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Abstract

Dynamic Bayesian networks (DBNs) can be used for the discovery of gene regulatory networks from time series gene
expression data. Here, we suggest a strategy for learning DBNs from gene expression data by employing a Bayesian
approach that is scalable to large networks and is targeted at learning models with high predictive accuracy. Our framework
can be used to learn DBNs for multiple groups of samples and highlight differences and similarities in their gene regulatory
networks. We learn these DBN models based on different structural and parametric assumptions and select the optimal
model based on the cross-validated predictive accuracy. We show in simulation studies that our approach is better
equipped to prevent overfitting than techniques used in previous studies. We applied the proposed DBN-based classification
approach to two time series transcriptomic datasets from the Gene Expression Omnibus database, each comprising data
from distinct phenotypic groups of the same tissue type. In the first case, we used DBNs to characterize responders and
non-responders to anti-cancer therapy. In the second case, we compared normal to tumor cells of colorectal tissue. The
classification accuracy reached by the DBN-based classifier for both datasets was higher than reported previously. For the
colorectal cancer dataset, our analysis suggested that GRNs for cancer and normal tissues have a lot of differences, which
are most pronounced in the neighborhoods of oncogenes and known cancer tissue markers. The identified differences in
gene networks of cancer and normal cells may be used for the discovery of targeted therapies.
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1. Introduction

Learning gene regulatory networks (GRNs) from gene

expression data has been the focus of much research in the

last decades [1, 2, 3]. The precise knowledge of GRNs can help

to understand the molecular mechanisms driving diseases and

facilitate the search for targeted therapies [4, 5]. More recently,

a lot of research was focused on learning gene-gene interaction

networks that are specific to certain contexts, for example,

particular tissues or disease subtypes [6, 7, 8]. Moreover, it

has been shown experimentally that different mutations of the

same gene can cause distinct changes in signaling pathways

[9]. These studies suggest that gene interactions differ between

different phenotypic groups of the same tissue or disease type.

Moreover, context-specific GRNs can facilitate the discovery

of targeted therapies [10]. However, phenotypic differences are

mostly ignored in studies devoted to learning GRNs de novo.

Multiple computational methods can be used to learn

GRNs from observational data, including correlation analysis

[11], Boolean networks [12], Bayesian networks [13, 14],

and differential equation models [15, 16]. Bayesian network

approaches provide a good trade-off between the scalability and

interpretability of discovered networks but do not allow directed

cycles, rendering it impossible for them to model feedback

loops. The Dynamic Bayesian Network (DBN) model overcomes

this problem by including dependencies between nodes at

different time points and accommodating the possibility of

cycles [17]. DBNs were previously used for inference of

biological networks [18], including GRNs [19, 20, 21, 22, 23]

and multi-omics networks [24]. However, none of these studies

considered non-homogeneous datasets where DBN structures

may differ between groups of samples. Kourou et al. [25] were

the first to employ DBNs for classification, however, their

method was not scalable to network structures beyond 40 nodes.

Structure learning of DBNs is a computationally challenging

problem. Existing approaches are either not scalable [25, 23,

26], use greedy search [20] or restrict the DBN topology to

decrease computational costs and accommodate larger networks

[18, 24, 26, 27]. However, any restriction may potentially result

in the discovery of suboptimal models [28].

The goal of this study is to create a scalable framework

for learning DBN models that provide high predictive accuracy

and can be used for learning GRNs for multiple subgroups of

samples, defined, for example, by molecular, histological, or

clinical phenotypes. We employed a Bayesian approach [29] for

learning DBNs, which is scalable to networks with hundreds

of nodes and implemented in the R-package BiDAG [30]. Our

DBN learning strategy provides means to prevent overfitting
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of the DBN structure by filtering out low-confidence edges

and has not been applied to learning large GRNs before.

We extended the functionality of BiDAG such that it can be

used for classification and learning DBNs with parameters that

change over time.

Previous studies demonstrated better performance of the

Bayesian approach to structure learning compared to non-

Bayesian approaches [29, 8, 31]. However, these simulations

did not compare consensus models obtained via sampling from

the posterior and bootstrapping in the case of greedy hill-

climbing. In addition, limiting the parent set size was used

as a way to prevent overfitting in DBNs [18, 24] and to

decrease computational costs [26, 27]. However, the impact of

uniform restrictions of the parent set sizes on the structure

fit and predictive accuracy in large networks in the high

dimensional setting was never explored. In simulation studies,

we demonstrated how the Bayesian approach to structure

learning of DBNs is better equipped to prevent overfitting

compared to greedy hill-climbing coupled with a hard limit on

the number of parents per node. Among other ways to improve

predictive accuracy, we propose investigating models that use

prior biological information about associations between genes

or prohibit edges between nodes within the same time slice.

