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SUMMARY

A hallmark of type 2 diabetes (T2D), a major cause of world-wide morbidity and mortality, is
dysfunction of insulin-producing pancreatic islet B cells'3. T2D genome-wide association
studies (GWAS) have identified hundreds of signals, mostly in the non-coding genome and
overlapping B cell regulatory elements, but translating these into biological mechanisms has
been challenging*-®. To identify early disease-driving events, we performed single cell spatial
proteomics, sorted cell transcriptomics, and assessed islet physiology on pancreatic tissue from
short-duration T2D and control donors. Here, through integrative analyses of these diverse
modalities, we show that multiple gene regulatory modules are associated with early-stage T2D
B cell-intrinsic defects. One notable example is the transcription factor RFX6, which we show is
a highly connected B cell hub gene that is reduced in T2D and governs a gene regulatory
network associated with insulin secretion defects and T2D GWAS variants. We validated the
critical role of RFX6 in B cells through direct perturbation in primary human islets followed by
physiological and single nucleus multiome profiling, which showed reduced dynamic insulin
secretion and large-scale changes in the B cell transcriptome and chromatin accessibility
landscape. Understanding the molecular mechanisms of complex, systemic diseases
necessitates integration of signals from multiple molecules, cells, organs, and individuals and
thus we anticipate this approach will be a useful template to identify and validate key regulatory

networks and master hub genes for other diseases or traits with GWAS data.
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INTRODUCTION

Type 2 diabetes mellitus (T2D), a metabolic disease defined by hyperglycemia, is a major cause
of macro and microvascular morbidity and mortality for more than 460 million individuals
worldwide. Clinically heterogenous, T2D involves genetic, environmental, and physiologic
components that impact multiple molecular pathways and tissues?3. Initial management
frequently involves diet and lifestyle alterations but often escalates to require multiple oral or
injectable medications and ultimately exogenous insulin to lower blood glucose”8. T2D is
associated with obesity and age, both of which reduce peripheral tissue sensitivity to insulin;
however, most individuals with insulin resistance do not develop T2D. Instead, the key defining
feature of those who develop T2D is impaired insulin secretion”?. Insulin is secreted
endogenously by the 3 cell within the pancreatic islet. In addition to (3 cells, the islet also
contains other endocrine cells (a, &, y, and ¢€), vascular structures (endothelial cells and
pericytes), and immune cells, which collectively function as a mini-organ to control glucose
homeostasis in a coordinated fashion'®'. While islet dysfunction is a hallmark of T2D, it
remains unclear whether this is the result of an intrinsic 3 cell defect, a reduction in  cell
number, systemic signals from altered levels of fatty acids, glucose, or lipids, or some

combination of these.

T2D has a strong genetic component with more than 400 signals identified through genome-
wide association studies (GWAS)*. Loci linked to T2D through GWAS are enriched in B cell-
specific open chromatin regions, suggesting impaired  cell processes as a key determinant for
whether T2D develops and how quickly it progresses®®. Further, 90% of GWAS-identified single
nucleotide polymorphisms (SNPs) are located in non-coding parts of the genome, and they are
enriched in predicted islet enhancer regions where many likely modulate cell-specific gene
expression regulatory networks by altering transcription factor binding'?-'6. How personalized
genetic variation causes changes in cell-specific gene and protein expression, tissue

architecture, and cellular physiology in T2D islets is not well understood.

Postulated T2D disease processes include 3 cell loss and/or dedifferentiation, endoplasmic
reticulum (ER) stress, amyloid deposition, oxidative stress, glucotoxicity, lipotoxicity, and islet
inflammation'”-29, These processes have been primarily studied in rodent models of T2D due to
difficulty in obtaining and studying human pancreatic tissue and islets. Importantly, human islets
show several key differences from mouse islets, including endocrine and non-endocrine cell

composition and arrangement, basal and stimulated insulin secretion, response to dyslipidemia
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and hyperglycemia, and expression of key islet-enriched transcription factors?'-24, highlighting
the need for studies to define initiating and sustaining mechanisms of islet dysfunction in

primary human islets.

Recent advances in cadaveric pancreas procurement and processing have increased
availability of human tissue for histological analysis as well as ex vivo molecular and functional
profiling of islets isolated from individuals with diabetes. However, many studies utilize only
tissue or islets, and further, do not differentiate study outcomes based on T2D duration. Since
different stages of T2D may involve different processes, studies that combine cases with
different T2D duration make it difficult to discern cellular and molecular causes from disease
consequences. The association of physiological measurements with transcriptomic profiles of
islet cells have begun to identify key pathways for B cell function?528, but integration of these

studies with disease stage, tissue-based analyses, and genetic risk remains a challenge.

Here, we used an integrated approach to study the pancreas and isolated islets from donors
with short-duration T2D and nondiabetic controls to identify disease-driving molecular defects
early in the course of T2D. We analyzed islet function both ex vivo and in vivo using a transplant
system and performed comprehensive transcriptional analysis by bulk RNA-sequencing (RNA-
seq) of whole islets and purified 8 cells and a cells, correlating these profiles to functional
parameters and GWAS variants using weighted gene co-expression network analysis
(WGCNA). Concurrently, we described changes in the pancreatic islet microenvironment via
traditional and multiplexed imaging approaches, including assessing spatial cell relationships.
We found that dysfunction in short-duration T2D is defined primarily by 8 cell-intrinsic defects,

including an RFX6-governed and GWAS-enriched transcriptional regulatory network.
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RESULTS

Identification, collection, and processing of short-duration T2D donor pancreata

To identify early, disease-driving mechanisms in islets, we focused on short-duration T2D as
defined by a combination of disease duration and treatment approach (Fig. 1a). Using a
national network, we identified high-quality organs to ensure minimal ischemic time and
consistently applied multiple tissue processing and fixation methods, including simultaneous
collection of isolated islets and tissue from the same pancreas when possible. Twenty
pancreata were obtained from individuals with T2D aged 37-66y (mean 52y) with T2D duration
of 0-10y (mean 3.5y). Of these donors, 25% were without pharmaceutical treatment (HbA1c
range 6.2-9.9; mean 7.6) and 75% were on diabetes medication, mostly oral agents (HbA1c
range 6.3-11.2; mean 8.0) (Fig. 1a). Pancreata from nondiabetic (ND) donors (n=17) were also
collected and processed for multi-modality study. Partnerships with the Integrated Islet
Distribution Program (IIDP) and the Alberta Diabetes IsletCore provided access to additional
islets from ND donors (n=19) to assist with matching of donor characteristics. Detailed
information, including sample types and experimental usage for each case, is available in
Extended Data Table 1. Application of multiple modalities allowed for integrative analysis of ex
vivo and in vivo islet function, tissue architecture and microenvironment including spatial

relationships, and cell type-specific gene expression (Fig. 1b).

Short-duration T2D islets show reduced stimulated insulin secretion

To investigate islet function, we assessed dynamic hormone secretion in isolated islets from
age- and body mass index (BMI)-matched T2D and ND donors (Extended Data Fig. 1a-1b) by
a standardized perifusion approach that interrogates multiple steps of the insulin secretory
pathway and has been adopted by the Human Islet Phenotyping Program of the [IDP to assess
over 400 human islet preparations?’. When normalized by islet volume, stimulated insulin
secretion was substantially reduced in response to high glucose, cyclic AMP (cAMP)-evoked
potentiation, and potassium chloride (KCl)-mediated depolarization (Fig. 1¢c-1f and Extended
Data Fig. 1c). Both first and second phases of insulin secretion were reduced, with the first
phase showing a more significant reduction (Extended Data Fig. 1d-1e). Inhibition of insulin
secretion by low glucose and epinephrine was similar between ND and T2D islets, as was
insulin content (Fig. 1g and Extended Data Fig. 1f); as such, normalization of response by islet

insulin content showed similar reductions in stimulated insulin secretion but also showed
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reduced basal insulin secretion (Extended Data Fig. 1g-1l). Together, these data suggest that
short-duration T2D islets ex vivo maintain insulin production and storage but have defects at
multiple steps of the insulin secretory pathway, including those distal to glucose metabolism,

which persist after islet isolation from the in vivo environment.

In contrast to insulin secretion, neither basal nor stimulated glucagon secretion was different in
T2D islets when normalized by islet volume (Fig. 1h-1h and Extended Data Fig. 1m), and both
ND and T2D islets showed glucose-mediated suppression of glucagon secretion (Extended
Data Fig. 1n). Glucagon content was similar between islets from ND and T2D individuals and
normalization by glucagon content showed similar secretion dynamics (Fig. 1L and Extended
Data Fig. 10-1t). While there is substantial evidence of dysregulated glucagon secretion in
T2D%2° these data suggest that either a cell dysfunction is not present in the early stages of

T2D or defects are present in vivo but not maintained after islet isolation.

Correlation of donor attributes to functional metrics highlighted a significant negative correlation
between donor HbA1c and stimulated insulin secretion (r<-0.40, p<0.05; Fig. 1m). To test
whether the systemic environment contributed to  cell dysfunction in T2D islets, we
transplanted T2D or ND islets from a subset of donors into normoglycemic, non-insulin resistant
immunodeficient NOD-scid-IL2ry™" (NSG) mice (Fig. 1n). After six weeks in this environment,
T2D islets secreted less human insulin than ND islets, especially after stimulation with
glucose/arginine (Fig. 10, average per donor and Extended Data Fig. 1u, individual mice),
consistent with ex vivo findings of impaired stimulated insulin secretion. In sum, these
experiments highlight that B cell dysfunction in early T2D persists in a normoglycemic, non-
insulin resistant environment and suggest that intrinsic 3 cell dysregulation and/or cellular and
molecular alterations within the islet microenvironment are key features driving reduced insulin

secretion.

Broad transcriptional dysregulation revealed through integrated transcriptome analysis of islets

and purified a and 8 cells

To assess both the 3 and a cell-specific transcriptional landscapes as well as global islet
dysregulation in the short-duration T2D cohort, we purified B and a cells by fluorescence-
activated cell sorting (FACS) using well-characterized cell surface antibodies and hand-picked
isolated islets for RNA-sequencing (Fig. 1p and Extended Data Fig. 1v). Studying sorted 8 and

a cells together with whole islets, which has not been done in prior studies, allowed detailed
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appreciation of both cell type-specific and islet-wide transcriptional changes in T2D. As
collection of these rare tissues spanned more than 3.5 years, we used a latent variable analysis
to discern biological variation from technical variation and then examined the datasets by both
differential gene expression (Fig. 1p and Extended Data Fig. 1w, 2a-2f) and gene network
analyses. Differential expression analysis yielded 352, 248, and 564 differentially expressed
genes in B cells, a cells, and whole islets, respectively (Extended Data Fig. 2g-2i), highlighted
by genes involved in stimulated insulin secretion in B cells (G6PC2, GLP1R) and changes in
non-endocrine components in islets (CXCL8, ADAMTS4). Numerous metabolic and
mitochondrial, exocytosis, ion transport and protein secretion pathways were enriched in T2D 3
cells (Extended Data Fig. 2j), while a cell gene changes were in amino acid and steroid
signaling pathways and regulation of blood vessel morphology (Extended Data Fig. 2k). In T2D
islets, cytokine signaling and immune terms were enriched, as were pathways related to ER
processing and unfolded proteins (Extended Data Fig. 2I). These were less prominent in
isolated a or B cells (Extended Data Fig. 2j-2k). Despite diverse differentially expressed genes
across sample types (Fig. 1q), there was considerable overlap at the level of biological
pathways in which these genes are involved — among the most enriched across samples were
hormone secretion, lipid metabolism, and cilia organization (Fig. 1r). In sum, analysis of
differential gene expression of sorted 3 and a cells and whole islets emphasizes common

dysregulated pathways among sample types as well as cell-specific transcriptomic changes.

Short-duration T2D donors do not show significant changes in endocrine cell mass

To understand the context in which these functional and transcriptomic changes occur, we
comprehensively evaluated the islet architecture in pancreatic tissue from T2D donors. High-
throughput traditional immunohistochemistry (IHC) was applied across pancreas head, body,
and tail regions for the entire donor cohort, and in parallel, a subset of samples was analyzed
with a 28-marker panel using co-detection by indexing (CODEX) (Fig. 2a). This multiplexed
technique for fluorescence-based imaging of large tissue sections without tissue destruction
provided simultaneous visualization of multiple tissue compartments as well as spatially
resolved cellular phenotypes defined by combined expression/exclusion of multiple markers
(Extended Data Fig. 3a-3b).

Because changes in endocrine cell number or ratio could explain the reduced insulin secretion
in T2D islets, we first evaluated (3, a, and & cell populations. Multiple analyses across pancreas

head, body, and tail, including evaluation of islet cell area and islet cell count within entire cross-
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sections, revealed that 8 and a cell mass in short-duration T2D were similar to controls (Fig. 2b
and Extended Data Fig. 3c-3h), supporting the similar insulin content in the two groups of
islets. We additionally assessed cell death and found apoptotic and/or necrotic cells to be
exceedingly rare in both ND and T2D islets (data not shown). Donor-to-donor variability in § and
a cell ratio was notable underscoring the challenge in working with heterogeneous human
tissues. CODEX permitted simultaneous assessment of rarer y and € cell populations as well as
identification of cells positive for chromogranin A (CHGA) but negative for all hormones,
previously suggested to define “dedifferentiated” B cells3?3!. These cells were rare but present in
both ND and T2D at similar proportions (Fig. 2c-2d and Extended Data Fig. 3i). Evidence of
amyloid deposits, the abnormal buildup of B cell-produced islet amyloid polypeptide (IAPP) that
manifests in T2D, was detectable in 75% of donors in this cohort but with variable prevalence
and did not correlate to endocrine cell abundance or area (Extended Data Fig. 4a-4b). Thus,
tissue analysis suggests that changes in endocrine cell numbers, including B cell mass, are not
a substantial component of short-duration T2D. Instead, these data point to reduction in B cell

function as the predominant feature of this disease stage.

Reduced capillary size, increased T cell populations, and altered cellular neighborhoods

highlight alterations in T2D islet microenvironment

Adequate islet vascularization and blood flow are critical for sensing and delivery of hormones
to systemic circulation, so we next investigated islet capillary endothelial cells (ECs), the most
abundant non-endocrine islet cell population (Fig. 2e and Extended Data Fig. 3j). Pathway
analysis from RNA-seq highlighted enrichment in T2D samples for processes controlling blood
vessel size, particularly in a cells, as well as regulation of growth factors critical to islet capillary
maintenance (Fig. 2f and Extended Data Fig. 4c). Morphometric analysis demonstrated that
capillary size, but not density, was reduced in T2D islets (Fig. 2h-2i), resulting in a greater
distance of endocrine cells to the nearest capillary in T2D islets (Fig. 2i). Interestingly, a and d
cells were closer to capillaries than B cells in both ND and T2D islets (Extended Data Fig. 4d),
aligning with a cells expressing more angiogenic ligands and receptors than f3 cells (Extended
Data Fig. 4e). Phenotypic markers CD34, a cell adhesion molecule that is prevalent in
progenitor capillary ECs®?, and HLA-DR, a major histocompatibility class II (MHCII) receptor,
were unchanged in T2D ECs (Extended Data Fig. 4f).

In addition to vasculature-related processes, transcriptional profiling also revealed enrichment in

T2D B cells and islets for cytokine signaling and immune cell recruitment pathways (Fig. 2j and
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Extended Data Fig. 4g). Macrophages, the largest population of intraislet immune cells, did not
differ between ND and T2D based on either abundance or phenotypic classification by
proinflammatory (HLA-DR?*) or anti-inflammatory (CD163 and/or CD206*) markers (Fig. 2k-2m
and Extended Data Fig. 4h). T cells were rarer in the islet than macrophages but elevated in
T2D islets across CD4* (helper), CD8* (cytotoxic), and CD4- CD8- (double negative)
phenotypes (Fig. 2n and Extended Data Fig. 4i). HLA-DR* T cells, previously observed in T2D
islets3, were not increased, though they were more abundant in a subset of T2D donors
(Extended Data Fig. 4j). High dimensional data analysis using Uniform Manifold Approximation
and Projection (UMAP) of all identified cell types within individually annotated islets revealed a
high degree of overlap between islets from ND and T2D donors, emphasizing that although

there are subtle differences, the overall islet composition is similar (Fig. 20).

