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Abstract

We use computational modeling to study within-host viral infection and evolution. In
our model, viruses exhibit variable binding to cells, with better infection and replication
countered by a stronger immune response and a high rate of mutation. By varying host
conditions (permissivity to viral entry T and immune clearance intensity A) for large
numbers of cells and viruses, we study the dynamics of how viral populations evolve
from initial infection to steady state and obtain a phase diagram of the range of cell and
viral responses. We find three distinct replicative strategies corresponding to three
physiological classes of viral infections: acute, chronic, and opportunistic. We show
similarities between our findings and the behavior of real viral infections such as
common flu, hepatitis, and SARS-CoV-2019. The phases associated with the three
strategies are separated by a phase transition of primarily first order, in addition to a
crossover region. Our simulations also reveal a wide range of physical phenomena,
including metastable states, periodicity, and glassy dynamics. Lastly, our results suggest
that the resolution of acute viral disease in patients whose immunity cannot be boosted
can only be achieved by significant inhibition of viral infection and replication.

Author summary

Virus, in particular RNA viruses, often produce offspring with slightly altered genetic
composition. This process occurs both across host populations and within a single host
over time. Here, we study the interactions of viruses with cells inside a host over time.
In our model, the viruses encounter host cell defenses characterized by two parameters:
permissivity to viral entry T and immune response A). The viruses then mutate upon
reproduction, eventually resulting in a distribution of related viral types termed a
quasi-species distribution. Across varying host conditions (T,A), three distinct viral
quasi-species types emerge over time, corresponding to three classes of viral infections:
acute, chronic and opportunistic. We interpret these results in terms of real viral types
such as common flu, hepatitis, and also SARS-CoV-2019. Analysis of viral of viral
mutant populations over a wide range of permissivity and immunity, for large numbers
of cells and viruses, reveals phase transitions that separate the three classes of viruses,
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both in the infection-cycle dynamics and at steady state. We believe that such a
multiscale approach for the study of within-host viral infections, spanning individual
proteins to collections of cells, can provide insight into developing more effective
therapies for viral disease.

Introduction 1

Viral infections are ubiquitous across the tree of life. Though great progress has been 2

made in the prevention and treatment of diseases caused by viruses, a deep 3

understanding of how they infect hosts and evolve within those hosts remains elusive. 4

Of the many ways in which viruses cause disease and evade a host’s immune response, 5

one common theme is a high rate of mutation during replication, leading to the 6

formation of a cloud of genetically similar viral progeny known as a quasispecies [1–5]. 7

Over the past four decades, a growing body of work has demonstrated experimentally 8

the existence of viral quasispecies in infections for diseases including polio, hepatitis C, 9

SARS-CoV-2, and others [6–13]. Additionally, it was found that different viruses within 10

a quasispecies can exhibit a wide range of infectiousness, virulence, and replicative 11

fitness [6, 14,15]. Complementary to these developments, the theoretical foundations of 12

quasispecies, proposed originally by Eigen, have been the subject of extensive study in 13

mathematical biology and physics, leading to exact solution methods and applications 14

ranging from B-cell receptor diversity to intra-tumor population dynamics [16–20]. 15

Approaches for understanding within-host viral infections based in theory and 16

computation have grown substantially in both number and complexity [21]. 17

Computational approaches range from agent-based models (e.g. [22]), to simulation of 18

partial differential equations (e.g. [23]), to multi-compartment hybrid models (e.g. [24]), 19

and beyond. Although less common, approaches based on statistical mechanics have 20

previously proven effective and provided insight into both biology and physics [25]. A 21

recent study describes a model linking fitness distributions to the probability of causing 22

a pandemic [26]. Our work is built off of that by Jones et al. [27], in which statistical 23

mechanics and thermodynamics are used to better understand viral quasispecies 24

infections within hosts at steady state. 25

In this work, we model and study the dynamics of viral quasispecies inside an 26

individual host via a 3-step process (Fig. 1). Using a novel, exact calculation method, 27

we determine the distribution of viral subclasses (“match numbers” m) across a 28

finite-sized and self-replenishing pool of infectible host cells that have a limited viral 29

capacity. After infection, the host mounts an immune response, clearing viruses in 30

proportion to their match number. Viruses that survive immune clearance undergo 31

replication with a probability that increases with match number, inducing a 32

population-level tug-of-war via the opposing pressures of replication and the immune 33

response. Viruses that do replicate are subject to the additional pressures of mutation, 34

while those that do not will remain inside cells into the next round of infection, 35

effectively shrinking the available pool of cells that newly produced viruses can infect. 36

We allow only one mutation per virus per iteration, and our mutation matrix has a 37

natural fixed point around m = 14, a moderate value. 38

To describe a broad variety of host environments, we model host cells as exhibiting a 39

specified level of viral permissivity T : low values of T allow only viruses with the 40

highest match numbers to infect, while high values of T permit viruses of all types to 41

infect and replicate. Additionally, based on prior work, T can act as a thermodynamic, 42

but not physiological, temperature [27]. At the same time, we model a wide range of 43

host immune responses by subjecting viral infections to different values for the maximal 44

immune clearance (A) of a sigmoidal immunity function. 45

By varying T, A, and the initial infection, we study infection dynamics across a large 46
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Fig 1. Infection process. In this figure, we show the cycle composing a single
iteration of our model. This cycle consists of three steps: infection, immune response,
and reproduction with mutation. Viruses that reproduce and mutate from the last step
form the cohort infecting cells at the beginning of the next iteration. In our model, one
iteration corresponds to a single time step.

space of possible host-virus interactions. The combined pressures of permissivity, 47

immunity, error-prone replication, mutational drift, and the pool of infectible cells’ 48

limited size lead to a phase space with a rich variety of viral behaviors and physical 49

phenomena. We find that the T-A phase space is separated into three main non-extinct 50

regions; and that those regions correspond well to the physiological classes of acute, 51

chronic, and opportunistic infections. We also find that the boundaries in phase space 52

separating the three infection regimes range from first to infinite order, and that 53

infections near the first-order transition exhibit behavior characteristic of “glassy” 54

dynamics. Lastly, we make two predictions: that chronic viral infections are unlikely to 55

be cured through increasing immunity alone, and that the transition from acute to 56

chronic infection behavior is discontinuous across different viral subtypes. 57

Model, methods, and materials 58

Our system consists of a finite pool of cells and viruses that may infect those cells. 59

Viruses can reside either inside cells or in the environment/extracellular space. The 60

infection cycle consists of three main steps: 1) attempted infection of cells by viruses in 61

the environment, 2) suppression of infection by immune clearance, and 3) either viral 62

replication (leading to cell lysis and viral escape into the environment) or latency 63

(persistence inside cells without replication) (Fig. 1). We represent each stage of the 64

infection cycle by the vectors P (pre-infection in environment),  I (infection),  ⌅
65

(immune response), and  R (remaining in cells). After the third step, the cycle begins 66

again, repeating until a number of iterations sufficient to reach steady state is reached 67

in the simulation. We define each iteration as a single time step in the dynamics. 68
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Model 69

In order to capture essential information about variation within and across viral 70

quasispecies, we describe each virus in our model with a “match number” m. The 71

match number characterizes a cell-virus interaction and can be interpreted as a measure 72

of the binding strength of an idealized viral surface protein to a simple host-cell receptor 73

protein. In our model, all host cells express a single relevant receptor type of sequence 74

length 50 with unchanging identity, while viruses exhibit a single surface protein with 75

varying composition and length 100. The optimal alignment (which may contain gaps) 76

between these two sequences sets the value of m, which ranges from 0 (minimal 77

alignment) to 50 (maximal alignment). The match number enables us to group 78

equivalent interactions among a statistically large number (in total, 26100) based on an 79

extended amino acid set [27]) of possible viral surface protein compositions. 80

Viruses in our system are subject to five main pressures. The first two are 81

permissivity and immunity, which directly oppose each other for a given viral match 82

number: a high m enables more effective infection and reproduction at the cost of 83

greater immune clearance, while a low m enables immune evasion at the cost of 84

decreased infective and reproductive ability. The third pressure is mutation, as random 85

sequence changes to viral offspring can lead even the most infectious virus to have less 86

effective progeny. The fourth, an entropic pressure, is the mutationally-based limitation 87

on variety of offspring that a virus can produce - there are far more potential progeny 88

for some match numbers than others, given a finite alphabet for constructing proteins. 89

The final pressure is induced by the finite pool of cells, as new viruses must compete 90

with both each other and latent intracellular viruses for the limited number of cells to 91

infect. Throughout this work, we see the effects of the interplay between these pressures. 92

Our model differs from standard quasispecies modeling approaches in four key ways. 93

Firstly, we include a finite and self-replenishing pool of cells in which viruses may 94

remain latent across multiple infection cycles. Secondly, we use a generalized Hamming 95

class (the “match number”) to group viruses with identical numbers of mutations from 96

the optimal sequence, which may not be present at the initial infection. Thirdly, we 97

include mutational backflow, as bidirectional mutation across match number classes is 98

prominent across a large range of m. Finally, we perform simulations with large 99

numbers of cells and viruses over long enough timescales to reveal multiple 100

time-dependent features and to ultimately reach steady state. 101

We now go into more detail about the individual components of the viral life cycle. 102