To demonstrate the advantages of the described approach,

we identified time-series datasets in the Gene Expression

Omnibus (GEO) database, that included gene expression data

for at least two different phenotypic groups of the same

tissue and comprised at least 50 observations in each of two

consecutive time slices. We found two datasets (GSE5462 and

GSE37182) that satisfied these criteria. The main question we

wanted to answer using our framework was if the phenotypic

groups in each dataset could be better represented by DBNs

with the same structure (but not parameters) or if gene

regulation differs substantially and the groups are more

accurately represented by different DBN structures. The results

of our analysis aligned well with previously validated biological

findings, while the DBN-based classifier demonstrated a higher

classification accuracy of patient samples with regard to

phenotypic groups than was reported in [25] for both datasets.

2. Methods and data

A DBN is a probabilistic graphical model for the joint

distribution of random variables X = (X1, . . . , Xn) observed

at time points t = 0, 1, . . . , T . The DBN model uses a directed

graph to encode a factorization of the joint distribution of (Xt)

along the time slices t = 0, . . . , T (Fig. 1A). Here we consider

DBNs in which structures are identical for all time slices. We

also assume that variables in time slice t can depend on other

variables in time slice t and on variables in time slice t− 1, i.e.

P (X
t | Xt−1

, . . . ,X
0
) = P (X

t | Xt−1
). (1)

Such DBN models are referred to as first-order DBNs.

The joint probability distribution of a DBN with T +1 time

slices is

P (X
0
,X

1
, . . . ,X

T
) = P (X

0
)

T∏
t=1

P (X
t | Xt−1

). (2)

With these assumptions, the unfolded structure of a DBN

(Fig. 1A) can be represented in a compact way with two

directed acyclic graphs (G0, G→) which are referred to as initial

structure and transition structure, respectively (Fig. 1B). The

edges within one time slice are called intra-edges and edges

between time slices are called inter-edges.

Within each time slice t > 0 the joint distribution of

X1, . . . , Xn is factorized according to a Bayesian network

model:

P (X
t | Xt−1

) =
n∏

i=1

P (X
t
i | Pa

→
i ), (3)

where Pa→
i denotes the set of parents of node Xt

i in time

slices t and t − 1 in G→. For G0 the parent sets Pa0
i are used

instead to factorize P (X0).

To fully specify a DBN, we also need parameters θ which

describe probabilistic dependencies between each node Xt
i and

its parents in a DBN structure. We assume that Xt
i are jointly

normally distributed. This results in the distribution of each

node Xt
i being a linear regression on its parents [32]:

P (X
t
i | G→

, θ
t
) =

N

X
t
i

∣∣∣∣∣ mt
i +

∑
t′∈{t,t−1}

∑
Xt′

j
∈Pa→

i

β
t
ij,t′X

t′

j , (σ
t
i)

2

 . (4)

For each time slice t, we have the parameters θt=(mt, Bt, (σ2)t),

where mt is a vector of regression intercepts, Bt = (βij,t′)
t a set

of all regression coefficients and (σ2)t a vector of variances. For

G0, the sum over parents in the previous time slice is dropped.

We consider two cases, namely stationary DBNs where θ1 =

. . . = θT =: θ→ and non-stationary DBNs, where θ1, . . . , θT

are generally different. The parameters θ0 and θ→ are different

even for a stationary model. In a non-stationary model, we

assume non-stationarity of parameters, while the structure G→

is assumed to be the same across time slices 1, . . . , T .

We also consider a special case where the initial structure G0

is the same as the internal structure of the transition structure

G→, i.e., for all nodes, all intra-slice parents in G→ are the

same as these nodes’ parents in G0.

For learning the DBN structure from observational data

D, we employ the Bayesian approach implemented in the R

package BiDAG [29, 30], which uses the BGe score for learning

and sampling the structures of Bayesian networks [32, 33]. The

BGe score of a graph is its posterior probability and factorizes

into terms S(Xi,Pat
i | D), each of which depends only on a

single node and its parents. For DBNs, the dataset D consists

of N observations from T + 1 time slices. To estimate a non-

stationary DBN, we divide D in T +1 parts and define the BGe

score of a DBN structure as

P (G | D) ∝ P (D | G)P (G) =

n∏
i=1

S(Xi,Pa
0
i | D0

)
T∏

t=1

n∏
i=1

S(Xi,Pa
→
i | Dt

). (5)

To perform structure learning for a stationary model we

divide the data into 2 parts: D0 and D→, where D→

contains observations from all pairs of neighboring time slices.

