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Abstract:

Genomics is fundamentally changing epidemiological research. However, systematically
exploring hypotheses in pathogen evolution requires new modeling tools. Models intertwining
pathogen epidemiology and genomic evolution can help understand processes such as the
emergence of novel pathogen genotypes with higher transmissibility or resistance to treatment.
In this work, we present Opqua, a flexible simulation framework that explicitly links
epidemiology to sequence evolution and selection. We use Opqua to study determinants of
evolution across fitness valleys. We confirm that competition can limit evolution in high
transmission environments and find that low transmission, host mobility, and complex
pathogen life cycles facilitate reaching new adaptive peaks through population bottlenecks and
decoupling of selective pressures. The results show the potential of genomic epidemiological
modeling as a tool in infectious disease research.
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Introduction
Genomic epidemiology has become a powerful tool in the study and control of infectious
disease spread. By sequencing the genomes of pathogens in the field, researchers can access a
living ledger of transmission and evolution in real-time, which aids understanding of disease
spread and can inform public health policy. Sequencing of pathogen genomes has been used to
monitor evolution, trace local chains of transmission, and study the origins of outbreaks in
real-time for Ebola (1–3), malaria (4–6), influenza (7, 8), and COVID-19 (9–19), among others.
An arsenal of tools and initiatives have been developed to harness the full potential of data
generated through genomic surveillance (4, 20–23).

Despite all its advantages, genomic epidemiology is hampered by its ability to experimentally
explore hypotheses beyond observational data. This is a problem shared by most
epidemiological research. Fortunately, mathematical and computational modeling provide
frameworks for investigating the effect of individual variables through the simulation of null
models and perfectly-controlled, targeted interventions, which would otherwise be impossible
in practice (12, 24–26). However, most traditional modeling frameworks are not well-suited to
work with genomic data and the kinds of evolutionary questions unlocked by genomic
epidemiology. For example, different computational tools have been developed to simulate the
evolution of pathogen genetic sequences (27–29), but in these cases, the tools are not coupled
to epidemiological models that follow disease spread.

More recently, there has been interest in developing tools to combine epidemiological models
with genetic sequence simulators [such as mrc-ide.github.io/SIMPLEGEN/index.html, (30–33)].
While these approaches can be powerful tools to answer questions about population genetics,
they do not consider the effect of genetic sequences on disease dynamics. This makes them
unable to account for selection in pathogen evolution. More general tools are available to
simulate the evolution of organism populations in forward-time (34–36). Although these may
be adapted to use in epidemiology, this requires significant work and setup, especially when
tailoring to different kinds of disease transmission and intervention. Further recent work has
been done to explore evolving epidemiological models in a custom, disease-specific context
(37). Nevertheless, there currently is no out-of-the-box solution for building flexible,
easy-to-use simulations of disease spread with pathogens capable of evolving and influencing
their epidemiology through natural selection.

Simulating selection and evolution becomes particularly pressing as we ask questions about
how epidemiology affects the appearance of advantageous traits within a pathogen population.
Specifically, we are interested in how epidemiological contexts can shape competition and
clonal interference between pathogens to hamper the evolution of novel traits separated by
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fitness valleys. Significant work has examined the evolutionary dynamics of crossing fitness
valleys, a process termed stochastic tunneling  (38–41). Other work has examined the
environmental factors that shape these adaptive landscapes (42). Still, quantitative research
into stochastic tunneling in the context of a spreading infection has only recently become an
object of study (37). This is notable given the interest in the evolutionary biology of infectious
diseases sparked by the COVID-19 pandemic. The evolutionary trajectory of its causing agent,
SARS-CoV-2, has brought interest into the role of epidemiology in shaping evolutionary
trajectories across fitness valleys. Thus, epidemiology becomes crucial in understanding future
viral evolution and vaccine effectiveness. The emergence of novel, evolutionarily distant
SARS-CoV-2 variants such as Omicron is a concerning testament to the importance of these
questions, as this new variant bears multiple compensatory mutations and epistatic
interactions that individually decrease fitness, but have a synergistic effect on transmission (43,
44). Studying the eco-epidemiological determinants of evolution is also key to understanding
the emergence of drug resistance in diseases such as tuberculosis and malaria, where fitness
costs of resistant mutations are offset by a succession of compensatory mutations (45, 46).

In light of this, we developed Opqua (github.com/pablocarderam/opqua) as an epidemiological
modeling framework for pathogen population genetics and evolution. We apply Opqua to
explore how different aspects of the epidemiological environment and infection biology
constrain or enhance the ability of pathogens to escape local fitness peaks and explore new
evolutionary space in adaptive landscapes.

A computational modeling framework for genomic epidemiology and evolution
In order to address questions in infectious disease evolution, we developed a library for flexible
epidemiological simulations of evolving pathogens. The library is named Opqua, after the word
for disease, cause, or reason in the Chibcha family of languages spoken by members of the late
Muysca Confederation in modern-day Colombia (47).
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Fig. 1. Opqua simulates stochastic, structured epidemiological models of evolving pathogens. (A)
Opqua models account for pathogens with arbitrary genomes and genomic alphabets spreading through
structured populations of hosts and/or vectors, which may acquire immunity and/or undergo
interventions such as drug treatment or vaccination. (B) Eight possible kinds of events can occur in
simulations, the rates of which may be influenced by pathogen genome sequence. (C) Models may
include interventions at different moments in time, which in this example include addition of new hosts
and vectors infected with pathogens of specific genome sequences, altering epidemiological conditions to
increase host-vector contact rate, administration of a treatment that kills all pathogens except those with
a specific, resistant genotype, and finally, vaccination against the same genotype. (D) Models may have
arbitrary, complex metapopulation structures, here showing the spread of disease from two
low-transmission populations (“A” and “B”) into five interconnected populations with high transmission
(labeled 1–5), while an additional isolated population remains disease-free. (E) Models can simulate
evolution and selection through different ways, here showing a population of pathogens that evolve
through direct intra-host competition and de novo mutation from an initial, low-fitness genotype
(“BADD”) to a high-fitness, optimal genotype (“BEST”).
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Opqua stochastically simulates interconnected populations of agents representing hosts and/or
vectors, which may be infected with pathogens (Fig. 1). Simulations occur through different
kinds of demographic, epidemiological, immunological, and genomic events that affect the
state of the system, and thus the probability of the next event (Fig. 1B; Fig. S1). User-defined
epidemiological parameters affect the rate of each event and can vary both across populations
and throughout the course of each simulation, allowing the user to model different ecological
events or public health interventions (Fig. 1C). Hosts and vectors may acquire immunity to
specific pathogen genome sequences, and may undergo demographic change by natural death
and reproduction, as well as migration within complex population structures (Fig. 1D).
Pathogens can be transmitted through direct contact among or between hosts and/or vectors,
or through vertical transmission. Pathogens have genomes composed of segments or
chromosomes represented by sequences of letters from an arbitrary alphabet, such as DNA
bases, amino acids, or other arbitrary alleles. Genomes are capable of mutation, chromosome
reassortment, and recombination. Crucially, genome sequences may affect the behavior of their
associated pathogens and the hosts and vectors they infect by modifying the rates of any event,
resulting in selection and complex evolutionary dynamics (Fig. 1E). Finally, Opqua contains
functions to graph and analyze the evolutionary and epidemiological trajectories of the
simulation. The software is available as a Python package with documentation, examples, and
source code (github.com/pablocarderam/opqua), and a detailed discussion of its functioning in
the supplementary materials.