Infection 103

Infection begins with viruses emerging from the environment and hopping from one cell 104

to the next, trying to infect at each one. At each cell, the virus engages in a wide range 105

of binding poses, testing the interaction of its binding protein at each alignment. If the 106

virus infects, it hops no further, inhibiting other viruses from entering that same cell: in 107

our model we allow a maximum of one virus per cell. However, our model is statistical, 108

and therefore the distribution of viruses in cells after infection consists of two 109

contributions: probability from viral distributions that previously infected the cell, and 110

those that have newly infected. The various types of viruses in the cell thereby undergo 111

competition based on the pressures on the system. Finally, if a virus fails to infect any 112

cells, it leaves the system, either carried to another part of the body where it cannot 113

infect or removed as waste through normal filtration and excretion. 114

We set the probability that a single virus infects an isolated, unoccupied cell to be 115

em: 116

December 17, 2021 4/28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.16.473030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.16.473030
http://creativecommons.org/licenses/by-nc-nd/4.0/


em = exp
��(50�m)

T

�
, (1)

where m is the viral match number and T is the permissivity. We plot em in Fig. 2C. 117

Fig 2. Single virion reproductive fitness and infection probability vary with

match number and permissivity. (A) Infection probability of a single virus of
match m, under conditions of various prior cell fillings �0 and for varying permissivity
T . Higher occupancy results in notable decreases in infection probability especially for
lower m. Note that infection probabilities, unlike em (Panel C), exhibit a shoulder at
high m. (B) Probability of virus to survive immune response as a function of match m,
for various immunity levels A. Immune response saturates with increasing m above
around m = 14, where the level is 1�A. (C) Replicative fitness (probability of
replication) as a function of match number for varying T . Legend shared with Panel A.
(D) Replication-associated mutation probability as a function of m. Note that the
probabilities of increasing and decreasing m via mutation are equal at m = 14, giving
the mode of the Natural initial distribution.

However, the full infection process involves multiple viruses attempting to infect 118

many cells and also takes into account prior cellular infection. Equations governing this 119
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behavior are shown in Eqs. 2a-2c, and plotted for a single virus attempting to infect 120

cells of varying prior occupancy level in Fig. 2A (derivation in S1 Appendix, section 1). 121

We note that these equations are an exact representation of the process described above, 122

whereas previous work used approximate expressions to derive analytic results [27]. 123

The result is calculated recursively, so that the infection probability laid down by the 124

first virus, plus the viruses retained after the previous infection cycle, serve as the 125

infected cells that the next virus encounters. For example, the third virus contends with 126

the effects of the first and second viruses, plus those remaining in cells from the 127

previous infection cycle, and so forth, until all N viruses at that stage of cycle have had 128

a chance to infect. In order to calculate infection probabilities in a statistical manner 129

consistent with our model, we average over both the order in which viruses encounter 130

cells and the possible sequences in which viruses emerge. We then arrive at the 131

following recursive formulas: 132

 0
m =  R

m (2a)

�k =
X

m

 k
m (2b)

 k+1
m =

Pm

c

⇥
1� [1� em(1� �k)]c

⇤
+ k

m. (2c)

Thus, for a system with N viruses, the probability of cells being occupied by viruses
after infection is

 I =  N . (2d)

Here,  k
m represents the net probability that a single cell will be infected by a virus 133

of match number m after the k-th virus has tried to infect. As defined above, Pm is the 134

probability distribution over match numbers of viruses in the environment before the 135

infection cycle begins, c is the number of cells, and k ranges from 0 to N (the number of 136

viruses in the environment before the infection cycle begins). 137

We note that the number of viruses in the environment after replication and
mutation is represented by a real number. However, Eq. 2d requires an integer number
of viruses. Therefore, to determine the value of  N for real N , we linearly interpolate
the value of  N between the two whole numbers of viruses nearest to N :

 I = (N � bNc) · dNe + (1� (N � bNc)) · bNc, (3)

where bNc is the greatest integer less than or equal to N , and dNe is the least integer 138

greater than or equal to N . 139

Immune response 140

Our model of the immune response depends only on the match number and the system
immune clearance intensity, A. The function does not change within a simulation: its
static nature assumes that prior infections have created a fixed memory. Those viruses
with a higher match number are those that are most likely to have infected in the past
and are therefore most likely to be recognized during a new infection. We take the
immunity function to have a sigmoidal shape with an inflection point ⌫ fixed at m = 6
amino acids [27] that sets the 50% immune intensity response:

⌅m =
A

1 + exp(�(m�v)
2 )

. (4)
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We note that immune clearance is greatest for m corresponding to maximal 141

infectious and reproductive ability, setting up a dynamic evolutionary pressure between 142

T and A. The maximal strength of the immunity we set to A, with A ranging from zero 143

to one (Fig. 2B). The probability of destroying a virus only approaches 1 with A = 1 and 144

moderate match number. Taken together, the viruses that remain after immunity are 145

 ⌅
m =  I

m(1� ⌅m). (5)

Replication with mutation 146

If a virus is able to both infect a cell and evade the immune response, it engages in the 147

third and final stage in its life cycle: replication and mutation. We take the probability 148

to replicate to be em, the same as the infection probability for a single empty cell, as 149

both replicative and infective ability are essential to a virus’s function. 150

As depicted in Fig. 2C, viruses with m = 50 replicate with probability 1, but for all 151

other match numbers, the probability is less, although at no match number is it exactly 152

zero. However, for any non-infinite permissivity, the probability of replication with very 153

low match numbers is exponentially small. As em takes on values from 0 to 1 (with 154

predictable behavior at both extremes), we can derive a natural quantitative scale for 155

permissivity by setting em = 0.5 and then determining the upper and lower limits of T 156

when m = 0 and m = 49. This gives a range of T ⇡ 1 to T ⇡ 70, where we should 157

expect the majority of interesting behavior in the model to appear. 158

The distribution of viruses that remain latent or reproduce and escape from cells are,
respectively,

 R
m =  ⌅

m(1� em) (6a)

and

 F
m =  ⌅

mem (6b)

Here,  R is the probability that cells remain infected after viruses have a chance to
reproduce, and  F is the probability that a cell will have had its viruses reproduce. For
viruses that do replicate, we set the fecundity (', number of new viruses produced from
each progenitor virus) to 20, giving the total number of viruses present in the
environment at the beginning of the next infection cycle:

N = c'
50X

m=0

 F
m. (7)

Each viral offspring is mutated at exactly one position in the viral protein 159

sequence [28]. The one amino acid out of 100 on the virus that mutates is chosen at 160

random. This single change can either keep the number of matches to the cellular 161

receptor protein the same, increase it by one, or decrease it by one. Depending on the 162

match number, the probabilities for these three possibilities can shift – large match 163

numbers will have a lower chance for still higher match, and low match numbers a lower 164

chance for still lower match. These transition probabilities were estimated using 165

high-performance computing (HPC) calculations to generate the mutation matrix M 166

(Fig. 2D; described in S1 Appendix, section 2; originally in [27]). The probability 167

distribution of viruses in the environment at the beginning of the next infection process 168

is, then, 169
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P =
1P

m 
F
m

M F . (8)

All newly replicated viruses escape from the cell into the extracellular environment 170

for the next cycle. The fixed pool of cells is replenished with uninfected cells to keep the 171

number constant at c, and the infection process starts again. 172

Computational implementation 173

Considered across repeated cycles of infection, immune response, and replication, the
equations above can be seen as difference equations, which we evaluate through iterative
calculation. We run simulations for 100,000 iterations, as this almost always guaranteed
convergence in our simulations. We define convergence at the latest iteration i such
that, for all following iterations,

|Ni �Nend|
Nmax

< 10�4 (9a)

and

| < m >i � < m >end | < 10�4, (9b)

with < m >i the sample mean of Pm at iteration i, Ni the number of viruses in the 174

environment at iteration i, Nmax the maximum allowed number of viruses in the 175

environment (equal to c'), and an “end” subscript refers to the value at the end of a 176

simulation. In addition, given that viral population sizes are real-valued scalars, we set 177

a extinction cutoff of 10�8 such that a simulation is terminated when the environmental 178

viral load sinks beneath that cutoff. 179

For this work, we run simulations across the combination of parameters shown in 180

Table 1.

Table 1. Simulation parameters.

