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Summary

Although the full embryonic development of species such as Drosophila and zebrafish can be 3D imaged in real time,
this is not true for mammalian organs, as normal organogenesis cannot be recapitulated in vitro. Currently available 3D
data is therefore ex vivo images which provide only a snap shot of development at discrete moments in time. Here we
propose a computer-based approach to recreate the continuous evolution in time and space of developmental stages from
3D volumetric images. Our method uses the mathematical approach of spherical harmonics to re-map discrete shape
data into a space in which facilitates a smooth interpolation over time. We tested our approach on mouse limb buds
(from E10 to E12.5) and embryonic hearts (from 10 to 29 somites). A key advantage of the method is that the resulting
4D trajectory takes advantage of all the available data (i.e. it is not dominated by the choice of a few “ideal” images),
while also being able to interpolate well through time intervals for which there is little or no data. This method not only
provides a quantitative basis for validating predictive models, but it also increases our understanding of morphogenetic
processes. We believe this is the first data-driven quantitative 4D description of limb morphogenesis.

Keywords Spherical Harmonics ·Mouse Development · Limb Growth · Heart Growth ·Morphogenesis · OPT · Voxel
Data

1 Introduction1

Progress in imaging technology has been central to understanding morphogenesis, which is an intrinsically 3D and2

dynamical process. In the case of externally developing organisms, such as Drosophila and zebrafish, it is now possible3

to image in vivo whole-embryo development at a cellular level, up to and including the later organ-forming stages (Tomer4

et al. 2012, Royer et al. 2016). However, for more complex animal models (e.g. mouse embryogenesis), it is still not5

possible to observe organogenesis in real time, due to the limitations of in vitro culture techniques. The dynamics6

of early post-implantation mouse embryogenesis have been successfully imaged in great detail (McDole et al. 2018),7

however embryo culture beyond E10.5 is not robust enough to recapitulate the full development of complex organs -8

largely due to the lack of blood flow. In vivo/in utero imaging techniques (such as MRI) do not yet provide sufficient9

spatial resolution to capture the morphogenesis of organs, and our understanding of complex mammalian organogenesis10

is therefore largely derived from capturing series of ex vivo and static 3D images, often using mesoscopic imaging11

techniques such as optical projection tomography (Sharpe et al. 2002) (Figure 1A), light sheet imaging (Huisken et al.12

2004), or ex vivo MRI (Wong et al. 2012, 2014).13
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An important remaining challenge is to integrate these series of static 3D data-sets into a smooth, continuous and 4D14

trajectory that realistically models the morphogenesis of the organ in question. There have been diverse attempts to15

recapitulate the development of a full mouse embryo. Among others, Wong et al. (2015), used 3D OPT images taken at16

six developmental time points (between E11.5 and E14.0), to create a 4D model of mouse embryo growth. Specifically,17

the outcome was the result of spline fitting and interpolating over time the displacement vectors of homologous points18

of the 3D voxel images. While this model provided a global overview of mouse embryo development, it was not able to19

accurately recreate smooth shape trajectories for all the organs. In particular, registration of the voxel data was not20

able to align parts of the embryo whose positions are intrinsically variable over time, such as the limbs and the tail.21

Therefore, this method was not able to precisely reproduce the development of these particular mouse’s structures (Wong22

et al. 2015). Indeed, the large degree of natural variation in samples represents indeed a key challenge in the effort of23

recapitulating the growth of a mouse embryo or even a sub-part of it such as the limb.24

Two embryos at the exact same age do not look identical, due to the intrinsic variation both in shape and in development.25

