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Abstract 

In vivo calcium imaging is a standard neuroimaging technique that allows selective observation of target 

neuronal activities. In calcium imaging, neuron activation signals provide key information for the 

investigation of neural circuits. For efficient extraction of the calcium signals of neurons, selective 

detection of the region of interest (ROI) pixels corresponding to the active subcellular region of the 

target neuron is essential. However, current ROI detection methods for calcium imaging data exhibit a 

relatively low signal extraction performance from neurons with a low signal-to-noise power ratio (SNR). 

This is problematic because a low SNR is unavoidable in many biological experiments. Therefore, we 

propose an iterative correlation-based ROI detection (ICoRD) method that robustly extracts the calcium 

signal of the target neuron from a calcium imaging series with severe noise. ICoRD extracts calcium 

signals closer to the ground-truth calcium signal than the conventional method from simulated calcium 

imaging data in all low SNR ranges. Additionally, this study confirmed that ICoRD robustly extracts 

activation signals against noise, even within in vivo environments. ICoRD showed reliable detection 

from neurons with a low SNR and sparse activation, which were not detected by conventional methods. 

ICoRD will facilitate our understanding of neural circuit activity by providing significantly improved 

ROI detection in noisy images. 
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1. Introduction  

Intracellular calcium concentration remains low 

in the resting state and increases abruptly upon 

neuronal activity [1-4]. Therefore, calcium imaging 

is a standard neuroimaging method for measuring 

neuronal activity in the living brain [5-8]. For the 

precise extraction of information on activity, a 

selective grouping of pixels corresponding to the 

intracellular calcium change of a target structure, 

such as the cell body or dendrite, is required. The 

group of pixels has been defined as the region of 

interest (ROI) [6, 9]. In general, the average signal 

of the pixels detected in a given ROI is used as the 

calcium activation signal of the target neuron. 

Detecting the pixels of neuronal cell bodies with 

active calcium signals is straightforward; however, 

depending on the experimental conditions and size 

of the target structure, the signal-to-noise power 

ratio (SNR) of calcium signals is often low.  

A reduction in the SNR of calcium imaging is 

mainly caused by the low expression performance 

of the calcium indicator, short dwell time of each 

neuron, small target structure, or a combination of 

these factors [10, 11]. Heterogeneity in calcium 
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indicator expression causes SNR reduction in 

neurons with low expression. Some neurons with 

low calcium indicator expression have a low SNR 

because the calcium activation signal level itself is 

relatively low [12]. The shorter dwell time causes 

the SNR to decrease for each neuron [13]. In 

addition, experimental factors such as inflammatory 

reactions and blurring due to regeneration of the 

dura lower the SNR. Neurons with low SNRs often 

appear as blurry outlines in the mean images of 

calcium imaging movies; however, the signal 

extraction performance of these neurons has not 

been extensively discussed in previous studies.  

Efforts to extract the signals of target neurons 

from calcium imaging data began with principal 

component analysis (PCA) and independent 

component analysis (ICA)-based ROI detection 

methods [14]. The PCA/ICA technique was 

developed for the effective separation of signals 

from the overlapped area of neurons; however, the 

denoising performance was not sufficient for low-

SNR data. Since the development of the PCA/ICA 

technique, many ROI detection methods have been 

proposed to improve denoising capability. In 

particular, once the constrained non-negative 

matrix factorization (CNMF) method based on 

calcium dynamics modeling was proposed, this 

method has been mainly used for calcium imaging 

analyses [15-18]. CNMF is effective for detecting 

the shape of many overlapping neurons and 

simultaneously extracting signals from these 

neurons. Despite these benefits, the signal 

extraction performance remains insufficient for 

neurons with a low SNR. The Suit2p method is a 

specialized technique for analyzing a large number 

of neurons; however, it has not been extensively 

analyzed for the detection and denoising of neurons 

with a low SNR [19]. 

In calcium imaging, current ROI detection 

methods detect morphologically clustered pixels in 

the shape of neurons; however, signals extracted 

from these ROIs are susceptible to noise [20, 21]. 

Signals from pixels that cover intracellular 

organelles, where there is no calcium indicator, will 

reduce the SNR, despite the pixels being clustered 

morphologically. Detecting these noisy pixels as an 

ROI lowers the SNR of the detected pixel’s average 

signal. Conversely, detecting pixels outside the 

shape of a neuron as the ROI can reduce baseline 

noise when calculating the average of the ROI 

pixels. Detecting the ROI as a criterion to increase 

the SNR can improve signal extraction performance. 

In this paper, an iterative correlation-based ROI 

detection (ICoRD) method is proposed, which 

enhances the SNR of target neurons by iteratively 

estimating the ground-truth calcium signal (true 

activation calcium signal without noise). ICoRD 

detects pixels that maximize the correlation 

coefficient between the estimated ground-truth 

calcium signal and the average signal of the 

detected pixels. The performance of ICoRD was 

verified on a simulated dataset with the ground-

truth calcium signal, and ICoRD was applied to in 

vivo mouse calcium images to validate the signal 

extraction performance. The ICoRD results were 

compared with those of CNMF. Compared to 

CNMF, ICoRD showed substantially higher signal 

extraction performance, which was evaluated by 

calculating the correlation coefficient with the 

ground-truth calcium signal, especially when the 

SNR was lower than -15 dB. The lower the SNR of 

the raw data, the greater the difference in 

performance between the two methods. ICoRD will 

provide neuroscientists with reliable calcium signal 

extraction results, even in neurons with a low SNR. 