Because analyses of islet composition did not consider the spatial organization of islet cells, we
next applied two neighborhood analyses in parallel to annotated islet regions in an effort to
identify differential cell architecture. A community detection algorithm tailored to islet cell
frequencies, termed CF-IDF, categorized six different cellular neighborhoods (CNs), clusters of
cells with distinct cell type compositions that were defined by the most enriched cell type (CNO-
CNS5; Fig. 2p). A modified k-means clustering algorithm previously developed for CODEX data
corroborated CN classifications (Extended Data Fig. 4k), and both approaches found similar
CN distribution between ND and T2D islets (Extended Data Fig. 41). ECs and pericytes were
depleted in B CNs (CN1) of T2D islets (Fig. 2q and Extended Data Fig. 4m), consistent with
our findings of decreased proximity between {3 cells and ECs in T2D. In contrast, T2D 3 CNs
had higher 8 cell enrichment than ND (Fig. 2q). We also asked whether cell type frequencies
correlated between CNs, i.e., if there was evidence for connectivity between spatially distinct
regions (Fig. 2r). Vascular cell frequencies were correlated between more CNs in T2D
compared to ND islets, while T cell frequencies were specifically correlated between EC and a
CNs as well as B and macrophage CNs in T2D (Fig. 2s and Extended Data Fig. 4n), congruent
with findings by islet RNA-seq that EC-specific and immune signals were upregulated in T2D.
Together, these results demonstrate modest disruptions of islet organization by vascular and

immune cells in early-stage T2D.
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Co-expression network analyses identified gene modules related to donor and islet traits and

revealed disrupted metabolism and cilia homeostasis in T2D

To understand the key gene networks that were contributing to B cell dysfunction in short-
duration T2D, we performed weighted gene co-expression network analysis (WGCNA) on a cell,
B cell, and islet samples (Extended Data Fig. 6). This approach created modules
(“eigengenes”) of up to 2,000 genes each, labeled by sample type and numbered consecutively
(B cells, modules B00-B48; a cells, a00-a54; islets, i00-i67). Collapsing the expression patterns
across >14,000 genes into a smaller number of modules reduced gene-level multiple testing
burden and enabled association of transcriptomic profiles with sample features including donor
traits, islet functional parameters from the same donors defined by dynamic islet perifusion, and
enrichment of open chromatin peaks to overlap GWAS variants (3 cells: Fig. 3a-3e; a cells:
Extended Data Fig. 6a-6e; islets: Extended Data Fig. 6f-6i). Modules with significant
correlations were then queried, based on their member genes, for ontology terms to determine

biological processes related to significant associations.

Several 3 cell modules were significantly (FDR < 5%) associated with whole-body glucose
homeostasis (HbA1c), and some of these, such as 305 and 07, were also significantly
enriched for genes differentially expressed in T2D 3 cells (Fig. 3b). Both 05 and 07 contained
genes related to carbohydrate, lipid, and amino acid metabolism (Fig. 3a and 3e), with 07
significantly correlating with KCI-mediated insulin secretion (r=0.49, p=0.027; Fig. 3c). Modules
significantly positively correlated with glucose-stimulated insulin secretion (GSIS) included p01,
B03, and 48, all enriched for metabolism-related processes, while 06 and 08, both enriched
for cilium movement and motility, were significantly negatively correlated to GSIS (Fig. 3¢ and
3e). Importantly, aligning functional correlations with enrichment for GWAS loci (Fig. 3d)
enabled identification of modules that are more likely to be disease-causing (e.g., 01, B03) as
opposed to those without GWAS enrichment (e.g., B48) that may instead represent disease-
induced transcriptional changes. Thus, this approach allows linking of transcriptional profiles to
islet physiological parameters and facilitates prioritization of signatures based on T2D genetic

risk.

Though a cell modules showed weaker correlations to donor and functional traits than did
cells, several modules were significantly enriched for cilia-related genes and a08 was also
enriched for a cell genes differentially expressed in T2D a cells (Extended Data Fig. 6a-6b).

Both a08 and a16 significantly inversely correlated with epinephrine-mediated glucagon

10
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secretion and were closely related across functional parameters (Extended Data Fig. 6¢), with
a08 showing significant enrichment for T2D GWAS variants (Extended Data Fig. 6d). In
addition to genes enriched for cilia processes, a08 also included genes related to cytokine
signaling and immune response (Extended Data Fig. 6e). Similarly, several islet modules
showed notable enrichment for immune- and matrisome-related genes (Extended Data Fig. 6f);
of these, i25 correlated positively with T2D status and inversely with basal insulin secretion and
GSIS, while i26 correlated inversely with KCI-mediated insulin secretion (Extended Data Fig.
6g-6h). Genes in both modules corresponded to cell-cell communication, including response to
stimulus (i26) and leukocyte activation and migration (i25) (Extended Data Fig. 6i). Overall,
these patterns suggest that B cell function may be influenced by a and other non-endocrine cells

residing within the islet.

Interestingly, cilia-related processes not only defined key functionally correlated modules in
every sample type, but they were also some of the most enriched pathways across all samples
based on differential gene expression (Extended Data Fig. 6j). Further 06, 308, and a08 were
enriched for T2D and related trait GWAS loci, suggesting a potential casual role (Fig. 3d and
Extended Data Fig. 6d). We compared fold change of validated cilia-related genes®* and
determined that the majority were expressed at higher levels in T2D compared to ND for both 3
and a cells (Fig. 3f). To investigate whether these changes translated to cellular alterations, we
stained tissue sections from the same donors with cilia marker ARL13B (Fig. 3g). Total cilia
area within the islet was greater in T2D tissue, attributable to a higher cilia density with
unchanged cilia size (Fig. 3h), consistent with elevations in cilia transcripts. Thus, integration of
functional, transcriptional, genetic, and tissue-based analyses highlights cilia-related processes

as playing a key role in early T2D.

B cell hub gene RFXE6 is reduced in T2D and controls glucose-stimulated insulin secretion

The network approach of WGCNA enables identification of “hub” genes that are highly
connected, i.e., whose expression highly correlates with many other genes, both within and
across modules, making it a powerful analysis to understand central transcriptional regulators
that may be driving B cell dysfunction in short-duration T2D (Fig. 4a). Of the highly connected 3
cell genes, RFX6 stood out as a key islet-enriched transcription factor that has been linked to
both monogenic and polygenic forms of diabetes'3536 and thus is in prime position to exert
disproportionate influence on the 8 cell transcriptional state. RFX6 was more highly connected

than other islet-enriched transcription factors specifically in B cells (Fig. 4a-4b and Extended

11
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Data Fig. 7a-7d) and was one of the most reduced islet-enriched transcription factors at the
transcript level in T2D 3 cells (Fig. 4c¢). Importantly, RFX6 is a member of module 301, which
had the strongest positive association with high glucose-stimulated insulin secretion and was
among the most significantly enriched for both GWAS variants and RFX binding motifs (Fig. 3c-
3d and 4d). Immunohistochemistry analysis revealed a reduction in number of 3 cells
expressing RFX6 in T2D (Fig. 4e-4f). Together, these data support RFX6 as a critical hub gene

in B cells that may contribute to the functional deficits observed in short-duration T2D.

To determine the role of RFX6 in adult human (3 cell function in an islet-like context, we used
shRNA knockdown in a primary human pseudoislet system that allows for functional and
transcriptomic assessment (Fig. 4g). Scramble shRNA (‘control’) and RFX6 shRNA (‘shRFX6’)
pseudoislets exhibited similar size and morphology, and preferential B cell transduction resulted
in B cell RFX6 knockdown that did not change B or a cell proportion (Fig. 4h-4i and Extended
Data Fig. 7e-7g), suggesting that acute (6-day) reduction of RFX6 expression does not lead to
B cell loss. Following RFX6 knockdown, dynamic insulin secretion in the presence of three
secretagogues (high glucose, high glucose + IBMX, and KCI) was significantly blunted, similar
to that seen in T2D islets (Fig. 5j-5k). Normalization to insulin content, which was greater in
shRFX6 pseudoislets, made this secretory response even more prominent (Extended Data Fig.
7h-7j). In sum, not only is RFX6 decreased in T2D (3 cells, but the results of targeted
knockdown are consistent with the RFX6-containing module 01 association with glucose-
stimulated insulin secretion (Fig. 3d) and strongly implicate RFX6 as a major regulator of

stimulated insulin secretion.

RFX6 knockdown alters the 8 cell chromatin and transcriptional landscape and downregulates

secretory vesicle components

To determine the molecular mechanism by which RFX6 knockdown impacted insulin secretion,
shRFX6 and control pseudoislets (n=7 matched donors) were multiplexed using a blocked study
design and processed for single nucleus multiome profiling (Fig. 5a). Single nucleus (sn)RNA
and snATAC reads were collected and filtered to yield 15,825 (RNA) and 5,706 (ATAC) high-
quality nuclei for downstream analysis (Extended Data Fig. 8a). Islet cell types were resolved
by clustering (Fig. 5b-5¢ and Extended Data Fig. 8b) where we found representation of all
major cell types across all donors (Extended Data Fig. 8c) and equal distribution between

shRFX6 and control constructs (Fig. 5d). Consistent with the previously observed preferential
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adenoviral targeting of B relative to a cells, fluorescent reporter expression was much higher in

B cell nuclei than in a cell nuclei (Fig. 5e).

Supporting the role of RFX6 as a major 3 cell regulator, 13% of total detected genes were
differentially expressed in B cell nuclei compared with <3% in other cell types (Fig. 5f). Nuclear
RFX6 was not among those reduced, consistent with shRNA silencing occurring in the
cytoplasm. Differentially expressed genes included those encoding cytoskeletal and
scaffold/adaptor proteins (11% of those classified), membrane traffic proteins (4%), and gene-
specific transcriptional regulator or chromatin/chromatin-binding or -regulatory proteins (13%)
(Fig. 5g). Upregulated genes were enriched for actin filament-based movement and synaptic
signaling, while downregulated genes were enriched for membrane trafficking, autophagy, and
ciliary pathways (Fig. 5h-5i). To investigate overlap in differentially expressed genes between
shRFX6 3 cell nuclei and sorted T2D B cells, we compared the top 1,000 most significantly
differential genes in each group and observed common pathway enrichment related to
microtubule cytoskeleton organization, ion transport, and regulation of protein secretion (Fig.
5j). Also of note, shRFX6 B cell nuclei differentially expressed genes were overrepresented in
WGCNA module 322 (Extended Data Fig. 8d) that was enriched for T2D GWAS variants and
RFX binding motifs. Genes in this module corresponded to cellular membrane and vesicle
components, mirroring pathways dysregulated in shRFX6 (3 cell nuclei (Extended Data Fig. 8e)

and further implicating exocytosis as a target of RFX6-mediated dysfunction in T2D {3 cells.

We next sought to identify the landscape of chromatin alterations in shRFX6 3 cells and
observed global changes compared to matched controls (Extended Data Fig. 8f-8g). We took
n=2,000-10,000 peaks with smallest p-values in either direction (‘top RFX6-sensitive peaks’) for
use in downstream analyses. These peaks were significantly enriched for motifs corresponding
to the known chromatin modifier activator protein 1 (AP 1), as well as RFX6 and related family
member motifs (Fig. 5k-51 and Extended Data Fig. 8h-8i). CCCTC-binding factor (CTCF) and
RFX motif footprint signatures like those previously observed in bulk islet ATAC data®
confirmed the high quality of the snATAC data (Extended Data Fig. 8j). Further, top RFX6-
sensitive peaks were significantly enriched to occur near differentially expressed genes
(Extended Data Fig. 8k), indicating concordance between the snATAC and snRNA modalities.
We and others have shown that 3 cell ATAC peaks are enriched for T2D GWAS variants®®, and
indeed, top RFX6-sensitive peaks were also significantly enriched to overlap with these variants
(Fig. 5m and Extended Data Fig. 8l). Importantly, enrichment remained significant after

conditional analysis controlled for remaining (not RFX6-sensitive) peaks (Fig. 5n and Extended
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Data Fig. 8m), which emphasizes the importance of 3 cell RFX6-sensitive peaks in the genetic
predisposition to T2D. Overall, these results show that knockdown of RFX6 in 3 cells results in
widespread transcriptional and chromatin changes that are associated with downregulated
vesicle transport and coordinated disruption of regulatory elements that overlap T2D GWAS

variants, consistent with the role of RFX6 as a master regulator of 3 cell identity.
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DISCUSSION

The pancreatic B cell, a major focus in diabetes, exists within the multicellular pancreatic islet
mini-organ, where interactions between various cell types are increasingly recognized. In T2D,
like in other chronic, complex, multi-organ diseases, teasing apart the causes, correlates, and
consequences of cellular and tissue dysfunction is challenging due to limited availability of
primary tissue, constraints of sample processing at different disease stages, and in many cases,
removal of cells from their native environment. To address these challenges and identify early
disease-driving events, we applied a comprehensive, multimodal, integrated approach to
isolated islets and pancreatic tissue from a unique cohort of short-duration T2D and control
donors that included analyses of islet physiology, transcriptome, and pancreas tissue cellular
architecture. Furthermore, we integrated donor and islet functional traits with gene network
analysis and GWAS to understand central transcriptional regulators driving 8 cell dysfunction in
short-duration T2D. Co-registration of multimodal data and clinical information yielded several
important findings (Extended Data Fig. 9a): (1) impaired B cell function, a hallmark of early-
stage T2D, persisted ex vivo and in nondiabetic environments; in contrast, a cell function was
not changed; (2) islet endocrine composition was unchanged though there were modest
alterations to the islet microenvironment in endothelial and immune cells; (3) transcriptional
network analysis proportioned genetic risk into gene modules with specific functional properties,
and (4) RFX6 emerged as a highly connected hub transcription factor that was reduced in T2D
B cells and associated with reduced glucose-stimulated insulin secretion. We validated a critical
role for RFX6 by performing dynamic functional analyses and integrated snRNA and snATAC-
seq on primary human pseudoislets with knockdown of RFX6 in 3 cells. Reduction of RFX6 led
to reduced insulin secretion defined by transcriptional dysregulation of vesicle trafficking,
exocytosis, and ion transport pathways that was mediated by chromatin architectural changes
overlapping with T2D GWAS variants (Extended Data Fig. 9b). Thus, our integrated,
multimodal studies identify B cell dysfunction that results from cell-intrinsic defects, including an
RFX6-mediated, T2D GWAS-enriched transcriptional network, as a key event in early T2D

pathogenesis.

Dysfunction of B cells, and not 8 cell loss, is primary defect in early-stage T2D

This study demonstrates 3 cell functional defects ex vivo — which persist in culture and following
transplantation into a normoglycemic environment — but no change to insulin content or {3 cell

mass. The relative contributions of impaired 3 cell function and/or reduced (3 cell mass have
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long been debated in T2D3-%°. Though postmortem studies suggest mild B cell loss334943 most
studies mixed short- and long-term disease duration together and noted that defects were more
severe with longer duration and/or insulin treatment. Recent studies of metabolically profiled
donors suggested that 8 cell loss is not prominent in early T2D?644, By integrating studies of
both pancreatic tissue and isolated islets from the same donors, our data indicate that 8 cell loss
is not a major component in disease pathogenesis at early-stage T2D. Further, the continued
dysfunction of islets in a transplant setting also underscores the persistence of initial 8 cell
defect. In sum, this study illustrates that 3 cell dysfunction occurs early in T2D and that

prevention and/or rapid intervention may be critical to preserve 3 cell function.

Changes to islet microenvironment emphasize additional disease processes that may become

more prominent in later disease stages

Our transcriptional analyses in isolated islets identified altered vascular and immune signaling
as features in sorted a and 3 cells as well as in whole islets. Although isolated islets do not
provide a physiologic context, particularly for endothelial cells without their connection to
systemic circulation, similar transcriptional changes were found in laser capture microdissected
T2D islets?. Further, our comprehensive tissue analyses of the same donors allowed in situ
characterization of non-endocrine islet cell abundance, phenotype, and localization. We
demonstrated that T2D islets had subtle reductions in islet capillary size, increased intraislet T
cells, and altered communication between cellular neighborhoods, but overall the
microenvironment was largely similar to ND islets. While most donors showed some evidence of
amyloid deposits as a unique feature of the T2D islet microenvironment, only a minority of islets
demonstrated detectable amyloid at this stage of disease. Together, these observations are
unlikely to explain the degree of B cell dysfunction in this cohort but, given that they are present
without any associated changes in endocrine cell composition, may represent early
consequences of B cell dysfunction or may act to exacerbate initial 3 cell-intrinsic defects.
Indeed, inflammatory signals and other trophic factors have been shown to influence £ cell
function, especially in the presence of amyloid, and may become a more prominent feature of
the disease at later stages'94547. Further study is needed to determine whether changes to the
microenvironment are truly an independent disease process or whether there is bidirectional

signaling between dysfunctional 8 cells, a cells, and/or other islet cell types.
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Integrated co-expression network analysis reveals gene modules of genetic risk in T2D

The transcriptomic profiles of sorted a and B cells in addition to islets provided new insight into
cell-specific contributions to T2D pathogenesis. Co-expression network analysis and association
with GWAS variants and physiological parameters, similar to a recent approach*?, allowed us to
prioritize processes with physiological relevance that were more likely to be disease-causing
rather than disease-induced. For instance, both B01 (metabolism-enriched) and 06 (cilia-
enriched) modules are associated with T2D GWAS variants, indicating that regulatory circuitry
related to metabolism and cilia function may have causative roles in development of T2D.
Notably, insulin secretion was positively correlated to 01, whose genes were decreased in T2D
B cells, but negatively correlated to 306, whose genes were increased in T2D 8 cells. These
results suggest that 01 genes enhance insulin secretion while 06 genes decrease it, thus one
expects that T2D risk alleles likely decrease 01 gene expression and activate B06 genes, both
of which would negatively influence B cell function. Future work directly testing key candidate
genes from this dataset, analogous to the studies of RFX6 described here, will be important to

validate these processes and how they contribute to T2D pathogenesis.