We therefore ideally need a technique which, on the one hand can take advantage of as much shape data as possible,26

while at the same time not giving excessive weight to any specific individual. In practice this means a procedure in27

which each sample (i.e. each real limb) is able to influence the mean trajectory at ages both younger and older than28

itself. Or in other words, the final reconstruction needs to capture the right balance between the overall shape trends29

across the whole data-set, and the actual details of each limb. Another challenge is that the shape complexity of an30

organ increases during development. We need a method that performs some degree of dimensionality reduction, but31

without losing the more complex features of the older stages.32

Spherical harmonics have been known since 1782 (Laplace - Mécanique Céleste) and form a natural basis for describing33

how a scalar quantity varies on the surface of a sphere. They produce an orthogonal basis for mathematically describing34

a 3D shape and provide a compact parametric representation of it. Spherical harmonics have been widely used in35

different fields and, in recent years, also in biology. One of their main use has been to characterize, among others,36

the shapes of cells and organs (Styner et al. 2006, Morishita et al. 2017, Medyukhina et al. 2020), deformations37

and movements of tissues in an easier and more robust way (Khairy et al. 2018). Moreover, spherical harmonics38

expansion has been also applied to mesh refinements (Lai et al. 2009). The expansion of a function in spherical39

harmonics is characterized by a finite set of coefficients which multiply the set of functions constituting the orthogonal40

basis. These coefficients encode the information of the original function, therefore, the higher the order (i.e. the41

number of coefficients used) the better the representation. Among other properties, one important feature that makes42

spherical harmonics particularly convenient is that the information encoded in the coefficients decreases with their43

order. Therefore, limiting the number of coefficients of the series will not cause a loss of the main characteristic of the44

shape represented. Previous studies using spherical harmonics have considered collections of objects (both surfaces or45

volumes) often analysed for the purpose of quantifying the differences or similarities between the sets. We therefore46

propose and demonstrate an approach to describe the evolution in time and space of mouse limbs both from volumetric47

and surface data. We are only aware of one previous use of spherical harmonics to characterise a changing morphology48

over time - in the chick embryo (Morishita et al. 2017), and believe this is the first application to a mammalian organ.49

A 2D trajectory of limb bud shape change has previous been created (not using spherical harmonics), and has been50

developed into a method to estimate the embryonic stage of a limb bud to a high temporal resolution (Musy et al. (2018),51

Figure 1B). This work, although only in 2D, allows us to have a reference to align in space and time mouse embryos52

according to a chosen limb (Figure 1C, E). Here we develop and demonstrate two different versions of this approach53

for the case of limb development. We believe this approach has widespread applicability in developmental biology, to54

provide a quantitatively reliable baseline description of organ development - something surprisingly absent in the field55

so far - and so we also demonstrate its use on 3D images of another mouse organ, the developing heart.56
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Figure 1: A - Three mouse embryos at different developmental stages (E10:09, E11:05, E12:02). B - Two dimensional
interpolation of one mouse limb reference shape to the next in the time sequence. The red lines indicate the shapes that
correspond to the experimental averages for each age group (from Musy et al. (2018)). C - Alignment of three embryos
at the same developmental stage according to their right hind limbs shown with transparency (left) and as surface in
solid color (right). The red line represents the output of the staging system (Musy et al. 2018). D - Graphical illustration
of a naive linear based interpolation (left plot) versus a smooth trajectory of the data set (right plot). E - Data set of
mouse right hind limbs used in this study ordered according to their developmental stage from E10:09 to E12:02.
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2 Results57

One key step in spherical harmonics expansion is to first map a surface onto a sphere. In the case of relatively simple58

surfaces, one possible solution is using as mapping the geometrical distance between the surface considered and a59

sphere which contains it. Specifically, all these distances represent a set of scalars onto the sphere which serve as a60

mapping that can subsequently be expanded in spherical harmonic. We applied this procedure to 69 surfaces of mouse61

limb buds imaged using optical projection tomography (OPT) of mouse embryos previously ordered in time using the62

embryonic Mouse Ontogenetic Staging System (eMOSS). Expanding a function into a spherical harmonic series and63

reconstructing it from the spherical harmonic coefficients are the two essential procedures applied when operating with64

data on the sphere. However, in our work, instead of using the exact coefficients’ values of the spherical harmonic series65

for reconstructing the original function, we interpolate them in time. In this way, the interpolation not only provides a66

spatial average estimate in the points where there are more than one surface but it also produces a temporal estimate for67

the existent gaps due to missing data. The results is a reconstruction describing a continuous and smooth changing68

shape over space and time.69

2.1 Application on simple surfaces70

An arbitrary surface, which can be mapped onto a sphere, can be expanded into a finite series of spherical harmonic71

terms and reconstructed back. The precision by which the reconstructed surface will resemble the original one depends72

on the number of coefficients of the expansion, the higher the number of coefficients the more precise the reconstruction.73