Effect of transmission environment on evolution across fitness valleys
Using Opqua’s evolutionary modeling capabilities, we examined the epidemiological
determinants of pathogen stochastic tunneling across fitness valleys (39, 41). We began by
examining whether competition for transmission between pathogens in high transmission
environments can inhibit stochastic tunneling. This hypothesis has been proposed as a partial
explanation for why antimalarial resistance repeatedly emerges outside of the
high-transmission environments in sub-Saharan Africa that contribute the bulk of global
malaria cases and treatment (37, 48, 49).
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Fig. 2. Competition between pathogens restricts evolution across fitness valleys. (A) A model
system contains pathogen genomes with eight different bi-allelic loci. Fitness follows a valley-like
distribution according to a genome’s “B” alleles, where the “0-B” wild-type sequence outcompetes all
mutant genomes except for the “8-B” sequence, which encodes for higher competitive fitness, lower
recovery rates, and drug resistance. (B) Over time, tracking infections in 1000 hosts shows that
pathogens in a high-transmission environment are eradicated during a drug administration event.
However, drug effectiveness is halved in a low transmission environment, as resistant mutants can
evolve. (C) An optimal, low contact rate favors the evolution of the drug resistance trait in this system.
(D) By tracking the genetic composition of the pathogen population over time, we see that at high
contact rates (β), most mutants remain evolutionarily close to the wild-type, whereas low contact rates
lead to the breakthrough and population sweep of distant mutants with high fitness. (E) Even when
removing all mutant advantages, the frequency and duration of mutant-only host infections is greater at
low contact rates, but is counteracted by low infected host totals. The interplay between these two forces
determines stochastic tunneling across the fitness valley.
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We established a simple model in which mutating pathogens compete with each other for
transmission between hosts within a single population. Pathogen fitness follows a valley-like
pattern in which an initial fitness peak of “wild-type” genomes is separated by a sequence of
mutations from a second, higher fitness peak of “resistant” genomes capable of surviving drug
treatment and causing longer infections (Fig. 2A). When pathogens with different genomes
coexist within the same individual, those with more fit genomes have a greater probability of
transmission and mutation, due to their greater share of the intra-host pathogen population.
After letting the system evolve for a certain amount of time, we apply a drug treatment that
kills all pathogens, save for those with the resistant genome.

By simulating disease outbreaks in this model system, we are able to recapitulate the predicted
competitive interference behavior (Figs. 2B, 2C). At high transmission intensities, pathogens
fail to evolve resistant genotypes and the infection is cleared from the population after drug
treatment. However, low transmission settings allow mutant pathogens to persist and evolve
across the fitness valley and reach the more fit, resistant genotype, which is able to survive drug
treatment.

We can track the genomic composition of populations over time to observe the evolutionary
paths taken in each environment (Fig. 2D). When transmission rates are high, mutant
pathogens are rarely able to survive for long within hosts without wild-type pathogens
coinfecting and outcompeting them. In contrast, low transmission environments allow mutants
to evolve for longer without interference from wild-type pathogens. This leads to a greater
frequency of distant mutants in low transmission environments, which eventually result in the
appearance and fixation of resistant pathogens. Thus, low transmission environments generate
the cryptic genetic variation that has been shown to underlie evolution to new adaptive peaks
in other experimental and theoretical models (50, 51).

However, by varying the contact rate, we can see that the relationship between transmission
and evolution is not linear (Fig. 2C). Instead, the likelihood of pathogens evolving resistant
genotypes is a result of two opposing forces. On one hand, there is the likelihood of having
hosts infected by low-fitness mutants for long periods of time without wild-type competitors
that interfere with further evolution towards more distant genotypes. This likelihood is greater
in low transmission environments where competition is weak, as long as transmission is strong
enough to support a stable pathogen population (Fig. 2E, top and middle). On the other hand,
we have the likelihood of survival for strains that reach new fitness peaks. This likelihood is
greater in high transmission environments, which avoid stochastic extinction events (Fig. 2E,
bottom). The balance between these opposed dynamics determines an optimal transmission
level for evolution (Fig. 2C), dependent on the features of the adaptive landscape.
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In particular, low transmission regimes can only increase stochastic tunneling through fitness
valleys if the mutational distance between peaks and the drop in fitness between them is large
enough to require evolution to occur throughout a transmission chain of multiple hosts (Fig.
S2). Long chains of transmission facilitate tunneling through long, deep valleys due to multiple
bottlenecks and opportunities to minimize pathogen competition. However, shorter valleys not
only permit stochastic tunneling to occur in short chains of transmission (or even single hosts),
but also imply a more restricted number of mutational paths through the valley. This decreases
the likelihood of low transmission regimes leading to stochastic tunneling due to their smaller
pathogen populations and thus net mutation rates. In this way, high transmission
environments are more effective at taking single evolutionary steps with significant fitness
differences, whereas low transmission environments are more effective at taking multiple,
successive steps with minor differences in fitness. Our results show these small steps are
ultimately more effective at tunneling through long evolutionary distances with low overall
fitness.

Evolution across descending fitness landscapes in deterministic and stochastic models
We next focused on the evolutionary dynamics of pathogens mutating into low fitness regimes.
To compare genomic epidemiological models and traditional epidemiological modeling
techniques, we constructed a compartment model describing a host-pathogen system in which
uninfected hosts can become infected with wild-type and/or mutant genotypes (Figs. 3A, S3).
Similar to our previous models, mutant pathogens have lower competitive fitness than their
wild-type counterparts.
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Fig. 3. Deterministic and stochastic simulations describe the effect of competition on the
distribution and dimensions of pathogen evolution. (A) Ordinary differential equations (ODE) model
the evolution of a pathogen with a single bi-allelic locus. (B) Mutant pathogens are still common at high
fitness costs to mutants, as long as contact rates are low. (C) Lone mutants (with no within-host
wild-type competitors) are favored at a peak contact rate, which lowers in value as the fitness cost of
mutation rises. (D) A stochastic simulation of a similar system tracks evolution across 500 loci, each with
20 possible alleles. Each mutation away from the wild-type sequence reduces fitness by the factor shown.
The distributions of mutants among (E) pathogens and (F) hosts show similar behaviors to the ODE
model. Stochastic pathogen extinction events drive mutants down at low contact rates, while genetic
drift drives them up at high contact rates. Furthermore, simulations allow analysis of the resulting
genomes. (G) High contact rates always lead to a higher number of genotypes explored. However, when
mutation fitness costs increase, low contact rates allow for the evolution of pathogen lineages more
distinct both from (H) the wild-type and (I) each other.

We numerically solved this model while varying the relative competitive disadvantage of
mutants and the intensity of transmission. The results are concordant with our earlier findings,
showing that low transmission environments facilitate the survival of unfit mutants in a
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pathogen population, even when the fitness cost of mutations is considerably high (Fig. 3B).
The model also shows an optimal transmission intensity at which “mutant-only” infections
peak for any given mutation fitness cost (Fig. 3C), similar to the results of the fitness valley
model. The optimal transmission level for mutant-only infections decreases as the competitive
fitness disadvantage of mutants becomes more prominent. We also varied the infected host
fraction while keeping contact rates constant by changing the host recovery rates, which
showed essentially the same dynamics of mutant prevalence as seen from the contact rates
studied (Fig. S4). This shows that the differences in mutant prevalence at different contact rates
arise mainly from competition between wild-type and mutant pathogens.

We then constructed a stochastic model using Opqua to study the same type of behavior in a
genomic context. This model had epidemiological parameters identical to those in the
compartment model, with the only difference of allowing hosts to become infected with
pathogens containing complex genomes simulating a peptide sequence of interest with 500
amino acids (Fig. 3D). Each mutation decreased pathogen fitness by a set factor, resulting in an
exponentially-decreasing fitness landscape away from the single peak of the wild-type genome
sequence. This descending fitness regime, analogous to an infinitely long valley, can be used to
simplify the study of evolution in the initial part of a fitness valley.

By plotting the average of multiple simulation replicates at different contact rates and mutant
fitness costs, we reproduced the behaviors observed in the compartment model, with two
differences (Fig. 3E, 3F). First, contact rates that are too low in the genomic Opqua model result
in stochastic extinction of all pathogens (counted as a zero fraction of mutants). Second, the
genomic model shows greater mutant prevalence at low mutation fitness costs and higher
contact rates than the equivalent parameters in the compartment model. This is a consequence
of genetic drift: if different genomes have comparable fitness and transmission is not a scarce
resource, the wild-type genome becomes just one among a large number of similar, competing
genotypes, and is subject to stochastic extinction like its peers.

