8+ (cytotoxic), and CD4– CD8– (double negative) 

phenotypes (Fig. 2n and Extended Data Fig. 4i). HLA-DR+ T cells, previously observed in T2D 

islets33, were not increased, though they were more abundant in a subset of T2D donors 

(Extended Data Fig. 4j). High dimensional data analysis using Uniform Manifold Approximation 

and Projection (UMAP) of all identified cell types within individually annotated islets revealed a 

high degree of overlap between islets from ND and T2D donors, emphasizing that although 

there are subtle differences, the overall islet composition is similar (Fig. 2o). 

Because analyses of islet composition did not consider the spatial organization of islet cells, we 

next applied two neighborhood analyses in parallel to annotated islet regions in an effort to 

identify differential cell architecture. A community detection algorithm tailored to islet cell 

frequencies, termed CF-IDF, categorized six different cellular neighborhoods (CNs), clusters of 

cells with distinct cell type compositions that were defined by the most enriched cell type (CN0-

CN5; Fig. 2p). A modified k-means clustering algorithm previously developed for CODEX data 

corroborated CN classifications (Extended Data Fig. 4k), and both approaches found similar 

CN distribution between ND and T2D islets (Extended Data Fig. 4l). ECs and pericytes were 

depleted in β CNs (CN1) of T2D islets (Fig. 2q and Extended Data Fig. 4m), consistent with 

our findings of decreased proximity between β cells and ECs in T2D. In contrast, T2D β CNs 

had higher β cell enrichment than ND (Fig. 2q). We also asked whether cell type frequencies 

correlated between CNs, i.e., if there was evidence for connectivity between spatially distinct 

regions (Fig. 2r). Vascular cell frequencies were correlated between more CNs in T2D 

compared to ND islets, while T cell frequencies were specifically correlated between EC and α 

CNs as well as β and macrophage CNs in T2D (Fig. 2s and Extended Data Fig. 4n), congruent 

with findings by islet RNA-seq that EC-specific and immune signals were upregulated in T2D. 

Together, these results demonstrate modest disruptions of islet organization by vascular and 

immune cells in early-stage T2D.  
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Co-expression network analyses identified gene modules related to donor and islet traits and 

revealed disrupted metabolism and cilia homeostasis in T2D  

To understand the key gene networks that were contributing to β cell dysfunction in short-

duration T2D, we performed weighted gene co-expression network analysis (WGCNA) on α cell, 

β cell, and islet samples (Extended Data Fig. 6). This approach created modules 

(“eigengenes”) of up to 2,000 genes each, labeled by sample type and numbered consecutively 

(β cells, modules β00-β48; α cells, α00-α54; islets, i00-i67). Collapsing the expression patterns 

across >14,000 genes into a smaller number of modules reduced gene-level multiple testing 

burden and enabled association of transcriptomic profiles with sample features including donor 

traits, islet functional parameters from the same donors defined by dynamic islet perifusion, and 

enrichment of open chromatin peaks to overlap GWAS variants (β cells: Fig. 3a-3e; α cells: 
Extended Data Fig. 6a-6e; islets: Extended Data Fig. 6f-6i). Modules with significant 

correlations were then queried, based on their member genes, for ontology terms to determine 

biological processes related to significant associations. 

Several β cell modules were significantly (FDR < 5%) associated with whole-body glucose 

homeostasis (HbA1c), and some of these, such as β05 and β07, were also significantly 

enriched for genes differentially expressed in T2D β cells (Fig. 3b). Both β05 and β07 contained 

genes related to carbohydrate, lipid, and amino acid metabolism (Fig. 3a and 3e), with β07 

significantly correlating with KCl-mediated insulin secretion (r=0.49, p=0.027; Fig. 3c). Modules 

significantly positively correlated with glucose-stimulated insulin secretion (GSIS) included β01, 

β03, and β48, all enriched for metabolism-related processes, while β06 and β08, both enriched 

for cilium movement and motility, were significantly negatively correlated to GSIS (Fig. 3c and 

3e). Importantly, aligning functional correlations with enrichment for GWAS loci (Fig. 3d) 

enabled identification of modules that are more likely to be disease-causing (e.g., β01, β03) as 

opposed to those without GWAS enrichment (e.g., β48) that may instead represent disease-

induced transcriptional changes. Thus, this approach allows linking of transcriptional profiles to 

islet physiological parameters and facilitates prioritization of signatures based on T2D genetic 

risk.  

Though α cell modules showed weaker correlations to donor and functional traits than did β 

cells, several modules were significantly enriched for cilia-related genes and α08 was also 

enriched for α cell genes differentially expressed in T2D α cells (Extended Data Fig. 6a-6b). 

Both α08 and α16 significantly inversely correlated with epinephrine-mediated glucagon 
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secretion and were closely related across functional parameters (Extended Data Fig. 6c), with 

α08 showing significant enrichment for T2D GWAS variants (Extended Data Fig. 6d). In 

addition to genes enriched for cilia processes, α08 also included genes related to cytokine 

signaling and immune response (Extended Data Fig. 6e). Similarly, several islet modules 

showed notable enrichment for immune- and matrisome-related genes (Extended Data Fig. 6f); 
of these, i25 correlated positively with T2D status and inversely with basal insulin secretion and 

GSIS, while i26 correlated inversely with KCl-mediated insulin secretion (Extended Data Fig. 
6g-6h). Genes in both modules corresponded to cell-cell communication, including response to 

stimulus (i26) and leukocyte activation and migration (i25) (Extended Data Fig. 6i). Overall, 

these patterns suggest that β cell function may be influenced by α and other non-endocrine cells 

residing within the islet. 

Interestingly, cilia-related processes not only defined key functionally correlated modules in 

every sample type, but they were also some of the most enriched pathways across all samples 

based on differential gene expression (Extended Data Fig. 6j). Further β06, β08, and α08 were 

enriched for T2D and related trait GWAS loci, suggesting a potential casual role (Fig. 3d and 

Extended Data Fig. 6d). We compared fold change of validated cilia-related genes34 and 

determined that the majority were expressed at higher levels in T2D compared to ND for both β 

and α cells (Fig. 3f). To investigate whether these changes translated to cellular alterations, we 

stained tissue sections from the same donors with cilia marker ARL13B (Fig. 3g). Total cilia 

area within the islet was greater in T2D tissue, attributable to a higher cilia density with 

unchanged cilia size (Fig. 3h), consistent with elevations in cilia transcripts. Thus, integration of 

functional, transcriptional, genetic, and tissue-based analyses highlights cilia-related processes 

as playing a key role in early T2D.  

β cell hub gene RFX6 is reduced in T2D and controls glucose-stimulated insulin secretion 

The network approach of WGCNA enables identification of “hub” genes that are highly 

connected, i.e., whose expression highly correlates with many other genes, both within and 

across modules, making it a powerful analysis to understand central transcriptional regulators 

that may be driving β cell dysfunction in short-duration T2D (Fig. 4a). Of the highly connected β 

cell genes, RFX6 stood out as a key islet-enriched transcription factor that has been linked to 

both monogenic and polygenic forms of diabetes15,35,36 and thus is in prime position to exert 

disproportionate influence on the β cell transcriptional state. RFX6 was more highly connected 

than other islet-enriched transcription factors specifically in β cells (Fig. 4a-4b and Extended 
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Data Fig. 7a-7d) and was one of the most reduced islet-enriched transcription factors at the 

transcript level in T2D β cells (Fig. 4c). Importantly, RFX6 is a member of module β01, which 

had the strongest positive association with high glucose-stimulated insulin secretion and was 

among the most significantly enriched for both GWAS variants and RFX binding motifs (Fig. 3c-
3d and 4d). Immunohistochemistry analysis revealed a reduction in number of β cells 

expressing RFX6 in T2D (Fig. 4e-4f). Together, these data support RFX6 as a critical hub gene 

in β cells that may contribute to the functional deficits observed in short-duration T2D. 

To determine the role of RFX6 in adult human β cell function in an islet-like context, we used 

shRNA knockdown in a primary human pseudoislet system that allows for functional and 

transcriptomic assessment (Fig. 4g). Scramble shRNA (‘control’) and RFX6 shRNA (‘shRFX6’) 

pseudoislets exhibited similar size and morphology, and preferential β cell transduction resulted 

in β cell RFX6 knockdown that did not change β or α cell proportion (Fig. 4h-4i and Extended 
Data Fig. 7e-7g), suggesting that acute (6-day) reduction of RFX6 expression does not lead to 

β cell loss. Following RFX6 knockdown, dynamic insulin secretion in the presence of three 

secretagogues (high glucose, high glucose + IBMX, and KCl) was significantly blunted, similar 

to that seen in T2D islets (Fig. 5j-5k). Normalization to insulin content, which was greater in 

shRFX6 pseudoislets, made this secretory response even more prominent (Extended Data Fig. 
7h-7j). In sum, not only is RFX6 decreased in T2D β cells, but the results of targeted 

knockdown are consistent with the RFX6-containing module β01 association with glucose-

stimulated insulin secretion (Fig. 3d) and strongly implicate RFX6 as a major regulator of 

stimulated insulin secretion. 

RFX6 knockdown alters the β cell chromatin and transcriptional landscape and downregulates 

secretory vesicle components 

To determine the molecular mechanism by which RFX6 knockdown impacted insulin secretion, 

shRFX6 and control pseudoislets (n=7 matched donors) were multiplexed using a blocked study 

design and processed for single nucleus multiome profiling (Fig. 5a). Single nucleus (sn)RNA 

and snATAC reads were collected and filtered to yield 15,825 (RNA) and 5,706 (ATAC) high-

quality nuclei for downstream analysis (Extended Data Fig. 8a). Islet cell types were resolved 

by clustering (Fig. 5b-5c and Extended Data Fig. 8b) where we found representation of all 

major cell types across all donors (Extended Data Fig. 8c) and equal distribution between 

shRFX6 and control constructs (Fig. 5d). Consistent with the previously observed preferential 
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adenoviral targeting of β relative to α cells, fluorescent reporter expression was much higher in 

β cell nuclei than in α cell nuclei (Fig. 5e). 

Supporting the role of RFX6 as a major β cell regulator, 13% of total detected genes were 

differentially expressed in β cell nuclei compared with <3% in other cell types (Fig. 5f). Nuclear 

RFX6 was not among those reduced, consistent with shRNA silencing occurring in the 

cytoplasm. Differentially expressed genes included those encoding cytoskeletal and 

scaffold/adaptor proteins (11% of those classified), membrane traffic proteins (4%), and gene-

specific transcriptional regulator or chromatin/chromatin-binding or -regulatory proteins (13%) 

(Fig. 5g). Upregulated genes were enriched for actin filament-based movement and synaptic 

signaling, while downregulated genes were enriched for membrane trafficking, autophagy, and 

ciliary pathways (Fig. 5h-5i). To investigate overlap in differentially expressed genes between 

shRFX6 β cell nuclei and sorted T2D β cells, we compared the top 1,000 most significantly 

differential genes in each group and observed common pathway enrichment related to 

microtubule cytoskeleton organization, ion transport, and regulation of protein secretion (Fig. 
5j). Also of note, shRFX6 β cell nuclei differentially expressed genes were overrepresented in 

WGCNA module β22 (Extended Data Fig. 8d) that was enriched for T2D GWAS variants and 

RFX binding motifs. Genes in this module corresponded to cellular membrane and vesicle 

components, mirroring pathways dysregulated in shRFX6 β cell nuclei (Extended Data Fig. 8e) 

and further implicating exocytosis as a target of RFX6-mediated dysfunction in T2D β cells.  

We next sought to identify the landscape of chromatin alterations in shRFX6 β cells and 

observed global changes compared to matched controls (Extended Data Fig. 8f-8g). We took 

n=2,000-10,000 peaks with smallest p-values in either direction (‘top RFX6-sensitive peaks’) for 

use in downstream analyses. These peaks were significantly enriched for motifs corresponding 

to the known chromatin modifier activator protein 1 (AP1), as well as RFX6 and related family 

member motifs (Fig. 5k-5l and Extended Data Fig. 8h-8i). CCCTC-binding factor (CTCF) and 

RFX motif footprint signatures like those previously observed in bulk islet ATAC data15 

confirmed the high quality of the snATAC data (Extended Data Fig. 8j). Further, top RFX6-

sensitive peaks were significantly enriched to occur near differentially expressed genes 

(Extended Data Fig. 8k), indicating concordance between the snATAC and snRNA modalities. 

We and others have shown that β cell ATAC peaks are enriched for T2D GWAS variants5,6, and 

indeed, top RFX6-sensitive peaks were also significantly enriched to overlap with these variants 

(Fig. 5m and Extended Data Fig. 8l). Importantly, enrichment remained significant after 

conditional analysis controlled for remaining (not RFX6-sensitive) peaks (Fig. 5n and Extended 
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Data Fig. 8m), which emphasizes the importance of β cell RFX6-sensitive peaks in the genetic 

predisposition to T2D. Overall, these results show that knockdown of RFX6 in β cells results in 

widespread transcriptional and chromatin changes that are associated with downregulated 

vesicle transport and coordinated disruption of regulatory elements that overlap T2D GWAS 

variants, consistent with the role of RFX6 as a master regulator of β cell identity.  
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DISCUSSION 

The pancreatic β cell, a major focus in diabetes, exists within the multicellular pancreatic islet 

mini-organ, where interactions between various cell types are increasingly recognized. In T2D, 

like in other chronic, complex, multi-organ diseases, teasing apart the causes, correlates, and 

consequences of cellular and tissue dysfunction is challenging due to limited availability of 

primary tissue, constraints of sample processing at different disease stages, and in many cases, 

removal of cells from their native environment. To address these challenges and identify early 

disease-driving events, we applied a comprehensive, multimodal, integrated approach to 

isolated islets and pancreatic tissue from a unique cohort of short-duration T2D and control 

donors that included analyses of islet physiology, transcriptome, and pancreas tissue cellular 

architecture. Furthermore, we integrated donor and islet functional traits with gene network 

analysis and GWAS to understand central transcriptional regulators driving β cell dysfunction in 

short-duration T2D. Co-registration of multimodal data and clinical information yielded several 

important findings (Extended Data Fig. 9a): (1) impaired β cell function, a hallmark of early-

stage T2D, persisted ex vivo and in nondiabetic environments; in contrast, α cell function was 

not changed; (2) islet endocrine composition was unchanged though there were modest 

alterations to the islet microenvironment in endothelial and immune cells; (3) transcriptional 

network analysis proportioned genetic risk into gene modules with specific functional properties, 

and (4) RFX6 emerged as a highly connected hub transcription factor that was reduced in T2D 

β cells and associated with reduced glucose-stimulated insulin secretion. We validated a critical 

role for RFX6 by performing dynamic functional analyses and integrated snRNA and snATAC-

seq on primary human pseudoislets with knockdown of RFX6 in β cells. Reduction of RFX6 led 

to reduced insulin secretion defined by transcriptional dysregulation of vesicle trafficking, 

exocytosis, and ion transport pathways that was mediated by chromatin architectural changes 

overlapping with T2D GWAS variants (Extended Data Fig. 9b). Thus, our integrated, 

multimodal studies identify β cell dysfunction that results from cell-intrinsic defects, including an 

RFX6-mediated, T2D GWAS-enriched transcriptional network, as a key event in early T2D 

pathogenesis. 