Parameter Definition Value used

N0 Initial viral population size 10000
c Number of cells 1000
v Baseline immunity motif recognition length 6
' Fecundity 20

181

We initialize simulations with either a uniform or “natural” match-number 182

distribution (Figs. 3A, B). The uniform distribution is defined in the standard manner, 183

with each value of m assigned equal probability. The “natural” initial distribution is 184

defined as the steady-state distribution for A = 0 and T ! 1, which is also the 185

stationary eigenvector of the mutation matrix. Using these two distributions enables us 186

to compare effects of the mean and variance of the initial match-number distributions. 187

We also note that in three limits (very low T , near infinite T , and near-complete 188

cellular occupation after the immune response), we are able to solve for the steady state 189

of the system analytically, suggesting that it is unlikely that there are additional, 190

different steady states that will appear at much later iterations. 191

Additionally, through roughly approximating the timescale of infection from 192

experimental data, we find that the duration of simulations reaches and may even 193

exceed the timescale of a human lifetime. Therefore, in the unlikely case that the true 194
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Fig 3. Initial distributions used in simulations. (A) Uniform initial distribution.
(B) “Natural” initial distribution (infinite permissivity, zero immunity limiting
steady-state distribution).

steady-state is not reached by the end of our simulations, those later states are not 195

relevant to the conclusions of this paper. 196

We have implemented simulations in Python 3 using Numpy accelerated with Numba 197

package [29,30]. Where referenced in the code corpus, snippets from Stack Overflow 198

have been used and referenced accordingly. All code is available on the Center for 199

Cellular Construction Github page (https://github.com/cellgeometry/ViralStatMech). 200

Results 201

We first highlight that, independent of initial condition, all viruses in our model coalesce 202

into coherent quasispecies distributions, often after only a few iterations of our 203

simulations. Based on the work of Eigen [1–3], we attribute the emergence of 204

quasispecies distributions to the presence of a mutation matrix in our model. These 205

distributions are nearly always single-peaked, unimodal, and fairly narrow, with a 206

roughly Gaussian shape and a well-defined maximum. However, as discussed below, 207

there are a small subset of cases in which we see two separated peaks arise. 208

We begin by considering steady-state results. 209

Steady-State 210

Probability distributions 211

In Fig. 4, we plot the end results of simulating the modeling equations above (Eqs. 2a-8) 212

for 100,000 iterations. We see at steady-state that the match-number distributions 213

coalesce into quasispecies distributions, in some places bimodal. We also find that the 214

model goes to the same steady state determined by T and A, regardless of initial 215

conditions of viral load and match-number distribution (as long as viruses have not gone 216

extinct); this result is not a given for our model, as the infection process is non-linear. 217

In particular, the Natural initial condition leads to a substantially larger extinction 218

region than does the uniform initial condition, suggesting that quasispecies require more 219

viruses at higher match numbers for survival at low permissivity. We note that 220

extinction only seems to occur at low permissivity; at high enough T , no value of 221

immunity is able to completely suppress the viral population. 222
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Fig 4. Steady-state match number probability distributions exhibit

different regimes of behavior and bimodality near a transition region.

Match number distributions at the ends of simulations for a subset of sampled
permissivity and immune intensity are shown for uniform (black) and natural
(dashed-red) initial distributions. For all simulations, we sample permissivity on a
logarithmic scale because em is an exponential function of permissivity (Eq. 1). Each
distribution is normalized to sum to 1, so broader distribution necessarily exhibit lower
peaks. For each distribution, the x-axis ranges in match number m from 0-50, and the
y-axis ranges ranges in probability from 0-1. The bimodal distributions are enclosed by
dark-gray dashed lines and extinction is indicated by the lack of a plotted distribution.
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Inspection by eye suggests three general regions of self-consistency. Low permissivity 223

leads to distributions centered around high match numbers, regardless of immunity. 224

High permissivity and moderate-to-high immunity lead to distributions centered around 225

low match numbers. High permissivity and low immunity lead to distributions centered 226

around the natural distribution (3B). 227

At low permissivity, two effects dominate: the need for viruses to reach very high 228

match numbers in order to both infect and replicate, as well as the effectively 229

m-independent suppression of high match-number viruses by the immunity. 230

Accordingly, we observe two trends reflecting these pressures. Firstly, we see that the 231

peaks of the distributions increase toward higher m as immunity increases, with the 232

distribution peaks centered at lower m for higher permissivity. Secondly, we find that 233

the widths of the distributions decrease as immunity increases and permissivity 234

decreases. These trends are linked and reflect a strategy of the quasispecies to more 235

efficiently increase its population size to overcome increasing immunity. In particular, 236

the distribution peaks shift towards higher m and become more narrow in order to take 237

advantage of the sharp increase in replicative ability as match number increases in this 238

permissivity regime (Fig. 2C). Eventually, this strategy fails and viruses are forced into 239

extinction at the highest levels of immunity. 240

In contrast, in the high-permissivity and higher immunity regime, immunity 241

dominates other pressures in the system. Here, match number distributions are centered 242

at low m, tending toward lower m as immunity increases. We remind readers that the 243

dynamic range of immunity spans from m = 0 to m ⇡ 15 (Eq. 4 and Fig. 2B). Thus, as 244

immunity increases, viruses are able to evade immune clearance by shifting towards 245

lower and lower m. We also see that, as permissivity decreases, the peaks of match 246

number distributions shift to lower m, showing the stronger effects of immune pressure 247

over permissivity in this regime. In this regime, permissivity is high enough that viruses 248

with low m are still able to infect and reproduce, enabling viruses to pursue both sets of 249

strategies as environmental conditions change. However, as the permissivity further 250

decreases, this strategy becomes untenable as viruses at low m become unable to 251

replicate, leading to the emergence of higher m viruses at lower permissivity. 252

Lastly, we address the high-permissivity, low-immunity region. Here, the pressures of 253

permissivity and immunity are minimal, enabling entropic mutational pressures to 254

dominate. Accordingly, we see that match number distributions in this region closely 255

resemble the Natural initial distribution, which is defined as the stationary distribution 256

of the mutation matrix. 257

We highlight that, broadly across phase space, match number distributions tend to 258

increase in width as immunity decreases. This observation is consistent with previous 259

clinical findings that immuno-compromised or -suppressed patients exhibit greater 260

diversity of viral variants than those with stronger immune systems [13,31,32]. 261

We draw attention to the unexpected emergence of bimodal distributions (boxed by 262

gray dashed lines in Fig. 4) at T = 13.5 and A = 0.57, 0.71. Of note, the peaks of these 263

distributions appear to be centered at the locations of the unimodal peaks at higher and 264

lower T . 265

We also see two major permissivity-dependent trends that span multiple regions. 266

The first, at low immunity, is that distribution peaks shift smoothly to higher match 267

numbers and become more narrow as permissivity decreases. This reflects the steadily 268

growing pressure of permissivity, which increasingly allows only higher match-number 269

viruses to infect and reproduce as T decreases. The second, at moderate to high 270

immunity, is that the distribution peaks shift initially towards low m and then suddenly 271

jump to increasingly high m as permissivity decreases. We can now interpret the 272

emergence of bimodal distributions in the midst of this shift as a point of balance 273

between the pressures of permissivity and immunity. 274
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Order parameter 275

Given the emergence of three distinct regions, a sudden jump in behavior, and the 276

appearance of bimodal distributions, we are prompted to explore the possibility that T 277

and A define a phase space exhibiting critical behavior. Following prior work on a 278

similar model [27], we define an order parameter: 279

< m > =
1

50

50X

m=0

mPm, (10)

where Pm is the environmental match-number probability distribution at the end of a 280

simulation. As before, we normalize the order parameter to fall between 0 and 1. We 281

note that < m > is the sample-mean of the match number distribution for viruses in 282

the environment, generally corresponding to the location of the peak of the associated 283

match number distributions (which are generally symmetric about their centers). 284

In Fig. 5, we show the the order parameter as a function of permissivity (T ) and 285

immunity (A), revealing a phase diagram with three well-defined phases and varying 286

regions of viral extinction (these results broadly resemble and validate an earlier, 287

approximate form of this model [27]). Using the order parameter, we are able to 288

demonstrate that there are three transition zones: a first-order phase transition, a 289

higher-order phase transition, and a crossover region. A first-order phase transition 290

emerges at moderate-to-high immunity (A ⇡ 0.2� 0.9) and T ⇡ 10� 20, separating 291

phases I and III. A higher-order continuation of that phase transition separates phases 292

II and III at low immunity (A ⇡ 0.2� 0.3) and T > 25. Lastly, a crossover region 293

bridges phases I and II at low immunity (A < 0.2) and T ⇡ 10� 20. 294

Fig 5. Order parameter at steady state exhibits distinct regions of

behavior and extinction, separated by phase boundaries of varying order.

(A) Uniform initial distribution. (B) Natural initial distribution. Order parameter
values are depicted in a continuous range of colors from purple (0.0) to yellow (1.0).
Purple regions with white X’s denote viral extinction before the end of simulations. The
white line is a spline fit to locations of maximal difference in order parameter at fixed
permissivity or immunity. Red squares denote points where Pm is bimodal. A reminder
that the natural scale for permissivity is between T ⇡ 1 and T ⇡ 70, where most
changes in behavior are expected to occur.

A first-order phase transition can be defined as finite discontinuity in the order 295

parameter (e.g., the change in density upon the melting of ice into liquid water), while a 296
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continuous (higher-order) phase transition occurs where the order parameter has a 297

discontinuity in a higher derivative (e.g., a ferromagnetic transition) [33]. A crossover 298

region, also known as an infinite-order phase transition, is a region in which the order 299

parameter of a system undergoes a continuous change between two qualitatively distinct 300

states [34] (e.g., the BEC-BCS transition of ultracold Fermi gases [35]). We note that 301

our model is in the grand canonical ensemble, with an effective bath of “particles” 302

(possible viral sequences) drawn from during replication and returned during infection 303

and the immune response. This bath is therefore of size large enough (26100 ⇡ 10140) to 304

consider the system in the thermodynamic limit, allowing the possibility of phase 305

transitions. 306

First-order phase transitions in nature often exhibit the coexistence of both states 307

near their transition boundary [33]. We also see this in our results: as shown in Fig. 4, 308

the match number distributions of viruses at the first-order phase boundary are bimodal 309

(enclosed by a dashed-gray box in Fig. 4 and red squares in Fig. 5), with each of the two 310

peaks located at the same position as the unimodal steady-state peaks on either side of 311

the boundary. We interpret this as the coexistence of two different quasispecies. 312