Genetic risk for complex metabolic diseases such as T2D results from the combined influence
of many small-effect variants, with at-risk individuals likely having multiple parallel processes
affected. This concept has been described as a “palette” model*®, and our work aids in
deciphering components of the palette by proportioning genetic risk into cell-specific functional
modules derived from transcriptome signatures across early stages of disease. Thus, this opens
the opportunity to assess downstream consequences of an individual’s innate genetic risk by
identifying specific molecular and functional processes that would be most affected and

hopefully allowing for precise targeting of those to achieve personalized medicine in diabetes.

RFX6 plays a central role in dysregulation of 8 cell function early in T2D

By identifying an RFX6 regulatory network that strongly correlates with insulin secretion and
T2D genetic risk, this study provides new insight into previous work which has linked RFX6 to
both monogenic and polygenic forms of diabetes'®3%36, Our results suggest that RFX6 exerts a
disproportionate transcriptional influence on B cell state and that its dysregulation is a key
molecular event in early T2D pathogenesis. We pursued this finding by directly testing the role
of RFX6 in pseudoislets and demonstrated a clear function for RFX6 in governing stimulated

insulin secretion in primary human 3 cells. Previous studies with direct perturbation of RFX6 in
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adult B cells, performed in cell lines and mouse models, highlighted downstream effects on Ca?*
and Karte channels5%5'. Our work confirms defective ion transport processes but identifies
vesicle trafficking and exocytosis pathways as major drivers of defective insulin secretion in
primary human B cells with impaired release likely responsible for the buildup of insulin content.
Additionally, we show that these transcriptional changes are mediated by changes in 3 cell
chromatin regions significantly overlapping with T2D GWAS loci, emphasizing the central role of
RFX6 in mediating genetic risk to functional defects that define early T2D. Further, cilia-related
genes were also significantly dysregulated following RFX6 reduction, in line with evidence that
the RFX family of transcription factors control ciliogenesis®?%3. Given their role in environment
sensing, cell-to-cell communication, and signal transduction, cilia represent a potential link
between B cell-intrinsic, RFX6-mediated dysregulation and changes within the islet

microenvironment seen in early T2D and warrant future study.

This work raises important questions about what factors or events initially dysregulate RFX6 to
start this cascade. Given the coordinating role RFX6 plays in islet cell development®®, it may be
that early defects driven by RFX6 dysfunction only become apparent after superimposed
environmental, nutritional, and/or age-related stressors. Alternatively, the strong enrichment of
T2D GWAS variants in 01 (the RFX6-containing module) and position of RFX6 as a hub gene
may point to cumulative genetic effects compounding over time in an irreversible cascade that
disrupts B cell homeostasis. Thus, precisely what underlies the initial dysregulation of RFX6,
and whether it can be targeted to prevent or reverse early molecular defects in the 8 cell, should

be an active area of investigation.
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Figure 1. Integrated analysis of islet function, gene expression, and histology in a cohort
of donors with short-duration type 2 diabetes (T2D) reveals substantially reduced
stimulated insulin secretion ex vivo and in vivo despite similar insulin content and
highlights dysregulated pathways in purified B and a cells as well as whole islets. (a)
Schematic of functional B cell mass during disease progression from nondiabetic (ND) to pre-
diabetes (Pre-DM) and T2D, highlighting the divergence of insulin supply and demand and
escalation of treatment mirroring progressive loss of functional B cell mass. Shaded blue
represents targeted disease stage in this cohort with clinical profile shown below in table. (b)
Schematic of multimodal study of islet function, transcriptome, and tissue architecture.
Coordinated study on islets and tissue from same donor allowed integration between analyses
(green arrows). (c-1) Dynamic insulin and glucagon secretory responses measured by islet
perifusion. Panels d-f and i-k: secretagogue response as area under the curve (AUC); g, I:
hormone content normalized to islet volume. (m) Pearson correlation of perifusion metrics to
clinical traits. (n) Schematic of human islet transplantation and in vivo assessment of function.
(o) Blood glucose, human insulin levels, and human insulin:blood glucose ratio measured
before and after glucose and arginine stimulation of mice with human islet grafts. Symbols show
donor average. (p) Schematic of RNA sample collection and analysis. (q) Overlap of
differentially expressed (DE) genes in T2D B cell (green) a cell (red), and islet (blue) samples at
the level of genes (purple curves) or ontology terms (grey curves). (r) Metascape network
showing a subset of enriched terms from DE genes. Edges denote similarity and node colors
reflect contribution of sample(s). * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 (d-g, i-I: two-
tailed t-test; o: two-way ANOVA).
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Figure 2. Integrated tissue analysis reveals no change to endocrine cell mass or number,
but alteration in intraislet capillaries, T cells, and cellular neighborhoods in short-
duration T2D cohort. (a) Schematic illustrating parallel analysis by traditional and multiplexed
immunohistochemistry (IHC). (b) Mass of B, a, and & cells in ND and T2D donors. (c)
Representative images of islets from co-detection by indexing (CODEX) imaging; insets show y
and ¢ cells. (d) Cross-sectional area of endocrine cell types. (e) Relative proportions of islet
endocrine, vascular, stromal, and immune cells. (f) Enrichment of vascular-related ontology
terms in T2D transcriptome. (g) Representative images of islet capillaries, pericytes, and
extracellular matrix (ECM). (h) Islet capillary density and area per capillary. (i) Spatial analysis
of endocrine cells and islet capillaries. (j) Enrichment of immune-related ontology terms in T2D
transcriptome. (k-l) Islet immune cell phenotypes and composition. (m-n) Islet macrophage (m)
and T cell (n) abundance. (o) High-dimensional component analysis of islet cell composition per
islet (n=255 ND, n=426 T2D). (p-s) Cellular neighborhood assignment (p) and corresponding
cell composition and correlation changes in T2D vs. ND islets (q-s). Traditional IHC data: panels
b, h, m; CODEX data: panels c-e, g, i, k-I, n-s. Symbols in bar graphs represent donors; *
p<0.05 (two-tailed t-test, ND vs. T2D). RNA data: panels f, j; * FDR<0.05.
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Figure 3. Weighted Gene Co-expression Network Analysis (WGCNA) distinguishes 3 cell
gene modules associated with donor and islet traits as well as those enriched in GWAS
loci and identifies disruption in cilia processes as a conserved feature across sample
types. (a) Relative enrichment of B cell module eigengenes for curated gene lists, based on
genes present in each module. (b) Module correlation to donor characteristics, enrichment of
differentially expressed (DE) genes, and total number of genes per module. « p<0.05; * p<0.01.
Modules of interest highlighted (green). (¢) Module correlation to B cell function described in
Fig. 1; significant associations highlighted (yellow). G+IBMX, 16.7 mM glucose with 100 uM
isobutylmethylxanthine; 16.7G, 16.7 mM glucose; 16.7G 1°, first phase; 16.7G 2°, second
phase; 1.7G+Epi, 1.7 mM glucose and 1 uM epinephrine; KCI, 20 mM potassium chloride. (d)
Module enrichment for GWAS traits. Fins, fasting insulin; FGlu, fasting glucose. * FDR<0.01. (e)
Enrichment of select gene ontology terms in 3 cell modules with notable correlations and/or
enrichment. (f) Cilia-related genes with fold change = |1.5| in both a and 8 cells in T2D. (g-h)
Visualization by immunohistochemistry of cilia (ARL13B; red) and quantification of abundance,

density, and size in ND and T2D tissue. * p<0.05 (two-tailed t-test).
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Figure 4. RFX6, a central regulator of transcript changes in short-duration T2D, is
reduced in T2D B cells and controls stimulated insulin secretion. (a-b) Overall connectivity
(a) and cross- and within-module connectivity (b) of individual genes based on 3 cell WGCNA.
Select genes with high connectivity scores (a) and select transcription factors (b) are labeled.
(c) RNA fold change in T2D f cells of transcription factors highlighted in panel b. Vertical lines
denote fold change = |1.5|. (d) Enrichment of transcription factor motifs in 3 cell modules. (e-f)
Expression of RFX6 in 8 and a cells of ND and T2D donors. (g) Schematic of adenoviral sShRNA
delivery and formation of pseudoislets. (h) Morphology and immunofluorescent staining of
transduced pseudoislets. (i) Relative RFX6 mRNA expression in B cells treated with scramble or
RFX6 shRNA. (j) Pseudoislet insulin secretion assessed by perifusion; n=6 donors per group.
(k) Area under the curve (AUC) for secretory response to each of the stimuli shown in panel j.
Panels f, i, k: * p<0.05, ** p<0.01, *** p<0.001 (two-tailed t-test).
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Figure 5. RFX6 controls glucose-stimulated insulin secretion in human $ cells through
chromatin modifications and vesicle trafficking pathways. (a) Schematic depicting
randomized study design to mitigate batch effects in single nuclear (sn) RNA- and ATAC-
sequencing of scramble shRNA (control) and RFX6 shRNA (shRFX6) pseudoislets. (b) Cell
type assignment by clustering on RNA. (c¢). Pseudobulk ATAC signal at marker genes. (d) Post-
QC nuclei counts from control and shRFX6 pseudoislets. (e) Abundance of fluorescent marker
gene expression (mCherry/mKate2) in a and B cell nuclei. (f) Proportion of differentially
expressed (DE) genes per cell type. (g) Classification of protein-coding DE genes in shRFX6 3
cells by PANTHER. (h) Pathway enrichment for DE genes (FDR<0.01); second two columns
separate genes up- or downregulated in shRFX®6. (i) DE genes in Reactome pathway R-HSA-
5653656. (j) Overlap of 1,000 most significant DE genes in shRFX6 vs. control § cell nuclei
(blue) and T2D vs. ND sorted B cells (red), analyzed by Metascape. Circos plot illustrates
overlap at the level of genes (purple) or ontology terms (grey). Network displays a subset of
enriched terms, where edges denote term similarity and node colors represent contribution of
each gene list. (k-1) Motif enrichment for top 5,000 RFX6-sensitive up- (k) and downregulated (1)
ATAC peaks in shRFX6 3 cell nuclei. Right panels show enlarged views of plots on left. (m-n)
Odds ratio of T2D GWAS enrichment (m) and model estimate from conditional analysis (n) of

RFX6-sensitive peaks.
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METHODS

Human subjects

Pancreata from nondiabetic (ND) (n=19) and T2D (n=20) donors were obtained through
partnerships with the International Institute for Advancement of Medicine (IIAM), National
Disease Research Interchange (NDRI), and local organ procurement organizations. Pancreata
were processed in Pittsburgh by Dr. Rita Bottino for both islet isolation and histological analysis
as previously described'3. Additional ND human islet preparations (n=27) were obtained
through partnerships with the Integrated Islet Distribution Program (IIDP) and Alberta Diabetes
Institute (ADI) Isletcore and served as assay-specific controls or were used for pseudoislet
studies. Donor information is detailed in Extended Data Table 1. Deidentified medical histories
provided both information for T2D staging as well as clinical characteristics to correlate with
generated data. The Vanderbilt University Institutional Review Board declared that studies on

de-identified human pancreatic specimens do not qualify as human subject research.

Some human islets used in this research study were provided by the ADI IsletCore at the

University of Alberta in Edmonton (http://www.bcell.org/adi-isletcore.html) with the assistance of
the Human Organ Procurement and Exchange (HOPE) program, Trillium Gift of Life Network
(TGLN), and other Canadian organ procurement organizations. Islet isolation was approved by
the Human Research Ethics Board at the University of Alberta (Pro00013094). All donors'
families gave informed consent for the use of pancreatic tissue in research. This study also
used data from the Organ Procurement and Transplantation Network (OPTN) that was in part
compiled from the Data Hub accessible to IIDP-affiliated investigators through IIDP portal

https://iidp.coh.org/secure/isletavail). The OPTN data system includes data on all donors, wait-

listed candidates, and transplant recipients in the US, submitted by the members of the OPTN.
The Health Resources and Services Administration (HRSA), U.S. Department of Health and
Human Services provides oversight to the activities of the OPTN contractor. The data reported
here have been supplied by UNOS as the contractor for the Organ Procurement and
Transplantation Network (OPTN). The interpretation and reporting of these data are the
responsibility of the authors and in no way should be seen as an official policy of or

interpretation by the OPTN or the U.S. Government.
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Pancreas procurement and processing

Pancreata from ND and T2D donors (see Extended Data Table 1 for donor information) were
received within 18 hours from cross clamp and maintained in cold preservation solution on ice
until processing, as described previously3. Pancreas was then cleaned from connective tissue
and fat, measured, and weighed. Prior to islet isolation, multiple cross-sectional slices of
pancreas with 2-3 mm thickness were obtained from the head, body and distal tail, further
divided into quadrants, and processed into paraformaldehyde-fixed cryosections as described
previously3. Islet isolation was performed via ductal collagenase infusion and purification by
density gradient as described previously'?, then shipped to Vanderbilt for further analysis
following shipping protocols developed by the IIDP. Islets were cultured in CMRL 1066 media
(5.5 mM glucose, 10% FBS, 1% Pen/Strep, and 2 mM L-glutamine) in 5% CO: at 37°C for 24—
48 hours prior to reported studies®-5. Pseudoislets were cultured in Vanderbilt Pseudoislet
media®. Limitations of tissue availability and processing dictated that not all assays could be

performed on each donor.

Assessment of native pancreatic islet and pseudoislet function by macroperifusion

Function of islets from ND and T2D donors and pseudoislets were studied in a dynamic cell
perifusion system at a perifusate flow rate of 1 mL/min®7. The effluent was collected at 3-minute
intervals using an automatic fraction collector, then islets were retrieved and lysed with acid-
ethanol solution to extract. Insulin and/or glucagon concentrations in each perifusion fraction, as
well as total hormone content, were measured by radioimmunoassay (RIA) (human insulin, RI-
13K, Millipore; glucagon, GL-32K, Millipore), enzyme-linked immunosorbent assay (ELISA)
(Human insulin, 10-1132-01, Mercodia; glucagon, 10-1281-01, Mercodia), or Homogeneous
Time Resolved Fluorescence (HTRF) assay (glucagon, 62CGLPEH, Cisbio). Area under the
curve (AUC) above baseline hormone release was calculated with the trapezoidal method in

GraphPad Prism 8.0-9.3 as previously described®.

Human islet transplantation

Immunodeficient NOD.Cg-Prkdcsel2rg™"™i/Sz (NSG)? 10- to 12-week old male mice were
maintained by Vanderbilt Division of Animal Care in group housing in sterile containers within a
pathogen-free barrier facility housed with a 12 hour light/12 hour dark cycle and access to free
water and standard rodent chow. All animal procedures were approved by the Vanderbilt

Institutional Animal Care and Use Committees. Between 1000-2000 islet equivalents per mouse
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(n=4-8 mice per islet preparation) were transplanted beneath the kidney capsule. After 6 weeks,
mice were fasted for 6 hours and then injected with glucose + arginine (2g/kg body weight)
intraperitoneally as previously described®-5°. Blood samples were obtained before (0’) and after
(15’) injection and human-specific insulin was analyzed by ELISA (Alpco, 80-ISNHU-E01.1) or

radioimmunoassay (Millipore, RI-13K).

Purification of a and 3 cells by FACS

Human islets from ND and T2D donors were dispersed and sorted for collection of RNA from a
and B cells as described previously®1°. Briefly, 0.025% trypsin was used to disperse islet cells
by manual pipetting and subsequently quenched with RPMI containing 10% FBS. Cells were
washed in the same medium and counted on a hemocytometer, then transferred to FACS buffer
(2 mM EDTA, 2% FBS, 1X PBS). Indirect antibody labeling was completed via two sequential
incubation periods at 4C, with one wash in the FACS buffer following each incubation. Primary
and secondary antibodies, listed in Extended Data Table 2, have been characterized
previously and used to isolate high-quality RNA31%-2_ Appropriate single color compensation
controls were run alongside samples. For sorting of B cells for use in pseudoislets, quenching
step post-dispersion was performed with 100% FBS at 1/3 volume trypsin. Cells then underwent
an additional filtration step using a 40 pl strainer prior to staining. For all preparations, propidium
iodide (0.05 ug/100,000 cells; BD Biosciences, San Jose, CA) was added to samples prior to
sorting for non-viable cell exclusion. Flow analysis was performed using an LSRFortessa cell
analyzer (BD Biosciences, San Jose, CA), and a FACSAria lll cell sorter (BD Biosciences, San
Jose, CA) was used for FACS. Cells for RNA were collected into FACS buffer, washed once in
1X PBS, and stored in RNA lysis buffer for RNA extraction. Cells for pseudoislets were washed
once in 1X PBS, resuspended in Vanderbilt pseudoislet media, and processed as described in
Pseudoislet section below. Analysis of flow cytometry data was completed using FlowJo 10.1.5
(Tree Star, Ashland, OR).