As a data set, we used a collection of mouse embryos polygonal surfaces extracted from OPT scans (Sharpe et al. 2002).74

All the embryos were staged, using the staging system already described, in order to be correctly positioned in time. We75

then focused on the right hind limbs obtaining a set of 69 limbs from E10:09 to E12:22 (Figure 1D).76

The embryonic Mouse Ontogenetic Staging System (eMOSS) (Musy et al. 2018) provides us with a reference to align77

in space the limb buds. Afterwards, the alignment of the sequence of limbs was refined using the iterative closest point78

(ICP) algorithm (Besl & McKay 1992).79

Since the limb is a rather simple surface, in order to map it onto a sphere, we used the geometrical distance between its80

surface and a sphere that circumscribes it (Figure 2A top-left). Along a given radius rj , we measured the corresponding81

distance dj between a given surface v = (x, y, z) and the sphere. We used 500 radii along which computing these82

distances creating a set of 500 scalars d for each limb. On top on each sphere we obtain therefore a collection of sample83

points (equal to the number of radii) to which is associated a set of scalars d representing the distances between these84

points and the surface, as shown by the color heat-map in Figure 2A (top-right). Moreover, the number of these sample85

points provides the resolution of the spherical mapping of the considered surfaces. Given the total number of limb86

surfaces N we have therefore a set of scalars d0, . . . ,dN which encodes the spherical mapping of each surface. Every87

spherical mapping can then be expanded in spherical harmonics.88

A surface v, mapped as x(ϑ, ϕ), y(ϑ, ϕ), z(ϑ, ϕ), can be represented in the form:89

v(ϑ, ϕ) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (ϑ, ϕ) (1)

where:90

Y m
l (ϑ, ϕ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cosϑ) eimϕ, (2)

Pm
l are the associated Legendre polynomials and cml = (cmlx, c

m
ly , c

m
lz ), with l = [0,∞) and m = [−l,+l], are the91

coefficients of the expansion. In particular, cml assume the form:92

cml = c00
c−11 c01 c

1
1

c−22 c−12 c02 c
1
2 c

2
2

. . .

(3)

In the practical use, the coefficients cml of the expansion are truncated to a specific order l = lmax which defines the93

level of detail. Spherical harmonic expansion provides a unique description of a surface based on scalar coefficients.94
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Using only the coefficients of the first orders (i.e. lmax = 0, 1) provides as a result practically a sphere, with lmax = 395

the details of the reconstruction increase and adding more orders (lmax ≥ 7) it is possible to obtain a limb-like96

surface (Figure 2A bottom). Moreover, the higher the order of the coefficient the less information it provides to the97

representation (i.e. in this reconstruction we are not interested in the finer morphological details). Therefore, every98

surface in our data set could be represented by a finite set of coefficients of its corresponding spherical harmonic99

expansion. This means that we have the coefficients for each surfaces at its corresponding point in time. If we put100

together and represent all the coefficients of e.g. order zero we will have a set of scalars evolving in time (Figure 2B101

left), and the same happens for the subsequent orders (Figure 2B right). Instead of reconstructing each surface using the102

exact coefficients we interpolated through them and used the interpolated values for the reconstruction (Figure 2C).103

In this way, the interpolated curve will give an average of the coefficients in the time points in which we have more104

than one surface and also will fill the time gaps in the points in which there are no data. Using this approach for the105

coefficients of all orders considered (i.e. lmax = 25) it is possible to obtain a reconstruction in space and time of the106

data set. In this reconstruction each limb contributes the same to the average growing shape.107