Furthermore, genomic models allow us to analyze the sequences and distributions of genomes
that evolved throughout the simulations and construct a quantitative description of the
different kinds of evolutionary space explored. For instance, high transmission regimes always
result in a higher number of genomes explored, due to higher numbers of infections providing a
greater net mutation frequency (Fig. 3G). However, even though low contact rates result in
fewer mutants, those mutants can evolve further from the wild-type starting point even at high
fitness costs to mutation (Fig. 3H), echoing the results of the fitness valley model. The resulting
genomes at the end of the simulation are also more different from each other at low contact
rates (Fig. 3I). Thus, genomic epidemiological models more accurately capture the behavior of
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systems with high genetic dimensionality and provide a quantitative description of how
transmission environment and within-host competition shape pathogen cryptic variation.

Fig. 4. Population size and structure affect the distribution and dimensions of pathogen
evolution. (A) At constant contact rates and relative competitive fitness of mutants, population sizes
that are too low cause stochastic extinction of mutants. Mutants increase in frequency as host
populations grow, aided by fixation through genetic drift. At larger population sizes, drift leading to
wild-type extinction is less likely and the mutant population stabilizes at a lower value. (B) The
frequency of mutants within the pathogen population follows a similar pattern when increasing
inter-population host migration in a system of 10 interconnected sub-populations, each initially with 10
hosts. (C) An increase in host population size leads to a near-proportional increase in the number of
unique pathogen genomes explored. (D) In contrast, increasing mobility leads to the number of genomes
explored converging on the value for a single population of 100 hosts. (E) Genome distance from the
wild-type sequence follows a similar pattern to mutant fraction when increasing population size. (F) Low
migration rates with frequent local extinction and re-colonization events allow pathogens to evolve
across longer evolutionary distances than what either the individual population or total metapopulation
sizes (10 and 100 hosts, respectively) would normally permit.
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Effects of host population structure and pathogen biology on evolution
With these metrics of genomic evolution, we examined other kinds of epidemiological
determinants of evolution beyond transmission intensity, starting with host population size
and inter-population mobility (Fig. 4).

Increasing population sizes initially leads to a greater fraction of mutants among the pathogen
population, since small host populations lead to stochastic extinction events for all pathogens
(including mutants, which is counted as zero; Fig. 4A). At slightly larger population sizes, the
pathogen population is stable enough to avoid complete extinction, but small enough to be
susceptible to genetic drift and allow slightly unfit mutants to fixate, driving wild-type
pathogens extinct. At even larger host population sizes, the pathogen population is less
susceptible to genetic drift and the stochastic extinction of more fit wild-type pathogens,
leading to a slightly diminished equilibrium fraction of mutants. We see similar dynamics by
varying host inter-population migration rates in a metapopulation model with a fixed number
of total hosts (Fig. 4B). Low mobility rates make the metapopulation system behave like a series
of small, isolated populations, while high mobility makes the system behave like a single,
well-mixed, large population.

However, different behaviors emerge when examining genomes. While larger populations lead
to more infections and thus a greater number of unique genomes explored (Fig. 4C), increased
mobility does not increase infected hosts, and therefore unique genomes, beyond a certain
point (Fig. 4D). The stochastic extinction of high-fitness wild-type pathogens in small
populations allows for an early peak in genome distance from wild type, before descending to a
slightly lower stable value for larger populations (Fig. 4E). Intriguingly, the most notable
increase in the maximum evolutionary distance explored comes from low host mobility
systems, provided host mobility is high enough to sustain continued infection (Fig. 4F). Low
mobility between host populations results in local pathogen extinctions that allow any mutant
pathogens arriving in the population to spread without competition. In this way, the reduced
genetic variability initially produced by founder effects paradoxically generates increased
variability in the long run. This result is analogous to the effects of low transmission within
populations shown in our previous models, with similar evolutionary mechanisms operating on
a different scale.
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Fig. 5. Pathogen biology and life history affect the distribution and dimensions of evolution. (A)
High mutation rates in both hosts (µh) and vectors (µv) lead to greater mutant frequency among
pathogens. (B) Greater mean inoculum sizes from hosts (where competitive selection is present) into
vectors (nv) increase mutant frequency by capturing within-host diversity. However, mutant frequency
increases at lower inoculum sizes from vectors (where selection is absent) into hosts (nh), due to
bottlenecks reducing intra-host competition. (C) Recombination rates have little effect on mutant
frequency. (D) Increasing mutation rates in both hosts and vectors leads to a higher number of genomes
explored, while (E) inoculum sizes into both hosts and vectors have no effect. (F) Increased
recombination rates in both hosts and vectors lead to an increase in the number of genotypes explored.
(G) The maximum evolutionary distance from wild-type (WT) increases with mutation rates. (H) Low
inoculums into hosts and high inoculums into vectors are optimal for increasing evolutionary distance,
as they combine bottlenecks before selection and capture diversity after it. (I) Increased recombination
within vectors (where competitive selection is absent; ρv), more so than hosts (where competitive
selection is present; ρh), leads to higher distances from wild-type.
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Finally, we used the same approach to examine how different aspects of pathogen biology shape
evolution in the kinds of descending fitness regimes explored earlier. We focused on the effects
of de novo mutation rate, the number of pathogens inoculated during infection, and genomic
recombination rates in two modes of transmission: host-host (Figs. S5, S6) and host-vector.
Transmission in the host-vector model was accompanied by selection in hosts only (Fig. 5), or
separate selection regimes within hosts and vectors (Figs. S7, S8).

Vector-borne pathogens often have vastly different genetic programs and host-pathogen
interactions in different life stages, leading to an uncoupling of selection in which mutations
affect pathogen fitness differently in hosts and vectors. In some cases, this can lead to selection
only occurring within one kind of organism (such as the main hosts), while all genomes have
equal competitive fitness within the other (such as the vector organisms) (Fig. 5). As an
example of this, it is well known that multiple genes in Plasmodium malaria parasites are
expressed only in human red blood cell-infecting stages and not mosquito-infecting stages, or
vice-versa (52–54). In repeated instances, parasite genes knocked out with no detectable
phenotype in one set of life stages are found to be essential for survival in other life stages (55,
56). Nevertheless, other situations can lead to a different kind of uncoupling, where selection is
present in both hosts and vectors, but follows two different fitness landscapes (Figs. S7, S8).
This may occur, for instance, if a gene fulfills roles in host-pathogen interactions or is subject to
different kinds of immune responses within both hosts and vectors, as is common in many
arboviruses (57, 58). It may also be a consequence of antimicrobial use if a resistant allele with
fitness costs is selected for in hosts (but not vectors) due to drug treatment (45, 46).

Unsurprisingly, increasing mutation rates always increase mutant prevalence among pathogens
(Figs. 5A, S5A, S8A), the number of unique genomes (Figs. 5D, S5D, S8D), and the maximum
distance from wild-type (Figs. 5G, S5G, S8G). However, varying inoculum size from hosts into
vectors and vice-versa in a host-vector system shows complex interactions between the two
variables (Fig. 5H). Consider a regime of host selection only (Fig. 5H) and small inoculums into
hosts. In this setting, small inoculum sizes into hosts are key to increasing mutant fractions of
the pathogen population (Figs. 5B, S5B) and maximum evolutionary distance from wild-type
(Figs. 5H, S5H). This is due to the fact that small inoculums create a population bottleneck that
allows mutants to be transmitted without wild-type competitors. Additionally, when
inoculating from vectors into hosts, pathogens are sampled randomly without a transmission
disadvantage for mutants. Combining small inoculums from vectors into hosts with a high
inoculum into vectors captures greater genetic variation generated in the host, leading to
maximized mutant fractions and evolutionary distance from wild-type (Fig. 5H). Paradoxically,
if the mean inoculum into hosts is high, the effect is reversed. In these cases, contacts from
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infected vectors are more likely to result in coinfections in hosts, leading to competitive
exclusion of unfit mutants. Therefore, when inoculums into hosts are high, small inoculums
into vectors reestablish the population bottleneck that reduces competition from wild-type
pathogens, leading to greater mutant fractions and evolutionary distance from wild-type.