Equation 5 then simplifies to
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Fig. 1. DBN learning and classification framework. (A) The unfolded structure of the first-order DBN model consisting of T + 1 time slices can

be represented by initial and transition structures. (B) The edges between time slices are highlighted in red and called inter-edges. The edges within

time slices are highlighted in blue and called intra-edges. (C) We learn DBN-based classification models from the time-series gene expression data of

two phenotypic groups (group 1 and group 2) with various structural and parametric assumptions and assess the predictive accuracy and classification

accuracy of these models using leave-one-out cross-validation.(D) We evaluate models where phenotypic groups are represented by the same or different

DBN structures. For each model we consider a set of four structural restrictions/prior assumptions: (E) no restrictions, (F) model without intra-edges

(G) model that penalizes non-STRING edges (dashed) (H) model where non-STRING edges are blacklisted.

P (G | D) ∝ P (D | G)P (G) =

n∏
i=1

S(Xi,Pa
0
i | D0

)
n∏

i=1

S(Xi,Pa
→
i | D→

). (6)

We use the iterative order Markov chain Monte Carlo

(MCMC) scheme [29] to estimate the a posteriori (MAP)

structures G0 and G→. In addition, we estimate consensus

structures by averaging over a sample of graphs from the

posterior distribution and composing consensus structures of

edges whose posterior probability is higher that 0.9 [29, 30].

2.1. Learning DBN models for phenotypic subgroups

We propose a novel framework for learning the DBN models

for K phenotypic subgroups 1, . . . , K, from time-series gene

expression datasets D1, D2, . . . , DK . We analyzed two datasets,

each comprising gene expression from K = 2 subgroups

(Figure 1C). We propose considering two models: one which

assumes that DBN structures are subgroup-specific and the

another one which represents all subgroups by a single DBN

structure (Figure 1D). In the latter case the differences between

subgroups can be explained by differences in parameters. From

a biological perspective, it is interesting to understand to

which extent the interaction networks of different subgroups,

for example defined by different phenotypes, differ from each

other.

When dealing with gene expression data it is important to

account for the fact that only a limited number of observations

is usually available, which often results in poor structure fit and

low predictive accuracy [31, 26]. For this reason, we suggest

learning a range of models based on different assumptions

regarding network structure and parameters and likewise select

the model for downstream analysis based on cross-validated

predictive accuracy. We use mean absolute error (MAE) as

a measure of predictive accuracy, which was already used

in previous DBN application studies [24, 18]. To assess how

well different DBN models describe the underlying dynamic

process, we predicted the values of all genes in all times slices

using the true values of expression of genes at time point

t = 0 using leave-one-out CV. We used the learned structures

and parameters to predict the values of nodes in time slices

consecutively using the model specified in Equation (4). Finally,

we computed the MAE for each node and each time slice and

averaged it across all genes, slices, and test samples. The models

with lower MAE provide a higher predictive accuracy.
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It is know that including prior biological knowledge can

improve network learning [34], so we consider two different

ways to include such knowledge: by penalizing the edges

that can not be found in public protein-protein interaction

databases, such as, e.g., the STRING database [35] (Figure 1g)

and by excluding these edges completely from the search

space (Figure 1h). Penalization is implemented by imposing

a non-uniform prior over structures:

P (G) ∝
1∏n

i=1

∏
j:Xj∈Pai

πij

,

where πij = 1 if the interaction between genes Xi and Xj can

be found in the STRING database with a confidence level of at

least 0.4, and πij = 2 otherwise.

Many studies prohibit intra-edges, which usually makes

sense when the time intervals between observations are short.

We do not assume the presence or absence of intra-edges by

default. Instead, we include the model without intra-edges

in the set of investigated models (Figure 1F) and compare

its predictive accuracy to other models, including the model

without any structural restrictions (Figure 1E).

2.2. Classification accuracy

In addition to the predictive accuracy, we measured cross-

validated classification accuracy to evaluate how well the

DBN-based classifier can discriminate between the analyzed

subgroups.

For each DBN dataset, we either learned two DBN

structures G1 and G2 or learned one DBN structure G

but estimated the maximum MAP parameters separately for

groups 1 and 2. After learning the networks, we estimated the

MAP parameters and scored the test sample against each model

by computing the likelihoods:

P (Dm | Gk, θk) = P (D
0
m | G0

k, θ
0
k)

T∏
t=1

P (D
t
m | G→

k , θ
t
k). (7)

We further computed posterior probabilities of class

memberships Zm of observations Dm using the class prior

P (k) = τk estimated from the training data:

P (Zm = k | Dm) =
τkP (Dm | Gk, θk)∑2

k
′
=1

τk′ P (Dm | Gk
′ , θk′ )

. (8)

The samples were assigned to a class corresponding to the

highest posterior probability. We compared assignments of

test samples in all CV runs to their true assignments. For

benchmarking, we compared the DBN-based classifier against

both random forest and naive Bayes classifiers [36, 37]. For the

random forest classifier, we ran the CV 100 times to average

out randomness in the results.