Dysfunction of β cells, and not β cell loss, is primary defect in early-stage T2D 

This study demonstrates β cell functional defects ex vivo – which persist in culture and following 

transplantation into a normoglycemic environment – but no change to insulin content or β cell 

mass. The relative contributions of impaired β cell function and/or reduced β cell mass have 
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long been debated in T2D37–39. Though postmortem studies suggest mild β cell loss33,40–43, most 

studies mixed short- and long-term disease duration together and noted that defects were more 

severe with longer duration and/or insulin treatment. Recent studies of metabolically profiled 

donors suggested that β cell loss is not prominent in early T2D26,44. By integrating studies of 

both pancreatic tissue and isolated islets from the same donors, our data indicate that β cell loss 

is not a major component in disease pathogenesis at early-stage T2D. Further, the continued 

dysfunction of islets in a transplant setting also underscores the persistence of initial β cell 

defect. In sum, this study illustrates that β cell dysfunction occurs early in T2D and that 

prevention and/or rapid intervention may be critical to preserve β cell function.  

Changes to islet microenvironment emphasize additional disease processes that may become 

more prominent in later disease stages  

Our transcriptional analyses in isolated islets identified altered vascular and immune signaling 

as features in sorted α and β cells as well as in whole islets. Although isolated islets do not 

provide a physiologic context, particularly for endothelial cells without their connection to 

systemic circulation, similar transcriptional changes were found in laser capture microdissected 

T2D islets26. Further, our comprehensive tissue analyses of the same donors allowed in situ 

characterization of non-endocrine islet cell abundance, phenotype, and localization. We 

demonstrated that T2D islets had subtle reductions in islet capillary size, increased intraislet T 

cells, and altered communication between cellular neighborhoods, but overall the 

microenvironment was largely similar to ND islets. While most donors showed some evidence of 

amyloid deposits as a unique feature of the T2D islet microenvironment, only a minority of islets 

demonstrated detectable amyloid at this stage of disease. Together, these observations are 

unlikely to explain the degree of β cell dysfunction in this cohort but, given that they are present 

without any associated changes in endocrine cell composition, may represent early 

consequences of β cell dysfunction or may act to exacerbate initial β cell-intrinsic defects. 

Indeed, inflammatory signals and other trophic factors have been shown to influence β cell 

function, especially in the presence of amyloid, and may become a more prominent feature of 

the disease at later stages19,45–47. Further study is needed to determine whether changes to the 

microenvironment are truly an independent disease process or whether there is bidirectional 

signaling between dysfunctional β cells, α cells, and/or other islet cell types. 
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Integrated co-expression network analysis reveals gene modules of genetic risk in T2D  

The transcriptomic profiles of sorted α and β cells in addition to islets provided new insight into 

cell-specific contributions to T2D pathogenesis. Co-expression network analysis and association 

with GWAS variants and physiological parameters, similar to a recent approach48, allowed us to 

prioritize processes with physiological relevance that were more likely to be disease-causing 

rather than disease-induced. For instance, both β01 (metabolism-enriched) and β06 (cilia-

enriched) modules are associated with T2D GWAS variants, indicating that regulatory circuitry 

related to metabolism and cilia function may have causative roles in development of T2D. 

Notably, insulin secretion was positively correlated to β01, whose genes were decreased in T2D 

β cells, but negatively correlated to β06, whose genes were increased in T2D β cells. These 

results suggest that β01 genes enhance insulin secretion while β06 genes decrease it, thus one 

expects that T2D risk alleles likely decrease β01 gene expression and activate β06 genes, both 

of which would negatively influence β cell function. Future work directly testing key candidate 

genes from this dataset, analogous to the studies of RFX6 described here, will be important to 

validate these processes and how they contribute to T2D pathogenesis.  

Genetic risk for complex metabolic diseases such as T2D results from the combined influence 

of many small-effect variants, with at-risk individuals likely having multiple parallel processes 

affected. This concept has been described as a “palette” model49, and our work aids in 

deciphering components of the palette by proportioning genetic risk into cell-specific functional 

modules derived from transcriptome signatures across early stages of disease. Thus, this opens 

the opportunity to assess downstream consequences of an individual’s innate genetic risk by 

identifying specific molecular and functional processes that would be most affected and 

hopefully allowing for precise targeting of those to achieve personalized medicine in diabetes. 

RFX6 plays a central role in dysregulation of β cell function early in T2D 

By identifying an RFX6 regulatory network that strongly correlates with insulin secretion and 

T2D genetic risk, this study provides new insight into previous work which has linked RFX6 to 

both monogenic and polygenic forms of diabetes15,35,36. Our results suggest that RFX6 exerts a 

disproportionate transcriptional influence on β cell state and that its dysregulation is a key 

molecular event in early T2D pathogenesis. We pursued this finding by directly testing the role 

of RFX6 in pseudoislets and demonstrated a clear function for RFX6 in governing stimulated 

insulin secretion in primary human β cells. Previous studies with direct perturbation of RFX6 in 
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adult β cells, performed in cell lines and mouse models, highlighted downstream effects on Ca2+ 

and KATP channels50,51. Our work confirms defective ion transport processes but identifies 

vesicle trafficking and exocytosis pathways as major drivers of defective insulin secretion in 

primary human β cells with impaired release likely responsible for the buildup of insulin content. 

Additionally, we show that these transcriptional changes are mediated by changes in β cell 

chromatin regions significantly overlapping with T2D GWAS loci, emphasizing the central role of 

RFX6 in mediating genetic risk to functional defects that define early T2D. Further, cilia-related 

genes were also significantly dysregulated following RFX6 reduction, in line with evidence that 

the RFX family of transcription factors control ciliogenesis52,53. Given their role in environment 

sensing, cell-to-cell communication, and signal transduction, cilia represent a potential link 

between β cell-intrinsic, RFX6-mediated dysregulation and changes within the islet 

microenvironment seen in early T2D and warrant future study. 

This work raises important questions about what factors or events initially dysregulate RFX6 to 

start this cascade. Given the coordinating role RFX6 plays in islet cell development35, it may be 

that early defects driven by RFX6 dysfunction only become apparent after superimposed 

environmental, nutritional, and/or age-related stressors. Alternatively, the strong enrichment of 

T2D GWAS variants in β01 (the RFX6-containing module) and position of RFX6 as a hub gene 

may point to cumulative genetic effects compounding over time in an irreversible cascade that 

disrupts β cell homeostasis. Thus, precisely what underlies the initial dysregulation of RFX6, 

and whether it can be targeted to prevent or reverse early molecular defects in the β cell, should 

be an active area of investigation.  
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Figure 1. Integrated analysis of islet function, gene expression, and histology in a cohort 
of donors with short-duration type 2 diabetes (T2D) reveals substantially reduced 
stimulated insulin secretion ex vivo and in vivo despite similar insulin content and 
highlights dysregulated pathways in purified β and α cells as well as whole islets. (a) 
Schematic of functional β cell mass during disease progression from nondiabetic (ND) to pre-

diabetes (Pre-DM) and T2D, highlighting the divergence of insulin supply and demand and 

escalation of treatment mirroring progressive loss of functional β cell mass. Shaded blue 

represents targeted disease stage in this cohort with clinical profile shown below in table. (b) 
Schematic of multimodal study of islet function, transcriptome, and tissue architecture. 

Coordinated study on islets and tissue from same donor allowed integration between analyses 

(green arrows). (c-l) Dynamic insulin and glucagon secretory responses measured by islet 

perifusion. Panels d-f and i-k: secretagogue response as area under the curve (AUC); g, l: 
hormone content normalized to islet volume. (m) Pearson correlation of perifusion metrics to 

clinical traits. (n) Schematic of human islet transplantation and in vivo assessment of function. 

(o) Blood glucose, human insulin levels, and human insulin:blood glucose ratio measured 

before and after glucose and arginine stimulation of mice with human islet grafts. Symbols show 

donor average. (p) Schematic of RNA sample collection and analysis. (q) Overlap of 

differentially expressed (DE) genes in T2D β cell (green) α cell (red), and islet (blue) samples at 

the level of genes (purple curves) or ontology terms (grey curves). (r) Metascape network 

showing a subset of enriched terms from DE genes. Edges denote similarity and node colors 

reflect contribution of sample(s). * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 (d-g, i-l: two-

tailed t-test; o: two-way ANOVA).  
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Figure 2. Integrated tissue analysis reveals no change to endocrine cell mass or number, 
but alteration in intraislet capillaries, T cells, and cellular neighborhoods in short-
duration T2D cohort. (a) Schematic illustrating parallel analysis by traditional and multiplexed 

immunohistochemistry (IHC). (b) Mass of β, α, and δ cells in ND and T2D donors. (c) 
Representative images of islets from co-detection by indexing (CODEX) imaging; insets show γ 

and ε cells. (d) Cross-sectional area of endocrine cell types. (e) Relative proportions of islet 

endocrine, vascular, stromal, and immune cells. (f) Enrichment of vascular-related ontology 

terms in T2D transcriptome. (g) Representative images of islet capillaries, pericytes, and 

extracellular matrix (ECM). (h) Islet capillary density and area per capillary. (i) Spatial analysis 

of endocrine cells and islet capillaries. (j) Enrichment of immune-related ontology terms in T2D 

transcriptome. (k-l) Islet immune cell phenotypes and composition. (m-n) Islet macrophage (m) 

and T cell (n) abundance. (o) High-dimensional component analysis of islet cell composition per 

islet (n=255 ND, n=426 T2D). (p-s) Cellular neighborhood assignment (p) and corresponding 

cell composition and correlation changes in T2D vs. ND islets (q-s). Traditional IHC data: panels 

b, h, m; CODEX data: panels c-e, g, i, k-l, n-s. Symbols in bar graphs represent donors; * 

p<0.05 (two-tailed t-test, ND vs. T2D). RNA data: panels f, j; * FDR<0.05.  
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Figure 3. Weighted Gene Co-expression Network Analysis (WGCNA) distinguishes β cell 
gene modules associated with donor and islet traits as well as those enriched in GWAS 
loci and identifies disruption in cilia processes as a conserved feature across sample 
types. (a) Relative enrichment of β cell module eigengenes for curated gene lists, based on 

genes present in each module. (b) Module correlation to donor characteristics, enrichment of 

differentially expressed (DE) genes, and total number of genes per module. • p<0.05; * p<0.01. 

Modules of interest highlighted (green). (c) Module correlation to β cell function described in 

Fig. 1; significant associations highlighted (yellow). G+IBMX, 16.7 mM glucose with 100 μM 

isobutylmethylxanthine; 16.7G, 16.7 mM glucose; 16.7G 1º, first phase; 16.7G 2º, second 

phase; 1.7G+Epi, 1.7 mM glucose and 1 μM epinephrine; KCl, 20 mM potassium chloride. (d) 
Module enrichment for GWAS traits. FIns, fasting insulin; FGlu, fasting glucose. * FDR<0.01. (e) 
Enrichment of select gene ontology terms in β cell modules with notable correlations and/or 

enrichment. (f) Cilia-related genes with fold change ≥ |1.5| in both α and β cells in T2D. (g-h) 
Visualization by immunohistochemistry of cilia (ARL13B; red) and quantification of abundance, 

density, and size in ND and T2D tissue. * p<0.05 (two-tailed t-test).  
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Figure 4. RFX6, a central regulator of transcript changes in short-duration T2D, is 
reduced in T2D β cells and controls stimulated insulin secretion. (a-b) Overall connectivity 

(a) and cross- and within-module connectivity (b) of individual genes based on β cell WGCNA. 

Select genes with high connectivity scores (a) and select transcription factors (b) are labeled. 

(c) RNA fold change in T2D β cells of transcription factors highlighted in panel b. Vertical lines 

denote fold change = |1.5|. (d) Enrichment of transcription factor motifs in β cell modules. (e-f) 
Expression of RFX6 in β and α cells of ND and T2D donors. (g) Schematic of adenoviral shRNA 

delivery and formation of pseudoislets. (h) Morphology and immunofluorescent staining of 

transduced pseudoislets. (i) Relative RFX6 mRNA expression in β cells treated with scramble or 

RFX6 shRNA. (j) Pseudoislet insulin secretion assessed by perifusion; n=6 donors per group. 