The effect of these processes is replicated symmetrically when considering selection regimes in
both hosts and vectors (Fig. S8H). In this case, the greatest long-distance evolution occurs when
a mismatch in inoculum sizes is present (this is to say, a high inoculum from hosts to vectors
combined with a low inoculum from vectors to host, or vice-versa). Since there are selection
pressures in both life stages, bottlenecks reducing competition and amplifications capturing
variation enhance evolution in either stage. However, if inoculums into both hosts and vectors
are large, competition between pathogens suppresses long-distance evolution. Conversely,
small inoculums in both directions capture less genetic variability. This also decreases
evolution, although to a lesser extent. It is worth pointing out that the dynamics of
evolutionary distance (Fig. S8H) and mutant pathogen populations (Fig. S8B) become
uncoupled in this case, due to the opposing effects that bottlenecks in transmission to each life
stage have on mutant fractions.

Recombination presents another interesting case where the dynamics of mutant pathogen
fractions and maximum evolutionary distance become uncoupled. Because recombination
cannot create de novo genetic variation, mutation rates still largely determine mutant
prevalence. This means the effect of recombination on mutant fractions of pathogen
populations is minimal (Figs. 5C, S5C, S6A, S8C). Nevertheless, recombination rates in both
hosts and vectors increase the number of unique genomes explored (Figs. 5F, S5F, S6B, S8F).
Additionally, recombination can increase the maximum evolutionary distance from wild-type
explored by pathogens. In a host-vector system with selection in hosts only, the effect of
recombination on evolutionary distance is largest if recombination occurs within vectors, a life
stage where the new genotypes will not be outcompeted by their parents (Fig. 5I). If selection
occurs with separate fitness landscapes in hosts and vectors, the effect becomes symmetrical for
both life stages, due to recombination of genomes clustered around each of the two peaks (Fig.
S8I). Nevertheless, recombination in hosts can also increase the maximum evolutionary
distance in host-host models (Fig. S5I). The magnitude of this effect is dependent on the mean
inoculum size (the infection effective population size), as small inoculums remove the
within-host variation from which recombination can occur (Fig. S6). This shows recombination
can also play a relevant role in stochastic tunneling of infections with host-host transmission.
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Perspectives and outlook
In this work, we present Opqua, a flexible computational modeling framework capable of
simulating genomic epidemiology. We use it to study pathogen competition and evolutionary
dynamics in fitness valleys and descending fitness regimes with a quantitative, systematic
approach. This allows us to better understand how pathogens acquire new fitness-conferring
traits that require multiple, separate epistatic mutations, a process known as stochastic
tunneling (39, 41). We confirm that competition between pathogens in settings with high
disease prevalence can pose a significant barrier to evolution in certain adaptive landscapes, as
suggested by others (37). We establish the potential of genomic epidemiological models to
provide more complete descriptions of simulated evolution. We then use these descriptions to
examine how different aspects of host populations and pathogen biology can alter the
competitive and genetic population dynamics that shape evolution. By simulating these
traditional scenarios from theoretical evolutionary biology in an epidemiological context, we
provide concrete illustrations of counterintuitive phenomena that can aid decision making in
disease control. Specifically, we show that stochastic effects in small, relatively isolated,
structured populations can increase the evolutionary distance traversed by pathogens,
exploring evolutionary space in greater depth. Lastly, we show how decoupling selection from
transmission in pathogen life cycles with multiple stages changes the evolutionary dynamics
across stretches of low fitness. Mismatches in inoculum sizes during transmission from one life
stage to another and genetic recombination in changing selective regimes increase long
distance evolution.

These findings suggest distinct strategies with evolutionary advantages. For pathogens that
depend on direct contact between hosts, such as viral respiratory infections, inoculum sizes are
often inextricably tied to transmissibility, resulting in a trade-off between transmission and
stochastic tunneling to new adaptive peaks. Conversely, infections with complex life cycles can
randomly subsample genetic variability within life stages where selective pressure is weak to
increase the maximum evolutionary distance explored, leading to more stochastic tunneling.
This can be seen in malaria parasites, which undergo strong population bottlenecks in
mosquitoes and within human livers, before intra-host competition in the bloodstream occurs.
These bottlenecks reduce the number of individual pathogens by ten orders of magnitude from
its highest point within the human bloodstream (59), and have been shown to qualitatively
alter the pathogen’s evolutionary dynamics (60). Our findings corroborate this and indicate that
interventions that target these vector stages and their bottlenecks not only reduce disease
prevalence, but can inhibit pathogen evolvability if they introduce selective pressures on traits
that affect host stages.
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Our results also have important eco-epidemiological implications. When considering the
evolution of distant pathogen genotypes with higher fitness through stochastic tunneling, rural
communities consisting of small, semi-isolated groups with relatively low transmission may be
more at risk than larger populations with high transmission. It is interesting to consider that
Omicron’s emergence may well be an example of this kind of stochastic tunneling in small,
remote populations with cryptic transmission, as proposed by others (61). Other explanations
such as evolution in individual chronic infections or through reverse zoonosis have found some
evidence in their favor as explanations for the emergence of Omicron, and it is doubtless that
selective pressure from acquired immunity played a key role (62). However, it is worth noting
that our results show that no special population compartments (such as chronically infected
individuals or other animals) are needed to explain the fact that the chain of mutations that led
to Omicron went undetected for over a year, the time separating the last common ancestor
between Omicron and other sequenced variants
[nextstrain.org/groups/neherlab/ncov/21K.Omicron, (22, 63)]. Stochastic tunneling is just more
likely to occur in remote populations outside of surveillance efforts. Exploring the likelihood of
this hypothesis with respect to others in the emergence of Omicron is beyond the scope of this
work. Regardless, our results suggest that novel, evolutionary distant variants are more likely to
emerge in the places where detection would be most challenging: fragmented, mobile
populations in regions with relatively low incidence and cryptic transmission of low-fitness
genotypes. In this light, monitoring pathogen genomes in peripheral communities could be of
great value for genomic surveillance programs. This runs contrary to conventional practice in
national COVID-19 surveillance programs, which has so far focused on monitoring large,
central population hubs (9–15).

A final corollary of these results is that under certain conditions, pathogen evolvability
increases the more elimination efforts progress against it. The low-transmission environments
brought about by eradication campaigns are the exact conditions needed for stochastic
tunneling. This does not in any way imply that eradication efforts are pointless—after all,
evolution is always a possibility, while disease burden is a certainty. Nevertheless, it might help
explain why elimination campaigns are so challenging to complete, despite initial success.

We deliberately chose to focus on intra-host competition, as this is the minimum requirement
for blocking stochastic tunneling through competitive exclusion. Therefore, we avoided using
Opqua’s ability to modify the intrinsic transmissibility of pathogens according to genome
sequence, even though this would increase the magnitude of the effects studied. In addition, by
choosing to center on competitive dynamics, we opted to keep the effects of acquired immunity
beyond the scope of this study, even though Opqua has the capabilities to simulate them.
However, immune selection plays a central role in pathogen evolution by shifting the fitness
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landscape over time. This has been proposed in the context of the evolution of malaria parasites
(37) and is doubtless a crucial factor in the emergence of SARS-CoV-2 variants that evade
acquired immune responses (62). Finally, we chose to explore idealized disease models rather
than fit a specific disease both for generalizability and computational feasibility. Future work
improving the computational performance of these kinds of modeling approaches may allow for
models that more closely fit real-world epidemiological and genetic data, as well as models that
simulate within-host dynamics such as drift in a more explicit fashion. Nevertheless, we hope
this work helps establish the potential of genomic epidemiological models as a tool to test
scenarios, explore hypotheses, and understand the relationship between pathogen evolution
and epidemiology. Quantitative descriptions of how biology and environment shape pathogen
evolution, such as those presented here, may one day help inform the design of interventions in
disease control, ranging from drug and vaccine development to public health policy.