2.3. Data

We applied the described framework to two biological datasets,

each containing time-series gene expression data of two

phenotypic groups of the same tissue type (Section 4).

The dataset GSE5462 contains gene expression data of

116 biopsies from 58 breast cancer patients at two time

points: pre-treatment and 10-14 days after treatment with

letrozole. We log2-transformed and normalized the raw data

using robust multiarray averaging (RMA, R-package affy, [38])

for subsequent DBN analysis.

The second dataset, GSE37182, contains expression data

of 172 biopsies from 15 colorectal cancer patients, totaling

88 normal tissue biopsies and 84 tumor tissue biopsies. The

samples were obtained during surgery and left at room

temperature at four time points: 20 minutes (t = 0), 60

minutes (t = 1), 180 minutes (t = 2), and 360 minutes

(t = 3). Afterwards, the samples were stored at −80◦C until

RNA extraction. The data from the repository was already

normalized separately within each group (tumor and non-

tumor). To make samples between two conditions comparable,

we used the package NormalyzerDE [39] and performed median

normalization.

2.4. Variable selection

To select nodes to be included in the DBNs we performed DGE

analysis using the R package limma [40]. We considered genes

as differentially expressed between conditions if their FDR-

adjusted p-value was smaller than 0.05. In general, we did not

apply a log2-fold-change cut-off, unless specified otherwise.

2.5. Simulation studies

We generated 50 two-step DBNs structures. For each DBN

structure, we generated 30 training samples from 4 consecutive

time slices and 2 test samples. We learned MAP and

consensus structures corresponding to posterior thresholds of

p ∈ {0.3, 0.5, 0.7, 0.9, 0.99} using the Bayesian approach

(functions iterativeMCMC and orderMCMC from the R-

package BiDAG). We also learned minimum BIC structures

using greedy hill-climbing with the limits on the number

of parents of 3 and 5. For each limit, we also learned

consensus structures based on bootstrap support levels of

ρ ∈ {0.3, 0.5, 0.7, 0.9, 0.99}.
To assess the predictive accuracy we estimated MAP

parameters for each model and predicted the values

consecutively in time slices using values in the first slice of

test samples as input. We divided the resulting MAE for each

model by the MAE of the ground truth structure to make

results between runs comparable. We compared the learned

structures to the ground truth using true positive rate (TPR),

false discovery rate (FDR), and structural Hamming distance

(SHD, introduced in [41]).

3. Results

3.1. Simulated data

In the simulation studies (Section 2.5, Data and code

availability), we explored the situation when the number of

observations between neighboring time points is smaller than

the number of nodes. Maximum score structures obtained by all

algorithms resulted in a high FDR (Figure 2A). However, this

problem was more pronounced for the hill-climbing approach,

and the FDR is higher for the structures learned using a

higher limit per parent set size. As a result, the SHD between

estimated maximum score structures with a limit of 3 parents

per node and the ground truth structures was smaller than SHD

between structures with 5 parents limit (Figure 2B). At the

same time, the TPR was higher for the limit of 5 nodes than for

3 nodes. For the MCMC scheme, we did not limit the number

of parents and obtained better results for the MAP structure in

terms of TPR, FDR, and SHD. However, MAP structures still

contained a lot of false-positive edges. Therefore, we suggest

improving the structure fit by filtering out low-confidence edges.
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Fig. 2. MAE and structure fit on simulated data. 50 random 2-step DBN structures were generated with n = 120 nodes and three parents

on average for each node in the transition structure. The training datasets contained 30 samples from four consecutive time slices, the test datasets

included 2 samples each. MCMC (blue) and hill-climbing (HC, red and green) algorithms were used to learn the DBN structures and compare them to

the ground truth using the TPR and FDR (A) and SHD (B). The performance of the hill-climbing was evaluated for two limits for the parent set size:

maxp = 3 (red) and maxp = 5 (green). Consensus models for MCMC were estimated using a range of posterior thresholds (0.3, 0.5, 0.7, 0.9, 0.99). For

hill climbing, consensus models were estimated using the same range for bootstrap support levels. MAE was estimated based on 2 test samples for each

simulation run and model and divided by the MAE of the ground truth structure to get comparable MAE levels between the runs (C).

We observed that consensus structures yielded much lower

SHDs than maximum scoring structures (Figure 2B). More

importantly, the bootstrap-based structures for a limit of 5

parents provide a better fit than using the limit of 3 parents.

The lowest SHD was reached for the MCMC scheme and a

posterior level of 0.99, showing another advantage of using

MCMC over greedy hill climbing.