(k) Area under the curve (AUC) for secretory response to each of the stimuli shown in panel j. 
Panels f, i, k: * p<0.05, ** p<0.01, *** p<0.001 (two-tailed t-test).  
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Figure 5. RFX6 controls glucose-stimulated insulin secretion in human β cells through 
chromatin modifications and vesicle trafficking pathways. (a) Schematic depicting 

randomized study design to mitigate batch effects in single nuclear (sn) RNA- and ATAC-

sequencing of scramble shRNA (control) and RFX6 shRNA (shRFX6) pseudoislets. (b) Cell 

type assignment by clustering on RNA. (c). Pseudobulk ATAC signal at marker genes. (d) Post-

QC nuclei counts from control and shRFX6 pseudoislets. (e) Abundance of fluorescent marker 

gene expression (mCherry/mKate2) in α and β cell nuclei. (f) Proportion of differentially 

expressed (DE) genes per cell type. (g) Classification of protein-coding DE genes in shRFX6 β 

cells by PANTHER. (h) Pathway enrichment for DE genes (FDR<0.01); second two columns 

separate genes up- or downregulated in shRFX6. (i) DE genes in Reactome pathway R-HSA-

5653656. (j) Overlap of 1,000 most significant DE genes in shRFX6 vs. control β cell nuclei 

(blue) and T2D vs. ND sorted β cells (red), analyzed by Metascape. Circos plot illustrates 

overlap at the level of genes (purple) or ontology terms (grey). Network displays a subset of 

enriched terms, where edges denote term similarity and node colors represent contribution of 

each gene list. (k-l) Motif enrichment for top 5,000 RFX6-sensitive up- (k) and downregulated (l) 
ATAC peaks in shRFX6 β cell nuclei. Right panels show enlarged views of plots on left. (m-n) 
Odds ratio of T2D GWAS enrichment (m) and model estimate from conditional analysis (n) of 

RFX6-sensitive peaks. 
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METHODS 

 Human subjects 

Pancreata from nondiabetic (ND) (n=19) and T2D (n=20) donors were obtained through 

partnerships with the International Institute for Advancement of Medicine (IIAM), National 

Disease Research Interchange (NDRI), and local organ procurement organizations. Pancreata 

were processed in Pittsburgh by Dr. Rita Bottino for both islet isolation and histological analysis 

as previously described1–3. Additional ND human islet preparations (n=27) were obtained 

through partnerships with the Integrated Islet Distribution Program (IIDP) and Alberta Diabetes 

Institute (ADI) Isletcore and served as assay-specific controls or were used for pseudoislet 

studies. Donor information is detailed in Extended Data Table 1. Deidentified medical histories 

provided both information for T2D staging as well as clinical characteristics to correlate with 

generated data. The Vanderbilt University Institutional Review Board declared that studies on 

de-identified human pancreatic specimens do not qualify as human subject research. 

Some human islets used in this research study were provided by the ADI IsletCore at the 

University of Alberta in Edmonton (http://www.bcell.org/adi-isletcore.html) with the assistance of 

the Human Organ Procurement and Exchange (HOPE) program, Trillium Gift of Life Network 

(TGLN), and other Canadian organ procurement organizations. Islet isolation was approved by 

the Human Research Ethics Board at the University of Alberta (Pro00013094). All donors' 

families gave informed consent for the use of pancreatic tissue in research. This study also 

used data from the Organ Procurement and Transplantation Network (OPTN) that was in part 

compiled from the Data Hub accessible to IIDP-affiliated investigators through IIDP portal 

https://iidp.coh.org/secure/isletavail). The OPTN data system includes data on all donors, wait-

listed candidates, and transplant recipients in the US, submitted by the members of the OPTN. 

The Health Resources and Services Administration (HRSA), U.S. Department of Health and 

Human Services provides oversight to the activities of the OPTN contractor. The data reported 

here have been supplied by UNOS as the contractor for the Organ Procurement and 

Transplantation Network (OPTN). The interpretation and reporting of these data are the 

responsibility of the authors and in no way should be seen as an official policy of or 

interpretation by the OPTN or the U.S. Government. 
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Pancreas procurement and processing 

Pancreata from ND and T2D donors (see Extended Data Table 1 for donor information) were 

received within 18 hours from cross clamp and maintained in cold preservation solution on ice 

until processing, as described previously3. Pancreas was then cleaned from connective tissue 

and fat, measured, and weighed. Prior to islet isolation, multiple cross-sectional slices of 

pancreas with 2-3 mm thickness were obtained from the head, body and distal tail, further 

divided into quadrants, and processed into paraformaldehyde-fixed cryosections as described 

previously3. Islet isolation was performed via ductal collagenase infusion and purification by 

density gradient as described previously1,3, then shipped to Vanderbilt for further analysis 

following shipping protocols developed by the IIDP. Islets were cultured in CMRL 1066 media 

(5.5 mM glucose, 10% FBS, 1% Pen/Strep, and 2 mM L-glutamine) in 5% CO2 at 37°C for 24–

48 hours prior to reported studies3–5. Pseudoislets were cultured in Vanderbilt Pseudoislet 

media6. Limitations of tissue availability and processing dictated that not all assays could be 

performed on each donor. 

Assessment of native pancreatic islet and pseudoislet function by macroperifusion 

Function of islets from ND and T2D donors and pseudoislets were studied in a dynamic cell 

perifusion system at a perifusate flow rate of 1 mL/min6,7. The effluent was collected at 3-minute 

intervals using an automatic fraction collector, then islets were retrieved and lysed with acid-

ethanol solution to extract. Insulin and/or glucagon concentrations in each perifusion fraction, as 

well as total hormone content, were measured by radioimmunoassay (RIA) (human insulin, RI-

13K, Millipore; glucagon, GL-32K, Millipore), enzyme-linked immunosorbent assay (ELISA) 

(Human insulin, 10-1132-01, Mercodia; glucagon, 10-1281-01, Mercodia), or Homogeneous 

Time Resolved Fluorescence (HTRF) assay (glucagon, 62CGLPEH, Cisbio). Area under the 

curve (AUC) above baseline hormone release was calculated with the trapezoidal method in 

GraphPad Prism 8.0-9.3 as previously described6.  

Human islet transplantation  

Immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/Sz (NSG)8 10- to 12-week old male mice were 

maintained by Vanderbilt Division of Animal Care in group housing in sterile containers within a 

pathogen-free barrier facility housed with a 12 hour light/12 hour dark cycle and access to free 

water and standard rodent chow. All animal procedures were approved by the Vanderbilt 

Institutional Animal Care and Use Committees. Between 1000-2000 islet equivalents per mouse 
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(n=4-8 mice per islet preparation) were transplanted beneath the kidney capsule. After 6 weeks, 

mice were fasted for 6 hours and then injected with glucose + arginine (2g/kg body weight) 

intraperitoneally as previously described3–5,9. Blood samples were obtained before (0’) and after 

(15’) injection and human-specific insulin was analyzed by ELISA (Alpco, 80-ISNHU-E01.1) or 

radioimmunoassay (Millipore, RI-13K). 

Purification of α and β cells by FACS 

Human islets from ND and T2D donors were dispersed and sorted for collection of RNA from α 

and β cells as described previously3,10. Briefly, 0.025% trypsin was used to disperse islet cells 

by manual pipetting and subsequently quenched with RPMI containing 10% FBS. Cells were 

washed in the same medium and counted on a hemocytometer, then transferred to FACS buffer 

(2 mM EDTA, 2% FBS, 1X PBS). Indirect antibody labeling was completed via two sequential 

incubation periods at 4C, with one wash in the FACS buffer following each incubation. Primary 

and secondary antibodies, listed in Extended Data Table 2, have been characterized 

previously and used to isolate high-quality RNA3,10–12. Appropriate single color compensation 

controls were run alongside samples. For sorting of β cells for use in pseudoislets, quenching 

step post-dispersion was performed with 100% FBS at 1/3 volume trypsin. Cells then underwent 

an additional filtration step using a 40 μl strainer prior to staining. For all preparations, propidium 

iodide (0.05 ug/100,000 cells; BD Biosciences, San Jose, CA) was added to samples prior to 

sorting for non-viable cell exclusion. Flow analysis was performed using an LSRFortessa cell 

analyzer (BD Biosciences, San Jose, CA), and a FACSAria III cell sorter (BD Biosciences, San 

Jose, CA) was used for FACS. Cells for RNA were collected into FACS buffer, washed once in 

1X PBS, and stored in RNA lysis buffer for RNA extraction. Cells for pseudoislets were washed 

once in 1X PBS, resuspended in Vanderbilt pseudoislet media, and processed as described in 

Pseudoislet section below. Analysis of flow cytometry data was completed using FlowJo 10.1.5 

(Tree Star, Ashland, OR). 

Traditional and multiplexed immunohistochemical imaging and analysis 

Traditional Immunohistochemistry 

Multiple sections from pancreatic head, body, and tail regions of 20 T2D and 11 age-matched 

ND donors were lightly paraformaldehyde (PFA)-fixed and prepared for immunohistochemistry 

and stained as described previously3,10,13. Primary and secondary antibodies and their dilutions 
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are listed in Extended Data Table 2. Amyloid was visualized using a 2-minute incubation in 

Thioflavin S (0.5% w/v; #T-1892, Sigma, St. Louis, MO) followed by a brief wash in 70% ethanol 

as described previously5,9,14. Images were acquired at 20X with 2X digital zoom using a FV3000 

confocal laser scanning microscope (Olympus) or a ScanScope FL (Aperio) and processed 

using cytonuclear algorithms (HighPlex FL v3.2.1) or tissue classifiers via HALO software 

(Indica Labs) or morphometric measurement via Metamorph software v7.10 (Molecular Devices, 

LLC). Analyses were run on the entire tissue section or manually annotated islets as indicated in 

figure legends. Endocrine cell mass was quantified by using pancreas weight and the ratio of 

hormone positive cells as identified by cytonuclear algorithm within the entire pancreatic section 

from multiple blocks representing the head, body, and tail regions. To obtain islet capillary 

measurements, caveolin-1 channel was isolated and color thresholding was used on a per-

image basis to gather object data using the Integrated Morphometry Analysis (IMA) function 

(Metamorph). The following analysis metrics represent mean ± standard error: endocrine cells 

(Fig. 2b, Extended Data Fig. 3f-3h) 16,151 ± 1,715 islet cells/donor and 570,508 ± 51,866 total 

cells/donor; endocrine cell area (Extended Data Fig. 3c-3d) 2.34 ± 0.24 mm2/donor; capillary 

morphology (Fig. 2h) 48 ± 4 islets/donor; macrophage area (Fig. 2m) 0.64 ± 0.07 mm2/donor; 

amyloid (Extended Data Fig. 4a) 108 ± 19 islets/donor; cilia (Fig. 3h) 0.32 ± 0.05 mm2/donor; 

RFX6 (Fig. 4f) 1,863 ± 362 cells/donor; pseudoislets (Extended Data Fig. 7g) 2,797 ± 508 

cells/sample. 

CODEX multiplexed imaging 

Antibodies were purchased preconjugated from Akoya Biosciences or sourced from other 

vendors and conjugated in-house using the CODEX Conjugation Kit (Akoya Biosciences) or by 

Leinco Technologies, Inc. (St. Louis, MO, USA) (Extended Data Table 3). 10-μm lightly fixed3 

pancreas sections were mounted onto 22x22 mm glass coverslips (Electron Microscopy 

Sciences) coated in 0.1% Poly-L-lysine (Sigma) and stained with the CODEX Staining Kit 

(Akoya Biosciences) in uncoated 6-well tissue culture plates (VWR) per manufacturer 

instructions. Fluorescent oligonucleotide-conjugated reporters were combined with Nuclear 

Stain and CODEX Assay Reagent (Akoya Biosciences) in light-protected 96-well plates sealed 

with foil (Akoya Biosciences) and automated image acquisition and fluidics exchange were 

performed using the Akoya CODEX instrument and CODEX Instrument Manager (CIM) v1.29 

driver software (Akoya Biosciences) integrated with a BZ-X800 epifluorescent microscope 

(Keyence). Tissue was hydrated in 1X CODEX buffer (10X CODEX Buffer diluted in Milli-Q 

water) and hybridization/stripping of the fluorescent oligonucleotides was performed using 
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dimethyl sulfoxide (Sigma). After loading of coverslip into stage insert, tissue was visualized with 

Nuclear Stain diluted 1:1000 in PBS and imaging area was set by center point and tile number 

using BZ-X800 viewing software (Keyence). All images were acquired using a CFI plan Apo I 

20x/0.75 objective (Nikon) with 30% tile overlap and 5 z-planes (1.5 μm/z). 

Processing and annotation of CODEX images 

A total of 16 tissue regions were captured from 6 ND and 10 T2D donors (mean 50 mm2 

tissue/donor). Image alignment, stitching, background subtraction, and deconvolution were 

performed using the CODEX Processor v1.7.0.6 (Akoya Biosciences; see 

https://help.codex.bio/codex/processor/technical-notes for details). Individual channel images 

(TIFF files) were imported into HALO software v3.1 (Indica Labs) for all analyses as described 

below. Tissue and islet areas were annotated by hand to exclude out-of-focus regions and poor 

tissue quality. Islets (estimated diameter ≥50 μm; mean 42 islets/donor) were annotated based 

on DAPI and CHGA channels. Cell segmentation and cell type annotations were performed 

using the HALO HighPlex FL v3.2.1 module with consistent cytonuclear parameters (nuclear 

contrast threshold 0.456, maximum cytoplasm radius 0.48). Due to marker intensity variability 

among samples, thresholds were manually set for each marker and donor. Unless otherwise 

noted, cells were counted positive for a given marker if minimum intensity was reached in 50% 

of cytoplasm area (see Extended Data Fig. 3a-3b for complete list of markers, abbreviations, 

and cell types). For cells with more variable morphology, positivity was also counted for nuclear 

area (30%: ARG1, CD11c, CD14, CD163, CD206, CD31, CD34, CD45, HLA-DR, IBA1, KRT, 

MCAM). Proliferating cells were counted only if minimum 60% of nuclear area met Ki67 intensity 

threshold. Vascular structures (CD31) were also measured by random forest classification 

algorithm (HALO Tissue Classifier module). The following analysis metrics represent mean ± 

standard error: endocrine cell area (Fig. 2d) 0.88 ± 0.10 mm2/donor; islet cell composition (Fig. 
2e, Extended Data Fig. 3j) 7,322 ± 852 cells/donor; immune cells (Fig. 2l, 2n) 309 ± 43 

cells/donor; endothelial cell phenotypes (Extended Data Fig. 4f) 460 ± 92 cells/donor; 

macrophage phenotypes (Extended Data Fig. 4h) 191 ± 29 cells/donor; T cell phenotypes 

(Extended Data Fig. 4i-4j) 40 ± 17 cells/donor. 