In addition to the first-order phase transition, there is a second transition that spans 313

moderate-to-high permissivity between low and moderate immunity, which we refer to 314

as the “vertical” phase boundary. This boundary differs in that it changes from second- 315

to higher-order as permissivity increases, smoothly shifting to an infinite-order crossover 316

region as T approaches infinity. Even in that regime, the order parameter changes by 317

almost 40% across a region spanning only 0.2 in A. Hence, the vertical boundary 318

divides phase space at moderate-to-high T into two distinct and separate regions. As 319

described earlier, it marks the boundary between viral match-number distributions that 320

have order parameters more strongly determined by mutational pressure and those 321

determined by immune pressure. 322

In particular, we note that we do not have a critical point where the phase boundary 323

makes a bend from horizontal to vertical. We do not see a supercritical phase around 324

the cusp, as the crossover region that extends diagonally from that point to A = 0, 325

T ⇡ 5 appears to be continuous for all derivatives. However, we do see some unusual 326

oscillatory behavior in that region for very small A around T = 5, which we discuss 327

later. 328

The phase portraits for the two initial conditions exhibit one major difference: in the 329

low-permissivity region (lower half of the phase portrait), we see a dramatically smaller 330

zone of extinction (white X’s) for the uniform initial distribution than for the “natural” 331

initial distribution, which lacks viruses at high m. 332

As noted before, the two phase portraits exhibit identical steady-state results for the 333

order parameters (and indeed, as we shall see below, viral population size) in 334

non-extinct regions. These results, when considered with similar observations for other 335

measurements shown throughout this work, give credence to the existence of a unique 336

non-zero steady-state for each permissivity-immunity pair, a seemingly emergent result 337

that we did not expect given the non-linearity of the model. 338

Viral load 339

Viral load is, perhaps, the greatest indicator of infection intensity in a clinical context. 340

Here, we explore three types of viral load: intracellular/inside cells, 341

extracellular/environmental, and total (the sum of intracellular and extracellular). 342

Based on the results of this section, we conclude that the three phases correspond to 343

three real disease classes: “acute,” “chronic,” and “opportunistic.” 344

In Fig. 6 we show the steady-state values of these measures for uniform and natural 345

initial distributions. Here, “viral load” is defined as the ratio of the number of viruses at 346

a point in phase space to the maximum allowable viral population (c' = 20, 000 in the 347
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environment and c = 1, 000 in cells); the total viral load is defined as the sum of these 348

ratios and is the total viral occupation after infection and the immune response. We 349

find that both the intracellular and extracellular viral load landscapes are generally 350

well-partitioned by the order parameter-derived phase boundaries. This observation 351

further reinforces that the phase transitions extend throughout the properties of the 352

system. 353

Fig 6. Viral loads in the environment and in cells are well-separated by the

phase boundary and demonstrate a fixed-sum rule. (A) Viral load in the
environment. (B) Detail of viral load in the environment, confirming discontinuity at
the first-order phase boundary. (C) Viral load inside cells. (D) Total viral load. Values
shown are from uniform initial distribution simulations but are nearly identical to those
from natural initial distribution simulations. Viral loads range from 0 to 1, shown in
color ranging from dark purple to bright yellow (0-1, colorbar in D), except for panel
(B). White X’s denote points in phase space where uniform initial distribution
simulations go to extinction. Points below the black solid line fall in the natural initial
distribution extinction regime. White spline is overlaid from Fig. 5, as in other figures.
Red squares designate points with bimodal match number distributions at steady state.

Comparing the viral loads in the environment (Fig. 6A) and inside cells (Fig. 6C) 354

shows that, unexpectedly, the total viral load (Fig. 6D) does not depend on either 355

permissivity or immunity for large regions of phase space. This suggests that certain 356

quantities in the model are subject to conservation rules. This effect is most apparent 357

for low immunity (A < 0.08), where viruses are predominantly in the environment at 358

high permissivity and gradually shift into cells as permissivity decreases. The largest 359

shift in viral load between cells and the environment takes place roughly around the 360
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crossover region (from T ⇡ 10 to T ⇡ 20, see Fig. 6B). As permissivity decreases, 361

making infection and replication more difficult, viruses that enter cells are more likely 362

to remain in cells rather than replication at these low levels of immunity. This has two 363

effects: fewer new viruses enter the environment at the end of each iteration, and a 364

dwindling number of cells are available to infect at the beginning of each cycle. 365

Together, these lead to a shift in viral occupation from the environment into cells. 366

In contrast, we see in phase I that the total viral load depends heavily on immunity. 367

In fact, there is a linear dependence of total steady-state viral load on immunity, as we 368

show analytically in the supplement (S1 Appendix, section 3). Unexpectedly, at very 369

low permissivity (T < 0.25) for the uniform initial distribution, the environmental viral 370

load (Fig. 6A) jumps from low values at A = 0 to high values at A ⇡ 0.02, then 371

decreases as immunity increases. To understand this further, at the very lowest value of 372

T = 0.1, we are able to use perturbation theory techniques to analytically predict the 373

viral loads: we predict a maximum in viral load that depends on permissivity and find 374

that the results from perturbation theory at T = 0.1 match the simulations very well 375

(error < 1%). We include a derivation and further details in the appendix (S1 Appendix, 376

section 4; Supplementary Figs. S1 Fig, S2 Fig). 377

From these calculations we learn that the change in viral load at low T as immunity 378

increases is the combined result of four pressures: the finite number of infectible cells, 379

low permissivity, mutation, and immunity. 380

We explain these results semi-quantitatively here. At A = 0 and very low T , the 381

system only allows viruses with either m = 49 and m = 50 to infect and replicate. At 382

such low T , there is a large asymmetry between the infective and reproductive abilities 383

of the two types of viruses: both are able to infect well (Fig. 1A), but m = 50 viruses 384

can replicate and escape into the environment far better than m = 49 viruses (Fig. 1C). 385

At A = 0, both m = 49 and m = 50 viruses enter cells, but only m = 50 leave. When 386

m = 50 viruses replicate, they produce a large number of both m = 49 and m = 50 387

viruses. Each iteration, additional m = 49 viruses enter the cells but do not leave. 388

Eventually, all of the cells are filled with m = 49 viruses, preventing m = 50 viruses 389

from infecting. The population in cells is maximum and the population in the 390

environment is 0. 391

As A increases, an increasing number of viruses inside cells are killed off. Initially, 392

for low A, this allows more m = 50 viruses to infect at the beginning of the next 393

infection cycle. However, as A increases, this process reaches a maximum, with larger A 394

killing off viruses faster than they are able to refill cells, leading the steady-state viral 395

load both inside cells and in the environment to decrease. This trend of environmental 396

viral load growing and then shrinking as A increases extends to higher values of 397

permissivity (Fig. 6A) throughout phase I. 398

In phase III we also see a broad region with high viral load, but in this case it is for 399

the viral load inside cells, and as a function of permissivity rather than immunity. We 400

refer specifically to the region above the horizontal phase boundary, roughly bounded by 401

T = 11 and T = 20 and A > 0.2. We explain this in the following way. Starting from 402

high permissivity, as T is lowered at fixed A, low-m viruses gradually lose the ability to 403

replicate but maintain their ability to infect (Figs. 2A, C). This leads to large 404

accumulation of viruses inside cells, and with low m they evade the immune response, 405

resulting in a broad maximum across all A. Decreasing T still further across the phase 406

boundary, however, enables high m viruses to reproduce in sufficient number to 407

overcome the immune response, leading first to coexistence with low m viruses around 408

the horizontal phase transition and then outcompeting low m viruses into extinction. 409

Finally, we focus on the high permissivity regime (Phase II, T > 130), where at zero 410

immunity the environmental viral load reaches its maximum, as all viruses that infect 411

are able to replicate. As immunity increases, the environmental viral load initially 412
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decreases linearly, but the high level of permissivity quickly enables viruses with low 413

match number to survive and replicate regardless of immunity. The viral load in cells is 414

very low in this region because all viruses are likely to replicate, regardless of m. 415

In summary, our analysis of the steady-state results has led to the following findings. 416

First, there are three distinct phases of viral types, separated by phase transitions of 417

varying order and crossover regions. Secondly, the phase transitions and crossover 418

regions seen in the order parameter emerge in the population size landscapes as well. 419

Thirdly, the size and location of extinction regions varies with the initial conditions. 420

Lastly, viral extinction is more likely to occur at lower permissivity and higher 421

immunity. 422

These results lead us to postulate that each of the three phases corresponds to a 423

disease type affecting humans in real life. Firstly, we suggest that the class of viruses 424

below the horizontal phase boundary (Phase I), due to their persistent reproductive 425

ability at nearly all immunities, corresponds to “acute” viral infections brought on by 426

viruses that are highly adaptable (via mutations) and generally infectious, such as the 427

influenza viruses, rhinoviruses, and others, including SARS-CoV-19 [36,37]. Also, in 428

this region, the total viral load exhibits a strong inverse dependence on immunity, 429

concluding with regions of total viral extinction for high immunity. Notably, the region 430

of extinction is larger in the case of the more lifelike natural distribution, which does 431

not contain contributions from the extremes of the match number spectrum. 432

Secondly, we see in Phase III, without the pressure from low permissivity, viruses 433

with low steady-state match number are able to survive while consistently evading the 434

immune response. Even if immunity is increased in this phase, we find that there is no 435

clear resolution of viral infection, consistent with the physiology of long-term, chronic 436

diseases. We thus associate this phase with “chronic” viral infections, as this behavior 437

matches well onto the set of viruses that stay primed in the body for many years, such 438

as varicella-zoster (chicken pox/shingles), hepatitis B and C, and HSV [38–41]. 439