For the hill-climbing approach, the relative MAE of the

bootstrap-based models with the lowest SHD to ground truth

structure was higher than the relative MAE of the maximum

score model (Figure 2C). This finding suggests that structural

overfitting does not necessarily result in a worse predictive

accuracy. A possible explanation can be that false-positive

edges in high-scoring structures directly connect the nodes

which are indirectly connected in the ground truth graph. Such

false-positive edges do not affect the MAE negatively. However,

the discovery of such edges is still undesirable, and hence

sparser structures should be preferred in cases when the relative

MAE of several models are similar. MCMC reached the lowest

mean relative MAE level of 1.08 with the posterior threshold

of 0.7. For the hill-climbing, the lowest relative MAE of 1.37

was reached for the bootstrap-based structure with a support

threshold of 0.3 and the limit of 5 for the maximum parent set

size.

3.2. Analysis of time-series gene expression data

We applied the proposed approach to two transcriptomic

datasets from the GEO repository (Section 2.3, Section 4):

the colorectal cancer dataset GSE37182 and the breast cancer

dataset GSE5462. For each dataset, we learned several

DBN models (Section 2.1) using the Bayesian approach and

measured, via leave-one-out cross-validation (CV), how they

perform with regard to predictive accuracy and classification

accuracy.

For the colorectal cancer dataset, we have learned a non-

stationary DBN and compared it to a stationary DBN by

computing MAE. A non-stationary DBN can describe the

underlying process with higher precision. However, it can also

lead to overfitting.

In addition to different structural and parametric assumptions,

for each dataset, we explored DBN models containing a different

number of genes. Smaller gene sets that are differentially
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Fig. 3. DBN CV results for the breast cancer dataset. DBN models were learned from time-series gene expression data from biopsies of responders

and non-responders to the treatment. For each set of genes (DBN 19, DBN 125 and DBN 158) four best performing DBN models are shown (two with the

highest accuracy and two with the lowest MAE) and the corresponding accuracy of other classifiers on the same set of genes (A). The fill color corresponds

to the model used for classification: MAP and consensus DBNs assuming the same structure for responders and non-responders (MAP and Consensus,

light-blue and light-pink), MAP and consensus DBN assuming different structures for responders and non-responders, and same internal structures of

initial and transition structures (sMAP and sConsensus, blue and violet), MAP DBN assuming different structures for responders and non-responders

and different internal structures of initial and transition structures (sMAP sep, dark blue), random forest (green), naive Bayes classifier (yellow). For

comparison, K DBN category corresponds to leave-one-out classification accuracy reported for DBN models in [25]: DEG denotes differentially expressed

genes, MR their master regulators, and MIX the union of DEG and MR. (B) Cross-validated MAE of DBN models learned in the proposed framework.

expressed between two phenotypic groups can provide a better

separation with regard to classification while larger gene sets

can be more interesting for the downstream analysis and

understanding differences in regulatory networks of different

phenotypic groups.

3.3. Analysis of breast cancer time-series gene expression data

The GSE5462 dataset contains gene expression measurements

for two groups of breast cancer patients: responders and non-

responders to treatment (Section 2.3). We used three sets of

genes to assess how feature selection affects DBN predictive

and classification accuracy. In the first gene set, we included all

genes that were differentially expressed in responders compared

to non-responders (Section 2.4). For the second set of genes,

we identified differentially expressed genes in post-treatment

samples using pre-treatment samples as reference. Finally, in

the third set, we included all genes from the first set as well

as genes from the second set whose absolute log2-fold-change

were larger than 0.5. In addition, we included all transcription

factors of the identified genes found in the database Omnipath

[42]. The resulting sets of genes, denoted DBN 19, DBN 158

and DBN 125, contained 19, 158, and 125 genes, respectively.

The classification accuracy ranged from 67% to 88.4% over

all DBN models (Fig. 3). The highest classification accuracy

was reached with the smallest number of nodes, and the

accuracy dropped with an increasing number of nodes. This

finding can be explained by the variable selection process for

the three sets of nodes. The smallest set of nodes includes all

genes which are differentially expressed between responders and

non-responders. Thus, even without any network component,

it provides a strong signal for classification. The naive Bayes

approach provides similarly high accuracy for this set of genes,

while the random forest classifier is slightly less accurate. The

largest set of genes, DBN 158, comprises all genes which are

differentially expressed between time points but none of those

which are differentially expressed between the subgroups. For

this reason, it is not surprising that the classification accuracy

is lower than for DBN 19. At the same time, in the DBN 158

and DBN 125 gene sets, the best DBN models outperform the

naive Bayes classifier, which does not account for the network

component.