As a further improvement, we used this reconstruction to refine the alignment of the original data-set obtaining108

a better and more precise sequence of limbs (Figure 2C top). Reapplying the method explained above in a way109

analogous to a bootstrapping process. With the new alignment of the data we obtain an improved reconstruction110

of a growing limb bud trajectory (Figure 2C bottom). To our knowledge this is the first data-driven 4D description111

of limb bud development across time and space (the result can only be well-appreciated from watching Movie 1 -112

https://vedo.embl.es/fearless/#/limb).113

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472948doi: bioRxiv preprint 

https://vedo.embl.es/fearless/#/limb
https://doi.org/10.1101/2021.12.16.472948
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: A - Mapping of a limb onto a sphere using geometrical distances (d) along the radii (r) between its surface
and the sphere that circumscribes it (top-left). Spherical mapping of a limb, the heat-map shows the distance between
the points on top of the sphere and the surface of the limb (top-right). Representation of the limb using spherical
harmonic expansion of different orders, lmax = 0, 1, 3, 7, 15 (bottom), color map represents the distance between the
reconstruction and the original surface. B - Splining in time over the spherical harmonics coefficients cml . Here the first
fourth orders are shown. C - Comparison of original data (top) at four different developmental stages (E10:10, E11:00,
E11:12, E12:02) with the corresponding limb growth reconstruction (bottom), color map represents the signed distance
between the reconstruction and the original surface.
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2.1.1 Adding the limb flank114

In 2.1 we were able to recreate the growth in space and time of a mouse limb. In reality however, the boundary between115

the limb and the rest of the embryo is rather arbitrary, and we therefore wanted to extend the analysis to include the116

flank of the embryo. Specifically, we extended the limb bud shape up to the mid-line of the mouse, as defined by the117

spinal column (Figure 3A). The new shape is now much more complex than before, displaying concavities (between the118

limb and the flank), and the spherical mapping described above is no longer applicable. Mapping methods for more119

complex surfaces and volumes have been extensively investigated (Brechbuhler et al. 1995, Shen & Makedon 2006, Lai120

et al. 2009, Shen et al. 2009, Yu et al. 2010), but nevertheless these proposed methods are not suitable when multiple121

objects need to be consistently mapped onto the same reference since e.g. the portion of the sphere of the first one may122

not represent the same part of the second object.123

To map our complex embryonic surface onto a sphere, we chose to make use of volumetric data. For any arbitrary124

surface it is possible to embed it into a volume and to compute the signed distances over this volume from the input125

mesh (Bærentzen & Aanæs 2005). The output is a volumetric dataset whose voxels contain the signed distance from126

the mesh. Inscribing this volume into a set of concentric spheres allow us to generate a set of scalar fields (i.e. signed127

distances) on the sphere surface (Kazhdan et al. 2003, Skibbe et al. 2009). This allows us to expand the scalars of each128

sphere into spherical harmonics. In this way we are able to have a spherical harmonic representation for any kind of129

surfaces. It is now possible to apply this procedure on the same data set described before but we can now consider not130

only the limb but also the flank (i.e. part of the mouse back) since we do not have any limitation on the kind of surface131

to be analysed. Consequently, we can adopt the same concept used before of interpolating the spherical harmonics132

coefficients in time (over the developmental stages).133

For a variety of reasons (external forces, natural variation, etc.) the limb buds of two embryos of the exact same age134

may not protrude from the flank at the same angle. But a reasonable average shape cannot be calculated from two135

images that do not align. To create a reliable average trajectory of normal development we need to make a judgement of136

which angle is the most normal, and we must then either select images that fit this average, or alter the remaining data137

sets so that all limb buds and all flank regions can be well-aligned. The first step was to measure the correct average138

angle. By defining an orthogonal triad of vectors V = (~cp, ~w,~v) it is possible to describe the movements and rotations139

of the limb in space. Moreover, considering a plane perpendicular to the limb, and therefore parallel to the flank, we140

can compute the angles between the triad V and a normal ~N to this plane (Figure 3A). Specifically, α = ∠(~cp, ~N)141

describes the vertical bending of the limb with respect to the flank and thus we can plot the angles for many embryos142

over time, which reveals a fairly linear decrease in this angle from about 90 degrees at mE10:10 to about 40 degrees143