Materials and Methods
To address the questions posed in this study, we developed Opqua, an epidemiological
modeling framework for pathogen population genetics and evolution. Opqua stochastically
simulates pathogens with distinct, evolving genotypes that spread through host populations
with specific acquired immune profiles. Opqua is available for download through PyPI
(pypi.org/project/opqua) with installation, usage instructions, and source code published on
GitHub (github.com/pablocarderam/opqua).

Basic model concepts
Opqua models are composed of populations containing hosts and/or vectors, which themselves
may be infected by a number of pathogens with different genomes.

A genome is represented as a string of characters. All genomes must be of the same length (a
set number of loci), and each position within the genome can have one of many different
characters specified by the user (corresponding to different alleles). Different loci in the
genome may have different possible alleles available to them. Genomes may be composed of
separate chromosomes or genome segments separated by the "/" character, which is reserved
for this purpose.

Each population may have its own unique parameters dictating the events that happen inside of
it, including how pathogens are spread between its hosts and vectors.

Model events
There are different kinds of events that may occur to hosts and vectors in a population:
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- contact between an infectious host/vector and another host/vector in the same
population (intra-population contact, or “contact”) or in a different population
(inter-population contact, or “population contact”)

- migration of a host/vector from one population to another
- recovery of an infected host/vector
- birth of a new host/vector from an existing host/vector
- death of a host/vector due to pathogen infection or by “natural” causes
- mutation of a pathogen in an infected host/vector
- recombination of two pathogens in an infected host/vector

The likelihood of each event occurring is determined by the population’s parameters (explained
in the online documentation) and the number of infected and healthy hosts and/or vectors in
the population(s) involved. Crucially, it is also determined by the genome sequences of the
pathogens infecting those hosts and vectors. The user may specify arbitrary functions to
evaluate how a genome sequence affects any of the above kinds of rates. As an example, a
specific genome sequence may result in increased transmission within populations but
decreased migration of infected hosts, or increased mutation rates. These custom functions
may be different across populations, resulting in different adaptive landscapes within different
populations.

Contacts within and between populations may happen by any combination of host-host,
host-vector, and/or vector-host routes, depending on the populations’ parameters. When a
contact occurs, each pathogen genome present in the infecting host/vector is transferred to the
receiving host/vector as long as one “infectious unit” is inoculated. The number of infectious
units inoculated is randomly distributed based on a Poisson probability distribution. The mean
of this distribution is set by the receiving host/vector’s population parameters. The genomes
chosen for transmission are sampled randomly according to the fraction of intra-host fitness
each genome contributes to the total within the host or vector.

Inter-population contacts occur via the same mechanism as intra-population contacts, with the
distinction that the two populations must be linked in a compatible way. For example, if a
vector-borne model with two separate populations allows vectors from Population A to contact
hosts in Population B, then the vector-host population contact rate in Population A and the
host-vector population contact rate in Population B must both be greater than zero. Migration
of hosts/vectors from one population to another depends on a single rate defining the
frequency of vector/host transport events from a given population to another. Therefore,
Population A would have a specific migration rate dictating transport to Population B, and
Population B would have a separate rate governing transport towards A.
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The recovery of an infected host or vector results in all pathogens being removed from the
host/vector. Additionally, the host/vector may optionally gain protection from pathogens that
contain specific genome sequences present in the genomes of the pathogens it recovered from,
representing immune memory. The user may specify a population parameter delimiting the
contiguous loci in the genome that are saved on the recovered host/vector as “protection
sequences”. Pathogens containing any of the host/vector’s protection sequences will not be able
to infect the host/vector.

Births result in a new host/vector that may optionally inherit its parent’s protection sequences.
Additionally, a parent may optionally infect its offspring at birth following a Poisson sampling
process equivalent to the one described for contact events above. Deaths of existing
hosts/vectors can occur both naturally or due to infection mortality. Only deaths due to
infection are tracked and recorded in the model’s history.

De novo mutation of a pathogen in a given host/vector results in a single locus within a
pathogen’s genome being randomly assigned a new allele from the possible alleles at that
position. Recombination of two pathogens in a given host/vector creates two new genomes
based on the independent segregation of chromosomes (or reassortment of genome segments,
as in influenza virus biology) from the two parent genomes. In addition, there may be a
Poisson-distributed random number of crossover events between homologous parent
chromosomes. Recombination by crossover event will result in all the loci in the chromosome
on one side of the crossover event location being inherited from one of the parents, while the
remainder of the chromosome is inherited from the other parent. The locations of crossover
events are distributed throughout the genome following a uniform random distribution.

Model interventions
Furthermore, the user may specify changes in model behavior at specific timepoints during the
simulation. These changes are known as “interventions”. Interventions can include any kind of
manipulation to populations in the model, including:

- adding new populations
- changing a population’s event parameters and adaptive landscape functions
- linking and unlinking populations through migration or inter-population contact
- adding and removing hosts and vectors to a population

Interventions can also include actions that involve specific hosts or vectors in a given
population, such as:
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- adding pathogens with specific genomes to a host/vector
- removing all protection sequences from some hosts/vectors in a population
- applying a “treatment” in a population that cures some of its hosts/vectors of pathogens
- applying a “vaccine” in a population that protects some of its hosts/vectors from

pathogen infection

For these kinds of interventions involving specific pathogens in a population, the user may
choose to apply them to a randomly-sampled fraction of hosts/vectors in a population, or to a
specific group of individuals. This is useful when simulating consecutive interventions on the
same specific group within a population. A single model may contain multiple groups of
individuals and the same individual may be a member of multiple different groups. Individuals
remain in the same group even if they migrate away from the population they were chosen in.

When a host/vector is given a “treatment”, it removes all pathogens within the host/vector that
do not contain a collection of sequence motifs called “resistance sequences”. A treatment may
have multiple resistance sequences. A pathogen must contain all of these within its genome in
order to avoid being removed. On the other hand, applying a vaccine consists of adding a
specific protection sequence to hosts/vectors, which behaves as explained above for recovered
hosts/vectors when they acquire immune protection, in models that allow it.

Model simulation
Models are simulated using an implementation of the Gillespie algorithm in which the rates of
different kinds of events across different populations are computed with each population’s
parameters and current state, and are then stored in a matrix. In addition, each population has
host and vector matrices containing coefficients that represent the contribution of each host
and vector, respectively, to the rates in the master model rate matrix (Fig. S1). Each coefficient
is dependent on the genomes of the pathogens infecting its corresponding vector or host. In
addition, the contribution of each pathogen genome is weighted by the share of total
competitive fitness it holds within the host or vector. This occurs under the simplifying
assumption that in a coinfection, pathogens with more competitive fitness will have higher
intra-host (or intra-vector) shares of the pathogen population.

This approach also assumes that on the timescales of most short coinfections, pathogen
within-host dynamics are driven by selection for fitness-affecting mutations or coexistence in
the case of neutral or near-neutral mutations. The model does not currently consider
within-host genetic drift. The drawbacks of this assumption are mitigated by the fact that the
weight contribution of each pathogen genome affects the event rates associated with it. This
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means the effect of genome sequence on epidemiology is probabilistic, rather than
deterministic, and can approximate the behavior of intra-host drift in the total host population
as a whole. Nevertheless, incorporating more realistic (yet computationally-intensive)
within-host dynamics is an interesting prospect for future development of the method.