Traditional and multiplexed immunohistochemical imaging and analysis

Traditional Immunohistochemistry

Multiple sections from pancreatic head, body, and tail regions of 20 T2D and 11 age-matched
ND donors were lightly paraformaldehyde (PFA)-fixed and prepared for immunohistochemistry

and stained as described previously®'%'3, Primary and secondary antibodies and their dilutions
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are listed in Extended Data Table 2. Amyloid was visualized using a 2-minute incubation in
Thioflavin S (0.5% w/v; #T-1892, Sigma, St. Louis, MO) followed by a brief wash in 70% ethanol
as described previously®%'4. Images were acquired at 20X with 2X digital zoom using a F\V3000
confocal laser scanning microscope (Olympus) or a ScanScope FL (Aperio) and processed
using cytonuclear algorithms (HighPlex FL v3.2.1) or tissue classifiers via HALO software
(Indica Labs) or morphometric measurement via Metamorph software v7.10 (Molecular Devices,
LLC). Analyses were run on the entire tissue section or manually annotated islets as indicated in
figure legends. Endocrine cell mass was quantified by using pancreas weight and the ratio of
hormone positive cells as identified by cytonuclear algorithm within the entire pancreatic section
from multiple blocks representing the head, body, and tail regions. To obtain islet capillary
measurements, caveolin-1 channel was isolated and color thresholding was used on a per-
image basis to gather object data using the Integrated Morphometry Analysis (IMA) function
(Metamorph). The following analysis metrics represent mean * standard error: endocrine cells
(Fig. 2b, Extended Data Fig. 3f-3h) 16,151 + 1,715 islet cells/donor and 570,508 + 51,866 total
cells/donor; endocrine cell area (Extended Data Fig. 3c-3d) 2.34 + 0.24 mm?/donor; capillary
morphology (Fig. 2h) 48 + 4 islets/donor; macrophage area (Fig. 2m) 0.64 + 0.07 mm?/donor;
amyloid (Extended Data Fig. 4a) 108 + 19 islets/donor; cilia (Fig. 3h) 0.32 + 0.05 mm?/donor;
RFX6 (Fig. 4f) 1,863 £ 362 cells/donor; pseudoislets (Extended Data Fig. 7g) 2,797 + 508

cells/sample.

CODEX multiplexed imaging

Antibodies were purchased preconjugated from Akoya Biosciences or sourced from other
vendors and conjugated in-house using the CODEX Conjugation Kit (Akoya Biosciences) or by
Leinco Technologies, Inc. (St. Louis, MO, USA) (Extended Data Table 3). 10-um lightly fixed?
pancreas sections were mounted onto 22x22 mm glass coverslips (Electron Microscopy
Sciences) coated in 0.1% Poly-L-lysine (Sigma) and stained with the CODEX Staining Kit
(Akoya Biosciences) in uncoated 6-well tissue culture plates (VWR) per manufacturer
instructions. Fluorescent oligonucleotide-conjugated reporters were combined with Nuclear
Stain and CODEX Assay Reagent (Akoya Biosciences) in light-protected 96-well plates sealed
with foil (Akoya Biosciences) and automated image acquisition and fluidics exchange were
performed using the Akoya CODEX instrument and CODEX Instrument Manager (CIM) v1.29
driver software (Akoya Biosciences) integrated with a BZ-X800 epifluorescent microscope
(Keyence). Tissue was hydrated in 1X CODEX buffer (10X CODEX Buffer diluted in Milli-Q

water) and hybridization/stripping of the fluorescent oligonucleotides was performed using
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dimethyl sulfoxide (Sigma). After loading of coverslip into stage insert, tissue was visualized with
Nuclear Stain diluted 1:1000 in PBS and imaging area was set by center point and tile number
using BZ-X800 viewing software (Keyence). All images were acquired using a CFl plan Apo |

20x/0.75 objective (Nikon) with 30% tile overlap and 5 z-planes (1.5 uym/z).

Processing and annotation of CODEX images

A total of 16 tissue regions were captured from 6 ND and 10 T2D donors (mean 50 mm?
tissue/donor). Image alignment, stitching, background subtraction, and deconvolution were
performed using the CODEX Processor v1.7.0.6 (Akoya Biosciences; see

https://help.codex.bio/codex/processor/technical-notes for details). Individual channel images

(TIFF files) were imported into HALO software v3.1 (Indica Labs) for all analyses as described
below. Tissue and islet areas were annotated by hand to exclude out-of-focus regions and poor
tissue quality. Islets (estimated diameter 250 ym; mean 42 islets/donor) were annotated based
on DAPI and CHGA channels. Cell segmentation and cell type annotations were performed
using the HALO HighPlex FL v3.2.1 module with consistent cytonuclear parameters (nuclear
contrast threshold 0.456, maximum cytoplasm radius 0.48). Due to marker intensity variability
among samples, thresholds were manually set for each marker and donor. Unless otherwise
noted, cells were counted positive for a given marker if minimum intensity was reached in 50%
of cytoplasm area (see Extended Data Fig. 3a-3b for complete list of markers, abbreviations,
and cell types). For cells with more variable morphology, positivity was also counted for nuclear
area (30%: ARG1, CD11c, CD14, CD163, CD206, CD31, CD34, CD45, HLA-DR, IBA1, KRT,
MCAM). Proliferating cells were counted only if minimum 60% of nuclear area met Ki67 intensity
threshold. Vascular structures (CD31) were also measured by random forest classification
algorithm (HALO Tissue Classifier module). The following analysis metrics represent mean %
standard error: endocrine cell area (Fig. 2d) 0.88 + 0.10 mm?/donor; islet cell composition (Fig.
2e, Extended Data Fig. 3j) 7,322 £ 852 cells/donor; immune cells (Fig. 2I, 2n) 309 + 43
cells/donor; endothelial cell phenotypes (Extended Data Fig. 4f) 460 + 92 cells/donor;
macrophage phenotypes (Extended Data Fig. 4h) 191 + 29 cells/donor; T cell phenotypes
(Extended Data Fig. 4i-4j) 40 + 17 cells/donor.

High-dimensional, spatial, and neighborhood analyses

The R implementation of the UMAP algorithm (https://CRAN.R-project.org/package=umap) was

used for dimensionality reduction. Cell marker percentages obtained through HALO were
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standardized across islets (n=255 ND islets and 426 T2D islets; mean 172 cells/islet), and
default parameters were used for UMAP reduction (Fig. 20) except for nearest neighbors (80)
and minimum distance (0.05). For spatial analyses, CD31 area classifications were converted to
an annotation layer. A nearest neighbor algorithm (HALO Spatial Analysis module) was applied
to obtain average distance of endocrine cells (n=4,830 + 692 cells/donor) to islet capillaries
(CD31* region) (Fig. 2i, Extended Data Fig. 4d).

For cell neighborhood (CN) analysis, two methods were applied in parallel to CODEX data from
annotated islets. In the community detection method, termed Dynamic CF-IDF (Fig. 2p-2q, 2s),
a weighted undirected heterogeneous graph for each islet was constructed based on the cell
types and normalized distance between cells. A greedy-based graph community detection
method'® was applied to segment the graph into a set of cell communities, then cell
communities were stratified into 6 CNs (n=5,582 total CNs with median 11 cells/CN). Cell type
enrichment was determined by a new proposed scoring function CF-IDF, which is a modification
of the widely used text sequence analysis method term frequency (TF)—inverse document
frequency (IDF) scoring®. Our cell frequency (CF)-inverse dataset frequency (IDF) score
emphasizes the cell type that is not only prevailing, but also uniquely representative in a group
of target islets. Therefore, it will deemphasize the most dominant cell types (e.g., a and 3)
throughout all the islets while paying more attention to the relative enrichment of less abundant
cell types (e.g., vascular and immune cells) in the local regions. The downstream analysis not
only introduces insightful results on T2D feature analysis but also shows a robust performance

across different resolution levels.

The second CN analysis method, a k-means approach (Extended Data Fig. 4k-4n), built on a
previously published algorithm used to identify CNs in the tumor microenvironment'’. For each
cell, we first found its 10 nearest neighbors in the islet and assigned the i-th nearest neighbor
which was an a cell, B cell, macrophage, EC cell, or y cell, a score cos(irr/20). Then we
calculated the total score for each cell type, applied L1 normalization to the scores, and
standardized them across all cells. The resulting representations of cells were finally used for k-

means clustering to form 5 CNs (n=5,021 total CNs with median 5 cells/CN).

38


https://doi.org/10.1101/2021.12.16.466282

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.466282; this version posted December 17, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Transcriptional analysis of a and 8 cells and islets from ND and T2D donors

RNA isolation and bulk RNA-sequencing

RNA was extracted from sorted a and B cells (see above, Purification of a and 3 cells by FACS)
or from pelleted whole islets using the Invitrogen RNAqueous-Micro Total RNA Isolation kit
(Thermo Fisher #AM1931). TURBO DNA-free (Ambion) was used to treat any trace DNA
contamination. RNA was quantified by Qubit Fluorometer 2.0 and RNA integrity was confirmed
(RIN >7) by 2100 Bioanalyzer (Agilent). Amplified cDNA libraries were constructed using
SMART-seq v4 Ultra low Input RNA-kit (Takara) and sequencing was performed on an

NovaSeq platform (lllumina) using paired-end reads (100 bp) and 25 million reads per sample.

We processed the raw RNA-seq reads using FastQC (v0.11.8) for broad quality assessment.
Briefly, we examined the following parameters: (1) base quality score distribution, (2) sequence
quality score distribution, (3) average base content per read, (4) GC distribution in thereads, (5)
PCR amplification issue, (6) overrepresented sequences, (7) adapter content. Based on the
quality report of fastq files, we trimmed sequence reads using fastq-mcf (v1.05) and cutadapt
(v2.5) to only retain high quality sequence for further analysis. The paired-end reads were
aligned to the GRCh37/hg19 human reference with GENCODE v19 gene annotation using
STAR splice-aware aligner (v2.5.4b; --outSAMUnmapped Within KeepPairs)*®.

We counted fragments mapping to features type in GENCODE v19 gene annotation using
featureCounts from Subread package'®. The gene list was pruned to contain only protein-coding
genes mapping to autosome and chrX, resulting in a total of 20,260 genes. We assessed
libraries using comprehensive quality metrics generated by QoRTs?° as well as computed
derived metrics. Briefly, on the top of QoRTs reported metrics, we computed (1) 5°-3’ gene
coverage bias (as the ratio of coverage values at the 90%-ile and 10%-ile of the coverage
distribution), (2) Kolmogorov-Smirov test statistic between cumulative gene diversity of each
library relative to median distribution of all libraries within each cell type and standardized to a
mean of 0 and standard deviation of 1 to yield a z-score, (3) number of reads mapped mapped
to Xist and SRY genes, (4) average number of reads mapped to chrM, and (5) transcript
integrity number (TIN)?' for each library. The labeled sex of donors was matched against the
gene expression quantified for sex genes to rule out any sample swaps or mislabeling. We also
computed principal components for TPM normalized count matrix for each cell type in order to

detect potential outliers.
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Differential gene expression analysis

We performed differential gene expression analysis between T2D and ND samples for each cell
type individually using DESeq2?2. In order to minimize potential effects of known and unknown
confounding factors, we included known covariates in the DESeq2 model as well accounted for
unknown covariates using RUVseq latent variable approach?3. Briefly, we used the following
multi-step process: (1) We first removed genes from the raw count matrix which had less than
10 reads in fewer than 25% of the samples for that cell type. (2) We then ran a first-pass
differential expression analysis using DESeq2 with Age, Sex, BMI, and Batch as known
covariates. The output result was filtered for genes that were non-significant i.e., not
differentially expressed between T2D and ND samples and had p-value > 0.5. These genes
were used as “control” or “empirical” genes for RUVSeq::RUVg function to estimate latent
variables accounting for variation in the data not attributed to disease status. (3) The latent
variables estimated from the RUVseq run were then used as additional covariates (on the top of
Age, Sex, BMI, and Batch where applicable) for the second run of DESeq2. We selected the
number of latent variables to provide the most reasonable separation between T2D and ND
samples and minimal deviation from mean in the relative log expression plots. The output
results from DESeq2 were filtered for 1% FDR to generate the final list of genes differentially
expressed between T2D and ND for each cell type. We performed functional enrichment
analysis using RNA-enrich?* and retained terms with an FDR threshold of 5%. Terms were
condensed using the RelSim function in REVIGO?® with similarity parameter set to 0.5 and
visualized in semantic space using an.xgmml file imported into Cytoscape software?® v3.8.2.
Combined analysis of differentially expressed genes (fold change =1.5 or =-1.5; p<0.01) was
performed using Metascape?” v3.5. Metascape’s heuristic algorithm samples the 20 top-score
clusters, selects up to the 10 best scoring terms (lowest p-values) within each cluster, and
connects terms pairs with Kappa similarity above 0.3. The resulting network was exported as a
.cys file and visualized using Cytoscape, with the most representative term name in each cluster

selected manually.

Gene network analysis

We adopted Weighted Gene Co-expression Network Analysis (WGCNA)?® approach to create
networks from the gene expression data. Briefly, we first filtered genes following the same rule
established in Differential Gene Expression analysis where we only kept genes that had at least

10 reads in at least 25% of the samples for each cell type. We then processed raw counts using
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the varianceStabilizedTransformation function in DESeq2 package and used removeBatchEffect
from the limma R package?® to adjust for effects of age, sex, and BMI while protecting for
disease status in the design matrix. The normalized and batch corrected count matrix was then
used as input to blockwiseModules to create a “signed hybrid” network with “bicor” as the
correlation function. The power (k) parameter was selected such that the scale free topology fit
reached at least 80% fit. To examine cell type modules associated with quantitative traits of
interest, we utilized a linear regression-based framework. We (1) inverse normalized the raw
quantitative trait, (2) adjusted for Age, Sex, and BMI by linear regression, and (3) computed the
spearman rank correlation between residuals and eigengene of all modules. Within each
network, we also computed the module membership score and network connectivity for each
gene. Estimated enrichment of curated gene lists3-32 (Extended Data Table 4) was calculated
using Fisher’s exact test. Functional enrichment of genes in each module was performed using

gprofiler233, and the results were visualized as a dotplot.

Integration of network analysis with chromatin accessibility

We integrated chromatin accessibility information with gene network analysis using sci-ATAC-
seq data for a and B cells derived from our previously published study3*. For each module within
each cell type, we selected (a) accessible sites that were present within a specified distance of
the transcription start site (TSS) of the genes within that module, and (b) the distal chromatin
peaks that were linked to the peaks within this set based on the Cicero peak interaction results
from the same study. This set of TSS proximal and distal peaks for all of the genes within each

module and for each cell type were then used for downstream enrichment analyses.

For variant enrichment analysis in the module linked peaks, we collected the latest published
summary statistics for selected traits3%26. Using a threshold of +- 10kb to define our gene TSS
boundary for linking peaks with modules, we created a set of accessible sites for each module.
The union of peaks across all modules was used as a “bulk” positive enrichment control. We
then tested the enrichment of trait-associated variants from multiple GWAS across module
peaks using GARFIELD?®" and used a p-value threshold of 5e-08 as input parameter for

selecting trait-associated variants.

Next, we considered whether specific Transcription Factor Binding Motifs (TFBMs) are enriched
to occur in certain modules. To test this, we defined module linked peaks for each module as

described before but using a threshold of +- 1kb from gene TSS. For each peak within a
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module, we then identified the peak summit and extended the summit by 50 bp in each
direction. Using genomic sequence in this region as our “test sequence”, we used Analysis of
Motif Enrichment (AME, v5.3.2) tool from MEME-Suite3® (using default parameters) to identify
enriched TFBMs represented in cisBP v.2.0%°. The control set of sequence was generated using
--shuffle-- parameter in AME which generates a control sequence by shuffling the test sequence
but preserving the 2-mer frequency. The enrichment score was computed as scaled log2
transformed (TP+1)/(FP+1) for each TFBM.