at mE12:02 (Figure 3B). The second step was therefore to use a linear fit of α as a reference, and to apply a bending144

transform onto the shape data using thin plate splines (Bookstein 1989), which is a non-linear transformation based on145

a physical analogy involving the bending of a rigid material. The limbs were not affected by this transformation, only146

the non aligned flanks were bent. This operation ensures that all data-sets reflect the average bending trajectory over147

time (Figure 3C).148

To implement the idea mentioned above, we embedded each surface into a volume and computed the signed distances149

over this volume from the input mesh (Bærentzen & Aanæs 2005). The output is a volumetric dataset whose voxels150

contain the signed distance from the mesh. It is therefore possible to generate a scalar field by the signed distance151

from a mesh. Inscribing this volume into a sphere it is possible to know the intensity of the signed distance (SD) along152

each chosen radius (r0, r1, . . ., rn) of this sphere making this mapping method theoretically applicable to any arbitrary153

surface (Figure 3D). Since each radius is discretized in m = 50 points, we have a set of m concentric spheres on which154

the signed distances are grouped according to their position along each radius. This represent a suitable condition that155

allows us to expand the scalars of each sphere into spherical harmonics.156

With this mapping method, we obtained the cml coefficients for each concentric spheres of every limb. Similar as in 2.1,157

instead of reconstructing each volume using the exact coefficients cml we first interpolated them over time. Subsequently158

we used for the reconstruction the values of the interpolation, obtaining in this way one new limb for every time point159

(Figure 3E).160
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Figure 3: A - Triad (~cp, ~w,~v) describing the orientations of the limb with respect to the normal ~N to a perpendicular
plane. B - Variation in time of α = ∠(~cp, ~N) and its corresponding linear fitting with three representative limbs -
E10:10, E11:25, E12:02 (top). C - Alignment of three limbs whit flank of the same developmental stage according to
the flanks (top left) and the limbs (bottom left), alignment according to the limbs and warping of the flanks (right). D -
Example of signed distances computed on three different radii of a limb. E - Example of signed distance computed on
the same radius of two limbs at the same developmental stage, their spherical mapping, first three order coefficients of
the spherical harmonics expansion, and comparison of the signed distance reconstruction (red dots) with the original
ones (blue dots).

Every new limb is a volume object in which each voxel contains a scalar representing the reconstructed signed distance.161

From this volume is possible to additionally extract a corresponding surface. Using this method we were able to create162

a time-course reconstruction of more complex object like a mouse limb with its corresponding flak (Figure 4A).163
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The reconstruction in space and time of the growing limb consists of a smooth trajectory in developmental stages164

starting from E10:09 up to E12:02 (Figure 4A, Movie 2 - https://vedo.embl.es/fearless/#/limbflank). In165

order to know how accurately the result reproduces the 4D growth of a mouse limb, we directly compared it with the real166

data. To do so, we compared three distinctive characteristics of a mouse limb. Specifically, the total growth in volume167

of the limb, its elongation along the proximodistal (PD) axis and its widening along the anteroposterior (AP) axis168

(Figure 4B). For each reconstructed shape of a limb with its flank, the total volume was computed and compared with169

the volume of the original data at the same developmental stage (Figure 4C). In order to compare the limb elongation170

along the PD axis, we computed the geometrical distance between a fixed point (i.e. [0, 0, 0]) and the most distal point171

of the limb (Figure 4B) and we compared this value in the reconstructed and original data (Figure 4D). For confronting172

the enlargement of the limb along the AP axis the geometrical distance between the two furthest points in the AP plane173

of the limb “paddle” was determined and compared (Figure 4E).174

The result represents the 4D-growth of an ideal limb which averages the common characteristics and features of all175

the limbs in the data set. In particular, we are recreating the growing process starting from when the limb bud is just a176

small bump of tissue (E10:09) and finishing when it already shows a distinctive “paddle” shape of the autopod (E12:02).177

Additionally, the reconstruction is able to capture the correct biological scaling of a growing limb by accurately178

reproducing the volume growth shown in the data and its proximodistal (PD) and anteroposterior (AP) axes evolution.179
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Figure 4: A - Comparison of original data (on top) at four different developmental stages (E10:10, E11:00, E11:12,
E12:02) with the corresponding limb growth reconstructions (bottom), color map representing the signed distance
between the reconstruction and the original surface. B - Representation of the proximodistal (PD) and anteroposterior
(AP) axes of a limb. C - Volume growth comparison between original data (blue dots) and reconstructed shapes (orange
dots). D - PD growth comparison between original data (blue dots) and reconstructed shapes (orange dots). E - AP
growth comparison between original data (blue dots) and reconstructed shapes (orange dots).