All x populations in a model have matrices composed of coefficients c for all n event types and
all yh hosts or yv vectors in the population. Hosts and vectors are handled in separate matrices.
The coefficient c for a given event e and host jh (or vector jv) in population i is computed from
the intra-host competitive fitness function φ and the family of functions f, which return a value
between 0 and 1 for all z pathogen genomes g inside the given host jh or vector jv at time t:

The values of φ and f are relative to a reference value of 1. Functions φ and f are defined to be 1
for any given genome g by default, but can be set to any arbitrary function that maps a genome
sequence to a value between 0 and 1. Each population may have different functions φ and f for
hosts and vectors, and they may be different across populations and time points, as with any
other parameter. Coefficients for hosts and vectors with no pathogens are by default zero, save
for birth, receiving intra- or inter-population contact, and migration. In these cases, the events
may still involve healthy individuals, and the coefficients are therefore equal to 1.

With these coefficients (in units of hosts or vectors for ch and cv, respectively), the rates r of
each kind of event can now be calculated (in units of time-1). Some events concern a single host
or vector, such as birth, death, mutation, and recombination rates. The total birth rates of hosts
and vectors in a population i are calculated from the population birth rates α (units of time-1) at
time t as
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The total natural death rates of hosts and vectors in a population i are calculated from the
population death rates γ (units of time-1) at time t as

Death by natural causes is unaffected by infection, and thus only depends on the total number
of hosts yi,h or vectors yi,v. Death due to pathogen infection is counted separately in order to
better track the system’s epidemiology. The total mortality rates for hosts and vectors in a
population i are calculated from the population-specific case mortality rates τ (units of time-1)
at time t as

The total recovery rates of hosts and vectors of a population i are calculated based on
population-specific recovery rates 𝛿 (units of time-1) at time t as

The total rates of de novo mutation in hosts and vectors of a population i are calculated based
on population-specific mutation rates µ (units of time-1) at time t as

Similarly, the total rates of recombination in hosts and vectors of a population i are calculated
based on population-specific recombination rates ρ (units of time-1) at time t as
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Some events involve two individuals j1 and j2 within the same population. The intra-population
contact rates for host-host, host-vector, and vector-host contact in a population i are calculated
based on population-specific contact rates β (units of time-1 for host-host transmission,
time-1host/vector for vector-borne transmission) and transmission efficiency ɛ (dimensionless
fraction) at time t as

Variable p tracks whether a given host or vector is infected with pathogens (p=1) or not (p=0).
Note that for host-vector and vector-host contact, β corresponds to βv and is given in units of
time-1 host/vector. This follows the convention of defining contact rate in terms of the vector
biting rate for parasitic vectors.

Some events involve two different populations. The migration rates of hosts and vectors in a
population are calculated based on migration rates θ (units of time-1) from a specific population
i to each of all of its q possible migration neighbors at time t as

Finally, some events involve two individuals in different populations. The inter-population
contact rates for host-host, host-vector, and vector-host contact are calculated based on
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population-specific contact rates κ (units of time-1 for host-host transmission, time-1host/vector
for vector-borne transmission) from a specific population i to each of all of its u possible
contact neighbors at time t as

With the rates for all events and populations computed, an event and population is selected
randomly, with probabilities drawn from all relative rates as calculated above. In the case of
events that involve two populations, the second population is chosen randomly, this time with
probabilities drawn from the rates of migration or population contact specifically originating
from the first selected population. In similar fashion, the individual host(s) and/or vector(s) are
sampled randomly based on the corresponding coefficients within the chosen population(s).
Finally, the individual pathogen genomes are sampled randomly based on their respective
contributions to the chosen host/vector coefficient. As explained above, mutation events
sample a single pathogen, recombination events sample two pathogens, and contact events
sample a Poisson-distributed random number of pathogens with replacement. The mean of this
distribution is the mean inoculum size parameter, ni. Whenever an event occurs, the
corresponding coefficients for the hosts and vectors affected in the population matrices are
updated, and the master rate matrix is recomputed based on this information.

The model’s state at any given time comprises all populations, their hosts and vectors, and the
pathogen genomes infecting each of these. A copy of the model’s state is saved at every time
point, or at intermittent intervals throughout the course of the simulation. A random sample of
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hosts and/or vectors may be saved instead of the entire model as a means of reducing memory
footprint.

Model output
The output of a model can be saved in multiple ways. The model state at each saved time point
may be output in a single data frame and saved as a tabular file. Other data output types include
counts of pathogen genomes or protection sequences for the model, as well as time of first
emergence for each pathogen genome and genome distance matrices for every time point
sampled.

The user can also create different kinds of plots to visualize the results. These include:

- plots of the number of hosts and/or vectors in different epidemiological compartments
(naive, infected, recovered, and dead) across simulation time

- plots of the number of individuals in a compartment for different populations
- plots of the genomic composition of the pathogen population over time
- phylogenies of pathogen genomes

Users can also use the data output formats to make their own custom plots.

Models used in this study
We used the Opqua modeling framework to study the evolutionary dynamics of pathogens
across low fitness regimes. The code to run all simulations and analyses presented in this work
is available in a separate GitHub repository (github.com/pablocarderam/fitness_valleys_opqua).
The simulations were run on a 2019 MacBook Pro laptop with a 2.4 GHz 8-Core Intel Core i9
processor.

Stochastic models of fitness valleys
To simulate evolution across a fitness valley (Fig. 2), we constructed a stochastic host-host
transmission model using Opqua. The model comprises 1000 hosts in a single population, 500
of which start the simulation infected by “wild-type” pathogens with a genome of
“AAAAAAAA”. The epidemiological parameters were set to the default values shown for
host-host models in Table S1, with the following modifications: a genome length of 8 loci with
two possible alleles (“A” and “B”) at each locus, a mean inoculum of 1 pathogen, a recovery rate
of 0.005 1/unit time, a mutation rate of 0.02 1/unit time, and no recombination. The recovery
rate of “resistant” pathogens was set to be 75% of the original for pathogens with a genome of
“BBBBBBBB”. The choice of using bi-allelic rather than multi-allelic loci (such as four DNA
bases, 20 amino acids, or other kinds of allelic variations) was made for simplicity and to more
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easily observe stochastic tunneling. In systems with many more possible alleles, the probability
of reaching a specific other genotype is exponentially lower, and therefore the number of
simulation replicates needed to observe differences in stochastic tunneling rates rises
exponentially as well.

Most importantly, the intra-host competitive fitness φ of each genome was made to follow the
following function, describing a fitness valley in terms of the number of “B” alleles in the
genome b and the total length of the genome g:

This function was chosen as it describes a steep initial decrease in fitness as pathogens mutate
away from the wild type, followed by a more gradual increase in fitness to the resistant
genotype. It also guarantees that all mutant pathogens have lower competitive fitness than the
wild-type, save for the resistant mutant genome, which outcompetes even the wild type. In this
way, resistant pathogens fixate in the population more easily once they arise, which facilitates
observation of the stochastic tunneling phenomena being studied.

Additionally, a “drug treatment” intervention was added at time 10,000 such that all pathogens
with genomes other than the resistant genotype were cleared from the population.

The simulations shown in Fig. 2E aims to illustrate the evolution of strictly less-fit mutants in
the system. Therefore, the previous setup was modified to finish simulation at 10000 time units
with no drug intervention, and the contact and mutation rates of resistant pathogens were
modified to be equal to zero. This effectively makes the resistant genotype into a lethal
mutation, allowing easier study of the remainder of less-fit genotypes without interference. To
study the distribution of survival times for mutants that are alone before they become
coinfected by a wild-type pathogen or are cleared from the host, we extracted the survival times
for 100 mutant-only infections in a single simulation run for each contact rate.