Lastly, in Phase II, we see that low immunity and high permissivity result in a high 440

environmental and total viral load. These viruses also do not go extinct, regardless of 441

initial conditions. However, even a small increase in immunity leads to a relatively large 442

decrease in viral load. As such, we associate this phase with “opportunistic” viral 443

infections with high viral loads that only generally present in immune-suppressed and 444

-compromised individuals, such as cytomegalovirus and JC virus [8, 42]. 445

Moving forward, we therefore refer to the three phases as “acute” (Phase I), 446

“opportunistic” (Phase II), and “chronic” (Phase III). We now go on to explore the 447

dynamics of this model, beginning with the time to steady state, with two main 448

questions in mind: (1) do the dynamics also reflect the phase transition, and (2) how 449

are the dynamics of viral infections in the three phases related to the three classes of 450

viral infections described above. 451

Dynamics 452

Time to steady state 453

We now look at the time to steady state, shown in Figs. 7A, B (with convergence 454

defined in Eqs. 9a,b). To determine a realistic timescale for iterations in our model, we 455

consider experimental data from with real biological diseases. 456

Using infection dynamics data from studies of a range of viral diseases, including flu, 457

and SARS-CoV-19, we can approximate the length of a full infection and replication 458

cycle (i.e. cellular generation interval) as 0.5 days [43, 44]. Based on this approximation, 459

we find that “acute” infections resolving in total viral extinction generally correspond to 460

an illness duration of less than one month, similar to what is observed in the 461

clinic [45, 46]. Further reinforcing this point is the observation that increasing immunity 462
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Fig 7. Convergence landscape is well-separated by phase boundaries and

reflects a range of dynamic behaviors. (A) Iterations to convergence, Uniform
initial distribution. (B) Iterations to convergence, Natural initial distribution. (C)
Environmental match-number probability distribution scaled by viral load, uniform
initial distribution. (D) Environmental match-number probability distribution scaled by
viral load, Natural initial distribution. Panels A and B depict the iterations to
steady-state on a log-10 scale as colors ranging from purple (1 iteration) to yellow (105

iterations) and black (< 1 iteration). Panels C and D have an x-axis ranging from 0 to
50 and a y-axis scaled to show maximum dynamic range. Bimodal distributions are
denoted by red boxes (A and B) or enclosure by gray dashed lines (C and D). Extinction
is denoted by white X’s (A and B) or enclosure by black dashed lines (C and D).

leads to more rapid viral clearance, as is to be expected for acute viral infections. In 463

contrast, for “chronic” infections in the upper-right region of the phase diagram, the 464

time to steady state ranges from hundreds to thousands of iterations. Using the 465

approximate cellular generation interval for HIV-1 (2.6 days) for a single iteration in 466

this region, we find that the system exhibits the months- to years-long timescale typical 467

of chronic and persistent viral infections [47,48]. For the “opportunistic” phase, we find 468

times to steady state that are close to but shorter than those of the “chronic” region. 469

These results give confidence that the model reflects biologically relevant dynamics and 470

reinforces the association between different phases and different disease types. 471

We move on to other observations regarding Figs. 7A, B. In line with earlier results, 472

we see that the order parameter-derived phase boundary (white spline) overlays neatly 473

on the landscape of iterations to steady state, reinforcing the finding that nearly every 474

property of this system reflects the phase transitions. 475
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The most marked feature of this data occurs along the horizontal phase boundary, 476

where we see a series of narrow horizontal regions exhibiting an unusually large number 477

of iterations to convergence (yellow to yellow-green stripes). These long-lived 478

simulations all exhibit bimodal match-number distributions, both at steady state 479

(Fig. 4) and during the dynamics (Figs. 7C, D). We note that some points in these 480

regions exhibit meta-stability (see S3 Fig) lasting many iterations (tens of thousands, in 481

some cases) before finally and suddenly converging to steady state. 482

The metastable states explored around these values of T and A exhibit probability 483

distributions and viral loads very close to those at steady state. We can therefore view 484

the progression of these simulations as natural experiments in which the metastable 485

states serve as initial conditions that are small perturbations from steady state. Seen in 486

this way, the very long time to steady state serves as evidence of “critical slowing down,” 487

a phenomenon typically seen near phase transitions in a wide variety of dynamical 488

systems [49]. 489

As mentioned, we also see, after large numbers of iterations, that metastable states 490

abruptly shift to steady state. This phenomenon is known in the context of glassy 491

dynamics as “quakes” [50]. Glassy dynamics typically involve a competition between 492

closely-balanced environmental pressures (e.g., energy and entropy), reflecting a 493

complex energy landscape with many similar minima that lead to long exploration 494

times [51]. Such behavior is exactly what we see in our system (see, e.g., S3 Fig) for a 495

subset of values of T and A adjacent to the horizontal phase transition. We also note 496

that, although points in phase space along the horizontal boundary exhibit the 497

long-lived behavior typical of competing pressures, the regions above and below that 498

boundary show moderately to dramatically decreased iterations to steady state, 499

reinforcing that the phase boundary is a narrow region of maximally competing viral 500

adaptation strategies. 501

Examination of the dynamics provides additional insight into the causes of viral 502

extinction. In Fig. 7B we see that the region of extinction consists of two blocks, shown 503

in black and blue. At very low permissivity, viruses fail to survive beyond the first 504

round of infection (black). At higher permissivity, viruses persist for relatively brief 505

periods of time before going extinct (purple and blue, tens to hundreds of iterations). 506

Thus, we can see that viral extinction in this model is a dynamic process that is 507

strongly dependent on both the immunity and the initial conditions. 508

Finally, we consider the time to steady state of viruses that survive in the “acute” 509

region. At A = 0 and T ⇡ 3� 5, we unexpectedly find an entire region of phase space in 510

which the steady state of the system is oscillatory (bright yellow, S4 Fig). There, the 511

system reaches a dynamic steady state with effectively infinite convergence time: no 512

single steady-state quasispecies distribution is associated with those values of T and A. 513

Instead, the system oscillates in viral load by up to 200 viruses and in mean match 514

number by �m = 1 (more details in S4 Fig). Considered in the broader context of the 515

“acute” region, we can interpret the periodic behavior as the dramatic culmination of a 516

trend that appears throughout the entire region: the time to steady state is very low at 517

high A and low T , and progressively increases as one diagonally approaches the 518

subregion with oscillatory steady states. There, the pressures of permissivity and 519

mutation (energy and entropy) are effectively equal, resulting in a finely balanced 520

two-state system, moving slowly over time between one state and the other. 521

Scaled distribution dynamics 522

We now consider the dynamics of the quasispecies distributions, shown in Figs. 7C, and 523

D. The dynamics of the distributions give additional insight into two patterns in 524

steady-state results seen earlier: 1) In the low T “acute” region, the peaks of 525

steady-state distributions increase to higher m as A increases at fixed T ; 2) In the 526
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higher T “chronic” region, the peaks of steady-state distributions shift toward lower m 527

as permissivity decreases at fixed A. 528

At very low T , in the “acute” phase, we see considerable mutation, as is 529

characteristic for many viruses associated with acute infections. The pressure of 530

permissivity dominates, preventing all but the highest match-number viruses from 531

replicating. At lower A (A < 0.5), the viral quasispecies begin at high m but are able to 532

shift over time to lower m by mutation. As immunity increases, however, viruses have 533

less and less time to shift to lower m before being eliminated by the immunity, leading 534

to steady-state distributions stuck at higher m. We note a similar effect as permissivity 535

increases at low A, where the entropic pressure of mutation is increasingly able to push 536

the virus towards m = 14, the point of highest viral sequence degeneracy (the number of 537

different ways to form a virus of match number m). 538

In the higher-T “chronic” region, the pressure from immunity is greater than that of 539

permissivity, enabling only low-m viruses to survive. The peaks of steady-state 540

distributions in this region shift toward lower m as T is decreased at moderate A 541

because, even with reduced infection and replicative capabilities, viruses are best able to 542

survive by evading the immune response. The dynamic behavior in this region varies 543

according to initial conditions because, while the “uniform” distribution already has 544

low-m viruses, the “natural” initial distribution does not and thus needs to evolve 545

viruses with that property. Notably, the “uniform” distribution simulations show very 546

low-m viruses initially infecting, which then mutate and shift over time to increase m 547

and reach their steady states. We see in particular near the horizontal phase boundary 548

that, although higher-m viruses infect early on, they are cleared by the immune 549

response, enabling the more evasive low-m viruses to remain in cells and replicate, 550

albeit to a limited extent. This is an analogous effect to what we see in the “acute” 551

region, where viruses with the other extreme value of m initially dominate and then 552

slowly evolve into a less extreme steady state. 553

We also note that bimodality in the distribution dynamics is much more common 554

than bimodality at steady state. For T and A around the horizontal phase transition 555

(13.5  T  58.5, 0.18  A  0.73, we see the emergence of bimodality in the dynamics 556

early on for the “uniform” initial distribution. However, over time, the dominant 557

pressures for the relevant regions cause one of the two dynamic quasispecies to go 558

extinct, except for at the phase boundary itself. 559

Viral load dynamics 560

We now discuss the dynamics of the viral loads inside and outside cells, which we show 561

in Fig. 8. We observe two different timescales for the population dynamics: a faster 562