2.2 Application to the heart development180

In order to determine the robustness of the method we applied it on a completely different set of data, specifically181

volumetric mouse heart data. We used a total of 26 OPT scans of mouse embryos where the heart is distinguished182
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from the rest of the embryonic tissue by means of a molecular marker (myosin heavy chain MHC, as detected by183

antibody staining). The embryos were scanned by OPT and then processed to create surfaces representing only the184

MHC expressing part of the heart (Figure 5A). We obtained mouse heart data at six different developmental stages, i.e.185

10, 14, 18-19, 21-22, 24-25 and 28-29 somites (Figure 5B).186

In this specific case, we considered the heart as a whole organ without the necessity of bending its surface. Therefore,187

differently from 2.1.1 it was possible to apply the method previously described directly on the volumetric data without188

the requirement of first converting them to surfaces and then using the signed distance.189

As first step, all the data were manually aligned using a 4x4 linear transformation. Afterwards, similarly to 2.1.1, each190

heart was embed into a sphere centered at the geometric center of the object and the scalars, representing the voxel191

intensities, were computed along the radii of the sphere. The result is a set of intensities mapped on every concentric192

sphere from the radius discretisation (Figure 5C). The scalar values mapped on these spheres were expanded into193

spherical harmonics. The coefficients cml of the spherical harmonics were then interpolated over the developmental194

stages and these interpolated values were used to reconstruct the heart trajectory.195

The results, as in the case of the mouse limbs (2.1.1), is a smooth trajectory of a growing heart in space and time that196

takes into account the common characteristics and properties of all the samples in the data set (Figure 5D, Movie 3197

- https://vedo.embl.es/fearless/#/heart). Thus, in spite of the fact that mouse limbs and mouse hearts are198

markedly different in shape, our algorithm demonstrates to be completely general and to produce in both cases a reliable199

reconstruction of the evolution in space and time of the original data. Moreover, this approach, not only provides a200

quantitative basis for validating predictive models but it also increases our understanding of morphogenetic processes201

from a purely geometrical point of view.202
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10 somites

28.5 somites

11.7 somites 13.4 somites 15.1 somites

16.8 somites 18.5 somites 20.2 somites 21.9 somites

23.6 somites 25.3 somites 27 somites

10 somites 14 somites 18-19 somites

21-22 somites 24-25 somites 28-29 somites

A

D

c a r r y i n g t h e A r i d 3 b 
mutation. These images 
serve to highlight the 
c h a l l e n g e o f t h e 
computational task (next 
po in t ) , as the shape 
d i f f e r e n c e s b e t w e e n 
n o r m a l a n d m u t a n t 
deve lopment a re not 
obvious by eye, and yet 
they must be detected 
within our new phenotypin 
s y s t e m , b y a c c u r a t e 
numerical morphometrics. 

4.Software development 
for 3D morphometrics of 
heart structure 

The primary goal for our 
morphometric analysis was 
t o d e t e r m i n e i n a n 
accurate and objective 
way, at which point during 
heart morphogenesis the 
mutant heart differs from 
the normal ones. Figure 4 
shows the result of the 
i m a g i n g p r o c e d u r e 
corresponding to a wild-
type heart (left) and mutant 
(right) in embryos staged 

21-22 somites. 

We need to be able to register individual 
shapes in 3D against a reference shape 
which also needs to be extracted from the 
data themselves. Isosurfaces are meshes 
obtained from voxel data and are 
associated to some threshold value. Since 
the kind of shape that we are considering 
here is a thick wall of muscular tissue, its 
isosurface representation will show as an 
internal and an external surface oriented in 
opposite directions. 