High-dimensional, spatial, and neighborhood analyses 

The R implementation of the UMAP algorithm (https://CRAN.R-project.org/package=umap) was 

used for dimensionality reduction. Cell marker percentages obtained through HALO were 
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standardized across islets (n=255 ND islets and 426 T2D islets; mean 172 cells/islet), and 

default parameters were used for UMAP reduction (Fig. 2o) except for nearest neighbors (80) 

and minimum distance (0.05). For spatial analyses, CD31 area classifications were converted to 

an annotation layer. A nearest neighbor algorithm (HALO Spatial Analysis module) was applied 

to obtain average distance of endocrine cells (n=4,830 ± 692 cells/donor) to islet capillaries 

(CD31+ region) (Fig. 2i, Extended Data Fig. 4d). 

For cell neighborhood (CN) analysis, two methods were applied in parallel to CODEX data from 

annotated islets. In the community detection method, termed Dynamic CF-IDF (Fig. 2p-2q, 2s), 

a weighted undirected heterogeneous graph for each islet was constructed based on the cell 

types and normalized distance between cells. A greedy-based graph community detection 

method15 was applied to segment the graph into a set of cell communities, then cell 

communities were stratified into 6 CNs (n=5,582 total CNs with median 11 cells/CN). Cell type 

enrichment was determined by a new proposed scoring function CF-IDF, which is a modification 

of the widely used text sequence analysis method term frequency (TF)–inverse document 

frequency (IDF) scoring16. Our cell frequency (CF)-inverse dataset frequency (IDF) score 

emphasizes the cell type that is not only prevailing, but also uniquely representative in a group 

of target islets. Therefore, it will deemphasize the most dominant cell types (e.g., α and β) 

throughout all the islets while paying more attention to the relative enrichment of less abundant 

cell types (e.g., vascular and immune cells) in the local regions. The downstream analysis not 

only introduces insightful results on T2D feature analysis but also shows a robust performance 

across different resolution levels. 

 

The second CN analysis method, a k-means approach (Extended Data Fig. 4k-4n), built on a 

previously published algorithm used to identify CNs in the tumor microenvironment17. For each 

cell, we first found its 10 nearest neighbors in the islet and assigned the i-th nearest neighbor 

which was an α cell, β cell, macrophage, EC cell, or γ cell, a score cos(iπ/20). Then we 

calculated the total score for each cell type, applied L1 normalization to the scores, and 

standardized them across all cells. The resulting representations of cells were finally used for k-

means clustering to form 5 CNs (n=5,021 total CNs with median 5 cells/CN).  
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Transcriptional analysis of α and β cells and islets from ND and T2D donors 

RNA isolation and bulk RNA-sequencing 

RNA was extracted from sorted α and β cells (see above, Purification of α and β cells by FACS) 

or from pelleted whole islets using the Invitrogen RNAqueous-Micro Total RNA Isolation kit 

(Thermo Fisher #AM1931). TURBO DNA-free (Ambion) was used to treat any trace DNA 

contamination. RNA was quantified by Qubit Fluorometer 2.0 and RNA integrity was confirmed 

(RIN >7) by 2100 Bioanalyzer (Agilent). Amplified cDNA libraries were constructed using 

SMART-seq v4 Ultra low Input RNA-kit (Takara) and sequencing was performed on an 

NovaSeq platform (Illumina) using paired-end reads (100 bp) and 25 million reads per sample. 

We processed the raw RNA-seq reads using FastQC (v0.11.8) for broad quality assessment. 

Briefly, we examined the following parameters: (1) base quality score distribution, (2) sequence 

quality score distribution, (3) average base content per read, (4) GC distribution in thereads, (5) 

PCR amplification issue, (6) overrepresented sequences, (7) adapter content. Based on the 

quality report of fastq files, we trimmed sequence reads using fastq-mcf (v1.05) and cutadapt 

(v2.5) to only retain high quality sequence for further analysis. The paired-end reads were 

aligned to the GRCh37/hg19 human reference with GENCODE v19 gene annotation using 

STAR splice-aware aligner (v2.5.4b; --outSAMUnmapped Within KeepPairs)18. 

We counted fragments mapping to features type in GENCODE v19 gene annotation using 

featureCounts from Subread package19. The gene list was pruned to contain only protein-coding 

genes mapping to autosome and chrX, resulting in a total of 20,260 genes. We assessed 

libraries using comprehensive quality metrics generated by QoRTs20 as well as computed 

derived metrics. Briefly, on the top of QoRTs reported metrics, we computed (1) 5’-3’ gene 

coverage bias (as the ratio of coverage values at the 90%-ile and 10%-ile of the coverage 

distribution), (2) Kolmogorov-Smirov test statistic between cumulative gene diversity of each 

library relative to median distribution of all libraries within each cell type and standardized to a 

mean of 0 and standard deviation of 1 to yield a z-score, (3) number of reads mapped mapped 

to Xist and SRY genes, (4) average number of reads mapped to chrM, and (5) transcript 

integrity number (TIN)21 for each library. The labeled sex of donors was matched against the 

gene expression quantified for sex genes to rule out any sample swaps or mislabeling. We also 

computed principal components for TPM normalized count matrix for each cell type in order to 

detect potential outliers. 
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Differential gene expression analysis 

We performed differential gene expression analysis between T2D and ND samples for each cell 

type individually using DESeq222. In order to minimize potential effects of known and unknown 

confounding factors, we included known covariates in the DESeq2 model as well accounted for 

unknown covariates using RUVseq latent variable approach23. Briefly, we used the following 

multi-step process: (1) We first removed genes from the raw count matrix which had less than 

10 reads in fewer than 25% of the samples for that cell type. (2) We then ran a first-pass 

differential expression analysis using DESeq2 with Age, Sex, BMI, and Batch as known 

covariates. The output result was filtered for genes that were non-significant i.e., not 

differentially expressed between T2D and ND samples and had p-value > 0.5. These genes 

were used as “control” or “empirical” genes for RUVSeq::RUVg function to estimate latent 

variables accounting for variation in the data not attributed to disease status. (3) The latent 

variables estimated from the RUVseq run were then used as additional covariates (on the top of 

Age, Sex, BMI, and Batch where applicable) for the second run of DESeq2. We selected the 

number of latent variables to provide the most reasonable separation between T2D and ND 

samples and minimal deviation from mean in the relative log expression plots. The output 

results from DESeq2 were filtered for 1% FDR to generate the final list of genes differentially 

expressed between T2D and ND for each cell type. We performed functional enrichment 

analysis using RNA-enrich24 and retained terms with an FDR threshold of 5%. Terms were 

condensed using the RelSim function in REVIGO25 with similarity parameter set to 0.5 and 

visualized in semantic space using an.xgmml file imported into Cytoscape software26 v3.8.2. 

Combined analysis of differentially expressed genes (fold change ≥1.5 or ≤-1.5; p<0.01) was 

performed using Metascape27 v3.5. Metascape’s heuristic algorithm samples the 20 top-score 

clusters, selects up to the 10 best scoring terms (lowest p-values) within each cluster, and 

connects terms pairs with Kappa similarity above 0.3. The resulting network was exported as a 

.cys file and visualized using Cytoscape, with the most representative term name in each cluster 

selected manually. 

Gene network analysis 

We adopted Weighted Gene Co-expression Network Analysis (WGCNA)28 approach to create 

networks from the gene expression data. Briefly, we first filtered genes following the same rule 

established in Differential Gene Expression analysis where we only kept genes that had at least 

10 reads in at least 25% of the samples for each cell type. We then processed raw counts using 
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the varianceStabilizedTransformation function in DESeq2 package and used removeBatchEffect 

from the limma R package29 to adjust for effects of age, sex, and BMI while protecting for 

disease status in the design matrix. The normalized and batch corrected count matrix was then 

used as input to blockwiseModules to create a “signed hybrid” network with “bicor” as the 

correlation function. The power (k) parameter was selected such that the scale free topology fit 

reached at least 80% fit. To examine cell type modules associated with quantitative traits of 

interest, we utilized a linear regression-based framework. We (1) inverse normalized the raw 

quantitative trait, (2) adjusted for Age, Sex, and BMI by linear regression, and (3) computed the 

spearman rank correlation between residuals and eigengene of all modules. Within each 

network, we also computed the module membership score and network connectivity for each 

gene. Estimated enrichment of curated gene lists30–32 (Extended Data Table 4) was calculated 

using Fisher’s exact test. Functional enrichment of genes in each module was performed using 

gprofiler233, and the results were visualized as a dotplot.  

Integration of network analysis with chromatin accessibility 

We integrated chromatin accessibility information with gene network analysis using sci-ATAC-

seq data for α and β cells derived from our previously published study34. For each module within 

each cell type, we selected (a) accessible sites that were present within a specified distance of 

the transcription start site (TSS) of the genes within that module, and (b) the distal chromatin 

peaks that were linked to the peaks within this set based on the Cicero peak interaction results 

from the same study. This set of TSS proximal and distal peaks for all of the genes within each 

module and for each cell type were then used for downstream enrichment analyses. 

For variant enrichment analysis in the module linked peaks, we collected the latest published 

summary statistics for selected traits35,36. Using a threshold of +- 10kb to define our gene TSS 

boundary for linking peaks with modules, we created a set of accessible sites for each module. 

The union of peaks across all modules was used as a “bulk” positive enrichment control. We 

then tested the enrichment of trait-associated variants from multiple GWAS across module 

peaks using GARFIELD37 and used a p-value threshold of 5e-08 as input parameter for 

selecting trait-associated variants. 

Next, we considered whether specific Transcription Factor Binding Motifs (TFBMs) are enriched 

to occur in certain modules. To test this, we defined module linked peaks for each module as 

described before but using a threshold of +- 1kb from gene TSS. For each peak within a 
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module, we then identified the peak summit and extended the summit by 50 bp in each 

direction. Using genomic sequence in this region as our “test sequence”, we used Analysis of 

Motif Enrichment (AME, v5.3.2) tool from MEME-Suite38 (using default parameters) to identify 

enriched TFBMs represented in cisBP v.2.039. The control set of sequence was generated using 

--shuffle-- parameter in AME which generates a control sequence by shuffling the test sequence 

but preserving the 2-mer frequency. The enrichment score was computed as scaled log2 

transformed (TP+1)/(FP+1) for each TFBM. 

Pseudoislet formation and assessment of RFX6 knockdown 

Pseudoislets were formed as previously described6. Briefly, nondiabetic human islets were 

handpicked to purity and then dispersed with 0.025% HyClone trypsin (Thermo Scientific) for 7 

minutes at room temperature before counting with an automated Countess II cell counter or 

manually by hemacytometer. Dispersed human islets or purified β cells (see above, Purification 

of α and β cells by FACS) were incubated in adenovirus at a multiplicity of infection of 500 for 2 

hours in Vanderbilt pseudoislet media before being spun and washed. Adenovirus containing 

U6 driven scramble or RFX6 targeted shRNA as well as CMV driven mCherry or mKate2 red 

fluorescent tag were prepared, amplified and purified by Welgen, Inc (Worcester, MA). Cells 

were then resuspended in appropriate volume of Vanderbilt pseudoislet media to allow for 

seeding into wells at 2000 cells per 200 µL each well of CellCarrier Spheroid Ultra-low 

attachment microplates (PerkinElmer). Pseudoislets were allowed to reaggregate for 6 days 

before being harvested and studied. 

To assess knockdown, RNA was extracted from pseudoislets containing only β cells using an 

RNAqueous RNA isolation kit (Ambion). cDNA synthesis and quantitative reverse transcriptase 

PCR were performed as previously described2; briefly, cDNA was synthesized using a High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems #4368814) according to the 

manufacturer’s instructions. Quantitative PCR (qPCR) was performed using TaqMan probes for 

ACTB (Hs99999903_m1) as endogenous control and RFX6 (Hs00941591_m1). Relative 

changes in mRNA expression were calculated by the comparative ΔCt method.  
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Multiome single nuclear RNA/ATAC-sequencing 

Nuclear isolation 

Pseudoislet samples treated with RFX6 shRNA or scramble RNA were pooled together using a 

randomized study design, so the targeting and scramble conditions were not confounded by 

batch (Fig. 5a). To accomplish this, samples were allocated into six groups (batches) of n=490-

494 pseudoislets for nuclei isolation. A customized protocol was developed based on 

recommendations by 10x Genomics (https://www.10xgenomics.com/resources/demonstrated-

protocols/) which included optimization steps described below. Briefly, the samples were 

suspended in 1X PBS and pelleted at 2000 x g for 3 minutes at 4°C. The pellet was 

resuspended in lysis buffer (10mM Tris-HCl 7.4 pH, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 

0.1% NP40, 0.01% Digitonin, 1% BSA, 1mM DTT, and 2U/µl RNase Inhibitor) and rocked in an 

Eppendorf thermomixer C (EP #5382000015) at 300 x g for 5 minutes at 4°C. Keeping the 

samples on ice as much as possible, tubes were then transferred to a prechilled 2 mL glass 

dounce homogenizer and homogenized with 15 strokes of tight pestle B before being 

transferred to a 1.5 mL tube and centrifuged at 500 x g for 5 minutes at 4°C. The resulting pellet 

was then resuspended in 1 mL of wash buffer (10mM Tris-HCL 7.4 pH, 10mM NaCl, 3mM 

MgCl2, 1% BSA, 0.1% Tween-20, 1Mm DTT, and 2U/µl RNase Inhibitor) and centrifuged at 100 

x g for 1 minute at 4°C. The supernatant was collected, filtered through a pre-wetted 30 µm 

filter, and centrifuged at 500 x g for 5 minutes at 4°C. Nuclei were resuspended in 300 µl of 

wash buffer, then 300 µl of sucrose cushion (0.88M sucrose, 1mM DTT, 1mM RNAse Inhibitor, 

and 10% wash buffer) was added to the bottom of the tube and the resulting layered solution 

was centrifuged at 1000 x g for 10 minutes at 4°C. Both layers of supernatant were removed, 

and pellet was resuspended in 1 mL of wash buffer and centrifuged at 500 x g for 5 minutes at 

4°C. Nuclei were then resuspended in 30 µl of nuclei resuspension buffer before counting and 

quality assessment. The desired concentration of nuclei was achieved by resuspending the 

appropriate number of nuclei in 1X diluted nuclei buffer for joint (on the same nucleus) snATAC-

seq and snRNA-seq multiome profiling. Nuclei were processed by the University of Michigan 

Advanced Genomics Core using the 10x Genomics Chromium platform at 20K nuclei per well. 