“calibration” timescale that is strongly dependant on initial conditions, and a slower 563

timescale reflecting the phase-specific viral strategy. This difference in behavior during 564

shorter timescales reflects the effects of viral infection in humans, where early reactions 565

to infections depend heavily on the individual, their immune response, and the viral 566

load; while longer-term effects of a particular viral infection are more similar across 567

larger populations. 568

The overarching theme for the following results is that the phase boundary divides 569

parameter space into regions of distinct relationships between the viral loads inside and 570

outside cells for both initial conditions. We find two trends: the viral loads in the 571

environment and within cells are either correlated or anti-correlated. In the 572

“opportunistic” and “acute” regions, we observe anti-correlated behavior for both initial 573

conditions. In these regions, the total viral load reaches its steady-state value during the 574

fast timescale. Therefore, during the majority of the dynamics shown in Fig. 8, a 575

change in the environmental viral load must lead to an equal and opposite change in the 576

intracellular viral load. 577
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Fig 8. Dynamics of population size exhibit distinct behavior across the

phase boundary. (A) Uniform initial distribution. (B) Natural initial distribution.
Black axis and solid line, viruses in the environment. Red axis and dashed line, viruses
inside cells. Black dotted line, steady-state value for viruses in the environment. Red
dotted line, steady-state value for viruses inside cells. Horizontal axis is iteration
number, a proxy for time. As in other figures, the phase boundary is overlaid as a
dashed dark gray line between subplots, with points along the phase boundary boxed by
the dashed line.
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By contrast, we observe correlated scaling of the viral loads in the “chronic” phase. 578

In this phase, heightened immune clearance and lower match numbers slow the growth 579

of the total viral load, which can only converge at the rate of its slowest constituent 580

component. We note the remarkable scaling at high permissivity and high immunity, 581

where the viral loads within cells and in the environment grow in lockstep, in particular 582

for the natural initial condition (Fig. 8B). Importantly, the viral load dynamics in this 583

phase show how a high total viral load can be reached in non-immunocompromised 584

humans. 585

Finally, we note that it is not universally true that the within-cell and environmental 586

viral loads grow monotonically throughout disease progression. Rather, we see a 587

complex set of dynamics, where the viral loads in the environment and in cells have 588

different values and strive through the various pressures to meet the most fit state 589

relative to the given environmental conditions. Therefore, while it is possible to make 590

general statements regarding the growth of the system from its initial conditions, the 591

fine details of change depend heavily on the relative interplay of the five systemic 592

pressures. The whole of this serves as a prediction for the infection dynamics of viral 593

diseases, for which time-resolved in vivo observations are not yet possible. 594

Discussion 595

In this work, we have shown how a collection of viruses that infect cells, face an immune 596

response, replicate, and mutate, can lead to a system exhibiting multiple behaviors 597

corresponding to three distinct phases of a phase diagram separated by both first-order 598

and continuous phase transitions. These phases emerge in a space we construct from the 599

two main parameters of our model, permissivity (T ) and immunity (A), and exhibit 600

self-consistent properties unique to each phase. 601

Collectively, the pressures of permissivity, immunity, mutation, entropy, and the 602

available pool of infectable cells compete, leading to three distinct classes of viral 603

populations that correspond to the three different phases. In the high-permissivity and 604

low immunity phase (Phase II), viruses are primarily directed to steady state by entropy 605

in the form of mutational burden. In the high permissivity and moderate-to-high 606

immunity phase (Phase III), viruses are driven to steady state by an attempt to evade 607

the immune response (through decreased m), enabled by the uniformly high infection 608

rate at high permissivity. In the low permissivity phase (Phase I), infection and 609

replication are only possible at higher match number, leading to an 610

immunity-dependent push toward steady-state quasispecies distributions with 611

decreasing width and increasing match number. Taken to the extreme, the restrictions 612

of low permissivity and high immunity lead to the complete extinction of viruses, even 613

for the uniform initial distribution. 614

We link the three general classes of viruses from our model to infection types 615

affecting humans in real life: acute, chronic, and opportunistic. Firstly, we suggest that 616

the class of viruses below the horizontal phase boundary (Phase I), due to their 617

persistent replicative ability at nearly all levels of immunity, corresponds to “acute” 618

viral infections brought on by viruses that are highly adaptable and generally infectious, 619

such as the influenza viruses, rhinoviruses, and many coronaviruses [36, 37,52,53]. 620

Secondly, viruses at a broad range of immunity above the horizontal phase boundary 621

(Phase III) can be identified with “chronic” infections: low match numbers enable them 622

to persistently evade the immune response. Such behavior matches well onto the set of 623

viruses that stay primed in the body for months to years, such as varicella-zoster 624

(chicken pox/shingles), hepatitis B and C, and HSV [38–41]. Lastly, at high permissivity 625

and low immunity (Phase II), viruses exhibit moderately low match numbers, 626

corresponding to highest viral sequence degeneracy. These viruses map well onto 627
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“opportunistic” viral infections that only generally present in immune-suppressed and 628

-compromised individuals, including cytomegalovirus and JC virus [8, 42]. 629

Our results reinforce this interpretation in several ways. Firstly, in the “chronic” 630

phase, we find that there is no clear resolution of viral infection even if immunity is 631

increased, consistent with the physiology of long-term, chronic diseases. We contrast 632

that with the “opportunistic” phase, where even a small increase in immunity leads to a 633

relatively large decrease in viral load, as is to be expected for this type of disease. 634

Finally, in the “acute” phase, the level of immunity has a large effect on the rate of 635

recovery, as evidenced by the corresponding decrease in time to steady state and 636

increase in extinction probability. This reflects the typical resolution of acute viral 637

infection after the development of an immune response. 638

We can also ask what the model would suggest to drive viruses causing these 639

diseases to extinction. Firstly, we judge it more likely that an individual receives an 640

initial bolus of viruses that more closely resembles the “natural” distribution than the 641

“uniform” distribution. For the “natural” distribution, there is a large region of viral 642

extinction in our phase space. With this in mind, we can now analyze infection types. 643

For an “acute” infection, the only guaranteed paths in our model to viral extinction are 644

to decrease permissivity and/or increase immunity. However, in those patients for whom 645

an increase in immunity is not possible, our model suggests that only a drastic decrease 646

in T , likely via inhibiting general aspects of viral replication, will significantly decrease 647

viral load. For the other two types of infections, only by decreasing T to meet the 648

horizontal phase boundary can full extinction be attained. Supporting that idea, we 649

note that for patients with “chronic” diseases such as hepatitis C, increasing the level of 650

immunity is often insufficient on its own to cure the underlying disease, a result also 651

found in our model [54, 55]. 652

For a broader initial distribution of viruses, our model leads to a non-zero viral load 653

in steady state for all but the highest levels of immunity. Based on our model, we posit 654

that wellness may be attained without the total clearance of viruses. While high levels 655

of viral load more often correspond to severe disease, low viral loads may not lead to 656

any symptoms; indeed, prior work has shown that a non-negligible proportion of the 657

population tested positive for flu antigen but did not exhibit any symptoms [56,57]. 658

In considering future work to improve the model, we suggest four high impact 659

modifications corresponding to increasing levels of complexity. Firstly, rather than 660

keeping secondary parameters constant, such as the mutation rate and fecundity, we 661

believe that it would be useful to see the effects of varying individual parameters across 662

different phases and within individual simulations, reflecting the variation in mutational 663

and replicative rates across different viruses [58, 59]. 664

Secondly, we propose implementing an immune module that is capable of actively 665

updating and expanding its memory. In its present form, our model’s immune response 666

exhibits a static memory with a solely match number-dependent level of response 667

representing a fixed past history. In humans, however, the adaptive immune system 668

actively recognizes new threats, generates a response, and stores the capability to 669

respond in memory [60]. In its simplest form, adaptive immunity could be modeled by 670

dynamically changing A during a single simulation. A truly adaptive immune system 671

would likely substantially increase the size of extinction regions, as static quasispecies 672

would be hard pressed to exist for extended periods of time. 673

Thirdly, it is also possible to extend this model beyond the cell-virus regime to 674

include a broader environment, allowing for interactions between individuals or 675

populations, as is typical in standard epidemiological approaches. One way to include 676

patient-patient interactions would be to suddenly introduce new viral quasispecies 677

during the course of a simulation. Alternatively, subsets of cells could be assigned 678

distinct receptor sequences and then allowed to infect one another. 679
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Finally, we discuss modifications that can be made to inform the development of 680

novel viral therapeutics by directly incorporating and evaluating the effects of existing 681

antiviral therapeutics into simulations. Doing so requires a moderate level of 682

modification to the existing code, as antivirals interrupt viral replication across a wide 683

range of points throughout the infection cycle; however, this modification would 684

effectively demonstrate the usefulness of this model in evaluating novel therapeutics at 685

an early stage for low cost. 686

We believe that aspects of our model may be tested through biological 687

experimentation in mice or other model organisms. Although our model cannot at this 688

time provide quantitative predictions for experimentally measurable quantities, it 689

should still be possible to test qualitative aspects. In particular, we are deeply curious 690

about testing for the existence of the reported first-order phase transition in a biological 691

system. We describe one possible set of experiments in the appendix (S1 Appendix, 692

section 7). 693

Conclusion 694

In summary, we find that our relatively simple analytic model for within-host viral 695

infection and evolution produces a wide variety of lifelike features and interesting 696

physical phenomena. Results for steady states and the dynamics reveal an underlying 697

set of phase transitions and crossover regions. The phase transitions and crossover 698

regions partition three main phases corresponding to distinct classes of quasispecies 699

behavior, both at steady state and in the dynamics, which we map onto three broad 700

categories of human-infecting viruses. We observe a wide range of phenomena across 701

multiple timescales, including glassy dynamics, bimodal quasispecies distributions, and 702

periodic steady states. Based on these results, as well as the promise of extensions made 703

possible by its modular structure, we believe that our model can be used to gain deeper 704

insight into the complex interactions between infection mechanisms, host immune 705

defenses, and the dynamics of viral evolution. 706
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1 Infection rate 1