We further note that, for all gene sets, the lowest MAE

was reached for DBNs learning the same DBN structure for

both subgroups (Fig. 3B). This finding aligns well with the

differential gene expression (DGE) and pathway enrichment
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analysis. Since out of 22,283 genes, only 19 were differentially

expressed, we can assume that the GRNs are very similar

in responders and non-responders. However, the highest

classification accuracy of 88.4% was reported for models that

learned DBN structures independently for responders and non-

responders for DBN 19 and DBN 125. The best models in this

work outperformed the highest classification accuracy of DBN

models reported in [25], which was 70.77%.

We summarized the performance of all DBN models in a

global ranking (Supplementary information Table S1), which

sums ranks in each accuracy measure and set of genes

included in the models (Ranking of DBN models for breast

cancer dataset. To identify which DBN model performs

consistently better than others for networks of different sizes

and incorporate both accuracy and MAE we created a ranking

of models model with regard to classification accuracy and

MAE for each DBN size; ties were resolved by taking maximum.

Ranks of models in for each category are reported in this table.).

MAP and consensus models which blacklisted non-STRING

edges and learned one structure for responders and non-

responders performed best overall. Based on this ranking, for

the downstream analysis, we chose the MAP model that learned

the same DBN structure for responders and non-responders,

included differentially expressed genes and their transcription

factors and blacklisted all non-STRING interactions. Even

though the classification accuracy for this model was not the

highest, the lower MAE suggests that it better predicts the

changes in post-treatment gene expression levels and hence is

more appropriate for the downstream analysis.

Pathway enrichment analysis showed that no KEGG [43]

pathway was enriched in the differentially expressed genes.

However, when we assessed the set of all parent nodes of these

genes in the estimated DBN structure (Figure S2), three KEGG

pathways (p53 signaling, cellular senescence, and cell cycle)

were enriched (FDR< 0.05). Thus, the DBN model connected

genes found to be important for treatment response to genes

from major cancer-related pathways. Among these genes, the

most connected node was CDK1 (Cyclin Dependent Kinase

1), which is a known target for treating breast cancer [44].

Interestingly, Cdk inhibitors are already approved for treating

breast cancer as the first-line treatment in combination with

letrozole (used in the analyzed dataset) [45] which confirms the

discovered link.

3.4. Analysis of colorectal cancer time-series gene expression

data

For the colorectal cancer dataset GSE37182, we performed

the DGE analysis at three consecutive time points, using t=0

as a reference. The number of differentially expressed genes

increased with time. In total, we identified 58 genes that were

differentially expressed over all time points in both subgroups.

We included them in the first set of genes DBN 58.

We proceeded with the identification of transcription factors

that may be involved in regulating the identified genes using

the Omnipath database. We combined them with the first set

of genes and used their union (DB 122) to learn the extended

DBN models. We learned multiple DBN models using various

structural and parametric assumptions and performed cross-

validation as described above (Section 2.1).

The CV classification accuracy was 100% for all models

and higher than the accuracy of the best model reported

in [25] (98.5%). The MAE was clearly the lowest for non-

stationary DBNs (Fig. 4). Among the non-stationary models,

the lowest MAE was reached for models where intra-edges were

blacklisted. From a biological perspective, the non-stationary

model is also plausible. First, the time lags between the

measurements were non-uniform. Second, the tissue was left

at room temperature, and the process of degradation likely led

to changes in the strengths of dependencies between genes.

We observed that DBN models that learn structures for

tumor and normal subgroups independently resulted in the

lowest MAE. Consequently, for the downstream analysis, we

selected a consensus non-stationary model which learns the

DBNs for the set of genes DBN 122 separately for normal

and tumor samples and blacklists intra-slice edges. The DBN

models for cancer and normal subgroups shared 60% of edges.

Such a high overlap suggests that a lot of underlying processes

in cancer and normal cells can be described by the same

dependencies between genes.

To highlight the differences and similarities between

analyzed phenotypic groups, we identified the nodes with the

most different and similar interaction partners in networks

representing tumor and normal subgroups. There were 18

nodes that had neighborhoods with empty intersections in two

networks. Out of these, three genes (FOS, JUN, GADD45B)

belong to the KEGG colorectal cancer pathway. Two genes from

this set, namely FOSB and JUN, were identified and validated

as markers for colorectal tumor tissue degradation [47]. Out of

20 nodes with most similar neighborhoods 10 can be found of

a generic transcription pathway (Fig 5, [46]).

