Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The costs and benefits of dispersal in small populations

Jitka Polechová
doi: https://doi.org/10.1101/2021.12.16.472951
Jitka Polechová
1University of Vienna, Department of Mathematics
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jitka@univie.ac.at
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Dispersal has three major effects on adaptation. First, gene flow mixes alleles adapted to different environments, potentially hindering (swamping) adaptation. Second, it brings in other variants and inflates genetic variance: this aids adaptation to spatially (and temporally) varying environments but if selection is hard, it lowers the mean fitness of the population. Third, neighbourhood size, which determines how weak genetic drift is, increases with dispersal – when genetic drift is strong, increase of the neighbourhood size with dispersal aids adaptation. In this note I focus on the role of dispersal in environments which change gradually across space, and when local populations are quite small such that genetic drift has a significant effect. Using individual-based simulations, I show that in small populations, even leptokurtic dispersal benefits adaptation, by reducing the power of genetic drift. This has implications for management of fragmented or marginal populations: the beneficial effect of increased dispersal into small populations is stronger than swamping of adaption under a broad range of conditions, including a mixture of local and long-distance dispersal. However, when environmental gradient is steep, heavily fat-tailed dispersal will swamp continuous adaptation so that only patches of locally adapted subpopulations remain.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted January 10, 2022.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The costs and benefits of dispersal in small populations
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The costs and benefits of dispersal in small populations
Jitka Polechová
bioRxiv 2021.12.16.472951; doi: https://doi.org/10.1101/2021.12.16.472951
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The costs and benefits of dispersal in small populations
Jitka Polechová
bioRxiv 2021.12.16.472951; doi: https://doi.org/10.1101/2021.12.16.472951

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3513)
  • Biochemistry (7359)
  • Bioengineering (5338)
  • Bioinformatics (20306)
  • Biophysics (10034)
  • Cancer Biology (7763)
  • Cell Biology (11333)
  • Clinical Trials (138)
  • Developmental Biology (6444)
  • Ecology (9968)
  • Epidemiology (2065)
  • Evolutionary Biology (13346)
  • Genetics (9366)
  • Genomics (12598)
  • Immunology (7719)
  • Microbiology (19060)
  • Molecular Biology (7452)
  • Neuroscience (41108)
  • Paleontology (300)
  • Pathology (1233)
  • Pharmacology and Toxicology (2141)
  • Physiology (3171)
  • Plant Biology (6869)
  • Scientific Communication and Education (1275)
  • Synthetic Biology (1899)
  • Systems Biology (5320)
  • Zoology (1090)