Pseudoislet formation and assessment of RFX6 knockdown

Pseudoislets were formed as previously described®. Briefly, nondiabetic human islets were
handpicked to purity and then dispersed with 0.025% HyClone trypsin (Thermo Scientific) for 7
minutes at room temperature before counting with an automated Countess Il cell counter or
manually by hemacytometer. Dispersed human islets or purified 8 cells (see above, Purification
of a and B cells by FACS) were incubated in adenovirus at a multiplicity of infection of 500 for 2
hours in Vanderbilt pseudoislet media before being spun and washed. Adenovirus containing
U6 driven scramble or RFX6 targeted shRNA as well as CMV driven mCherry or mKate2 red
fluorescent tag were prepared, amplified and purified by Welgen, Inc (Worcester, MA). Cells
were then resuspended in appropriate volume of Vanderbilt pseudoislet media to allow for
seeding into wells at 2000 cells per 200 uL each well of CellCarrier Spheroid Ultra-low
attachment microplates (PerkinElmer). Pseudoislets were allowed to reaggregate for 6 days

before being harvested and studied.

To assess knockdown, RNA was extracted from pseudoislets containing only B cells using an
RNAqgueous RNA isolation kit (Ambion). cDNA synthesis and quantitative reverse transcriptase
PCR were performed as previously described?; briefly, cDNA was synthesized using a High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems #4368814) according to the
manufacturer’s instructions. Quantitative PCR (qPCR) was performed using TagMan probes for
ACTB (Hs99999903_m1) as endogenous control and RFX6 (Hs00941591_m1). Relative

changes in mRNA expression were calculated by the comparative ACt method.
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Multiome single nuclear RNA/ATAC-sequencing

Nuclear isolation

Pseudoislet samples treated with RFX6 shRNA or scramble RNA were pooled together using a
randomized study design, so the targeting and scramble conditions were not confounded by
batch (Fig. 5a). To accomplish this, samples were allocated into six groups (batches) of n=490-
494 pseudoislets for nuclei isolation. A customized protocol was developed based on

recommendations by 10x Genomics (https://www.10xgenomics.com/resources/demonstrated-

protocols/) which included optimization steps described below. Briefly, the samples were
suspended in 1X PBS and pelleted at 2000 x g for 3 minutes at 4°C. The pellet was
resuspended in lysis buffer (10mM Tris-HCI 7.4 pH, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20,
0.1% NP40, 0.01% Digitonin, 1% BSA, 1mM DTT, and 2U/ul RNase Inhibitor) and rocked in an
Eppendorf thermomixer C (EP #5382000015) at 300 x g for 5 minutes at 4°C. Keeping the
samples on ice as much as possible, tubes were then transferred to a prechilled 2 mL glass
dounce homogenizer and homogenized with 15 strokes of tight pestle B before being
transferred to a 1.5 mL tube and centrifuged at 500 x g for 5 minutes at 4°C. The resulting pellet
was then resuspended in 1 mL of wash buffer (10mM Tris-HCL 7.4 pH, 10mM NaCl, 3mM
MgCl2, 1% BSA, 0.1% Tween-20, 1TMm DTT, and 2U/ul RNase Inhibitor) and centrifuged at 100
x g for 1 minute at 4°C. The supernatant was collected, filtered through a pre-wetted 30 um
filter, and centrifuged at 500 x g for 5 minutes at 4°C. Nuclei were resuspended in 300 pl of
wash buffer, then 300 ul of sucrose cushion (0.88M sucrose, 1mM DTT, 1mM RNAse Inhibitor,
and 10% wash buffer) was added to the bottom of the tube and the resulting layered solution
was centrifuged at 1000 x g for 10 minutes at 4°C. Both layers of supernatant were removed,
and pellet was resuspended in 1 mL of wash buffer and centrifuged at 500 x g for 5 minutes at
4°C. Nuclei were then resuspended in 30 ul of nuclei resuspension buffer before counting and
quality assessment. The desired concentration of nuclei was achieved by resuspending the
appropriate number of nuclei in 1X diluted nuclei buffer for joint (on the same nucleus) snATAC-
seq and snRNA-seq multiome profiling. Nuclei were processed by the University of Michigan

Advanced Genomics Core using the 10x Genomics Chromium platform at 20K nuclei per well.

Multiome sample genotyping and imputation

Samples were genotyped with the Infinium Multi-Ethnic Global-8 v1.0 kit using 50 ng/uL DNA

samples in two batches. Probes were mapped to Build 37. We merged the .ped files for the two
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batches along with samples from other projects that were genotyped on the same chip (resulting
in a combined 68 samples). We removed variants with multi mapping probes and updated the
variant rsIDs using lllumina support files Multi-EthnicGlobal_D1_MappingComment.txt and
Multi-EthnicGlobal_D1.annotated.txt (downloaded from

https://support.illumina.com/downloads/infinium-multi-ethnic-global-8-v1-support-files.html). We

performed pre-imputation QC using the HRC-1000G-check-bim.pl script (version 4.2.9) obtained

from the Mark McCarthy lab website (https://www.well.ox.ac.uk/~wrayner/tools/) to check for

strand, alleles, position, Ref/Alt assignments and update the same based on the 1000G

reference (https://www.well.ox.ac.uk/~wrayner/tools/1000GP_Phase3 combined.legend.gz).

We did not conduct allele frequency checks at this step (i.e. used the --noexclude flag) since we
had 68 samples from mixed ancestries. These filters resulted in 958,427 variants. We
performed pre-phasing and imputation using the Michigan Imputation Server*?. The standard

pipeline (https://imputationserver.readthedocs.io/en/latest/pipeline/) included pre-phasing using

Eagle2*' and genotype dosage imputation using Minimac4
(https://github.com/statgen/Minimac4) and the 1000g phase 3 v5 (build GRCh37/hg19)

reference panel*?. Post-imputation, we selected biallelic variants with estimated imputation

accuracy (r*2) > 0.3, variants not significantly deviating from Hardy Weinberg Equilibrium
(P>1e-6), MAF in 1000G European individuals > 0.05 and minor allele count (MAC) > 1 in our

12 samples, resulting in 6,665,607 variants.

Data processing (RNA component)

The RNA component of the multiome data was processed using starSOLO (STAR v. 2.7.3a,
with GENCODE v19 annotation; options --soloUMlfiltering MultiGeneUMI --soloCBmatchWLtype
1MM_multi_pseudocounts --soloCellFilter None), which outputs the count matrices needed for
most of the analyses'®. Quality control metrics were gathered on a per-nucleus basis using a

custom Python script on the corrected gene counts and aligned BAM file.

Following processing with STAR, we constructed a custom count matrix by combining
information from the GeneFull and Gene matrices output by STAR. The GeneFull matrix
contains per-gene counts based on intronic and exonic reads, while the Gene matrix contains
per-gene counts based on exonic reads only. As nuclear RNA may contain introns, the
GeneFull matrix should be preferred. However, due to overlapping transcript annotations that
render some read gene assignments ambiguous, some genes may receive fewer counts in the

GeneFull matrix than in the Gene matrix. The INS gene was an extreme example of this,
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receiving very low counts in the GeneFull matrix but high counts in the Gene matrix. To salvage
counts for such genes, our custom matrix utilized the GeneFull counts for most genes but
utilized the Gene counts for the subset of genes that had greater counts in the Gene matrix than

in the GeneFull matrix.

Data processing (ATAC component)

Adapters were trimmed using cta (https://github.com/ParkerLab/cta). We used a custom Python

script, available in the Parker lab Github repository, for barcode correction. Barcodes were
corrected in a similar manner as in the 10x Genomics Cell Ranger ATAC v. 1.0 software. In
brief, barcodes were checked against the 10x Genomics whitelist. If a barcode was not on the
whitelist, then we found all whitelisted barcodes within a hamming distance of two from the bad
barcode. For each of these whitelisted barcodes, we calculated the probability that the bad
barcode should be assigned to the whitelisted barcode using the Phred scores of the
mismatched base(s) and the prior probability of a read coming from the whitelisted barcode
(based on the whitelisted barcode’s abundance in the rest of the data). If there was at least a
97.5% probability that the bad barcode was derived from one specific whitelisted barcode, it was

corrected to the whitelisted barcode.

Reads were mapped using BWA-MEM#*? with flags ‘-1 200,200,5000 -M’ (v. 0.7.15-r1140). We
used Picard MarkDuplicates (v. 2.25.1; https://broadinstitute.github.io/picard/) to mark

duplicates, and filtered to high-quality, non-duplicate autosomal read pairs using SAMtools
view** with flags ‘-f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30’ (v. 1.10). Quality control metrics
were gathered on a per-nucleus basis using ataqv*® (v. 1.2.1) on the BAM file with duplicates

marked.

Selection of quality nuclei (barcodes) for downstream analysis

We performed rigorous QC of all RNA nuclei and only included those deemed as high-quality
based on the following four definitions: 1) nUMI > 1000, 2) mitochondrial fraction < 0.2, 3) nuclei
where the RNA profile was statistically different from the background/ambient RNA signal, and
4) nuclei identifiable as a singlet and assignable to a sample using genotypes. We considered
droplets with UMIs < 10 to be “empty” and therefore representative of the background/ambient
RNA profile. Top genes in the ambient RNA included highly expressed genes across prominent
islet cell types such as INS, GCG, and SST, along with several mitochondrial genes. We used

the testEmptyDrops function from DropletUtils (v 1.6.1)%, specifying the ‘lower’ parameter as 10
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and selecting droplets with P<0.05 as droplets significantly different from the ambient RNA
profile. To identify singlets and assign to samples, we ran Demuxlet*” using using the BAM files
and the genotype VCF file considering all post-QC variants in gene bodies with minor allele
count (MAC) >1. We used the command “demuxlet --sam $bam --tag-group CB --tag-UMI UB -
-vcf ${vcf} --alpha 0 --alpha 0.5 --field GT”, and selected singlets. To account for ambient RNA
contamination while identifying singlets, we also masked the top 1% genes expressed in the
ambient RNA and re-ran Demuxlet with the same parameters; nuclei were considered singlets

and kept for downstream analysis if they were called as singlets in either Demuxlet run.

We also performed QC of the ATAC component of the multiome data. For ATAC, we required
nuclei to have a minimum TSS enrichment (as calculated by ataqv) of 2, minimum filtered read
count of 1000 (ataqv ‘HQAA’ metric), and maximum mitochondrial fraction of 0.5. We also ran
Demuxlet on the ATAC component (command: demuxlet --sam $bam --tag-group CB --vcf
${vcf} --field GT) and required that a prospective nucleus be called as a singlet. The ATAC
component of nuclei in two wells showed low TSS enrichment and all nuclei from these two

wells were therefore excluded from analysis.

If the RNA and the ATAC component of a barcode both passed QC and the Demuxlet sample
assignment was the same, both modalities were utilized for downstream analysis. If only the
RNA component passed QC, only the RNA component was used in downstream analysis. As
we performed clustering on the RNA component, we excluded the few (twelve) barcodes that
passed ATAC QC and failed RNA QC.

Removal of ambient RNA counts from single nucleus gene expression UMI matrices

Prior to clustering and downstream analysis, we used DecontX*® (celda v. 1.8.1, in Rv. 4.1.1)*
to adjust the nucleus x gene expression count matrices for ambient RNA. DecontX was run on a
per-batch basis, as the amount of ambient contamination may vary across batches.
Decontaminated counts were generated via the decontX() function, passing barcodes with total
UMI count <= 10 to the background argument. Rounded decontaminated counts were used for
clustering and all downstream analyses. Nuclei with estimated contamination level > 0.2 were

excluded from downstream analysis.
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Clustering of multiome data

Nuclei were clustered on the RNA component using Seurat®-52 (v. 3.9.9.9010, in R v. 3.6.3).
After normalizing counts with the NormalizeData function, we identified the top 2000 variable
features (FindVariableFeatures function, with selection.method="vst’) and scaled with the
ScaleData function. We identified neighbors using the top 20 PCs and k.param = 20, and called
clusters using resolution = 0.1 with n.start = 100. We used the top 20 PCs for generating the
UMAP.

This clustering protocol identified 10 clusters. One of the smaller clusters shows expression of
both INS and GCG, suggesting it may consist of doublets that were not caught by demuxlet. To
verify this was a doublet cluster, we ran a different, genotype-independent, ATAC-based doublet
detection method (AMULET; v. 1.0-beta, run with default parameters separately on data from
each multiome well)>® on the ATAC nuclei that otherwise passed QC. This method tagged ~40%
of the nuclei in the suspected doublet cluster as doublets, while only ~5% of nuclei in any other
cluster were tagged as doublets. We therefore removed the small doublet cluster from the

clustering and downstream analysis.

Differential gene expression analysis

Differential gene expression was performed within each cluster using DESeq2 (v. 1.28.0)%? on
pseudobulk counts. UMI counts were summed across nuclei within a donor + construct +
cluster. Only donors with paired data (RFX6-2896 and scrambled-mCherry constructs) were
used, and the analysis was performed in a paired fashion (DESeq2 model: ~donor + construct).

We used an FDR threshold of 5% for considering genes differentially expressed.

Per-cluster processing of ATAC component

All ATAC reads from pass-QC, clustered nuclei were merged within each cluster. To generate
per-cluster peaks, these BAM files were converted to single-ended BED format using bedtools
bamtobed>* before calling ATAC-seq peak summits with MACS25% (flags -g hs --nomodel --shift
-37 --extsize 73 -B --keep-dup all --call-summits). We removed summits in blacklist regions,
filtered to FDR 0.1% summits, and then generated a peak list from the summits by extending
the ATAC-seq peak summits for each cluster +/- 150 bps to get 300bp peaks (within each
cluster, if two 300bp peaks overlapped the one with the greater MACS2 score was kept). We
then removed peaks in blacklist regions. To get the ATAC peak counts used in the ATAC PCA
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and differential chromatin accessibility analyses, we determined the number of ATAC fragments
overlapping each of these peaks in each of the per-cluster, per-donor, per-construct pseudobulk

samples.

For visualization of ATAC signal, we generated a normalized bedGraph file using MACS2 on the
single-end BED file (macs2 callpeak command, with options --SPMR --nomodel --shift -100 --
extsize 200 -B --broad --keep-dup all) and then converted to bigWig format using the UCSC
bedGraphToBigWig®¢. For PCA on the pseudobulk ATAC counts, we first removed any peaks
on the mCherry or mKate2 contigs. We then converted peak counts to counts per million and
removed the bottom 10% of features with the lowest average CPM across samples. For each
peak, we filled any Os with a value equal to half of the minimum non-zero CPM for that peak

across samples. We then log transformed prior to performing the PCA.

Differential chromatin accessibility analysis

Differential chromatin accessibility was performed within each cluster using DESeq2 (v.
1.28.0)% on pseudobulk ATAC peak counts. Only donors with paired ATAC data (RFX6-2896
and scrambled-mCherry constructs) were used, and we additionally excluded donor 17277513
due to very low read counts. The DESeq2 analysis was performed in a paired fashion, with
model: ~donor + tss_enrichment + construct. To compute TSS enrichment for each pseudobulk
sample, we merged all ATAC nuclei (regardless of cluster) from each donor and computed TSS

enrichment with ataqv.

Testing for enrichment of peak subsets near differential genes

We used a permutation test to determine whether the most significant peaks (‘top peaks’) from
the beta cell differential peak analysis were enriched near beta cell differentially expressed (DE)
genes. First, we assigned each peak to the gene with the nearest TSS (if multiple TSS were
equally close, we took the TSS with the smallest chromosomal coordinate). We then calculated
the fraction of top peaks whose nearest gene was DE. To get the null expectation for this value,
we permuted the ‘DE/not DE’ gene labels, such that the same number of genes were always
labeled as ‘DE’ but the identity of these DE genes changed in each permutation. While
permuting, we split genes into deciles based on the expression of each gene and permuted the
labels only within each decile (this controls for the fact that highly expressed genes are more
likely to be DE than lowly expressed genes due to statistical power in the DE analysis). We

performed 10,000 permutations, in each permutation re-calculating the fraction of top peaks
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whose nearest gene was DE to build up the null distribution. We then calculated an empirical p-
value based on our observed value and the null distribution, adding a pseudocount to avoid a p-
value of O (p = [1 + # of permutations where the test statistic was greater than or equal to our
observed value] / 10,001).

Motif scanning for multiome motif enrichment analyses

The motif scans were performed using FIMO (v. 5.0.4) with a background model calculated from
the hg19 reference genome®” and otherwise default parameters. We used the motifs from
Kheradpour and Kellis 2014%8, excluding “*_disc” motifs; motifs from cisBP v. 2.0%%; motifs from
Jolma et al. 2013%%; and custom RFX6 motifs generated using mouse Rfx6 ChIP-seq data from
Piccand et al. 2014°°.