3.5. Discussion

DBNs are powerful models for analyzing time-series gene

expression data because they allow us to shed light on GRNs

that orchestrate molecular processes. Lately, a lot of research

focused on learning context-specific gene networks. In this

work, we proposed a framework for learning DBNs for multiple

phenotypic groups. This framework employs the Bayesian

approach to structure learning of DBNs and suggests several

sets of structural and parametric assumptions to find the model

with the highest predictive accuracy. We assessed predictive

accuracy using cross-validation as a way to prevent overfitting

which is a major problem in the analysis of high-dimensional

and noisy biological data. We showed in simulation studies how

the Bayesian approach allows to prevent overfitting and increase

predictive accuracy compared to the hill-climbing approach.

We employed the proposed framework to analyze two

time-series gene expression datasets, each comprising data

from two subgroups of samples. The GSE5462 dataset

included gene-expression data of breast tumor biopsies taken

before and after treatment with letrozole. Our analysis

suggested that gene regulatory networks do not differ

substantially between responders and non-responders. The

parents of the differentially expressed genes in the learned

DBN structures included genes from the cell cycle and tp-

53 pathways, with kinase CDK1 being the most connected

node. This situation indicates that differences in the signaling

pathways of responders and non-responders might lie at the

phosphoproteome level since the activity of kinases generally

can not be detected from gene expression data. However, even

with a few differences detected at the gene expression level, the

classification accuracy we obtained was higher than reported in

the previous study [25].

For the GSE37182 colon cancer dataset, different DBN

structures for tumor and normal samples resulted in the lowest

MAE. However, the corresponding DBN structures overlapped
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Fig. 4. Cross-validated MAE of DBN models for GSE37182 dataset. DBN models were learned from the time-series gene expression data of

normal and cancer cells from the colon. Colors correspond to MAP (blue) and consensus (violet) DBN models. Shades correspond to the similarity of

DBN structures estimated for two tumor and normal samples: lighter shades represent models assuming the same DBN structure for both subgroups

(MAP, Consensus), darker shades represent models assuming different DBN structures for two subgroups (sMAP, sConsensus). Patterns correspond to

prior and structural constraints: STRING-based penalization (horizontal lines), STRING-based blacklisting (slanted lines), blacklisting of intra-slice

edges (hatch pattern); absence of pattern corresponds to models with unrestricted topology. (A) MAE(CV) of DBNs with 58 nodes (differentially

expressed genes). (B) MAE(CV) of DBNs with 122 nodes (differentially expressed genes and their transcription factors).

Fig. 5. Subnetworks of DBN transition structures discovered for the GSE37182 dataset. Structures of non-stationary DBN models without

intra-edges were learned for normal and tumor biopsies. Blue edges denote the edges which are specific to normal DBN only; red edges are specific to

cancer DBN. Black edges are present in both models. Solid lines correspond to edges between genes which were found as interactors in the STRING

database. Genes from the colorectal cancer pathway (KEGG) are highlighted in orange. (A) Most differently connected genes (FOSB, JUN, FOS,

GADD45B) in DBN transition structures of cancer and normal DBN models that are either enriched in the colorectal cancer signaling pathway or were

previously validated as biomarkers of cancer tissue for the dataset GSE37182 and their parents in the learned DBN models. (B) Most similarly connected

genes, which were also found on the generic transcription pathway [46] (highlighted in green).

by 60%, and the biggest differences between networks were

identified in the neighborhoods of genes from the colorectal

cancer pathway as well as genes, which were previously

validated as markers stratifying cancer and normal tissue.

Our findings correspond to the common understanding that

many housekeeping pathways work similarly in tumor and

normal cells, and the biggest differences can be observed in the
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expression and interactions of oncogenes. In addition, the non-

stationary DBN model implemented as a part of the proposed

framework resulted in the lowest MAE.

In this work, we learned the DBN models of known

phenotypic groups, so we were able to evaluate the classification

accuracy and flag overfitting. Our results suggest that the DBN

model can be useful for learning context-specific regulatory

networks. At the next step, the DBN-based mixture model

can be employed for the discovery of unknown disease subtypes

based on time series transcriptomic or multi-omic. data.

4. Data and code availability

The unprocessed data is available at the public GEO repository

under identifiers GSE5462 and GSE37182. The datasets can be

accessed at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE5462 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE37182

The reproducible code and the results are available at the

GitHub repository https://github.com/cbg-ethz/DBNclass.

The latest version of the BiDAG package including

implemented updates is available at CRAN repository https:

//cran.r-project.org/web/packages/BiDAG
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9. Supplementary information

Fig. S1. Cross-validated classification accuracy and MAE of all DBN models considered for the breast cancer dataset. DBN 19, DBN 125 and DBN 158

denote gene sets which were used to learn DBN models. Model specifications corresponding to models IDs (fill color) can be found in Table S1
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Fig. S2. Subnetwork of the DBN transition structure estimated for the breast cancer dataset. The consensus DBN model was learned from 52 biopsies

from the GSE5462 dataset. The DBN topology was restricted to edges connecting genes that were identified as functional interactors in the STRING

database. The visualized subnetwork consists of genes identified as differentially expressed between responders and non-responders (green border) and

their parent nodes in the estimated DBN model, including genes from p53 signaling, cellular senescence, and cell cycle pathways (orange border). Grey

edges represent edges between the same genes in neighboring time slices. Red edges correspond to inter-edges. Blue edges correspond to intra-edges.