Multiome sample genotyping and imputation 

Samples were genotyped with the Infinium Multi-Ethnic Global-8 v1.0 kit using 50 ng/uL DNA 

samples in two batches. Probes were mapped to Build 37. We merged the .ped files for the two 
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batches along with samples from other projects that were genotyped on the same chip (resulting 

in a combined 68 samples). We removed variants with multi mapping probes and updated the 

variant rsIDs using Illumina support files Multi-EthnicGlobal_D1_MappingComment.txt and 

Multi-EthnicGlobal_D1.annotated.txt (downloaded from 

https://support.illumina.com/downloads/infinium-multi-ethnic-global-8-v1-support-files.html). We 

performed pre-imputation QC using the HRC-1000G-check-bim.pl script (version 4.2.9) obtained 

from the Mark McCarthy lab website (https://www.well.ox.ac.uk/~wrayner/tools/) to check for 

strand, alleles, position, Ref/Alt assignments and update the same based on the 1000G 

reference (https://www.well.ox.ac.uk/~wrayner/tools/1000GP_Phase3_combined.legend.gz). 

We did not conduct allele frequency checks at this step (i.e. used the --noexclude flag) since we 

had 68 samples from mixed ancestries. These filters resulted in 958,427 variants. We 

performed pre-phasing and imputation using the Michigan Imputation Server40. The standard 

pipeline (https://imputationserver.readthedocs.io/en/latest/pipeline/) included pre-phasing using 

Eagle241 and genotype dosage imputation using Minimac4 

(https://github.com/statgen/Minimac4) and the 1000g phase 3 v5 (build GRCh37/hg19) 

reference panel42. Post-imputation, we selected biallelic variants with estimated imputation 

accuracy (r^2) > 0.3, variants not significantly deviating from Hardy Weinberg Equilibrium 

(P>1e-6), MAF in 1000G European individuals > 0.05 and minor allele count (MAC) > 1 in our 

12 samples, resulting in 6,665,607 variants.  

Data processing (RNA component) 

The RNA component of the multiome data was processed using starSOLO (STAR v. 2.7.3a, 

with GENCODE v19 annotation; options --soloUMIfiltering MultiGeneUMI --soloCBmatchWLtype 

1MM_multi_pseudocounts --soloCellFilter None), which outputs the count matrices needed for 

most of the analyses18. Quality control metrics were gathered on a per-nucleus basis using a 

custom Python script on the corrected gene counts and aligned BAM file. 

Following processing with STAR, we constructed a custom count matrix by combining 

information from the GeneFull and Gene matrices output by STAR. The GeneFull matrix 

contains per-gene counts based on intronic and exonic reads, while the Gene matrix contains 

per-gene counts based on exonic reads only. As nuclear RNA may contain introns, the 

GeneFull matrix should be preferred. However, due to overlapping transcript annotations that 

render some read gene assignments ambiguous, some genes may receive fewer counts in the 

GeneFull matrix than in the Gene matrix. The INS gene was an extreme example of this, 
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receiving very low counts in the GeneFull matrix but high counts in the Gene matrix. To salvage 

counts for such genes, our custom matrix utilized the GeneFull counts for most genes but 

utilized the Gene counts for the subset of genes that had greater counts in the Gene matrix than 

in the GeneFull matrix. 

Data processing (ATAC component) 

Adapters were trimmed using cta (https://github.com/ParkerLab/cta). We used a custom Python 

script, available in the Parker lab Github repository, for barcode correction. Barcodes were 

corrected in a similar manner as in the 10x Genomics Cell Ranger ATAC v. 1.0 software. In 

brief, barcodes were checked against the 10x Genomics whitelist. If a barcode was not on the 

whitelist, then we found all whitelisted barcodes within a hamming distance of two from the bad 

barcode. For each of these whitelisted barcodes, we calculated the probability that the bad 

barcode should be assigned to the whitelisted barcode using the Phred scores of the 

mismatched base(s) and the prior probability of a read coming from the whitelisted barcode 

(based on the whitelisted barcode’s abundance in the rest of the data). If there was at least a 

97.5% probability that the bad barcode was derived from one specific whitelisted barcode, it was 

corrected to the whitelisted barcode. 

Reads were mapped using BWA-MEM43 with flags ‘-I 200,200,5000 -M’ (v. 0.7.15-r1140). We 

used Picard MarkDuplicates (v. 2.25.1; https://broadinstitute.github.io/picard/) to mark 

duplicates, and filtered to high-quality, non-duplicate autosomal read pairs using SAMtools 

view44 with flags ‘-f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30’ (v. 1.10). Quality control metrics 

were gathered on a per-nucleus basis using ataqv45 (v. 1.2.1) on the BAM file with duplicates 

marked. 

Selection of quality nuclei (barcodes) for downstream analysis 

We performed rigorous QC of all RNA nuclei and only included those deemed as high-quality 

based on the following four definitions: 1) nUMI > 1000, 2) mitochondrial fraction < 0.2, 3) nuclei 

where the RNA profile was statistically different from the background/ambient RNA signal, and 

4) nuclei identifiable as a singlet and assignable to a sample using genotypes. We considered 

droplets with UMIs < 10 to be “empty” and therefore representative of the background/ambient 

RNA profile. Top genes in the ambient RNA included highly expressed genes across prominent 

islet cell types such as INS, GCG, and SST, along with several mitochondrial genes. We used 

the testEmptyDrops function from DropletUtils (v 1.6.1)46, specifying the ‘lower’ parameter as 10 
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and selecting droplets with P<0.05 as droplets significantly different from the ambient RNA 

profile. To identify singlets and assign to samples, we ran Demuxlet47 using using the BAM files 

and the genotype VCF file considering all post-QC variants in gene bodies with minor allele 

count (MAC) >1. We used the command “demuxlet --sam $bam --tag-group CB   --tag-UMI UB -

-vcf ${vcf} --alpha 0 --alpha 0.5 --field GT”, and selected singlets. To account for ambient RNA 

contamination while identifying singlets, we also masked the top 1% genes expressed in the 

ambient RNA and re-ran Demuxlet with the same parameters; nuclei were considered singlets 

and kept for downstream analysis if they were called as singlets in either Demuxlet run. 

We also performed QC of the ATAC component of the multiome data. For ATAC, we required 

nuclei to have a minimum TSS enrichment (as calculated by ataqv) of 2, minimum filtered read 

count of 1000 (ataqv ‘HQAA’ metric), and maximum mitochondrial fraction of 0.5. We also ran 

Demuxlet on the ATAC component (command: demuxlet --sam $bam --tag-group CB --vcf 

${vcf} --field GT) and required that a prospective nucleus be called as a singlet. The ATAC 

component of nuclei in two wells showed low TSS enrichment and all nuclei from these two 

wells were therefore excluded from analysis. 

If the RNA and the ATAC component of a barcode both passed QC and the Demuxlet sample 

assignment was the same, both modalities were utilized for downstream analysis. If only the 

RNA component passed QC, only the RNA component was used in downstream analysis. As 

we performed clustering on the RNA component, we excluded the few (twelve) barcodes that 

passed ATAC QC and failed RNA QC. 

Removal of ambient RNA counts from single nucleus gene expression UMI matrices 

Prior to clustering and downstream analysis, we used DecontX48 (celda v. 1.8.1, in R v. 4.1.1)49 

to adjust the nucleus x gene expression count matrices for ambient RNA. DecontX was run on a 

per-batch basis, as the amount of ambient contamination may vary across batches. 

Decontaminated counts were generated via the decontX() function, passing barcodes with total 

UMI count <= 10 to the background argument. Rounded decontaminated counts were used for 

clustering and all downstream analyses. Nuclei with estimated contamination level > 0.2 were 

excluded from downstream analysis.  
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Clustering of multiome data 

Nuclei were clustered on the RNA component using Seurat50–52 (v. 3.9.9.9010, in R v. 3.6.3). 

After normalizing counts with the NormalizeData function, we identified the top 2000 variable 

features (FindVariableFeatures function, with selection.method=’vst’) and scaled with the 

ScaleData function. We identified neighbors using the top 20 PCs and k.param = 20, and called 

clusters using resolution = 0.1 with n.start = 100. We used the top 20 PCs for generating the 

UMAP. 

This clustering protocol identified 10 clusters. One of the smaller clusters shows expression of 

both INS and GCG, suggesting it may consist of doublets that were not caught by demuxlet. To 

verify this was a doublet cluster, we ran a different, genotype-independent, ATAC-based doublet 

detection method (AMULET; v. 1.0-beta, run with default parameters separately on data from 

each multiome well)53 on the ATAC nuclei that otherwise passed QC. This method tagged ~40% 

of the nuclei in the suspected doublet cluster as doublets, while only ~5% of nuclei in any other 

cluster were tagged as doublets. We therefore removed the small doublet cluster from the 

clustering and downstream analysis. 

Differential gene expression analysis 

Differential gene expression was performed within each cluster using DESeq2 (v. 1.28.0)22 on 

pseudobulk counts. UMI counts were summed across nuclei within a donor + construct + 

cluster. Only donors with paired data (RFX6-2896 and scrambled-mCherry constructs) were 

used, and the analysis was performed in a paired fashion (DESeq2 model: ~donor + construct). 

We used an FDR threshold of 5% for considering genes differentially expressed. 

Per-cluster processing of ATAC component 

All ATAC reads from pass-QC, clustered nuclei were merged within each cluster. To generate 

per-cluster peaks, these BAM files were converted to single-ended BED format using bedtools 

bamtobed54 before calling ATAC-seq peak summits with MACS255 (flags -g hs --nomodel --shift 

-37 --extsize 73 -B --keep-dup all --call-summits). We removed summits in blacklist regions, 

filtered to FDR 0.1% summits, and then generated a peak list from the summits by extending 

the ATAC-seq peak summits for each cluster +/- 150 bps to get 300bp peaks (within each 

cluster, if two 300bp peaks overlapped the one with the greater MACS2 score was kept). We 

then removed peaks in blacklist regions. To get the ATAC peak counts used in the ATAC PCA 
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and differential chromatin accessibility analyses, we determined the number of ATAC fragments 

overlapping each of these peaks in each of the per-cluster, per-donor, per-construct pseudobulk 

samples. 

For visualization of ATAC signal, we generated a normalized bedGraph file using MACS2 on the 

single-end BED file (macs2 callpeak command, with options --SPMR --nomodel --shift -100 --

extsize 200 -B --broad --keep-dup all) and then converted to bigWig format using the UCSC 

bedGraphToBigWig56. For PCA on the pseudobulk ATAC counts, we first removed any peaks 

on the mCherry or mKate2 contigs. We then converted peak counts to counts per million and 

removed the bottom 10% of features with the lowest average CPM across samples. For each 

peak, we filled any 0s with a value equal to half of the minimum non-zero CPM for that peak 

across samples. We then log transformed prior to performing the PCA. 

Differential chromatin accessibility analysis 

Differential chromatin accessibility was performed within each cluster using DESeq2 (v. 

1.28.0)22 on pseudobulk ATAC peak counts. Only donors with paired ATAC data (RFX6-2896 

and scrambled-mCherry constructs) were used, and we additionally excluded donor 17277513 

due to very low read counts. The DESeq2 analysis was performed in a paired fashion, with 

model: ~donor + tss_enrichment + construct. To compute TSS enrichment for each pseudobulk 

sample, we merged all ATAC nuclei (regardless of cluster) from each donor and computed TSS 

enrichment with ataqv. 

Testing for enrichment of peak subsets near differential genes 

We used a permutation test to determine whether the most significant peaks (‘top peaks’) from 

the beta cell differential peak analysis were enriched near beta cell differentially expressed (DE) 

genes. First, we assigned each peak to the gene with the nearest TSS (if multiple TSS were 

equally close, we took the TSS with the smallest chromosomal coordinate). We then calculated 

the fraction of top peaks whose nearest gene was DE. To get the null expectation for this value, 

we permuted the ‘DE/not DE’ gene labels, such that the same number of genes were always 

labeled as ‘DE’ but the identity of these DE genes changed in each permutation. While 

permuting, we split genes into deciles based on the expression of each gene and permuted the 

labels only within each decile (this controls for the fact that highly expressed genes are more 

likely to be DE than lowly expressed genes due to statistical power in the DE analysis). We 

performed 10,000 permutations, in each permutation re-calculating the fraction of top peaks 
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whose nearest gene was DE to build up the null distribution. We then calculated an empirical p-

value based on our observed value and the null distribution, adding a pseudocount to avoid a p-

value of 0 (p = [1 + # of permutations where the test statistic was greater than or equal to our 

observed value] / 10,001). 