The custom RFX6 motifs were generated during a previous project®!. Sequencing reads from
Piccand et al. 1014%° were mapped to the mouse mm9 genome®? using bwa (v. 0.7.12-r1039)
and peaks were called using MACS2 (flags: -t MING6_Rfx6-HA_IP.bam -c MING6_Control-HA.bam
-B --nomodel -g mm --keep-dup 1 -q 1.00e-4). The MEME (v. 4.11.0)%3 and DREME (v. 4.9.1)8
tools from the MEME suite®® were used to discover novel motifs in the resulting peaks. One non-
repetitive motif from the MEME tool and two motifs from the DREME tool, bearing similarity to

known RFX family motifs, were selected for use in downstream analysis.

Motif enrichment in most significant peaks

We used logistic regression to measure enrichment of motifs in subsets of ATAC-seq peaks.
We ran one model per peak category and motif. For testing for enrichment in the peaks that had

the smallest p-values and leaned towards higher signal in shRFX6 samples, we modeled:
peak_leans_higher_in_shRFX6 ~ peak_gc_content + peak_size + n_motif _hits_in_peak

Where ‘peak_leans_higher_in_shRFX6’is 1 if the peak was one of the most significant peaks in
the ‘up in RFX6 KD condition’ direction and 0 otherwise; peak_gc_content was the GC content
of the sequence within the peak; peak_size was the mean DESeq2-normalized count for the
peak across the samples in the DESeq2 analysis; and n_motif_hits_in_peak was the number of
motif hits in the peak as determined by the FIMO motif scans. The coefficient of the
n_motif_hits_in_peak term was taken as the measure of motif enrichment. For testing for

enrichment in the peaks that had the smallest p-values and leaned towards lower signal in
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shRFX6 samples, we used the same model except the outcome variable was

‘peak _leans lower _in_shRFX6'.

Generation of ATAC footprint plots

To generate the ATAC footprint plots, we first separated the motif occurrences into those within
the beta cells ATAC peaks and those outside of peaks. For each of these two groups, we
computed an aggregate Tn5 cut matrix for the 500 bps on either side of the motifs, using beta
cell ATAC reads from each individual donor+construct (using the make_cut_matrix script within

the atactk package (https://github.com/ParkerLab/atactk); options -a -r 500). The cut matrices

were generated separately for each donor+construct, utilizing only donors with paired ATAC
data (RFX6-2896 and scrambled-mCherry constructs) and additionally excluding donor
17277513 due to very low ATAC read counts. To reduce the impact of Tn5 insertion sequence
bias, we normalized the Tn5 cut frequency at each position for the motifs in peaks by the
corresponding frequencies for the motifs outside of peaks. To adjust for technical differences
(e.g., TSS enrichment) between the donors+constructs, we then divided these normalized cut

frequencies by the average normalized cut frequency between the -500 and -400 bp positions.

GWAS enrichment in most significant peaks

We considered if B cell ATAC-seq peaks that score highly for differential accessibility, as
measured by p-value, are specifically enriched to overlap T2D-GWAS variants. We compared
the enrichment of T2D (adj. BMI) GWAS variants to overlap top 5000 ATAC-seq differential
peaks leaning up and down with the remaining peaks for B cell using GARFIELD?. Using a p-
value threshold of 1e-05, we also performed a conditional analysis where GARFIELD evaluates
if both annotations are conditionally independent of each other in the enrichment model. The
coefficients corresponding to each annotation from the conditional enrichment model were
shown along with the 95%-CI. To ensure robustness of our results, we repeated the analysis for

top 2000 (up and down each) and top 10000 (up and down each) differential peaks.

Statistical information

Specific statistical tests used for each dataset are described in the figure legends and text
where appropriate. Data is represented as mean + standard error (SEM) unless otherwise

noted. A p-value of 0.05 was considered significant except for bulk RNA-seq differential
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expression where we used a more stringent cutoff of 0.01. Statistical comparisons were

performed using GraphPad Prism software 8.0-9.3 or using R.
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EXTENDED DATA

Extended Data Figure 1 (related to Fig. 1). Additional metrics from functional and

transcriptional profiling of islets from donors with short-duration T2D.

Extended Data Figure 2 (related to Fig. 1). Transcriptional analysis of islets and sorted a and
B cells reveals dysregulation of metabolic pathways in T2D 3 cells and immune signaling in T2D

islets.

Extended Data Figure 3 (related to Fig. 2). Parallel approaches of multiplexed imaging and
high-throughput traditional immunohistochemistry enable profiling of endocrine cells in addition

to intraislet vascular and immune cells.

Extended Data Figure 4 (related to Fig. 2). Integration of multiplexed imaging and

transcriptional profiling highlight disrupted capillaries and immune cells within T2D islets.

Extended Data Figure 5 (related to Fig. 3). Quality assessment of Weighted Gene Co-
Expression Network Analysis (WGCNA).

Extended Data Figure 6 (related to Fig. 3). WGCNA emphasizes a and islet cell gene

modules associated with donor and islet traits as well as those enriched in GWAS loci.

Extended Data Figure 7 (related to Fig. 4). Connectivity of RFX6 by WGCNA is 3 cell-specific

and RFX6 reduction impairs insulin secretion.

Extended Data Figure 8 (related to Fig. 5). Application of dual RNA and ATAC-sequencing to
single nuclei from RFX6 shRNA pseudoislets.

Extended Data Figure 9 (related to Fig. 5). RFX6-mediated chromatin, transcriptome, and

insulin secretion dysregulation in human B cells.

Extended Data Table 1. Donor characteristics, sample types, and experimental usage.
Extended Data Table 2. Antibodies for traditional immunohistochemistry and flow cytometry.
Extended Data Table 3. Antibodies for co-detection by indexing (CODEX).

Extended Data Table 4. Curated gene lists for weighted gene co-expression network analysis.
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Extended Data Figure 1 (related to Figure 1)
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Extended Data Figure 1 (related to Fig. 1). Additional metrics from functional and
transcriptional profiling of islets from donors with short-duration T2D. (a-b) Matching of
ND and T2D donor BMI (a) and age (b) for perifusion experiments. (c) Basal insulin secretion
calculated as the average of the first three points of perifusion trace. (d-e) Integrated area under
the curve (AUC) breaking down the total 16.7 mM glucose response into the first phase (d;
through minute 24) and second phase (e; remainder of stimulation). (f) Area “under” the curve
calculated from trace baseline for inhibition with low glucose and epinephrine. (g-I) Dynamic
insulin secretion and metrics equivalent to Fig. 1 but normalized by total insulin content. (m)
Basal glucagon secretion calculated as average of first three points of perifusion trace. (n) Area
“‘under” the curve calculated from trace baseline for inhibition with high glucose. (o-t) Dynamic
glucagon secretion and metrics equivalent to Fig. 1 but normalized by total glucagon content.
(u) Blood glucose, human insulin levels, and human insulin:blood glucose ratio measured at 0’
(six-hour fasted) and 15’ after glucose and arginine stimulation of mice with human islet grafts.
Symbols represent individual mice. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 (two-tailed t-
test, panels a-f, h-n, and p-t; two-way ANOVA, panel u); error bars are SEM. (v) Gating
strategy for sorted a and  cells identified by cell surface markers. Cell debris were excluded by
forward scatter (FSC) and side scatter (SSC), single cells were identified by voltage pulse
geometry (FSC-A v. FSC-H), and non-viable cells were excluded using propidium iodide (PI).
Endocrine cell subpopulations were then gated based on positivity for HPi1 (pan-endocrine
marker) and additional positivity for HPa3 (a cells) or NTPDase3 (B cells). (w) Select metrics
used to assess library quality, organized by sample type. Outlier samples are highlighted in

yellow and were excluded from downstream analyses.
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Extended Data Figure 2 (related to Figure 1)
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Extended Data Figure 2 (related to Fig. 1). Transcriptional analysis of islets and sorted a
and B cells reveals dysregulation of metabolic pathways in T2D 8 cells and immune
signaling in T2D islets. (a-c) Relative expression of individual libraries post-correction and
principal component (PC) analysis of each sample type. RRIDs (donor labels beginning with ‘8’)
are abbreviated; see Extended Data Table 1 for complete alphanumeric RRIDs. Nondiabetic
(ND) samples, grey; T2D samples, colored according to sample type. (d-f) Pearson correlation
between sample covariates and PCs using the DEseq model. Colored bands next to
row/column labels indicate whether variable is a donor trait (yellow), sample preparation
variable (mint green), sequencing metric (pink), quality assurance/quality control (QA/QC)
metric (blue), or latent variable or PC (purple). Culture time, duration of time (hours) between
islet isolation and cell dispersion/sorting; Cell qty, number of sorted cells from which RNA was
isolated (B and a cells only); RIN, RNA integrity number; Batch x, sequencing batch; TIN mean,
mean transcript integrity number; Insert size, median length of sequenced RNA fragments; GBC
5'/3’, ratio of gene body coverage at 5’ and 3’ end, describing reads distribution along a gene;
QC’d reads, number of read pairs that pass initial filters; unique reads, number of read pairs that
map to genomic area covering exactly one gene; Introns, reads mapping to intronic regions of
genes; Avg GC, average GC content of all reads; CGD z-score, z-score quantifying cumulative
gene diversity of libraries from median based on Kolmogorov Smirnov test; ChrM, reads
mapping to MT chromosome; ChrY, reads mapping to Y chromosome; PCx, principal
components; Wx, RUV-seq latent variables. (g-i) Volcano plots illustrating differentially
expressed genes between ND and T2D § cells (g), a cells (h), and islets (i). Lines denote
cutoffs for fold-change (x1.5) and significance (<0.01); genes passing both thresholds are
colored and select genes are labeled. (j-I) Enriched gene ontology terms (FDR<0.05) obtained
from RNA Enrich were condensed using the RelSim function of Revigo (similarity=0.5) and
plotted in semantic space to emphasize relatedness. Dot size represents odds ratio and color

represents p-value. Select terms are labeled.
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Extended Data Figure 3 (related to Figure 2)
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Extended Data Figure 3 (related to Fig. 2). Parallel approaches of multiplexed imaging
and high-throughput traditional immunohistochemistry enable profiling of endocrine
cells in addition to intraislet vascular and immune cells. (a-b) Markers, cell populations, and
specific phenotypes distinguished by the CODEX antibody panel. (c-h) Cross-sectional area (c-
d) and cytonuclear quantification (f-h) of 3 cells (CPEP; green), a cells (GCG; red), and & cells
(SST; blue). Individual donor data shown in stacked bar graphs (¢, f); bar graphs (d-e, g-h)
show mean + SEM, one symbol per donor. Stratification by pancreas region (d, g) includes
horizontal lines (solid, ND; dotted, T2D) for mean values from combined analysis (‘Aggregate).
(e) Pancreas weight measured during organ procurement; used to calculate endocrine cell
mass in Fig. 2b. (i) Representative images depicting rare cells positive for chromogranin A
(CHGA; red) but negative for all hormones (green). Scale bars, 50 um; arrowheads denote
CHGA* hormone- cells. (j) Abundance of endocrine and non-endocrine cells in ND and T2D
islets; one vertical bar per islet and colored by cell type. Islets are grouped by donor and

ordered from largest (highest total cell number) to smallest. See also Fig. 2e.
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Extended Data Figure 4

(related to Figure 2)
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Extended Data Figure 4 (related to Fig. 2). Integration of multiplexed imaging and
transcriptional profiling highlight disrupted capillaries and immune cells within T2D
islets. (a) Amyloid prevalence (% total islets with amyloid, averaged over multiple regions); *
p<0.05 (two-tailed t-test). (b) Correlation of amyloid prevalence with B, a, and & cell populations
as percentage of total endocrine cell number or cross-sectional area; one symbol per donor with
95% confidence interval of linear regression (shading). No slopes were significantly nonzero at
p<0.01 threshold. (¢) Metascape visualization of select terms enriched for differentially
expressed genes in T2D a cells (left) and islets (right). (d) Average distance of each endocrine
cell type to nearest capillary; one symbol per donor (both ND and T2D); asterisks signify results
of one-way ANOVA with Tukey’s multiple comparisons test (** p<0.01; * p<0.05). (e) Gene
expression fold-change of selected vascular and neuronal ligands and their receptors in 8 cells,
a cells, and islets; « FDR<0.05; * FDR<0.01. (f) Phenotypes of endothelial cells (CD31; red)
defined by single or dual positivity for HLA-DR (green) and CD34 (blue). Examples of each
combination (HLA-DR* CD34-, CD34* HLA-DR-, HLA-DR* CD34*, and HLA-DR- CD34") are
shown to right. (g) Magnification of select clusters depicted in Fig. 1r (terms enriched across j,
a, and islet samples). (h-i) Macrophages (IBA1*) and T cells (CD3*) phenotyped by various cell
surface markers; insets show additional cells to illustrate phenotypic variety. Scale bars, 50 pm.
(j) Expression of HLA-DR in CD4* and CD8* T cell populations. (k-l) Cellular neighborhood
assignment and corresponding cell composition changes in T2D vs. ND islets. Panels k and m-
n show results from the k-means method and panel | compares these results to CF-IDF method
shown in Fig. 20-2s. Traditional IHC data: panels a-b; CODEX data: panels d, f, h-n. RNA data:

panels c, e, g.
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Extended Data Figure 5 (related to Figure 3)
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Extended Data Figure 5 (related to Fig. 3). Quality assessment of Weighted Gene Co-
expression Network Analysis (WGCNA). Analyses for 3 cell (a-c), a cell (d-f), and islet (g-i)
datasets were conducted in parallel. Metrics are shown for batch correction and network

parameter selection (a, d, g), module size and assignment (b, e, h), and module relatedness (c,

f, i).
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Extended Data Figure 6 (related to Figure 3)
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Extended Data Figure 6 (related to Fig. 3). WGCNA emphasizes a and islet cell gene
modules associated with donor and islet traits as well as those enriched in GWAS loci.
Module eigengenes for a cells (a-e) and islets (f-i) shown in parallel to 3 cells (Fig. 3a-3e). (a, f)
Modules clustered by similarity and showing relative enrichment of curated gene lists. (b, g)
Module correlation to donor characteristics, enrichment of differentially expressed (DE) genes,
and total number of genes per module. * p<0.05; * p<0.01. Modules of interest highlighted (b:
red, g: blue). (¢, h) Module correlation to a and B cell function (Fig. 1); significant associations
highlighted (yellow). For islets (g), modules were correlated to both insulin and glucagon
secretion. G+IBMX, 16.7 mM glucose with 100 uM isobutylmethylxanthine; 16.7G, 16.7 mM
glucose; 16.7G 1°, first phase; 16.7G 2°, second phase; 1.7G+Epi, 1.7 mM glucose and 1uM
epinephrine; KCI, 20 mM potassium chloride. (d) Module enrichment for GWAS ftraits. Fins,
fasting insulin; FGlu, fasting glucose. * FDR<0.01. (e, i) Enrichment of select gene ontology
terms in B cell modules with notable correlations and/or enrichment. (j) Magnification of select

clusters depicted in Fig. 1r (terms enriched across B, a, and islet samples).
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Extended Data Figure 7 (related to Fig. 4). Connectivity of RFX6 by WGCNA is B cell-
specific and RFX6 reduction impairs insulin secretion. (a-d) Connectivity of genes in a cell
(a-b) and islet (c-d) modules, in parallel to data for 8 cell modules in Fig. 4a-4b. (a, ¢) Overall
connectivity of individual genes; select genes with high connectivity scores are labeled. (b, d)
Cross- and within-module connectivity; select transcription factors are labeled. (e-f)
Immunofluorescent staining of pseudoislets embedded in type | collagen. (e) Transduced a cells
marked by mCherry; see Fig. 4h for 3 cells. (f) Distribution of B cells (CPEP; green) and a cells
(GCG,; blue). (g) Quantification of % B and % a cells in control (scramble) and shRFX6
pseudoislets. (h) Insulin content in control and shRFX6 pseudoislets (** p<0.01, two-tailed t-
test). (i-j) Dynamic insulin secretion and metrics equivalent to Fig. 4j-4k but normalized by total

insulin content.
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Extended Data Figure 8 (related to Figure 5)