One issue in the registration process is not only that the shape of the isosurfaces from the OPT 
scanning are not perfectly overlapping, but also possibly large areas can be missing in the 
reconstruction, and these areas can be different for the different samples. Besides, there is no 
clear landmark that could be used to positively match two given samples. For this reasons a 
robust fitting method has been used to register the 3D shapes which is based on a variant of the 
least squares method. Instead of minimizing the χ2 of the fit, which corresponds to the squared 
sum of the residuals, one minimizes the t-Student term log(1 + σ χ2)/σ which favours the matching 
of the regions of the surface that indeed have similar shape by reducing the relative weight of the 
outliers [4]. Figure 5 shows the result for the group of hearts that counts 21-22 somites as 
visualised by the MeshLab program. 

B C

OPT scanned digitalised & cleaned up

Figure 5: A - Representation of the data acquisition procedure: OPT scans of molecular marked mouse embryos,
digitalisation and cleaning of the data. B - Examples of heart volumetric data at different developmental stages (i.e. 10,
14, 18-19, 21-22, 24-25 and 28-29 somites). C - Examples of scalar values of an 18-19 heart on one specific radius
shell. Colors represent voxel intensities. D - The heart reconstruction at different developmental time points.

3 Discussion203

Our understanding of limb development (and other examples of organogenesis) has been driven by a strong focus204

on molecular and cellular activities. While modern biology has striven to make measurements of molecular data205

increasingly quantitative and complete (such as transcriptomics, and single-cell approaches), surprisingly, an accurate206

quantitative description of the continuously changing morphology of the limb has not been created. Precision in such207
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a description has perhaps not previously been required for a basic appreciation of mutant phenotypes, but as biology208

becomes more predictive and quantitative, accurate measurements of dynamic morphology will be essential. For209

example, the value of quantification for static 3D limb bud shape has already been shown to increase sensitivity in210

phenotyping studies (Martínez-Abadías et al. 2018), as well as enabling the detection of subtle but real alterations211

in gene expression patterns. Quantifying dynamic shape changes will also become important for mechanistic and212

predictive models of morphogenesis. For example, we previously used data-driven finite element modelling (FEM)213

to rule out a popular hypothesis about limb bud elongation (Boehm et al. 2010). By combing quantification of the214

changing 3D shape with accurate measurements of proliferation, we were able show that the proliferation gradient215

hypothesis cannot be correct, because the model’s predictions do not fit the true morphology.216

While for some model species a 4D quantitative trajectory can be captured by direct time-lapse imaging, this is not217

true for mammalian organs. In utero imaging cannot provide high spatial resolution, and in vitro culture techniques do218

not support normal organogenesis. We are therefore left with the challenge of reconstructing a 4D dynamic process,219

from static snapshots. Here we have developed and demonstrated a method to perform this task. It is based on the220

mathematical technique of spherical harmonics, which is a convenient method for dimensionality reduction of data221

that can be spatially distributed on a sphere. We were able to use the coefficients of the spherical harmonics from 69222

different limb buds, spanning an age range of mE10:09 to mE12:02, and spline through these values to create the first223

smooth continuous 4D trajectory of normal mouse limb development. A simple, direct spherical harmonics method224

worked well on images just containing the limb bud itself, while a more complex volumetric version was required225

to interpolate a larger region of tissue that contained concavities (images which included a significant portion of the226

embryo trunk as well). A challenge for traditional landmark-based approaches, such as geometric morphometrics,227

is that the shape complexity dramatically increases from the beginning to the end of the trajectory, in other words228

presenting a changing amount of useful shape information. The spherical harmonics approach we present here copes229

well with this challenge, because of the intrinsic feature that coefficients of different orders (different levels of detail)230

contribute independently to the overall shape description.231

In conclusion, we have applied this method to both limb development and heart development (the MHC expressing232

tissues) for the mouse embryo. It produces for the first time, a smooth, continuous and quantitative 4D description of233

their morphogenesis, including predictions for the gradual changes in lengths, and volumes of the tissue. We believe it234

can be applied to many other developing organs, and will be increasingly important as developmental biology becomes235

a more quantitative science, and moves towards predictive mechanistic computer modelling of morphogenesis.236