Motif scanning for multiome motif enrichment analyses 

The motif scans were performed using FIMO (v. 5.0.4) with a background model calculated from 

the hg19 reference genome57 and otherwise default parameters. We used the motifs from 

Kheradpour and Kellis 201458, excluding “*_disc” motifs; motifs from cisBP v. 2.039; motifs from 

Jolma et al. 201359; and custom RFX6 motifs generated using mouse Rfx6 ChIP-seq data from 

Piccand et al. 201460. 

The custom RFX6 motifs were generated during a previous project61. Sequencing reads from 

Piccand et al. 101460 were mapped to the mouse mm9 genome62 using bwa (v. 0.7.12-r1039) 

and peaks were called using MACS2 (flags: -t MIN6_Rfx6-HA_IP.bam -c MIN6_Control-HA.bam 

-B --nomodel -g mm --keep-dup 1 -q 1.00e-4). The MEME (v. 4.11.0)63 and DREME (v. 4.9.1)64 

tools from the MEME suite65 were used to discover novel motifs in the resulting peaks. One non-

repetitive motif from the MEME tool and two motifs from the DREME tool, bearing similarity to 

known RFX family motifs, were selected for use in downstream analysis. 

Motif enrichment in most significant peaks 

We used logistic regression to measure enrichment of motifs in subsets of ATAC-seq peaks. 

We ran one model per peak category and motif. For testing for enrichment in the peaks that had 

the smallest p-values and leaned towards higher signal in shRFX6 samples, we modeled: 

peak_leans_higher_in_shRFX6 ~ peak_gc_content + peak_size + n_motif_hits_in_peak 

Where ‘peak_leans_higher_in_shRFX6’ is 1 if the peak was one of the most significant peaks in 

the ‘up in RFX6 KD condition’ direction and 0 otherwise; peak_gc_content was the GC content 

of the sequence within the peak; peak_size was the mean DESeq2-normalized count for the 

peak across the samples in the DESeq2 analysis; and n_motif_hits_in_peak was the number of 

motif hits in the peak as determined by the FIMO motif scans. The coefficient of the 

n_motif_hits_in_peak term was taken as the measure of motif enrichment. For testing for 

enrichment in the peaks that had the smallest p-values and leaned towards lower signal in 
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shRFX6 samples, we used the same model except the outcome variable was 

‘peak_leans_lower_in_shRFX6’. 

Generation of ATAC footprint plots 

To generate the ATAC footprint plots, we first separated the motif occurrences into those within 

the beta cells ATAC peaks and those outside of peaks. For each of these two groups, we 

computed an aggregate Tn5 cut matrix for the 500 bps on either side of the motifs, using beta 

cell ATAC reads from each individual donor+construct (using the make_cut_matrix script within 

the atactk package (https://github.com/ParkerLab/atactk); options -a -r 500). The cut matrices 

were generated separately for each donor+construct, utilizing only donors with paired ATAC 

data (RFX6-2896 and scrambled-mCherry constructs) and additionally excluding donor 

17277513 due to very low ATAC read counts. To reduce the impact of Tn5 insertion sequence 

bias, we normalized the Tn5 cut frequency at each position for the motifs in peaks by the 

corresponding frequencies for the motifs outside of peaks. To adjust for technical differences 

(e.g., TSS enrichment) between the donors+constructs, we then divided these normalized cut 

frequencies by the average normalized cut frequency between the -500 and -400 bp positions.  

GWAS enrichment in most significant peaks 

We considered if β cell ATAC-seq peaks that score highly for differential accessibility, as 

measured by p-value, are specifically enriched to overlap T2D-GWAS variants. We compared 

the enrichment of T2D (adj. BMI) GWAS variants to overlap top 5000 ATAC-seq differential 

peaks leaning up and down with the remaining peaks for β cell using GARFIELD37. Using a p-

value threshold of 1e-05, we also performed a conditional analysis where GARFIELD evaluates 

if both annotations are conditionally independent of each other in the enrichment model. The 

coefficients corresponding to each annotation from the conditional enrichment model were 

shown along with the 95%-CI. To ensure robustness of our results, we repeated the analysis for 

top 2000 (up and down each) and top 10000 (up and down each) differential peaks. 

Statistical information 

Specific statistical tests used for each dataset are described in the figure legends and text 

where appropriate. Data is represented as mean ± standard error (SEM) unless otherwise 

noted. A p-value of 0.05 was considered significant except for bulk RNA-seq differential 
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expression where we used a more stringent cutoff of 0.01. Statistical comparisons were 

performed using GraphPad Prism software 8.0-9.3 or using R. 
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EXTENDED DATA 

Extended Data Figure 1 (related to Fig. 1). Additional metrics from functional and 

transcriptional profiling of islets from donors with short-duration T2D. 

Extended Data Figure 2 (related to Fig. 1). Transcriptional analysis of islets and sorted α and 

β cells reveals dysregulation of metabolic pathways in T2D β cells and immune signaling in T2D 

islets. 

Extended Data Figure 3 (related to Fig. 2). Parallel approaches of multiplexed imaging and 

high-throughput traditional immunohistochemistry enable profiling of endocrine cells in addition 

to intraislet vascular and immune cells. 

Extended Data Figure 4 (related to Fig. 2). Integration of multiplexed imaging and 

transcriptional profiling highlight disrupted capillaries and immune cells within T2D islets. 

Extended Data Figure 5 (related to Fig. 3). Quality assessment of Weighted Gene Co-

Expression Network Analysis (WGCNA). 

Extended Data Figure 6 (related to Fig. 3). WGCNA emphasizes α and islet cell gene 

modules associated with donor and islet traits as well as those enriched in GWAS loci. 

Extended Data Figure 7 (related to Fig. 4). Connectivity of RFX6 by WGCNA is β cell-specific 

and RFX6 reduction impairs insulin secretion. 

Extended Data Figure 8 (related to Fig. 5). Application of dual RNA and ATAC-sequencing to 

single nuclei from RFX6 shRNA pseudoislets. 

Extended Data Figure 9 (related to Fig. 5). RFX6-mediated chromatin, transcriptome, and 

insulin secretion dysregulation in human β cells. 

Extended Data Table 1. Donor characteristics, sample types, and experimental usage. 

Extended Data Table 2. Antibodies for traditional immunohistochemistry and flow cytometry. 

Extended Data Table 3. Antibodies for co-detection by indexing (CODEX). 

Extended Data Table 4. Curated gene lists for weighted gene co-expression network analysis. 
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Extended Data Figure 1 (related to Figure 1)
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Extended Data Figure 1 (related to Fig. 1). Additional metrics from functional and 
transcriptional profiling of islets from donors with short-duration T2D. (a-b) Matching of 

ND and T2D donor BMI (a) and age (b) for perifusion experiments. (c) Basal insulin secretion 

calculated as the average of the first three points of perifusion trace. (d-e) Integrated area under 

the curve (AUC) breaking down the total 16.7 mM glucose response into the first phase (d; 

through minute 24) and second phase (e; remainder of stimulation). (f) Area “under” the curve 

calculated from trace baseline for inhibition with low glucose and epinephrine. (g-l) Dynamic 

insulin secretion and metrics equivalent to Fig. 1 but normalized by total insulin content. (m) 
Basal glucagon secretion calculated as average of first three points of perifusion trace. (n) Area 

“under” the curve calculated from trace baseline for inhibition with high glucose. (o-t) Dynamic 

glucagon secretion and metrics equivalent to Fig. 1 but normalized by total glucagon content. 

(u) Blood glucose, human insulin levels, and human insulin:blood glucose ratio measured at 0’ 

(six-hour fasted) and 15’ after glucose and arginine stimulation of mice with human islet grafts. 

Symbols represent individual mice. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 (two-tailed t-

test, panels a-f, h-n, and p-t; two-way ANOVA, panel u); error bars are SEM. (v) Gating 

strategy for sorted α and β cells identified by cell surface markers. Cell debris were excluded by 

forward scatter (FSC) and side scatter (SSC), single cells were identified by voltage pulse 

geometry (FSC-A v. FSC-H), and non-viable cells were excluded using propidium iodide (PI). 

Endocrine cell subpopulations were then gated based on positivity for HPi1 (pan-endocrine 

marker) and additional positivity for HPa3 (α cells) or NTPDase3 (β cells). (w) Select metrics 

used to assess library quality, organized by sample type. Outlier samples are highlighted in 

yellow and were excluded from downstream analyses.  
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Extended Data Figure 2 (related to Fig. 1). Transcriptional analysis of islets and sorted α 
and β cells reveals dysregulation of metabolic pathways in T2D β cells and immune 
signaling in T2D islets. (a-c) Relative expression of individual libraries post-correction and 

principal component (PC) analysis of each sample type. RRIDs (donor labels beginning with ‘8’) 

are abbreviated; see Extended Data Table 1 for complete alphanumeric RRIDs. Nondiabetic 

(ND) samples, grey; T2D samples, colored according to sample type. (d-f) Pearson correlation 

between sample covariates and PCs using the DEseq model. Colored bands next to 

row/column labels indicate whether variable is a donor trait (yellow), sample preparation 

variable (mint green), sequencing metric (pink), quality assurance/quality control (QA/QC) 

metric (blue), or latent variable or PC (purple). Culture time, duration of time (hours) between 

islet isolation and cell dispersion/sorting; Cell qty, number of sorted cells from which RNA was 

isolated (β and α cells only); RIN, RNA integrity number; Batch x, sequencing batch; TIN mean, 

mean transcript integrity number; Insert size, median length of sequenced RNA fragments; GBC 

5’/3’, ratio of gene body coverage at 5’ and 3’ end, describing reads distribution along a gene; 

QC’d reads, number of read pairs that pass initial filters; unique reads, number of read pairs that 

map to genomic area covering exactly one gene; Introns, reads mapping to intronic regions of 

genes; Avg GC, average GC content of all reads; CGD z-score, z-score quantifying cumulative 

gene diversity of libraries from median based on Kolmogorov Smirnov test; ChrM, reads 

mapping to MT chromosome; ChrY, reads mapping to Y chromosome; PCx, principal 

components; Wx, RUV-seq latent variables. (g-i) Volcano plots illustrating differentially 

expressed genes between ND and T2D β cells (g), α cells (h), and islets (i). Lines denote 

cutoffs for fold-change (±1.5) and significance (<0.01); genes passing both thresholds are 

colored and select genes are labeled. (j-l) Enriched gene ontology terms (FDR<0.05) obtained 

from RNA Enrich were condensed using the RelSim function of Revigo (similarity=0.5) and 

plotted in semantic space to emphasize relatedness. Dot size represents odds ratio and color 

represents p-value. Select terms are labeled.  
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C-peptide CPEP Endocrine (β)
CD11c CD11c Macrophage, monocyte, DC
CD14 CD14 Macrophage
CD163 CD163 Macrophage phenotypic marker
CD206 CD206 Macrophage phenotypic marker
CD3 CD3 T cell
CD31 CD31 Endothelial

CD34 CD34 HSC, vascular endothelial, 
fibroblast

CD38 CD38 T cell, B cell, NK cell, myeloid 
cell, plasma cell, DC

CD4 CD4 T cell subset
CD45 CD45 Hematopoeitic (pan-leukocyte)
CD8 CD8 T cell subset
Chromogranin A CHGA Endocrine
Collagen IV COL-IV Extracellular matrix (ECM)
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Ghrelin GHRL Endocrine (ε)
Glucagon GCG Endocrine (α)
HLA-DR HLA-DR Antigen-presenting cell
IBA1 IBA1 Macrophage
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Pan-
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Extended Data Figure 3 (related to Fig. 2). Parallel approaches of multiplexed imaging 
and high-throughput traditional immunohistochemistry enable profiling of endocrine 
cells in addition to intraislet vascular and immune cells. (a-b) Markers, cell populations, and 

specific phenotypes distinguished by the CODEX antibody panel. (c-h) Cross-sectional area (c-
d) and cytonuclear quantification (f-h) of β cells (CPEP; green), α cells (GCG; red), and δ cells 

(SST; blue). Individual donor data shown in stacked bar graphs (c, f); bar graphs (d-e, g-h) 

show mean + SEM, one symbol per donor. Stratification by pancreas region (d, g) includes 

horizontal lines (solid, ND; dotted, T2D) for mean values from combined analysis (‘Aggregate). 