In this section we derive equations for the infection rate in our model. To start, we will 2

calculate the probability that a single virus will infect any one single cell of the c total 3

cells encountered within the host. We do this because, in this framework, each virus will 4

either infect a single cell or not infect at all. It may be the case that some proportion of 5

cells are already occupied, which will reduce the probability that a virus infects a cell. 6

The probability of a single virus infecting is 7

Probability(the virus infects at cell 1) =

em1(1� �0) ⌘ x =) x  1,

where em1 = exp(�(50�m1)/T ) (Eq. 1 in main text) is the probability that a virus of 8

match number m1 can infect a single isolated cell at permissivity T and �0 is the 9

probability that the cell has already been infected (the sum over all m m of the 10

probability that the cell was already in an occupied state by a virus of match number 11

m). 12

We can now calculate the probability that the virus infects any one cell in the pool. 13

This value is equal the sum of the probabilities that: the virus lands and infects at the 14

first cell (cell 1); that it does not infect at cell 1, but does at cell 2; that it does not 15

infect at cells 1 or 2, but does at cell 3; ...infects at none of the previous cells, but does 16

so at cell c. Mathematically, this is represented by: 17
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Probability(the virus infects the second cell but not at the first cell)

= x(1� x)

Probability(the virus infects the third cell but not at the first two cells)

= x(1� x)2

note that this is equal to the quantity x(1� x(1� x))

Probability(the virus infects the fourth cell but not at the first three cells)

= x(1� x)3

...

Probability(the virus infects the c-th cell but not at the first c-1 cells)

= x(1� x)c�1

Probability(the virus infects any cell)

=
c�1X

k=0

Probability(the virus infects the (k+1)-th cell but not at the first k cells)

= x+ x(1� x) + x(1� x)2 + ...+ x(1� x)c�1

= x

c�1X

k=0

y
k , where y = (1� x)

= x
1� y

(c�1+1)

1� y

= x
1� (1� x)c

1� (1� x)

= [1� (1� x)c]

Here we can see that the probability for a virus to infect at any one cell is equal to 18

one minus the probability that it does not infect at any cell. We note that the spatial 19

distribution of the cells has disappeared from these expressions, consistent with model. 20

Substituting in the original variables gives 21

Probability(a virus infects any cell) = 1� [1� em1(1� �0)]
c
. (1)

How do we account for the distribution of viruses? The probability that a virus 22

emerging from the collection of viruses in the environment of being match number m is 23

equal to Pm. Once the virus has begun attempting to infect cells, the distribution has 24

no further bearing on that particular virus’s ability to infect, as it already has a match 25

number m. Therefore, the probability that the first virus infects with match number m 26

is 27

Pm[1� (1� em(1� 0))c]. (2)

To convert this probability of the first virus infecting a particular cell into one of 28

infecting any of the cells in the infectible pool, we divide by c to obtain the total 29

additional infection probability added by the first virus, ⇤1
m: 30

⇤1
m =

Pm

c
[1� (1� em(1� �0))

c
]. (3)
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The total probability per-cell, including the previously occupied cells, is now
updated to be:

 1
m = ⇤1

m + 0
m (4a)

�1 =
X

m

 1
m. (4b)

In our system, the initial cellular occupation is given by the viruses remaining in 31

cells,  R: 32

 0 =  R

�0 =
X

m

 R
m.

Once the first virus has had an opportunity to infect, the second virus emerges and 33

attempts to infect. The existing level of cellular occupation that it encounters must now 34

take into account both the pre-infection probability of occupation and the probability 35

that the first virus successfully infected: 36

⇤2
m =

Pm

c
[1� (1� em(1� �1))

c
] (5a)

 2
m = ⇤2

m + 1
m (5b)

�2 =
X

m

 2
m. (5c)

This process continues until the N -th virus has had an attempt to infect: 37

⇤N
m =

Pm

c
[1� (1� em(1� �N�1))

c
] (6a)

 N
m = ⇤N

m + N�1
m (6b)

Thus, for a system with N viruses, the distribution of viruses that have infected cells
is

 I =  N
.

We note that the number of viruses in the environment after reproduction and
mutation is a real number. However, Eq. 6b requires an integer number of viruses.
Therefore, to determine the value of ⇤ for real N , we linearly interpolate the value of ⇤
between the two whole numbers of viruses nearest to N :

 I = (N � bNc) · ⇤dNe + (1� (N � bNc)) · ⇤bNc
. (7)

2 Mutation Matrix 38

Viral progeny may have match numbers that differ from their parent virion by
�m = �1, 0,+1. The equations determining the probabilities of mutation were derived
previously [1] and are repeated here:

P (m ! m� 1) :
w

100

m

1 + e�(m�10)/2
(8a)

P (m ! m+ 1) :
w

235.45
e
4.709(1�m/50) � 1 (8b)

P (m ! m) : 1� P (m ! m� 1)� P (m ! m+ 1), (8c)
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where m is the match number and w is the degeneracy of the chosen host cell receptor 39

sequence (with value 0.7867 from previous work). 40

3 Derivation of linear dependence of total viral load 41

on immunity in Phase I 42

For nearly all simulations in this regime, the total infection probability at steady state
is approximately 1 (

P
m 

I
m ⇡ 1). Also, the match-number distributions at steady-state

are centered and concentrated at relatively high m (m > 30), for which the immune
response is effectively constant and equal to A. Therefore,

X

m

 ⌅
m =

X

m

(1� ⌅m) I
m (9a)

⇡ (1�A)
X

m

 I
m (9b)

= 1�A, (9c)

demonstrating permittivity-independent linear scaling of total viral load with immunity. 43

Within the same phase, the viral load inside cells contrasts with that in the 44

environment by showing a super-linear and monotonic decrease from high to low value 45

as immunity increases. This can be explained as follows. As immunity increases, the 46

match number distributions shift towards higher m. At such low permittivity, the 47

probability that viruses remain inside cells (1 - em) exhibits exponential decay as a 48

function of increasing m. Therefore, as immunity increases, the probability that viruses 49

remain inside cells decreases super-linearly. 50

This result provides another explanation for the scaling behavior of the viral load in 51

the environment: subtracting a super-linearly decaying function from a linearly 52

decaying function gives a maximum in the difference. 53

4 Low-permissivity perturbation theory derivation 54

and results 55

In order to understand the limiting behavior of the model, we applied perturbation 56

theory appropriate for the low-permissivity regime to derive steady-state solutions for 57

the within-cell and environmental population sizes at steady state. 58

At sufficiently low permissivity, only viruses with m = 49 and m = 50 should make 59

non-negligible contributions to the system, so we constrain our consideration to include 60

only those types of viruses. Also, given such low permissivity, we expect the replicative 61

ability of m = 49 viruses to be negligible. In order to stay in the perturbative regime, we 62

must remain at sufficiently low permissivity such that m = 49 viruses do not reproduce, 63

as their reproduction would lead to an expansion of the variety of viruses present in this 64

system (thereby contradicting our initial assumption requirement for only two types of 65

viruses). Additionally, any viruses that remain inside cells after reproduction must have 66

match number equal to m = 49, as m = 50 viruses always reproduce with probability 1 67

and escape into the environment: thus, the entire within-cells viral population is exactly 68

the population of m = 49 viruses inside of cells. Therefore, whenever viruses replicate 69

into the environment, they must come from m = 50 progenitors in a proportion 70

determined by the mutation matrix: P (50 ! 49) ⇡ 0.39 and P (50 ! 50) ⇡ 0.61. 71

To derive steady state conditions at any immunity, we assume that the system is 72

near steady state and has some population inside cells (after reproduction) equal to µ. 73
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During the next iteration, just after infection by viruses in the environment, the cells 74

will be fully occupied if there were sufficiently many infecting viruses with m = 50 75

(m = 50 viruses have a near-certain probability of infecting unoccupied cells). 76

To calculate the updated infection probability of the m = 49 and m = 50 viruses, we 77

need to know the ratio of their infective abilities and also have some knowledge of their 78

infective abilities as a function of the prior level of infection, µ. 79

We first note that, when µ = 1, there is no additional infection. With this in mind, 80

we start by considering the additional infection of m = 49 and m = 50 viruses to each 81

be proportional to (1� µ) with different coefficients. 82

µ50 = a0(1� µ)

µ49 = b0(1� µ)

where a0 >> b0. 83

Note, however, that these equations would imply that the infectibility of m = 50 and 84

m = 49 have a constant ratio for any initial level of infection µ. We know this is not 85

correct, because for µ close to 1, the ratio of µ49/µ50 = b0/a0 must be much less than 86

its value when µ = 0. Given that new infection by m = 49 viruses is more sensitive to 87

the prior level of infection than that by m = 50 viruses (Fig. 2A of main text), we now 88

try the next-simplest approximation and say that: 89

b0 = b1(1� µ)