Q

QC nuclei (RNA, ATAC) UMIs (RNA) Fraction mitochondrial (RNA) Reads (ATAC) Fraction mitochondrial (ATAC) TSS enrichment (ATAC)
100 0
S ae . 020 035
< 2,500
2 T 3 0.30
3 2,000 pe S o5 g s
g £
5 & 104 g 10° g 0.25 g
£ Immune 3 -
= 15001 [Endothetial H £ o010 g g0 g0
3 5 € -4 E 015 5
Prolfera g 5 5
S 1,000 rolferating 10 5 10 § 2
o 5 005 g 010 P s
q:; 0 s late - l _l_ %005
. 1 ' 1
& 0 10 0.00 = 100 0.00 o T o 0
0 2000 4000 6000 a B‘g}\,,\ﬂ 5 2 <>*'° ‘é@ @@ [ q}\,,\o @) B @® @ B VB Q‘,% \§ 5 o B < Vo5 @ §'° @\5 @c"
Pass QC nuclei with quality RNA & RES A > 9@ &°\ o O PO
b 2 <&
© ® NS coLear DS 1 PPY SST o, KRT19. VWF
¢ & - ° ¢ s ’ ’ ’ ’
~ ~ ~ Es” 2N o & o ~ ~
o z o0 %0 g <0 %0 0 %0 %0
E : H ' N H 5 = 3 s 3 4 E
> > s > -5 -5 -5 -5 -5
—10 5 0 2 4.6 -10 02 46 -10 012345 -10 0 -10 012345 10 0246 -10 01234 -10 0123
mma ruea D e
-5 0 5 10 15 5 0 5 15 - 0 5 10 15 - 0 5 10 15 o 5 10 15 5 0 5 5 - o 5 15 o 5 15
UMAP 1 UMAP 1 UMAP 1 UMAP 1 UMAP 1 UMAP 1 UMAP 1 UMAP 1
c HP-21015-01 DON465 RRID:SAMN17277513 DON455 DON470 RRID:SAMN16550021 RRID:SAMN16515959
10 10 10 10 10 10 10
Prolferati Prolferating Prolferating Prolferating Proliferating Prolferating Prolferating
a(@ " immune (10) a8) ~  Immune (15) SR ao) Immune (9) a(34) " immune (1) a®) . Immune (18) a(@ — Immune (0) a(@  Immune (3)
° Stelate 275 ° Selate@0) | ° Stellate 222) | ° Stelite (126) | ° [ Stellate (117) e selate (1) | 0| Stellate (100)
¥ (154) . @n ¥ > = M) ¥ (34) 3o ¥(©) " v
a(140) Prae N a(1,968) “a(2,038) i a(436) . a(304) a(233)
o o o o o o o
a0 a0 a0 a0 a0 a0 a0
§ 5(24) Endothelial § 8(25) Endothelial % . 5(28) Endothelial % 8(77) _ Endothelial § 5(13)  Endothelial § 5(16) Endothelial § 8(9) _ Endothelial
. (@0, (28), 3), ’ © . 12), @ (4]
h Ductal h i Ductal - Ductal - Ductal s Ductal 5 P Ductal 5 Ductal
(46) 3 a7 . (19) 35 AN (14) (5) (24)
40| BSH) 0] BT 0] BOOT2) %“‘3 10 0| B30 0] BGOD 40| BGSY
5 o 5 10 15 5 5 10 15 5 5 10 15 5 o 5 10 15 -5 o 5 10 15 -5 5 10 15 5 5 10 15
UMAP 1 UMAP 1 UMAP 1 UMAP 1 UMAP 1 UMAP 1 UMAP 1
24 3
d Sepcance taseden permutaen): 33 e Exocytosis f o g 200{ © ® Scramble SNRNA
Sw 51 m FoR<008 H Regulated exocytosis 15 @p (161389) ® RFX6 shRNA
gg & Regulation of exocytosis (149,819) 150
=3 10 g 2 Calcium-ion regulated exoc.
25 % I I 11 Vesicle docking involved in exoc. _ o
33 05 H » g £ 100
23 ] Dense core granule exoc. & 10 By
B2 oo 51 Vesicle tethering involved in exoc. 2 ®
e 012345678 9NNI2IUISETRHNARAN £ £ | Ductal (39,507) 5 50
g N . .
%& & (KEGG) Insulin secretion o O Stellate (62,072) c Y
§§ §4 g 58 g_ 2 (Reactome) Reg. of insu!!n secreu:on Y (21,405) o
g 25885 g Insulin secretion 5 (19,649)
§ 25585528 Reg. of insulin secretion Proliferating a (9,266) -50 )
13 8 %2 3E £8% Pos. reg. of insulin secretion . ~— immune (3799) °
s “5kad Neg. reg. of insulin secretion FEndolhehaI (1,895)
2 §,E d 5 2 & & 0 1000 2000 3000 4000 0 100 200
5 : i PC1 (25.67%)
B module £ = ShREX6 enrichment -log, , (p-value) Nuclei (ATAC) (2567%)
h Top 2,000 RFX6-sensitive up peaks Top 2,000 RFX-sensitive down peaks i Top 10,000 RFX6-sensitive up peaks Top 10,000 RFX6-sensitive down peaks
APT (AP1_known8) o APT (APT Koo -NFE2LT (MO4008_2.00) AP1 (AP1_knownd) NFE2 (NFE2.
707 o Notsignifcant TALT (TAL1_known2) —o 300 T & AP1 (AP1_known10) 300 Pk X _s
o Sinitant Borferond) TAL1 (TAL1_knownd) AP1 (AP1_knownS) A1 (AP1_known3) 120 P1 (APlensyA 1 4P knouns) TAL1 (TAL1_known2) AP1 (AP1_known7)  AP1 (AP1_known2) / “T
TAL1 (TAL1_known1) Y
0 AP1 (AP1_known9) AP1 (AP1_known6) — _——
ELSPBP1 (TCF3_3) 2 Backz @ACH2_ ) 100 . ’JUN'(MMEE’;QZOO)i AL WAL kmownt) 250 pri) _known3) P (AP1_known) / |
TAL1 (TAL1_knowns) \ BACHIBRISY (B-Ac:""‘\: JOP2 (JOP2. 4) - H BACH2 (BACH2_1)”  BACH1:BRIP1 (BACH1_1) / |
MYOD1 (MYOD1_2) \ P JUN (M04037 2:00) ?‘P \ MYOD1 (MYOD1.2)—0 | 200 NFE2 M02832.2.00) | | H
® (MYF5)_(Mus_musculus)_(DBD_0. 81)(M00120,zoo]\0 ASCL2 T AP1 (AP1_knowns) o 8 E"ngm 2 m;\ A1 (AP1_knowne) \ & ey zoo) “ ‘
D TALY (TAL1_kan)A (M04207_2.00) 2 AP1 (AP1_known10) ] H AP1 (AP1_known3) TAL1 (TAL1_known3) | 2 NFE2 (J1 ) “
B NFE2L1 MYOG (MYOG_1) ATOH1 3 JOP2 (J1918) 2 ] 2 b4
& |(odote 200 Y — (V- 1 Y NFE2 (NFE2_known) /08247 508 | & w0 ‘q | JoP2 10P2.2) &0 NFE2 (NP2 known2) Il
gy ¢ N TCF3 (TCF3_1) o~ psc | 8 NFE2U1979 o (1c08)| “‘ g JD‘,,"Z"Z'D’;?:: g AP1(AP1_known5) ||
g [ TFAP4 (TFAP4_4) > (AsCl22) |+ 4 0P (10P2.4) - | " 100 JDP2 (J1918)
20 +] LMO (LMO2_1) A . 1DP2 (11598 401 JOP2 (41008) JDP2 (M02636.2.00
| 4 TCF3 (TCF3_4) %, o JDP2 (JDP2_6) - JDS(Jggga;)
/ASCL2 (J1553) JDP2 (M02836_2.00) ® Not significant.
10 ' 0| . (s . Jap,_;, 201 ¢ signifcant (Bonferron) 0 JOP2 (JOP2_6)
| |-+ 'NFE2L1(M04008_2.00) L NFE2L1(M04008_2.00)
of e, o of i it
00 050 000 050 15 E 050 00 05 10 5 100 0% 025 0 050 075 100 125
Enrichment (log regression coefficient) Enrichment (log regression coefficient)
‘@ Not significant N (RFX6)_(Mus_musculus)_
204 o Significant (Bonferron) 5 10 (DBD_0.71) (M00186_2.00)
5- RFX2 (J1228) RFX4 (RFX5_known7)
. . REXQ (RFX2_4) 8 T RPK4 01208
. 4 rix6_meme1—o, __~RFX1 (RFX5_known1)
+ & ® ® 5 o (RFX8) (Pediculus_h .
% % E 2 . N o BE0 s osiei 550
& i a3 a . \RFXSKJH%)
210 = = = .-\ RFX3 (RFX3_3)
g g g g 2. RFX2 (M02449_2.00)
L 2 4 ek
05 ‘1.
1 2 o
o Notsignfcant Y
© Significant (Bonferoni)
00 0, 0
1 -0.50 0.00 15 -1.0 -0.50 05 15 -1.00 -0.75 050 -0.50 025 050 075 1.00 125
Enrichment (log regression coefficient) Enrichment (log regression coefiicient) Enrichment (log regression coefficient) Enrichment (log regression coefficient)
J 40{ Sante wRNA CTCF_known2 | 40; —Seenolesins CTCF_known2 ' 40] — Scramble shRNA RFX2_4 L RFX2_4
. i | 3 s | 3 s i
g i : z : : ] [ '
2 30. ' | g 30 | : §30!
§ ; : g ' g
3 251 p | 3 25 3 4
e : 3 : s 2s i
10 ! : 10 10! H
oo

[
Position relative to molif center

Position relative to moli center

Top 2,000 peaks
=9.990010-04

‘Top 5,000 peaks
P=9.990010e-04

3
Position elative to motif center

ES %
Position relative to moti center

Top 10,000 peaks I T2D (adj. BMI) GWAS single annotation enrichment m T2D (adj. BMI) GWAS conditional enrichment
=0.9900100.04 !
* Sgrifeant g 20
5 Bonferroni b 10
© correction ig 15
z . L
H N Stmon 58 [)
0 ° &3
g3 £2 10
3 R 23 =~ 05,
% o0s
8
! - )
02 oz 004 - _ - _ Noemitment 0| _ _ Noemichment
0 .
G O e G
SEE & &M il & &
< < S < s &y” L
/\o
\)é“o«:'f & 5



https://doi.org/10.1101/2021.12.16.466282

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.466282; this version posted December 17, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Extended Data Figure 8 (related to Fig. 5). Application of dual RNA and ATAC-sequencing
to single nuclei from RFX6 shRNA pseudoislets. (a) Quality control of nuclei for RNA and
ATAC modalities. UMI, unique molecular identifier; TSS, transcription start site. (b) Expression
of marker genes in cell type clusters. (¢) Per-donor cell type counts. See also Fig. 5b-5¢. (d)
Enrichment of shRFX6 3 cell nuclei differentially expressed genes within each 3 cell module
derived from transcriptomes of sorted ND and T2D  cells (see Fig. 3a-3d). Right panel: cell
component (cmpt) terms enriched for genes in B module 22. Memb., membrane. (e)
Membership enrichment for exocytosis (exoc.) and insulin secretory pathways based on
shRFX6 B cell nuclei differentially expressed (p<0.01) genes. All pathways are GO terms unless
otherwise indicated. Neg., negative; pos., reg., regulation. (f) Per-cluster ATAC peaks (exact
number listed in parentheses next to cell type). (g) PCA of pseudobulk (3 cell ATAC peak signal,
each marker representing nuclei from a single donor/construct combination. (h-i) Motif
enrichment for top 2,000 (h) or 10,000 (i) RFX6-sensitive up- and downregulated ATAC peaks
in shRFX6 B cell nuclei. Motifs with highest significance are labeled in top panels; significant
RFX motifs (or the single RFX motif closest to significance, in the case that no RFX motifs reach
significance) are labeled in bottom panels. (j) ATAC footprints for CTCF_known2 and RFX2_4
motifs in B cell ATAC peaks. Light lines represent per-donor footprints; bold lines represent the
average across donors. (k) Enrichment of top RFX6-sensitive up- and downregulated ATAC
peaks (n=2,000, 5,000, or 10,000) in shRFX6 B cell nuclei near shRFX6 3 cell differentially
expressed genes. (I-m) Odds ratio of T2D GWAS enrichment (I) and model estimate from

conditional analysis (m) of top 2,000 or 10,000 RFX6-sensitive peaks.
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Extended Data Figure 9 (related to Figure 5)
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Extended Data Figure 9 (related to Fig. 5). RFX6-mediated chromatin, transcriptome, and
insulin secretion dysregulation in human B cells. (a) Major 3 cell-intrinsic and islet
microenvironment alterations that define islet dysfunction in early-stage T2D. Observations from
transcriptomic and histologic studies revealed no change to endocrine cell composition but
evidence of dysregulated (3 cell processes and modest changes to intraislet vascular and
immune cell populations. Insulin secretion was reduced and persisted in a nondiabetic
environment. (b) RFX6 knockdown using a primary human pseudoislet system resulted in
dysregulated vesicle trafficking and ion transport pathways, mediated by chromatin architectural
changes overlapping with T2D GWAS variants. This led to reduced insulin secretion, confirming

the critical role of RFX6 in human B cell function.
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Extended Data Table 1. Donor characteristics, sample types, and experimental usage

Adapted from Hart NJ, Powers AC (2018), Checklist for Reporting Human Islet Preparations Used in Research, Diabetologia, doi.org/10.1007/s00125-018-4772-2.

Donor information Assays
DM Source Islet isolation Est. Warm Cold Culture ) g'- o
Age BMI  HbA1c dur. Cause of of islets/ center (if Function  purity Hand- ischemia ischemia time ¢ g :g S §
Unique identifier (yrs) Sex Race/ethnicity (kglmz) (ng/mL) DM? (yrs) Medications death tissue applicable) assessed? (%) picked? time (hrs) time (hrs) (hrs) I ¥Xaora
DON120 19 M  Caucasian 200 5.1 No Head trauma  NDRI Pittsburgh Perifusion 75 Yes N/A 16.38 19 e @ O
DON126 19 M  Caucasian 212 50 No Anoxia NDRI Pittsburgh Perifusion 60 Yes 0.167 11.87 18 eo(e|O
DON452 19 M  Hispanic/Latino 23.1 5.6 No Anoxia OPO UPenn Perifusion N/A  Yes N/A 6.5 18 °
DON470 19 M  Caucasian 29.1 5.3 No Head trauma  1IAM Imagine Pharma Perifusion N/A  Yes N/A N/A 48 °
DONA471 19 M  Caucasian 366 5.8 No Head trauma  |IAM Imagine Pharma Perifusion N/A  No N/A N/A 48 (d
DON78 19 M  Caucasian 27.2 N/A No Head trauma  NDRI Pittsburgh Perifusion 65 Yes N/A 15.35 18 eo(e|O
DONB85 20 M  Caucasian 27.8 53 No Head trauma  NDRI Pittsburgh Perifusion 75 Yes N/A 14.47 18 @ O
DON465 22 M  Black 357 54 No Head trauma  OPO UPenn Perifusion N/A  Yes N/A 19.18 48 °
DON202 24 M  Caucasian 208 4.9 No Anoxia OPO UPenn Perifusion N/A  Yes 0.36 16.45 18 e (O
RRID:SAMNO8773765 26 F Hispanic/Latino  35.9 6.1 No Anoxia 1IDP UPenn Perifusion 90 No N/A 12.41667 39 °
RRID:SAMN08775048 32 F Caucasian 39.4 N/A No Anoxia 1IDP UWisconsin Perifusion 90 Yes N/A 3.766667 36 Ole
DON308 35 M  Caucasian 247 53 No Head trauma OPO Pittsburgh Perifusion N/A  Yes N/A 6.18 19 ° °
DON42 35 M Caucasian 269 5.1 No Head trauma  |IAM N/A N/A °
RRID:SAMN08769828 35 F  Caucasian 236 4.6 No Anoxia IIDP UPenn Perifusion 80 Yes 0 6.666667 63 o0
RRID:SAMN16191825 35 M  Hispanic/Latino 313 55 No Head trauma  IIDP Southern CA Perifusion 80 Yes 0 5.4 40 °
DON185 39 F  Caucasian 348 47 No Anoxia OPO UPenn Perifusion N/A  Yes N/A 8.55 18 o0
DON475 39 M Caucasian 22.6 5.1 No Head trauma OPO Prodo Labs Perifusion N/A  No N/A N/A 96 ®
DON453 40 F  Caucasian 369 6.3 No Anoxia OPO UPenn Perifusion N/A  Yes N/A 11.42 24 °
DON246 42 M  Caucasian 322 6.0 No Drug overdose OPO Pittsburgh Perifusion 65 Yes N/A 14.5 10 oo 0
RRID:SAMN08784318 43 M  Unknown 29.6 N/A No Head trauma  IIDP UPenn Perifusion  N/A  Yes N/A N/A N/A [
RRID:SAMN17277513 43 F Hispanic/Latino 36.5 5.2 No CVA/Stroke IIDP Southern CA Perifusion 90 Yes 0.367 5.333333 48 °
R264 44 M Unknown 33.7 57 No Unknown OPO Alberta Perifusion N/A  Yes N/A N/A N/A °
RRID:SAMNO8774468 44 F Black 26.0 N/A No CVA/Stroke 1IDP UPenn Perifusion 90 Yes N/A 6.183333 61 Ole
DON227 45 F Caucasian 298 56 No Anoxia OPO Pittsburgh Perifusion N/A  Yes N/A 9 23 ° °
DON389 46 F Caucasian 32.9 5.7 No CVA 1AM Pittsburgh Perifusion N/A  Yes N/A 8.2 48 [ ] [ ]
RRID:SAMN08785748 46 M  Unknown 243 N/A No Head trauma  IIDP UPenn Perifusion  N/A  Yes N/A N/A N/A [
DON455 47 M  Caucasian 32.8 5.7 No Anoxia OPO UPenn Perifusion N/A  Yes N/A 10.83 48 ®
RRID:SAMN11791244 47 M  Hispanic/Latino  36.1 5.7 No CVA/Stroke 1IDP Southern CA Perifusion 95 Yes 0.283 6.366667 45 °
DON316 48 M  Caucasian 246 4.9 No Anoxia OPO Pittsburgh Perifusion N/A  Yes N/A 20.48 28 ° °
RRID:SAMN11633049 48 M  Caucasian 388 54 No CVA/Stroke IIDP UWisconsin Perifusion 90 Yes 0 12.5 57 °
RRID:SAMN08617638 49 M  Hispanic/Latino  34.1 6.1 No CVA/Stroke IIDP Southern CA Perifusion 80 Yes 0 8.45 39 °
RRID:SAMN08773777 49 F  Caucasian 316 52 No CVA/Stroke IIDP UPenn Perifusion 95 Yes N/A 5.283333 31 o0
RRID:SAMN08930704 50 M  Black 302 53 No CVA/Stroke 1IDP Ulllinois Perifusion 90 Yes 0.5 5.95 78 oo
RRID:SAMN16550021 50 F  Caucasian 272 54 No Head trauma  |IDP Southern CA Perifusion 90 Yes 0 5.783333 71 °
RRID:SAMN16515959 51 F Caucasian 252 56 No CVA/Stroke 1IDP Southern CA Perifusion 90 Yes 0 6.533333 40 °
DON204 52 M Black 29.2 N/A No ICH OPO Pittsburgh Perifusion 65 Yes N/A 8.7 23 o0 0
DON218 52 M  Caucasian 28.1 N/A No Head trauma  OPO N/A N/A °
RRID:SAMN08769380 53 M  Caucasian 31.1 55 No Anoxia IIDP UWisconsin Perifusion 85 Yes N/A N/A 41 o0
DON197 55 F  Black 242  N/A No CVA/ICH OPO Pittsburgh Perifusion 80 Yes 0 3.8 28 oo|0
DONG61 55 M Black 35.6 N/A No CVA/ICH 1AM Pittsburgh Perifusion N/A  Yes N/A N/A N/A [ ] [ 2K J
RRID:SAMN08930707 55 M Caucasian 27.8 4.9 No CVA/Stroke IIDP Ulllinois Perifusion 90 Yes N/A 9.966667 50 (2K BK ]
RRID:SAMN10252228 55 F  Caucasian 357 6.0 No CVA/Stroke IIDP UWisconsin Perifusion 94 Yes 0 8.15 52 °
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Extended Data Table 1. Donor characteristics, sample types, and experimental usage