(e) Pancreas weight measured during organ procurement; used to calculate endocrine cell 

mass in Fig. 2b. (i) Representative images depicting rare cells positive for chromogranin A 

(CHGA; red) but negative for all hormones (green). Scale bars, 50 μm; arrowheads denote 

CHGA+ hormone– cells. (j) Abundance of endocrine and non-endocrine cells in ND and T2D 

islets; one vertical bar per islet and colored by cell type. Islets are grouped by donor and 

ordered from largest (highest total cell number) to smallest. See also Fig. 2e.  
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Extended Data Figure 4 (related to Fig. 2). Integration of multiplexed imaging and 
transcriptional profiling highlight disrupted capillaries and immune cells within T2D 
islets. (a) Amyloid prevalence (% total islets with amyloid, averaged over multiple regions); * 

p<0.05 (two-tailed t-test). (b) Correlation of amyloid prevalence with β, α, and δ cell populations 

as percentage of total endocrine cell number or cross-sectional area; one symbol per donor with 

95% confidence interval of linear regression (shading). No slopes were significantly nonzero at 

p<0.01 threshold. (c) Metascape visualization of select terms enriched for differentially 

expressed genes in T2D α cells (left) and islets (right). (d) Average distance of each endocrine 

cell type to nearest capillary; one symbol per donor (both ND and T2D); asterisks signify results 

of one-way ANOVA with Tukey’s multiple comparisons test (** p<0.01; * p<0.05). (e) Gene 

expression fold-change of selected vascular and neuronal ligands and their receptors in β cells, 

α cells, and islets; • FDR<0.05; * FDR<0.01. (f) Phenotypes of endothelial cells (CD31; red) 

defined by single or dual positivity for HLA-DR (green) and CD34 (blue). Examples of each 

combination (HLA-DR+ CD34–, CD34+ HLA-DR–, HLA-DR+ CD34+, and HLA-DR– CD34–) are 

shown to right. (g) Magnification of select clusters depicted in Fig. 1r (terms enriched across β, 

α, and islet samples). (h-i) Macrophages (IBA1+) and T cells (CD3+) phenotyped by various cell 

surface markers; insets show additional cells to illustrate phenotypic variety. Scale bars, 50 μm. 
(j) Expression of HLA-DR in CD4+ and CD8+ T cell populations. (k-l) Cellular neighborhood 

assignment and corresponding cell composition changes in T2D vs. ND islets. Panels k and m-
n show results from the k-means method and panel l compares these results to CF-IDF method 

shown in Fig. 2o-2s. Traditional IHC data: panels a-b; CODEX data: panels d, f, h-n. RNA data: 

panels c, e, g.  
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Extended Data Figure 5 (related to Fig. 3). Quality assessment of Weighted Gene Co-
expression Network Analysis (WGCNA). Analyses for β cell (a-c), α cell (d-f), and islet (g-i) 
datasets were conducted in parallel. Metrics are shown for batch correction and network 

parameter selection (a, d, g), module size and assignment (b, e, h), and module relatedness (c, 
f, i).  
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Extended Data Figure 6 (related to Fig. 3). WGCNA emphasizes α and islet cell gene 
modules associated with donor and islet traits as well as those enriched in GWAS loci. 
Module eigengenes for α cells (a-e) and islets (f-i) shown in parallel to β cells (Fig. 3a-3e). (a, f) 
Modules clustered by similarity and showing relative enrichment of curated gene lists. (b, g) 
Module correlation to donor characteristics, enrichment of differentially expressed (DE) genes, 

and total number of genes per module. • p<0.05; * p<0.01. Modules of interest highlighted (b: 

red, g: blue). (c, h) Module correlation to α and β cell function (Fig. 1); significant associations 

highlighted (yellow). For islets (g), modules were correlated to both insulin and glucagon 

secretion. G+IBMX, 16.7 mM glucose with 100 μM isobutylmethylxanthine; 16.7G, 16.7 mM 

glucose; 16.7G 1º, first phase; 16.7G 2º, second phase; 1.7G+Epi, 1.7 mM glucose and 1μM 

epinephrine; KCl, 20 mM potassium chloride. (d) Module enrichment for GWAS traits. FIns, 

fasting insulin; FGlu, fasting glucose. * FDR<0.01. (e, i) Enrichment of select gene ontology 

terms in β cell modules with notable correlations and/or enrichment. (j) Magnification of select 

clusters depicted in Fig. 1r (terms enriched across β, α, and islet samples).  
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Extended Data Figure 7 (related to Fig. 4). Connectivity of RFX6 by WGCNA is β cell-
specific and RFX6 reduction impairs insulin secretion. (a-d) Connectivity of genes in α cell 

(a-b) and islet (c-d) modules, in parallel to data for β cell modules in Fig. 4a-4b. (a, c) Overall 

connectivity of individual genes; select genes with high connectivity scores are labeled. (b, d) 
Cross- and within-module connectivity; select transcription factors are labeled. (e-f) 
Immunofluorescent staining of pseudoislets embedded in type I collagen. (e) Transduced α cells 

marked by mCherry; see Fig. 4h for β cells. (f) Distribution of β cells (CPEP; green) and α cells 

(GCG; blue). (g) Quantification of % β and % α cells in control (scramble) and shRFX6 

pseudoislets. (h) Insulin content in control and shRFX6 pseudoislets (** p<0.01, two-tailed t-

test). (i-j) Dynamic insulin secretion and metrics equivalent to Fig. 4j-4k but normalized by total 

insulin content.  
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Extended Data Figure 8 (related to Figure 5)
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Extended Data Figure 8 (related to Fig. 5). Application of dual RNA and ATAC-sequencing 
to single nuclei from RFX6 shRNA pseudoislets. (a) Quality control of nuclei for RNA and 

ATAC modalities. UMI, unique molecular identifier; TSS, transcription start site. (b) Expression 

of marker genes in cell type clusters. (c) Per-donor cell type counts. See also Fig. 5b-5c. (d) 
Enrichment of shRFX6 β cell nuclei differentially expressed genes within each β cell module 

derived from transcriptomes of sorted ND and T2D β cells (see Fig. 3a-3d). Right panel: cell 

component (cmpt) terms enriched for genes in β module 22. Memb., membrane. (e) 
Membership enrichment for exocytosis (exoc.) and insulin secretory pathways based on 

shRFX6 β cell nuclei differentially expressed (p<0.01) genes. All pathways are GO terms unless 

otherwise indicated. Neg., negative; pos., reg., regulation. (f) Per-cluster ATAC peaks (exact 

number listed in parentheses next to cell type). (g) PCA of pseudobulk β cell ATAC peak signal, 

each marker representing nuclei from a single donor/construct combination. (h-i) Motif 

enrichment for top 2,000 (h) or 10,000 (i) RFX6-sensitive up- and downregulated ATAC peaks 

in shRFX6 β cell nuclei. Motifs with highest significance are labeled in top panels; significant 

RFX motifs (or the single RFX motif closest to significance, in the case that no RFX motifs reach 

significance) are labeled in bottom panels. (j) ATAC footprints for CTCF_known2 and RFX2_4 

motifs in β cell ATAC peaks. Light lines represent per-donor footprints; bold lines represent the 

average across donors. (k) Enrichment of top RFX6-sensitive up- and downregulated ATAC 

peaks (n=2,000, 5,000, or 10,000) in shRFX6 β cell nuclei near shRFX6 β cell differentially 

expressed genes. (l-m) Odds ratio of T2D GWAS enrichment (l) and model estimate from 

conditional analysis (m) of top 2,000 or 10,000 RFX6-sensitive peaks.  
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Extended Data Figure 9 (related to Figure 5)
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Extended Data Figure 9 (related to Fig. 5). RFX6-mediated chromatin, transcriptome, and 
insulin secretion dysregulation in human β cells. (a) Major β cell-intrinsic and islet 

microenvironment alterations that define islet dysfunction in early-stage T2D. Observations from 

transcriptomic and histologic studies revealed no change to endocrine cell composition but 

evidence of dysregulated β cell processes and modest changes to intraislet vascular and 

immune cell populations. Insulin secretion was reduced and persisted in a nondiabetic 

environment. (b) RFX6 knockdown using a primary human pseudoislet system resulted in 

dysregulated vesicle trafficking and ion transport pathways, mediated by chromatin architectural 

changes overlapping with T2D GWAS variants. This led to reduced insulin secretion, confirming 

the critical role of RFX6 in human β cell function.  
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Extended Data Table 1. Donor characteristics, sample types, and experimental usage
Adapted from Hart NJ, Powers AC (2018), Checklist for Reporting Human Islet Preparations Used in Research, Diabetologia , doi.org/10.1007/s00125-018-4772-2.

DON120 19 M Caucasian 20.0 5.1 No Head trauma NDRI Pittsburgh Perifusion 75 Yes N/A 16.38 19 ⬤ ⬤ ◯

DON126 19 M Caucasian 21.2 5.0 No Anoxia NDRI Pittsburgh Perifusion 60 Yes 0.167 11.87 18 ⬤ ⬤ ◯

DON452 19 M Hispanic/Latino 23.1 5.6 No Anoxia OPO UPenn Perifusion N/A Yes N/A 6.5 18 ⬤

DON470 19 M Caucasian 29.1 5.3 No Head trauma IIAM Imagine Pharma Perifusion N/A Yes N/A N/A 48 ⬤

DON471 19 M Caucasian 36.6 5.8 No Head trauma IIAM Imagine Pharma Perifusion N/A No N/A N/A 48 ⬤

DON78 19 M Caucasian 27.2 N/A No Head trauma NDRI Pittsburgh Perifusion 65 Yes N/A 15.35 18 ⬤ ⬤ ◯

DON85 20 M Caucasian 27.8 5.3 No Head trauma NDRI Pittsburgh Perifusion 75 Yes N/A 14.47 18 ⬤ ⬤ ◯

DON465 22 M Black 35.7 5.4 No Head trauma OPO UPenn Perifusion N/A Yes N/A 19.18 48 ⬤

DON202 24 M Caucasian 20.8 4.9 No Anoxia OPO UPenn Perifusion N/A Yes 0.36 16.45 18 ⬤ ◯

RRID:SAMN08773765 26 F Hispanic/Latino 35.9 6.1 No Anoxia IIDP UPenn Perifusion 90 No N/A 12.41667 39 ⬤

RRID:SAMN08775048 32 F Caucasian 39.4 N/A No Anoxia IIDP UWisconsin Perifusion 90 Yes N/A 3.766667 36 ◯ ⬤

DON308 35 M Caucasian 24.7 5.3 No Head trauma OPO Pittsburgh Perifusion N/A Yes N/A 6.18 19 ⬤ ⬤

DON42 35 M Caucasian 26.9 5.1 No Head trauma IIAM N/A N/A ⬤

RRID:SAMN08769828 35 F Caucasian 23.6 4.6 No Anoxia IIDP UPenn Perifusion 80 Yes 0 6.666667 63 ⬤ ⬤

RRID:SAMN16191825 35 M Hispanic/Latino 31.3 5.5 No Head trauma IIDP Southern CA Perifusion 80 Yes 0 5.4 40 ⬤

DON185 39 F Caucasian 34.8 4.7 No Anoxia OPO UPenn Perifusion N/A Yes N/A 8.55 18 ⬤ ⬤

DON475 39 M Caucasian 22.6 5.1 No Head trauma OPO Prodo Labs Perifusion N/A No N/A N/A 96 ⬤

DON453 40 F Caucasian 36.9 6.3 No Anoxia OPO UPenn Perifusion N/A Yes N/A 11.42 24 ⬤

DON246 42 M Caucasian 32.2 6.0 No Drug overdose OPO Pittsburgh Perifusion 65 Yes N/A 14.5 10 ⬤ ⬤ ⬤

RRID:SAMN08784318 43 M Unknown 29.6 N/A No Head trauma IIDP UPenn Perifusion N/A Yes N/A N/A N/A ⬤

RRID:SAMN17277513 43 F Hispanic/Latino 36.5 5.2 No CVA/Stroke IIDP Southern CA Perifusion 90 Yes 0.367 5.333333 48 ⬤

R264 44 M Unknown 33.7 5.7 No Unknown OPO Alberta Perifusion N/A Yes N/A N/A N/A ⬤

RRID:SAMN08774468 44 F Black 26.0 N/A No CVA/Stroke IIDP UPenn Perifusion 90 Yes N/A 6.183333 61 ◯ ⬤

DON227 45 F Caucasian 29.8 5.6 No Anoxia OPO Pittsburgh Perifusion N/A Yes N/A 9 23 ⬤ ⬤

DON389 46 F Caucasian 32.9 5.7 No CVA IIAM Pittsburgh Perifusion N/A Yes N/A 8.2 48 ⬤ ⬤

RRID:SAMN08785748 46 M Unknown 24.3 N/A No Head trauma IIDP UPenn Perifusion N/A Yes N/A N/A N/A ⬤

DON455 47 M Caucasian 32.8 5.7 No Anoxia OPO UPenn Perifusion N/A Yes N/A 10.83 48 ⬤

RRID:SAMN11791244 47 M Hispanic/Latino 36.1 5.7 No CVA/Stroke IIDP Southern CA Perifusion 95 Yes 0.283 6.366667 45 ⬤

DON316 48 M Caucasian 24.6 4.9 No Anoxia OPO Pittsburgh Perifusion N/A Yes N/A 20.48 28 ⬤ ⬤

RRID:SAMN11633049 48 M Caucasian 38.8 5.4 No CVA/Stroke IIDP UWisconsin Perifusion 90 Yes 0 12.5 57 ⬤

RRID:SAMN08617638 49 M Hispanic/Latino 34.1 6.1 No CVA/Stroke IIDP Southern CA Perifusion 80 Yes 0 8.45 39 ⬤

RRID:SAMN08773777 49 F Caucasian 31.6 5.2 No CVA/Stroke IIDP UPenn Perifusion 95 Yes N/A 5.283333 31 ⬤ ⬤

RRID:SAMN08930704 50 M Black 30.2 5.3 No CVA/Stroke IIDP UIllinois Perifusion 90 Yes 0.5 5.95 78 ⬤ ⬤

RRID:SAMN16550021 50 F Caucasian 27.2 5.4 No Head trauma IIDP Southern CA Perifusion 90 Yes 0 5.783333 71 ⬤

RRID:SAMN16515959 51 F Caucasian 25.2 5.6 No CVA/Stroke IIDP Southern CA Perifusion 90 Yes 0 6.533333 40 ⬤

DON204 52 M Black 29.2 N/A No ICH OPO Pittsburgh Perifusion 65 Yes N/A 8.7 23 ⬤ ⬤ ⬤

DON218 52 M Caucasian 28.1 N/A No Head trauma OPO N/A N/A ⬤

RRID:SAMN08769380 53 M Caucasian 31.1 5.5 No Anoxia IIDP UWisconsin Perifusion 85 Yes N/A N/A 41 ⬤ ⬤

DON197 55 F Black 24.2 N/A No CVA/ICH OPO Pittsburgh Perifusion 80 Yes 0 3.8 28 ⬤ ⬤ ⬤

DON61 55 M Black 35.6 N/A No CVA/ICH IIAM Pittsburgh Perifusion N/A Yes N/A N/A N/A ⬤ ⬤ ⬤

RRID:SAMN08930707 55 M Caucasian 27.8 4.9 No CVA/Stroke IIDP UIllinois Perifusion 90 Yes N/A 9.966667 50 ⬤ ⬤ ⬤