Methods237

Animals238

All animal work was performed according to the guidelines of the Committees on Ethics and Animal Welfare established239

at PRBB and CNIC, in accordance to Spanish and European laws. C57Bl6/J mouse embryos were collected at the240

indicated gestational stages. For a precise staging of limb buds, the eMOSS staging system was used (Musy et al.241

2018), and for hearts, pairs of somites were counted. Embryos were dissected in cold PBS and fixed overnight in 4%242

PFA at 4◦C.243

Whole-mount antibody staining244

Embryos were dehydrated with methanol and left overnight at -20◦C. Whole-mount immunochemistry was performed245

according to standard protocols. Embryos were rehydrated, permeabilized in PBS plus 0.5% Triton X-100 (Sigma), left246

2h in blocking solution (90% PBST (0.1% Triton X-100 in PBS)/10% normal goat serum) and incubated overnight247

at 4◦C with anti-Myosin heavy chain, sarcomere (MHC) antibody (Developmental Studies Hybridoma Bank, MF20;248

1:10). Embryos were washed in PBST four times for 4 hours and incubated overnight with biotin goat anti-mouse IgG249

(Jackson ImmunoResearch ref. 115-066-071; 1:500) and then with streptavidin-Cy3 (Jackson ImmunoResearch ref.250

016-160-084; 1:500). After washing in PBST four times for four hours, embryos were stored in PBST 0.01% sodium251

azide and subjected to OPT scanning to obtain images.252

Optical projection tomography253

Optical projection tomography (OPT) imaging (Sharpe et al. 2002) was used to acquire 2D images and obtain 3D254

reconstructions. MF20 immunostained samples were embedded in 1% low melting point agarose (Sigma), dehydrated255

in 100% methanol and cleared in BABB (1 volume benzyl alcohol : 2 volumes benzyl benzoate). Samples were scanned256

at intermediate resolution (512x512 pixels) in the Bioptonics OPT scanner using Skyscan software (Bioptonics, MRC257

Technology). The GFP filter (425/40nm, 475nm LP) was used to scan whole embryo anatomy, while the Cy3 filter258
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(545/30nm, 610/75nm) was used to image the heart. OPT scans were reconstructed using NRecon software (SkyScan)259

and analyzed using the Bioptonics Viewer software.260

Implementation261

The method is written in Python 3 and depends on standard python packages (Harris et al. 2020). All the mouse262

embryos were staged using the embryonic Mouse Ontogenetic Staging System (eMOSS) (Musy et al. 2018). Surfaces263

of the data were extracted from the OPT scans using the marching cubes algorithm (Lorensen & Cline 1987). The264

alignment in space of the mouse limbs was done using the reference provided by eMOSS and refined with the265

iterative closest point (ICP) algorithm (Besl & McKay 1992). Spherical harmonics transforms were made through the266

SHTools library (Wieczorek & Meschede 2018). The comparison between the reconstructed limbs and the original267

data was computed applying the signed distance using the angle weighted pseudonormal (Bærentzen & Aanæs 2005)268

implemented in Vedo (Musy et al. 2019). The bending of the flanks to make them match with the reference limbs was269

done by using a linear fit of α as a reference, and to apply a bending transform onto the shape data using thin plate270

splines (Bookstein 1989) (implemented in Vedo (Musy et al. 2019)), which is a non-linear transformation based on a271

physical analogy involving the bending of a rigid material. The limbs were not affected by this transformation, only the272

non aligned flanks were bent. All the visualisations and animations were produced using Vedo (Musy et al. 2019).273

All the code is open-source and has been deposited in full in the GitHub repository −→ https://github.com/274

gioda/4D-reconstruction-of-developmental-trajectories-using-spherical-harmonics.275

Additional movies, 3D interactive views of the results and further information can be found in the project’s web-page276

−→ https://vedo.embl.es/fearless.277
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