Adapted from Hart NJ, Powers AC (2018), Checklist for Reporting Human Islet Preparations Used in Research, Diabetologia, doi.org/10.1007/s00125-018-4772-2.

Donor information Assays
DM Source Islet isolation Est. Warm Cold Culture ) g'- o
Age BMI  HbA1c dur. Cause of of islets/ center (if Function  purity Hand- ischemia ischemia time ¢ g :g S §
Unique identifier (yrs) Sex Race/ethnicity (kglmz) (ng/mL) DM? (yrs) Medications death tissue applicable) assessed? (%) picked? time (hrs) time (hrs) (hrs) I ¥Xora
HP-21015-01 56 M  Caucasian 33.0 53 No Head trauma  OPO Prodo Labs Perifusion N/A  Yes 0.72 N/A 67 °
RRID:SAMN11046361 57 M  Hispanic/Latino 36.0 5.4 No CVA/Stroke 1IDP Scharp-Lacy Perifusion 80 Yes 0 9.2 88 (]
RRID:SAMN10861888 58 F Caucasian 366 5.3 No Anoxia 1IDP Southern CA Perifusion 80 Yes 0.25 6.35 87 °
DON381 59 M  Caucasian 327 55 No Head trauma  1IAM Pittsburgh Perifusion N/A  Yes N/A N/A N/A ° °
DON477 5 M Caucasian 22.6 5.2 No CVA OPO Prodo Labs Perifusion N/A  No N/A N/A N/A [ ]
RRID:SAMN08768702 59 F  Caucasian 220 52 No Anoxia IIDP UWisconsin Perifusion 98 Yes N/A 5.5 52 Ole
RRID:SAMN17528599 60 M  Caucasian 299 58 No Anoxia 1IDP UPenn Perifusion 85 Yes 0 7.733333 58 °
R200 65 M  Unknown 271 5.1 No Unknown OPO Alberta Perifusion 90 Yes N/A N/A N/A o0
DON181 37 F Caucasian 49.8 6.9 T2D 5 Glyburide Anoxia 1AM Pittsburgh Perifusion 75 Yes N/A 15.32 39 e o0 0
Native Hawaiian/ ole
DON83 40 F Pacific Islander  43.1 8.2 T2D 0 None CVA/ICH 1AM Pittsburgh No 40 No N/A 14.20 24
DON124 42 M Black 42.0 8.1 T2D 0 None CVA/ICH 1AM Pittsburgh Perifusion 85 Yes N/A 11.83 22 [ 2K BN J
DON155 43 M  Black 36.1 7.0 T2D 1 Metformin Head trauma  1IAM Pittsburgh Perifusion 90 Yes 0.466 12.0 32 e o 00
DON310 43 M  Black 37.3 7.0 T2D 6 Insulin CVA/ICH 1AM Pittsburgh Perifusion  N/A  Yes N/A 11.85 19 ® [
DON39 47 M Caucasian 31.3 10.2 T2D 3 Insulin CVA/ICH 1AM Pittsburgh Perifusion  N/A Yes N/A N/A N/A [ ] (2K J
DON38 49 F Caucasian 33.8 8.3 T2D 3 Unknown oral CVA/ICH 1AM Pittsburgh Perifusion N/A  Yes N/A N/A N/A [ ] [ 2K}
Metformin, °
DON96 50 M Caucasian 32.9 11.2 T2D 4 sitagliptin CVA NDRI Pittsburgh N/A N/A N/A N/A 15.50 12
DON251 52 M Caucasian 33.6 7.4 T2D 7 Metformin CVA/ICH 1AM Pittsburgh Perifusion N/A  Yes N/A 8.4 88 ([ ] [ ]
DON311 52 F Asian 21.9 7.0 T2D 10 Unknown oral CVA/ICH NDRI Pittsburgh Perifusion 50 Yes N/A 13.08 41 [ AN BN J
DON371 52 F Caucasian 29.2 9.9 T2D 0 None CVA 1AM Pittsburgh Perifusion N/A  Yes N/A 11.1 3 [ ] [ ]
DON239 53 M Caucasian 30.1 6.9 T2D 7 Sitagliptin Anoxia OPO N/A 16.5 [ ]
DON234 54 M Caucasian 38.3 6.3 T2D 0.66 Metformin Head trauma  IIAM 0.4 N/A [ ]
DONB84 56 M  Caucasian 31.0 N/A T2D 3 Sitagliptin Head trauma  NDRI Pittsburgh Perifusion 90 Yes N/A 14.00 18 oo 0
Native Hawaiian/ ole
DON217 5 M Pacific Islander  36.9 8.8 T2D 0 None CVA/ICH 1AM Pittsburgh No 45 No N/A 15.98 48
DON77 59 F Caucasian 27.5 6.2 T2D 6 None CVA/ICH 1AM Pittsburgh Perifusion 70 Yes N/A 15.62 48 [ 2K 2K 2K J
DON100 60 M Caucasian 38.3 7.2 T2D 1 Metformin CVA/ICH 1AM Pittsburgh Perifusion 65 Yes 0 12.92 18 [ 2K 2K 2K J
DON44 61 F Caucasian 31.2 N/A T2D 4 Metformin CVA/ICH NDRI Pittsburgh N/A N/A  N/A N/A N/A N/A [ ]
Metformin, ole °
DONG62 64 M Caucasian 33.2 N/A T2D 5 glyburide Head trauma  IIAM Pittsburgh No 45 Yes 0.183 N/A 72
DON40 66 F Caucasian 32.8 8.1 T2D 3 Metformin CVA/ICH 1AM Pittsburgh N/A N/A N/A N/A N/A N/A [ ]

Abbreviations: CVA, cardiovascular accident; DM, diabetes mellitus; F, female; ICH, intracerebral hemorrhage; IHC, immunohistochemistry; IIAM, Intemational Institute for the Advancement of Medicine; IIDP, Integrated
Islet Distribution Program; M, male; N/A, not available; NDRI, National Disease Research Interchange; OPO, organ procurement organization (local); Perif., perifusion; Pseud., pseudoislets; RNA, RNA-sequencing; T2D,
type 2 diabetes; Transp., transplant. Open circles (O)in perifusion assay column indicate that donor data were used for functional associations with age as a covariate, but were not included in Fig. 1c-10/Extended

Data Fig. 1a-1u.
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Extended Data Table 2. Antibodies for traditional immunohistochemistry and flow cytometry

Antigen/conjugate Species |Source Catalog # Application |Dilution
ARL13B Rabbit Proteintech 17711-1-AP IHC (1°) 1:2000
C-peptide Rat DSHB GN-1D4 IHC (1°) 1:200
Caveolin-1 Rabbit Abcam ab2910 IHC (1°) 1:2000
CD39L3 (NTPDase3) |Mouse J. Sévigny N/A FC (1°) 1:50
Glucagon Mouse Abcam ab10988 IHC (1°) 1:100
HPa3 (HIC3-2D12) Mouse P. Streeter/M. Grompe N/A FC (1°) 1:200
HPi1 (HIC0-4F9) — Mouse Novus NBP1-18872B |FC (1°) 1:100
biotin

Iba1 Rabbit Abcam ab221790 IHC (1°) 1:1000
RFX6 Sheep R&D Systems AF7780 IHC (19) 1:500
Somatostatin Goat Santa Cruz sc7819 IHC (19) 1:500
Goat IgG — Cy5 Donkey Jackson Immunoresearch |705-175-147 |IHC (2°9) 1:300
Rabbit IgG — Cy3 Donkey Jackson Immunoresearch |711-165-152 | IHC (2°9) 1:500
Rat IgG — Cy2 Donkey Jackson Immunoresearch |712-225-153 |IHC (2°9) 1:500
Rabbit IgG — Cy2 Donkey Jackson Immunoresearch |711-225-152 | IHC (2°) 1:500
Mouse IgG — Cy3 Donkey Jackson Immunoresearch |715-165-150 |IHC (2°9) 1:500
Sheep I1gG — Cy3 Donkey Jackson Immunoresearch |713-165-147 |IHC (29 1:500
Sheep 1gG — Cy5 Donkey Jackson Immunoresearch |713-175-147 |IHC (29 1:300
Mouse Ig — APC Goat BD Biosciences 550826 FC (29 1:500
Mouse IgG1 — BV421* |Rat Biolegend 406615 FC (29 1:200
Mouse IgGa, — APC*  |Rat Biolegend 406712 FC (29 1:800
Mouse IgM — PE Goat Jackson Immunoresearch |115-116-075 |FC (2°) 1:1000
Streptavadin — BV421 |[N/A BD Biosciences 563259 FC (29 1:500

Abbreviations: 1°, primary; 2°, secondary; DSHB, Developmental Studies Hybridoma Bank; FC, flow
cytometry; IHC, immunohistochemistry. * Indicates isotype-specific 2° antibodies used in place of Mouse
Ig — APC and Streptavadin — BV421 specifically for purification of 8 cells for pseudoislets.
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Extended Data Table 3. Antibodies for co-detection by indexing (CODEX)

Antigen Clone Barcode |Con,. Source (catalog #) DF Reporter
CD45 HI30 BX001 Akoya Akoya (4150003) 200 | Alexa488-RX001
CD8 SK1 BX004 Akoya Akoya (4150004) 100 |Alexa488-RX004
CD38 HB-7 BX007 Akoya Akoya (4150007) 200 |Alexa488-RX007
Pan- AE-1/AE-3 BX019 Akoya Akoya (4150020) 500 |Alexa488-RX019
Cytokeratin
HLA-DR L243 BX026 Akoya Akoya (4250006) 300 |Atto550-RX026
CD31 WM59 BX032 Akoya Akoya (4250009) 400 | Atto550-RX032
Ki67 B56 BX047 Akoya Akoya (4250019) 600 | Atto550-RX047
CD34 561 BX035 Akoya Akoya (4250020) 200 | Atto550-RX035
E-cadherin 4A2C7 BX014 Akoya Akoya (4250021) 200 |Atto550-RX014
CD3 UCHT1 BX015 Akoya Akoya (4350008) 100 | Cy5-RX015
CD4 SK3 BX021 Akoya Akoya (4350010) 100 | Cy5-RX021
CD11c S-HCL-3 BX027 Akoya Akoya (4350012) 100 | Cy5-RX027
Glucagon K79bB10 BX016 Custom | Abcam (ab10988) 400 |Alexa488-RX016
C-peptide C-PEP-01 BX031 Custom | ThermoFisher (MA1- |200 |Alexa488-RX031
19159)

Ghrelin 883622 BX040 Custom |R&D (MAB8200) 400 |Alexa488-RX040
CD163 GHI/61 BX043 Custom |BioLegend (333602) [200 |Alexa488-RX043
MCAM P1H12 BX046 Custom |BioLegend (361002) |100 |Alexa488-RX046
(CD146)
B-Tubulin TUJ1 BX017 Leinco BioLegend (801201) |150 |Atto550-RX017
Somatostatin | 7G5 BX020 Custom | Novus (NBP2-37447) |400 |Atto550-RX020
Arginase | Polyclonal BX029 Custom | Novus (NBP1-32731) |200 |Atto550-RX029
Pancreatic 548416 BX041 Custom |R&D (MAB62971) 600 |Atto550-RX041
polypeptide
CD14 HCD14 BX024 Custom |BioLegend (325602) |100 |Cy5-RX024
a-Amylase Polyclonal BX030 Leinco Abcam (ab35414) 100 |Cy5-RX030
IBA1 EPR16589 |BX033 Custom | Abcam (ab221790) 200 | Cy5-RX033
Chromogranin | LK2H10+ BX036 Custom |Novus (NBP2-34674) |800 |Cy5-RX036
A PHES5+

CGA/414
Collagen IV |EPR20966 |BX042 Leinco Abcam (ab226485) 50 Cy5-RX042
CD206 15-2 BX045 Custom |BioLegend (321102) 200 |Cy5-RX045

Abbreviations: Conj., conjugation; DF, dilution factor. ‘Custom’ indicates antibody was conjugated in-
house (see ‘CODEX multiplexed imaging’ in Methods). Refer to Extended Data Fig. 3a-3b for antigen

specificity.
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Extended Data Table 4. Curated gene lists for weighted gene co-expression network analysis

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.466282; this version posted December 17, 2021. The copyright holder for this preprint

Abbreviation |Full name Source List(s) |
Transcription |- KEGG Pathway? 2.1
Ox. phosp. Oxidative phosphorylation KEGG Pathway? 1.2 (00190 only)
Protein mod. |Folding, sorting and degradation KEGG Pathway? 2.3
Endo/metab. |Endocrine and metabolic disease |KEGG Pathway?® 6.10
Cell proc. Cell growth and death KEGG Pathway? 4.2 (04110, 04210, 042186,
04217, 04115, 04218 only)
Signal trans. | Signal transduction KEGG Pathway? 3.2
DNA/repair Replication and repair KEGG Pathway? 2.4
Sensing Signaling molecules and KEGG Pathway? 3.3
interaction
Immune Immune system KEGG Pathway? 5.1
Endo syst. Endocrine system KEGG Pathway? 5.2
Lipid metab. Lipid metabolism KEGG Pathway? 1.3
Carb metab. | Carbohydrate metabolism KEGG Pathway? 1.1
Translation - KEGG Pathway? 2.2
AA metab. Amino acid metabolism KEGG Pathway? 15,16
CiliaCarta® - van Dam et al. 2019% | --
InnateDB° - Breuer et al. 2013*" | Immunome Database
Matrisome - GSEA® M5889%°

2Available https://www.genome.jp/kega/pathway.html

bAvailable http://bicinformatics.bio.uu.nl/john/syscilia/ciliacarta/

cAvailable https://www.innatedb.com/redirect.do?go=resourcesGeneLists

dAvailable https://www.gsea-msigdb.org/gsea/msigdb/genesets.isp
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