RRID:SAMN10252228 55 F Caucasian 35.7 6.0 No CVA/Stroke IIDP UWisconsin Perifusion 94 Yes 0 8.15 52 ⬤
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Extended Data Table 1. Donor characteristics, sample types, and experimental usage
Adapted from Hart NJ, Powers AC (2018), Checklist for Reporting Human Islet Preparations Used in Research, Diabetologia , doi.org/10.1007/s00125-018-4772-2.
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HP-21015-01 56 M Caucasian 33.0 5.3 No Head trauma OPO Prodo Labs Perifusion N/A Yes 0.72 N/A 67 ⬤

RRID:SAMN11046361 57 M Hispanic/Latino 36.0 5.4 No CVA/Stroke IIDP Scharp-Lacy Perifusion 80 Yes 0 9.2 88 ⬤

RRID:SAMN10861888 58 F Caucasian 36.6 5.3 No Anoxia IIDP Southern CA Perifusion 80 Yes 0.25 6.35 87 ⬤

DON381 59 M Caucasian 32.7 5.5 No Head trauma IIAM Pittsburgh Perifusion N/A Yes N/A N/A N/A ⬤ ⬤

DON477 59 M Caucasian 22.6 5.2 No CVA OPO Prodo Labs Perifusion N/A No N/A N/A N/A ⬤

RRID:SAMN08768702 59 F Caucasian 22.0 5.2 No Anoxia IIDP UWisconsin Perifusion 98 Yes N/A 5.5 52 ◯ ⬤

RRID:SAMN17528599 60 M Caucasian 29.9 5.8 No Anoxia IIDP UPenn Perifusion 85 Yes 0 7.733333 58 ⬤

R200 65 M Unknown 27.1 5.1 No Unknown OPO Alberta Perifusion 90 Yes N/A N/A N/A ⬤ ⬤

DON181 37 F Caucasian 49.8 6.9 T2D 5 Glyburide Anoxia IIAM Pittsburgh Perifusion 75 Yes N/A 15.32 39 ⬤ ⬤ ⬤ ⬤

DON83 40 F
Native Hawaiian/ 
Pacific Islander 43.1 8.2 T2D 0 None CVA/ICH IIAM Pittsburgh No 40 No N/A 14.20 24

⬤ ⬤

DON124 42 M Black 42.0 8.1 T2D 0 None CVA/ICH IIAM Pittsburgh Perifusion 85 Yes N/A 11.83 22 ⬤ ⬤ ⬤

DON155 43 M Black 36.1 7.0 T2D 1 Metformin Head trauma IIAM Pittsburgh Perifusion 90 Yes 0.466 12.0 32 ⬤ ⬤ ⬤ ⬤

DON310 43 M Black 37.3 7.0 T2D 6 Insulin CVA/ICH IIAM Pittsburgh Perifusion N/A Yes N/A 11.85 19 ⬤ ⬤

DON39 47 M Caucasian 31.3 10.2 T2D 3 Insulin CVA/ICH IIAM Pittsburgh Perifusion N/A Yes N/A N/A N/A ⬤ ⬤ ⬤

DON38 49 F Caucasian 33.8 8.3 T2D 3 Unknown oral CVA/ICH IIAM Pittsburgh Perifusion N/A Yes N/A N/A N/A ⬤ ⬤ ⬤

DON96 50 M Caucasian 32.9 11.2 T2D 4
Metformin, 
sitagliptin CVA NDRI Pittsburgh N/A N/A N/A N/A 15.50 12

⬤

DON251 52 M Caucasian 33.6 7.4 T2D 7 Metformin CVA/ICH IIAM Pittsburgh Perifusion N/A Yes N/A 8.4 88 ⬤ ⬤

DON311 52 F Asian 21.9 7.0 T2D 10 Unknown oral CVA/ICH NDRI Pittsburgh Perifusion 50 Yes N/A 13.08 41 ⬤ ⬤ ⬤

DON371 52 F Caucasian 29.2 9.9 T2D 0 None CVA IIAM Pittsburgh Perifusion N/A Yes N/A 11.1 3 ⬤ ⬤

DON239 53 M Caucasian 30.1 6.9 T2D 7 Sitagliptin Anoxia OPO N/A 16.5 ⬤

DON234 54 M Caucasian 38.3 6.3 T2D 0.66 Metformin Head trauma IIAM 0.4 N/A ⬤

DON84 56 M Caucasian 31.0 N/A T2D 3 Sitagliptin Head trauma NDRI Pittsburgh Perifusion 90 Yes N/A 14.00 18 ⬤ ⬤ ⬤ ⬤

DON217 59 M
Native Hawaiian/ 
Pacific Islander 36.9 8.8 T2D 0 None CVA/ICH IIAM Pittsburgh No 45 No N/A 15.98 48

⬤ ⬤

DON77 59 F Caucasian 27.5 6.2 T2D 6 None CVA/ICH IIAM Pittsburgh Perifusion 70 Yes N/A 15.62 48 ⬤ ⬤ ⬤ ⬤

DON100 60 M Caucasian 38.3 7.2 T2D 1 Metformin CVA/ICH IIAM Pittsburgh Perifusion 65 Yes 0 12.92 18 ⬤ ⬤ ⬤ ⬤

DON44 61 F Caucasian 31.2 N/A T2D 4 Metformin CVA/ICH NDRI Pittsburgh N/A N/A N/A N/A N/A N/A ⬤

DON62 64 M Caucasian 33.2 N/A T2D 5
Metformin, 
glyburide Head trauma IIAM Pittsburgh No 45 Yes 0.183 N/A 72

⬤ ⬤ ⬤

DON40 66 F Caucasian 32.8 8.1 T2D 3 Metformin CVA/ICH IIAM Pittsburgh N/A N/A N/A N/A N/A N/A ⬤

Abbreviations: CVA, cardiovascular accident; DM, diabetes mellitus; F, female; ICH, intracerebral hemorrhage; IHC, immunohistochemistry; IIAM, International Institute for the Advancement of Medicine; IIDP, Integrated 
Islet Distribution Program; M, male; N/A, not available; NDRI, National Disease Research Interchange; OPO, organ procurement organization (local); Perif., perifusion; Pseud., pseudoislets; RNA, RNA-sequencing; T2D, 
type 2 diabetes; Transp., transplant. Open circles (◯) in perifusion assay column indicate that donor data were used for functional associations with age as a covariate, but were not included in Fig. 1c-1o/Extended 
Data Fig. 1a-1u.
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Extended Data Table 2. Antibodies for traditional immunohistochemistry and flow cytometry 
Antigen/conjugate Species Source Catalog # Application Dilution 
ARL13B Rabbit Proteintech 17711-1-AP IHC (1º) 1:2000 
C-peptide Rat DSHB GN-ID4 IHC (1º) 1:200 
Caveolin-1 Rabbit Abcam ab2910 IHC (1º) 1:2000 
CD39L3 (NTPDase3) Mouse J. Sévigny N/A FC (1º) 1:50 
Glucagon Mouse Abcam ab10988 IHC (1º) 1:100 
HPa3 (HIC3-2D12) Mouse P. Streeter/M. Grompe N/A FC (1º) 1:200 
HPi1 (HIC0-4F9) – 
biotin 

Mouse Novus NBP1-18872B FC (1º) 1:100 

Iba1 Rabbit Abcam ab221790 IHC (1º) 1:1000 
RFX6 Sheep R&D Systems AF7780 IHC (1º) 1:500 
Somatostatin Goat Santa Cruz sc7819 IHC (1º) 1:500 
Goat IgG – Cy5 Donkey Jackson Immunoresearch 705-175-147 IHC (2º) 1:300 
Rabbit IgG – Cy3 Donkey Jackson Immunoresearch 711-165-152 IHC (2º) 1:500 
Rat IgG – Cy2 Donkey Jackson Immunoresearch 712-225-153 IHC (2º) 1:500 
Rabbit IgG – Cy2 Donkey Jackson Immunoresearch 711-225-152 IHC (2º) 1:500 
Mouse IgG – Cy3 Donkey Jackson Immunoresearch 715-165-150 IHC (2º) 1:500 
Sheep IgG – Cy3 Donkey Jackson Immunoresearch 713-165-147 IHC (2º) 1:500 
Sheep IgG – Cy5 Donkey Jackson Immunoresearch 713-175-147 IHC (2º) 1:300 
Mouse Ig – APC Goat BD Biosciences 550826 FC (2º) 1:500 
Mouse IgG1 – BV421* Rat Biolegend 406615 FC (2º) 1:200 
Mouse IgG2b – APC* Rat Biolegend 406712 FC (2º) 1:800 
Mouse IgM – PE Goat Jackson Immunoresearch 115-116-075 FC (2º) 1:1000 
Streptavadin – BV421 N/A BD Biosciences 563259 FC (2º) 1:500 

Abbreviations: 1º, primary; 2º, secondary; DSHB, Developmental Studies Hybridoma Bank; FC, flow 
cytometry; IHC, immunohistochemistry. * Indicates isotype-specific 2º antibodies used in place of Mouse 
Ig – APC and Streptavadin – BV421 specifically for purification of β cells for pseudoislets. 
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Extended Data Table 3. Antibodies for co-detection by indexing (CODEX) 
Antigen Clone Barcode Conj. Source (catalog #) DF Reporter 
CD45  HI30 BX001 Akoya Akoya (4150003) 200 Alexa488-RX001 
CD8  SK1 BX004 Akoya Akoya (4150004) 100 Alexa488-RX004 
CD38  HB-7 BX007 Akoya Akoya (4150007) 200 Alexa488-RX007 
Pan‐
Cytokeratin  

AE-1/AE-3 BX019 Akoya Akoya (4150020) 500 Alexa488-RX019 

HLA‐DR  L243 BX026 Akoya Akoya (4250006) 300 Atto550-RX026 
CD31  WM59 BX032 Akoya Akoya (4250009) 400 Atto550-RX032 
Ki67  B56 BX047 Akoya Akoya (4250019) 600 Atto550-RX047 
CD34  561 BX035 Akoya Akoya (4250020) 200 Atto550-RX035 
E-cadherin  4A2C7 BX014 Akoya Akoya (4250021) 200 Atto550-RX014 
CD3  UCHT1 BX015 Akoya Akoya (4350008) 100 Cy5-RX015 
CD4  SK3 BX021 Akoya Akoya (4350010) 100 Cy5-RX021 
CD11c  S-HCL-3 BX027 Akoya Akoya (4350012) 100 Cy5-RX027 
Glucagon  K79bB10 BX016 Custom Abcam (ab10988) 400 Alexa488-RX016 
C-peptide  C-PEP-01 BX031 Custom ThermoFisher (MA1-

19159) 
200 Alexa488-RX031 

Ghrelin  883622 BX040 Custom R&D (MAB8200) 400 Alexa488-RX040 
CD163  GHI/61 BX043 Custom BioLegend (333602) 200 Alexa488-RX043 
MCAM 
(CD146) 

P1H12 BX046 Custom BioLegend (361002) 100 Alexa488-RX046 

β-Tubulin TUJ1 BX017 Leinco BioLegend (801201) 150 Atto550-RX017 
Somatostatin  7G5 BX020 Custom Novus (NBP2-37447) 400 Atto550-RX020 
Arginase I Polyclonal BX029 Custom Novus (NBP1-32731) 200 Atto550-RX029 
Pancreatic 
polypeptide 

548416 BX041 Custom R&D (MAB62971) 600 Atto550-RX041 

CD14  HCD14 BX024 Custom BioLegend (325602) 100 Cy5-RX024 
α-Amylase Polyclonal BX030 Leinco Abcam (ab35414) 100 Cy5-RX030 
IBA1  EPR16589 BX033 Custom Abcam (ab221790) 200 Cy5-RX033 
Chromogranin 
A 

LK2H10+ 
PHE5+ 
CGA/414 

BX036 Custom Novus (NBP2-34674) 800 Cy5-RX036 

Collagen IV  EPR20966 BX042 Leinco Abcam (ab226485) 50 Cy5-RX042 
CD206  15-2 BX045 Custom BioLegend (321102) 200 Cy5-RX045 

Abbreviations: Conj., conjugation; DF, dilution factor. ‘Custom’ indicates antibody was conjugated in-
house (see ‘CODEX multiplexed imaging’ in Methods). Refer to Extended Data Fig. 3a-3b for antigen 
specificity. 
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Extended Data Table 4. Curated gene lists for weighted gene co-expression network analysis 
Abbreviation Full name Source List(s) 
Transcription -- KEGG Pathwaya 2.1 
Ox. phosp. Oxidative phosphorylation KEGG Pathwaya 1.2 (00190 only) 
Protein mod. Folding, sorting and degradation KEGG Pathwaya 2.3 
Endo/metab. Endocrine and metabolic disease KEGG Pathwaya 6.10 
Cell proc. Cell growth and death KEGG Pathwaya 4.2 (04110, 04210, 04216, 

04217, 04115, 04218 only) 
Signal trans. Signal transduction KEGG Pathwaya 3.2 
DNA/repair Replication and repair KEGG Pathwaya 2.4 
Sensing Signaling molecules and 

interaction 
KEGG Pathwaya 3.3 

Immune Immune system KEGG Pathwaya 5.1 
Endo syst. Endocrine system KEGG Pathwaya 5.2 
Lipid metab. Lipid metabolism KEGG Pathwaya 1.3 
Carb metab. Carbohydrate metabolism KEGG Pathwaya 1.1 
Translation -- KEGG Pathwaya 2.2 
ΑA metab. Amino acid metabolism KEGG Pathwaya 1.5, 1.6 
CiliaCartab -- van Dam et al. 201932 -- 
InnateDBc -- Breuer et al. 201331 Immunome Database 
Matrisome -- GSEAd M588930 
aAvailable https://www.genome.jp/kegg/pathway.html 
bAvailable http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/ 
cAvailable https://www.innatedb.com/redirect.do?go=resourcesGeneLists 
dAvailable https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp 
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