Fig. S3. Joint subnetwork of DBN transition structures that were learned for normal and cancer samples. Intra-slice edges were blacklisted; all depicted

edges are the edges between neighboring time slices. Black edges correspond to edges that are the same in two DBN models representing different

subgroups. Blue edges are specific to subgroup ”normal” and red edges are specific to subgroup ”tumor”. Solid edges correspond to edges that were also

found in the STRING database. Green nodes represent genes from the generic transcription pathway which is presented in the main text.
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Table S1. Ranking of DBN models for breast cancer dataset. To identify which DBN model performs consistently better than others for

networks of different sizes and incorporate both accuracy and MAE we created a global ranking by summing the ranks of each model with

regard to classification accuracy and MAE for each DBN size. Rankings in individual categories are presented in Table S2.

model ID prior/blacklist rank MAP/cons DBN structures (groups) structures (G0, G→)

MAP blacklist STRING 1 MAP same different

Consensus blacklist STRING 2 Consensus same different

sMAP sep blacklist STRING 3 MAP different different

sMAP blacklist STRING 4 MAP different same

MAP penalization STRING 5 MAP same different

Consensus none 6 Consensus same different

Consensus blacklist intra 7 Consensus same different

Consensus penalization STRING 8 Consensus same different

sConsensus blacklist STRING 9 Consensus different same

MAP blacklist intra 10 MAP same different

sMAP sep penalization STRING 11 MAP different different

MAP none 12 MAP same different

sConsensus none 13 Consensus different same

sMAP penalization STRING 14.5 MAP different same

sMAP sep none 14.5 MAP different different

sMAP none 16.5 MAP different same

sConsensus sep blacklist STRING 16.5 Consensus different different

sConsensus penalization STRING 18 Consensus different same

sConsensus sep penalization STRING 19 Consensus different different

sConsensus sep blacklist intra 20 Consensus different different

sConsensus sep none 21 Consensus different different

sMAP blacklist intra 23 MAP different same

sConsensus blacklist intra 23 Consensus different same

sMAP sep blacklist intra 23 MAP different different

Table S2. Ranking of DBN models for breast cancer dataset. To identify which DBN model performs consistently better than others for

networks of different sizes and incorporate both accuracy and MAE we created a ranking of models model with regard to classification

accuracy and MAE for each DBN size; ties were resolved by taking maximum. Ranks of models in for each category are reported in this

table.

model ID prior/blacklist acc19 acc125 acc158 mae19 mae125 mae158 sum

MAP blacklist STRING 17.5 10 1.5 2 1 1 33

Consensus blacklist STRING 17.5 2 1.5 6 5 8 40

sMAP sep blacklist STRING 11.5 4.5 10.5 3 3 11 44

sMAP blacklist STRING 17.5 10 10.5 1 2 4 45

MAP penalization STRING 4.5 21 4.5 7 9 2 48

Consensus none 7.5 10 10.5 9 7 7 51

Consensus blacklist intra 11.5 15.5 10.5 4 4 9 54

Consensus penalization STRING 11.5 15.5 3 13 10 3 56

sConsensus blacklist STRING 22.5 10 4.5 5 6 13 61

MAP blacklist intra 11.5 15.5 10.5 10 11 5 64

sMAP sep penalization STRING 1 4.5 22 12 15 12 66

MAP none 2.5 18 20.5 11 12 6 70

sConsensus none 7.5 1 10.5 23 19 18 79

sMAP penalization STRING 6 10 23.5 15 17 10 82

sMAP sep none 2.5 4.5 17.5 14 24 20 82

sMAP none 4.5 4.5 23.5 17 18 16 84

sConsensus sep blacklist STRING 22.5 15.5 10.5 8 8 19 84

sConsensus penalization STRING 17.5 10 10.5 19 13 17 87

sConsensus sep penalization STRING 11.5 10 10.5 20 16 22 90

sConsensus sep blacklist intra 17.5 21 17.5 18 14 24 112

sConsensus sep none 11.5 24 10.5 24 23 23 116

sMAP blacklist intra 22.5 21 17.5 21.5 21 14 118

sConsensus blacklist intra 22.5 21 17.5 21.5 20 15 118

sMAP sep blacklist intra 17.5 21 20.5 16 22 21 118
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