To evaluate the effect of different kinds of fitness valleys (Fig. S2), we varied the number of loci
being taken into account for fitness (thus varying the genome length g and the length of the
fitness valley) as well as ad, the fraction of the original fitness drop with respect to the wild-type
genome (thus varying the minimum fitness of mutants, or the depth of the valley). This was
done with the following fitness function:
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Compartment model of mutant and wild-type pathogen competition
To study the competitive dynamics of wild-type pathogens and mutant pathogens with lower
fitness, we developed a compartment model describing the number of hosts infected with no
pathogens (S), wild-type pathogens only (W), mutant pathogens only (M), or coinfected with
both kinds of pathogens (C). This model is presented in Fig. 3A, and shown in more detail in
Fig. S3. The system considers a constant host population N such that N = S + M + W + C. The
following system of ordinary differential equations (ODEs) describes the flow between host
compartments in terms of host recovery rate 𝛿, contact rate β, mutation rates from wild-type to
mutants µ1 and vice-versa µ2, inoculum size ni, and the probability of wild-type pathogens with
higher fitness outcompeting mutants in intra-host competition ψ:

For models in which only a single mutation is possible such as the model above, the
relationship between the probability parameter ψ used in the ODE model, the relative
intra-host competitive fitness φ used in Opqua models, and the fitness disadvantage of
mutation λ shown on Figs. 3 and S4 is given by

Solving the model at equilibrium leads to S* = 𝛿 N / β for all nontrivial solutions, but the
remaining three steady-state compartments yield unwieldy expressions that are difficult to
analyze.
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We numerically solved the deterministic behavior of this model using the parameters described
in Table S3 from starting conditions of 10 infected individuals, taking the system state after
1000 time units as a result. Mutations that restore the exact wild-type genotype were assumed
to be far less likely than mutations away from the genotype (µ1 <<µ2 = 0).

Stochastic model of pathogen competition in a descending fitness landscape
To establish the potential of genomic epidemiological models as tools to study evolution, we
created a stochastic model using Opqua following and expanding our results from the
compartment model (Fig. 3). The model is composed of 500 hosts in a single population, 250 of
which start the simulation infected by “wild-type” pathogens with a specific genome sequence
of 500 amino acids. Each simulation lasted for 1000 time units, and the result shown for each
condition was obtained as the mean of ten replicates. The epidemiological parameters were set
to the default values shown for host-host models in Table S1, with the following modifications:
a genome length of 500 loci with 20 possible alleles (corresponding to the 20 amino acids
abbreviations “ARNDCEQGHILKMFPSTWYV”) at each locus, a mean inoculum of 1 pathogen, a
mutation rate of 0.05 1/unit time, and no recombination. The full amino acid alphabet was used
in this model to showcase the capabilities of Opqua and genomic epidemiological modeling as a
way of describing complex diversity. Since this simulation does not aim to show stochastic
tunneling to a specific new fitness peak, all evolutionary trajectories away from wild type are
considered of interest, allowing for the use of more complex genomes and allele systems.

The intra-host competitive fitness φ of each genome was made to follow the following function,
describing an exponential decay in fitness in terms of the relative fitness disadvantage of each
successive mutation λ (shown on Fig. 3) and the Hamming distance d between a mutant genome
to the wildtype genome:

The maximum distance between a mutant genome and wild-type and the mean pairwise
distance between genomes at the end of simulation were both computed as Hamming
distances.

Stochastic model of population determinants of evolution
We then used the same modeling framework to examine the effect of population size and
migration between populations on evolution across descending fitness landscapes (Fig. 4). The
parameters and analyses used were the same as the ones used for the previous stochastic model
describing a descending fitness landscape, unless otherwise noted on each figure. The host-host
contact rate was fixed to β=0.125 1/unit time, and the fitness cost of each successive mutation
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was set to λ=0.5. For the metapopulation model, the system consisted of 10 different
interconnected populations of 10 initial hosts each.

Stochastic model of pathogen determinants of evolution
Finally, to study the effect of different biological factors on evolution across descending fitness
landscapes, we modeled a host-vector system using Opqua (Fig. 5). The model consisted of 250
hosts and 250 vectors in a single population, running for 1000 time units in 10 replicates for
each condition. Model parameters were set to the default values shown on Table S3, with a few
modifications. All simulations had the host-vector contact rate set to 0.125 1/unit time. The
fitness cost of each successive mutation was set to λ=0.5 within hosts only, and was set to λ=0
within vectors, to model the differing selection pressures on the genome in each organism.
Simulations which varied recombination rates had a mean number of crossover events in both
hosts and vectors set to 5. Other variables were set as shown on Fig. 5, or the default values on
Table S2 if not noted.

An analogous set of simulations was repeated in a host-host transmission system as shown in
Figs. S5 and S6. All parameters were identical as in the host-vector system described, except for
the host-host contact rate set to 0.125 1/unit time and the host-vector contact rate set to zero,
as well as the parameters indicated on each figure.

A third set of simulations was carried out using a host-vector transmission model identical to
that used for Fig. 5, but this time with separate fitness peaks for genomes in hosts and vectors
(Figs. S7, S8). Each fitness peak was devised to be three mutations away from the wild-type
sequence, and six mutations from each other peak. The three distinguishing mutations for each
peak lie on opposite extremes of the 500-locus wild-type genome, in order to maximize
likelihood of recombination. This allows clearer visualization of the effects of recombination in
this system. All other parameters were identical as in the host-vector system described for Fig.
5.
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Supplementary Materials:

Figures S1 – S8

Supplementary Fig. S1. Opqua uses different levels of rate matrices to sample events. (A) A matrix
contains the rates rp of n different events for x different populations within the model. A given event type
and population are sampled randomly based on the rate of each event-population combination. (B) Each
population contains matrices with the event rates ri for all y individual hosts and vectors it contains. A
host/vector is sampled randomly based on the rates of the chosen event type for all host/vectors in the
chosen population. (C) Finally, a similar process occurs within hosts and vectors to randomly sample
pathogens within them, based on how their z different genomes affect the rates rg of the chosen event.
Some events involve sampling an additional population (migration or inter-population contact),
host/vector (inter- or intra-population contact), or pathogen (recombination). Once event type,
population(s), host(s) and/or vector(s), and pathogen(s) have been chosen in this manner, the state of the
model is adjusted according to the event, and the relevant rate changes are propagated upward from
within the pathogens affected to the host(s), vector(s), populations, and overall model they are in.
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Supplementary Fig. S2. Length and steepness of the fitness valley affect the impact of
competition on evolution. We constructed a model to simulate stochastic tunneling of a pathogen
across a fitness valley based on genomes with eight bi-allelic loci, as portrayed in Fig. 2. (A) By focusing
on a subset of loci in each genome, we can vary the length of the fitness valley. (B) Longer fitness valleys
favor the evolution and survival of pathogens in low transmission environments, as more loci provide
more alternative evolutionary paths through the valley but are inhibited by high intra-host competition.
In short fitness valleys, the number of paths becomes more restricted while the effect of competition is
lessened, favoring environments with increased transmission. (C) By adjusting the fitness cost of
intermediate mutants, we can vary the steepness and depth of the fitness valley. (D) Steep, deep valleys
increase the effect of intra-host competition, favoring the evolution and survival of pathogens in low
transmission environments more heavily.
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Supplementary Fig. S3. Compartment model structure allows deterministic simulation of
dynamics of two strains of pathogens. (A) The model consists of compartments for hosts infected with
no pathogens (S), wild-type pathogens only (W), mutant pathogens only (M), or coinfected with both
kinds of pathogens (C). Transitions between compartments are determined by host recovery rate 𝛿,
contact rate β, mutation rates from wild-type to mutants µ1 and vice-versa µ2, inoculum size n, and the
probability of wild-type pathogens with higher fitness outcompeting mutants in intra-host competition
ψ. (B) At high transmission intensities (β=0.2), unfit mutants (ψ=0.67) constitute a small portion of the
total population, as shown throughout the rest of this work. (C) At low transmission intensities (β=0.12),
unfit mutants show greater prevalence in the population.
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Supplementary Fig. S4. Duration of infection affects mutant fraction primarily through
competition for free hosts, as with contact rate. Using the ordinary differential equation model
described, we vary the duration of infection (equivalent to 1/recovery rate) while keeping the contact rate
constant such that the range of steady-state infected hosts sampled is equivalent to those in Figure 3B
and 3C. The resulting (A) mutant fractions of pathogens and (B) mutant-only fractions of infections are
similar to those shown when varying contact rates in Figure 3B and 3C. Small differences in the scale of
the effects are due to the fact that at high durations of infection, mutants are removed less frequently
through recovery. This can be seen when varying the duration of infection while keeping the fraction of
infected hosts constant by simultaneously varying the contact rate. While biologically unlikely to
happen, this shows a small increase in fraction of (C) mutants among pathogens and (D) mutant-only
infections among hosts (note change in color scale).
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Supplementary Fig. S5. Pathogen biology affects the distribution and dimensions of their
evolution for host-host direct transmission. The effects of mutation rate, inoculum size from hosts,
and recombination rates are analogous to those observed within hosts for a vector-borne model (Fig. 5).
The fraction of mutants in the pathogen population is increased by both (A) high mutation rates (µ) and
(B) high mean inoculum sizes (ni), but is unaffected by (C) recombination rates (ρ). (D) The number of
unique pathogen genomes in the simulation, which we treat as a measure of the “width” of evolutionary
space explored, increases with high mutation rates, but less so with (E) high mean inoculum size. (F)
Greater recombination increases the number of unique pathogen genomes. Lastly, (G) increased
mutation rate increases the “depth” of evolutionary space explored by pathogens, measured as the
maximum Hamming distance of mutant genomes from the initial wild-type sequence. (H) Low inoculum
size increases the probability of transmitting mutants without wild-type (WT) competitors, allowing for
greater depth in the evolutionary space explored. (I) High recombination rates increase depth of
evolutionary space, notably without affecting the fraction of mutants in the pathogen population.
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Supplementary Fig. S6. Recombination depends on inoculum size to increase evolutionary
distance. By keeping the mutation rate (µ) constant and reducing the mean inoculum size (ni) to 1 in a
host-host transmission model with a descending fitness landscape, we can see the effects of
recombination on pathogen genome evolution with low inoculums. (A) As before, increasing
recombination rate does not increase the mutant fraction of pathogens. However, the lower inoculum
greatly reduces the effect of recombination on (B) the number of unique pathogen genomes explored and
(C) the maximum Hamming distance from the wild-type pathogen genotype. Neither of these shows
increases on the same scale seen for the higher mean inoculum size ni=10 in Fig. S3.
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Supplementary Fig. S7. Separate fitness landscapes within hosts and vectors can be used to study
pathogen evolution in Opqua. Two fitness functions are devised with exponentially decaying fitness
around distinct, optimal genome sequences. These optimal genomes constitute separate fitness peaks for
pathogens within hosts and vectors. Each fitness peak is at Levenshtein distance of six mutations from
the other. The wild-type (WT) genome sequence used to initiate simulations lies halfway between both
peaks, three mutations from each.
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Supplementary Fig. S8. Conflicting fitness landscapes in different life stages generate symmetric
distributions of evolution within hosts and vectors. We varied mutation rates, inoculum size, and
recombination rates in hosts and vectors as done in the simulations shown on Fig. 5, with the addition of
selection within both hosts and vectors (as shown in Fig. S7). The resulting heatmaps show distributions
of (A–C) mutant pathogens, (D–F) unique genomes explored, and (G–I) maximum genome distance
from the wild-type genome that are symmetric across the diagonal, and correspond to the average of
each respective graph on Fig. 5 and its diagonal reflection. This is expected, given the same population
bottlenecks described in the main text for the model with only selection in hosts are now present with
symmetric selection pressures across the life cycle.
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Tables S1 – S3

Table S1: Default Opqua parameters for host-host transmission models*

Parameter name Default value

num_loci 10

possible_alleles 'ATCG'

fitnessHost (lambda g: 1)

contactHost (lambda g: 1)

receiveContactHost (lambda g: 1)

mortalityHost (lambda g: 1)

natalityHost (lambda g: 1)

recoveryHost (lambda g: 1)

migrationHost (lambda g: 1)

populationContactHost (lambda g: 1)

receivePopulationContactHost (lambda g: 1)

mutationHost (lambda g: 1)

recombinationHost (lambda g: 1)

fitnessVector (lambda g: 1)

contactVector (lambda g: 1)

receiveContactVector (lambda g: 1)

mortalityVector (lambda g: 1)

natalityVector (lambda g: 1)

recoveryVector (lambda g: 1)

migrationVector (lambda g: 1)

populationContactVector (lambda g: 1)

receivePopulationContactVector (lambda g: 1)

mutationVector (lambda g: 1)
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recombinationVector (lambda g: 1)

contact_rate_host_vector 0

transmission_efficiency_host_vector 0

transmission_efficiency_vector_host 0

contact_rate_host_host 2.00E-01

transmission_efficiency_host_host 1

mean_inoculum_host 1.00E+01

mean_inoculum_vector 0

recovery_rate_host 1.00E-01

recovery_rate_vector 0

mortality_rate_host 0

mortality_rate_vector 0

recombine_in_host 1.00E-04

recombine_in_vector 0

num_crossover_host 1

num_crossover_vector 0

mutate_in_host 1.00E-06

mutate_in_vector 0

death_rate_host 0

death_rate_vector 0

birth_rate_host 0

birth_rate_vector 0

vertical_transmission_host 0

vertical_transmission_vector 0

inherit_protection_host 0

inherit_protection_vector 0
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protection_upon_recovery_host None

protection_upon_recovery_vector None

*For a detailed description of each parameter, consult the documentation at
https://github.com/pablocarderam/opqua#newsetup

Table S2: Default Opqua parameters for vector-borne transmission models*

Parameter name Default value

num_loci 10

possible_alleles 'ATCG'

fitnessHost (lambda g: 1)

contactHost (lambda g: 1)

receiveContactHost (lambda g: 1)

mortalityHost (lambda g: 1)

natalityHost (lambda g: 1)

recoveryHost (lambda g: 1)

migrationHost (lambda g: 1)

populationContactHost (lambda g: 1)

receivePopulationContactHost (lambda g: 1)

mutationHost (lambda g: 1)

recombinationHost (lambda g: 1)

fitnessVector (lambda g: 1)

contactVector (lambda g: 1)

receiveContactVector (lambda g: 1)

mortalityVector (lambda g: 1)

natalityVector (lambda g: 1)

recoveryVector (lambda g: 1)

migrationVector (lambda g: 1)
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populationContactVector (lambda g: 1)

receivePopulationContactVector (lambda g: 1)

mutationVector (lambda g: 1)

recombinationVector (lambda g: 1)

contact_rate_host_vector 2.00E-01

transmission_efficiency_host_vector 1

transmission_efficiency_vector_host 1

contact_rate_host_host 0

transmission_efficiency_host_host 0

mean_inoculum_host 1.00E+02

mean_inoculum_vector 1.00E+00

recovery_rate_host 1.00E-01

recovery_rate_vector 1.00E-01

mortality_rate_host 0

mortality_rate_vector 0

recombine_in_host 0

recombine_in_vector 1.00E-04

num_crossover_host 0

num_crossover_vector 1

mutate_in_host 1.00E-06

mutate_in_vector 0

death_rate_host 0

death_rate_vector 0

birth_rate_host 0

birth_rate_vector 0

vertical_transmission_host 0
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vertical_transmission_vector 0

inherit_protection_host 0

inherit_protection_vector 0

protection_upon_recovery_host None

protection_upon_recovery_vector None

*For a detailed description of each parameter, consult the documentation at
https://github.com/pablocarderam/opqua#newsetup

Table S3: Parameters used for two-strain compartment model

Parameter name Description Value

𝛿 host recovery rate 1.00E-01*

β host contact rate 1.10E-01*

φ probability of wild-type
pathogens outcompeting
mutants in intra-host
competition

1/(2-0.1)*

ni size of inoculum 1

µ1 mutation rate from wild-type to
mutant

5.00E-02

µ2 mutation rate from mutant to
wild-type

0

N total population size 5.00E+02

*Parameters vary according to simulation
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