=) µ49 = b1(1� µ)2

We now impose the sum rule, which says that the new total infection by m = 49 and 90

m = 50 viruses is equal to 1: 91

µ49 + µ50 = 1� µ

=) µ49 + µ50 + µ = 1

Thus, 92

µ49 = b1(1� µ)2

µ50 = (1� µ)� µ49

= (1� µ)� b1(1� µ)2

To test whether this is a reasonable approximation for infection at very low 93

permissivity, we need to choose a permissivity satisfying the aforementioned constraints 94

but is also sufficiently large that simulations at that permissivity will reach steady-state 95

in a reasonable amount of time. Accordingly, we choose a sample permissivity of 96

T = 0.1, as e49 ⇡ 4.5 ⇤ 10�5. 97

To test this, we calculate the cell occupancy just after infection for m = 49 and 98

m = 50 viruses. In particular, we assume 1000 cells and 10,000 viruses (however, the 99

calculation is insensitive so long as the number of viruses exceeds 3,000 for c = 1000). 100

The output of the infection process gives 101

 = ( 0, 1, . . . , 49, 50) (10)

= (0, 0, . . . , 0, 49, 50) (11)
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with our hypotheses:

 49 = µ+ µ49 = µ+ b1(1� µ)2 (12)

 50 = 0 + µ50 = (1� µ)� b1(1� µ)2 (13)

We then isolate b1(1� µ) from each of the hypotheses and compare them to the
calculated results:

b1,from  49 =
 49 � µ

(1� µ)2
(14)

b1,from  50 =
(1� µ)�  50

(1� µ)2
(15)

In Supplementary Figure 1, we plot b1 as determined from each of  49 and  50, as 102

well as the average value of b1 calculated across all initial µ. We find that b1 is very 103

nearly constant across all initial µ, that the values of b1 are identical regardless of 104

whether they are calculated from  49 or  50, and that the averages across all initial µ 105

are the same for both  49 and  50. This validates our initial approximation. 106

Given this result, we can now determine the self-consistent, steady-state solutions for 107

the viral populations. We take b1 to be the value calculated for µ = 0 so as to be 108

consistent with the perturbative expansion. 109

We begin with some prior infection level µ. As determined above, the cell occupancy 110

just after infection is: 111

 49 = µ+ b1(1� µ)2

 50 = (1� µ)� b1(1� µ)2

where b1,µ=0 = 0.01423388 for T = 0.1. 112

Immune activity reduces the viral population as expected: 113

 ⌅
49 = (1�A)[µ+ b1(1� µ)2]

 ⌅
50 = (1�A)[(1� µ)� b1(1� µ)2].

The viral load within cells after reproduction is:

 R
49 = (1� e49)(1�A)[µ+ b1(1� µ)2]

and, as e49 ⇡ 10�5
<< b1 =) 1� e49 ⇡ 1,

 R
49 ⇡ (1�A)[µ+ b1(1� µ)2]

 R
50 = 0.

As only m = 49 viruses will remain inside cells, the final within-cell viral population
is:

(1�A)[µ+ b1(1� µ)2] (16)

To determine the steady-state values, we now set the final within-cell population to 114

µ, giving us a final, self-consistent equation for the within-cell population at steady 115

state in the perturbative regime: 116
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Supplementary Fig 1. Perturbation expansion validates quadratic
approximation. Blue solid line: average of b1 as calculated from  49. Red dashed line:
average of b1 as calculated from  50. Blue O’s: values calculated from m = 49
expression. Red X’s: values calculated from m = 50 expression.
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(1�A)[µ+ b1(1� µ)2] = µ (17)

=) µ
2 �


2 +

A

b1(1�A)

�
µ+ 1 = 0 (18)

This is a standard quadratic equation in µ with solutions: 117

µ
⇤
± =


1 +

A

2b1(1�A)

�
± 1

2

s
� A

b1(1�A)

�2
+

4A

b1(1�A)
. (19)

Inspection of the roots shows that the ‘+’ root exceeds 1, while the ‘�’ root falls 118

between 0 and 1, so we use the ‘�’ root moving forwards. 119

Given that the predicted within-cell population at steady-state is equal to µ
⇤(A), the

corresponding predicted environmental population at steady-state (scaled to 0-1) is:

Nenv(A) = (1�A)[(1� µ
⇤
�(A))� b1(1� µ

⇤
�(A))2]

Nenv(A) = (1�A)(1� µ
⇤
�(A))(1� b1(1� µ

⇤
�(A))2).

With these results in hand, we compare our predictions to the data from our 120

simulations, as shown in Supplementary Fig. 2. We see that there is excellent agreement 121

between the predictions and the data, except for where the simulations go extinct. 122

Relative percentage errors do not exceed 1% for either computed quantity. 123

The figures demonstrate that our approximation, assuming that cells are fully
occupied after infection, deviates from the data at both A = 0 and A ⇡ 1. At A = 0,
further analysis of the simulation dynamics shows that the system continues to evolve
very slowly towards a state of full cell occupancy, at which point no further viruses from
the environment can infect and reproduce, causing the environmental viral load to go to
0. At A ⇡ 1, study of the infection equations show that complete filling after infection
breaks down when N ⇡ 2c. Translating this into the self-consistent steady-state
equations gives a critical A⇤ at which this happens:

Nenv(A) = 20c(1�A)(1� µ
⇤(A))(1� b1(1� µ

⇤(A))2)

µ
⇤ ⇡ (1�A)b1/A for A ⇡ 1

=) Nenv(A) ⇡ 20c(1�A)(1� (1�A)b1/A)(1� b1((1�A)b1/A)2)

= 20c(1�A)(1� b1/A) +O((1�A)2) + . . .

When 2c = N :

2c = 20c(1�A
⇤)(1� b1/A

⇤)

=) 0.1 = (1�A
⇤)(1� 0.0142/A⇤)

=) A
⇤,+ = 0.898,

consistent with the data. 124
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Supplementary Fig 2. Perturbation theory accurately predicts
low-permissivity population sizes. (A) Within-cell population size. (B) Relative
percentage error of prediction and data for within-cell population size. (C)
Environmental population size. (D) Relative percentage error of prediction and data for
environmental population size. Red X’s: predictions from perturbation theory. Blue O’s:
values from uniform initial distribution simulation, T=0.1.
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5 Metastability of slowly-converging points in phase 125

space 126

In Supplementary Fig. 3 we show evidence of the system reaching metastability that 127

lasts for thousands of iterations. Please note the large scale of the iteration axes. 128

Additional tests for stability (simulation out to one million iterations) has show that the 129

system stays at the apparent final state to accessible limits. 130

Supplementary Fig 3. Points of very long convergence time demonstrate
metastability persisting for thousands to tens of thousands of iterations.

6 Periodic orbits 131

At zero immunity and T between 3 and 6, unexpectedly we find for both initial 132

conditions oscillatory-like behavior, which converges to periodic or pseudo-periodic 133

behavior. In Supplementary Fig. 4 we show, for T = 5.05, that both the order 134

parameter and population size oscillate, with the order parameter varying by 2% and 135

the population size varying by 13%. The values of these parameters exhibit periods of 136

⇡ 8000 iterations and continue to do so across the majority of the simulation. The 137

magnitude of these variations, especially compared to the number of significant figures 138

we keep for our calculations, suggests to us that the results are true reflections of the 139

model’s behavior and not an unintentional result of rounding or other numerical 140

phenomena. 141

Additionally, we find that the observed orbit is stable. In order to test the stability, 142

we induce large perturbations towards the end of simulations to try to send the 143

simulation toward a different steady state (perturbations include: within cell match 144

number distribution, environmental match number distribution, and environmental viral 145

load). In each case and in combination, all perturbations lead to a return to the same 146

steady-state oscillatory results. 147
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Supplementary Fig 4. Stable periodic orbit appears at low permittivity
and zero immunity. (A) Order parameter and viral population size exhibit periodic
behavior for tens of thousands of iterations. Red star indicates position at iteration
20000. (B) Order parameter value of viruses in the environment from iteration 20000
onward. (C) Population size of viruses in the environment from iteration 20000 onward.
Data in (B) and (C) are sub-sampled every ⇡ 500 iterations for visual clarity.

7 Experimental testing of model 148

As described in the Discussion, we believe that it would be interesting to evaluate this 149

model in an experimental context to gain insight into the relationships between 150

pathogen population dynamics, host defenses, and other pressures. We envision a 151

minimal viable test as follows. First, given that the first-order phase transition is most 152

apparent at values of A > 0.3, the host should demonstrate a moderate but suppressed 153

level of immune response. Next, a range of different strains of the host need to be 154

generated to correspond to a wide range of permissivity; this can be done either by 155

systematically modulating either the selectivity or number of the main host receptor 156

engaged by the virus for cellular entry. Lastly, for each host strain, a large number of 157

infection cycles need to be carried out, with fresh host cells of the appropriate strain 158

replenished after each cycle, potentially using a chemostat or continuous-flow technique. 159

If an analogous first-order phase transition is present in the experimental system, it 160

should appear in the form of a sharp extinction of one viral quasispecies, followed by the 161

emergence of a region favorable to a drastically different viral type on the other side of 162

the boundary, with the possibility of a limited amount of simultaneous presence in the 163

transition region. A complementary experiment would involve rapidly shifting a 164

steady-state viral quasispecies from a high permissivity host strain to a low permissivity 165

strain, which we predict will lead to rapid viral extinction. To avoid the complexities of 166

mammalian viral-host interactions, the aforementioned experiments may be able to be 167

performed in a suitable bacteriophage-bacteria system. If that is the case, it would be 168

interesting to see if the transition in quasispecies type corresponds to a transition 169

between lytic and lysogenic phage behaviors. 170
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