 

2. Method 

2.1. Overview of the ICoRD for extracting 

neural signals in calcium imaging data 
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A novel iterative correlation-based ROI detection 

method that iteratively detects ROIs to obtain 

signals closer to the ground-truth calcium signal is 

proposed (Figure 1(a)). The first reference signal 

for the iterative update was defined as the average 

signal of nine pixels adjacent to a user-defined pixel 

in the neuron of interest. Within the observation 

range (red dotted box in Figure 1(a)), which is a 

group of pixels in which the cell body of the neuron 

can be best visualized within the surrounding space, 

pixels were selected to maximize the correlation 

coefficient between the average signal of the 

selected pixels and the reference signal.  

To detect the ROI that maximizes the correlation 

coefficient with a reference signal, we calculated 

the correlation coefficients twice in total. For the 

first calculation, ICoRD calculated the correlation 

coefficients between the reference signal and the 

signals of individual pixels to sort the pixels. All 

candidate pixels were sorted in descending order of 

the correlation coefficient calculated based on the 

reference signal (the number of pixels 𝑖  ranged 

from one to the maximum number of pixels (𝑚𝑎𝑥) 

within the observation range in Figure 1(b)). The 

second correlation coefficient calculation was 

performed to calculate the correlation coefficient 

between the reference signal and the average signal 

of the different number of pixels (𝑖 = 1~ 𝑚𝑎𝑥) in 

Figure 1(c). The number of pixels that maximizes 

the correlation coefficient with the reference signal 

was defined as the optimal number of pixels (𝑁), 

and a pixel group with an optimal number of pixels 

was detected as an ROI. In the process of obtaining 

this second correlation coefficient, we observed a 

trade-off between signal power increase and noise 

power reduction. When the number of pixels was 

significantly large, pixels with weak signals were 

averaged, which reduced the correlation coefficient 

with the reference signal (Figure 1(c)). However, 

when the number of pixels was significantly small, 

white noise was pronounced, resulting in a low 

correlation coefficient (Figure 1(c)). A set of pixels 

with the optimal number of pixels was chosen as an 

ROI to achieve the highest correlation. The ground-

truth calcium signal was then estimated by 

iteratively setting a new reference signal as the 

average signal of the ROI or the deconvolution 

signal of the average signal (Figure 1(a)). This 

process was repeated until the reference signal was 

close to the ground-truth calcium signal. The 

detailed iteration algorithm is shown in Figure S2. 

 

2.2. Initial parameter setup 

To select the first reference signal, the ICoRD 

algorithm began by selecting the representative 

pixel of the target neuron. The average signal of the 

nine pixels adjacent to the selected pixel was used 

as the first reference signal. The observation range 

that best visualized the neuron was selected by 

checking the movie, mean image, and correlation 

image. The mean image represented the average 

time-axis signal for each pixel. The correlation 

image was computed by averaging the correlation 

coefficient of each pixel with its four immediate 

pixels. When certain pixels had to be excluded for 

various reasons, such as overlapping with 

neighboring neurons, the algorithm was executed 

without the rejection range selected by the user 

(Figure S1). The initial parameters used in CNMF 

are described in the Supporting Information (Table 

S1). 

 

  2.3. Iterative update of the reference 

signal  

In ICoRD, the correlation coefficients are 

calculated between the initial reference signal of the 

target neuron and all signals in each pixel within the 

observation range. To detect the ROI that 

maximizes the correlation coefficient with the 
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ground-truth calcium signal, a correlation-based 

ROI detection method is proposed (Figure 1(b)–(c)). 

The correlation-based ROI detection method only 

detects pixels of an optimal number as an ROI.  

Thus far, we have described how to determine the 

optimal number of pixels that maximizes the 

correlation coefficient between the average signal 

of the ROI and the estimated ground-truth calcium 

signal. To estimate the ground-truth calcium signal 

of the target neuron in vivo, a constrained 

deconvolution (CD) method was applied to the 

average signal of the detected ROI [18]. Because 

this CD method has a denoising effect, its 

application helped estimate the ground-truth 

calcium signal. ICoRD iteratively detected the ROI 

and updated the average signal or CD signal to the 

reference signal, such that the reference properly 

approximated the ground-truth signal. The criterion 

for selecting the reference signal was the 

 

Figure 1. Schematic representation of the proposed ICoRD algorithm for neural signal extraction. (a) 

Framework of the ICoRD algorithm for estimating accurate activation signals from the target neuron. 

A representative pixel and observation range were manually selected (left). ICoRD used the average 

calcium signal from nine pixels adjacent to the selected pixel as the first reference signal for ROI 

detection. The reference signal was iteratively updated to approximate the ground-truth calcium signal. 

For ROI detection, a correlation-based ROI detection method ((b)–(c)) was applied, which detected 

the ROI to have an average signal most similar to the reference signal. The average signal of the pixel 

corresponding to the ROI and the constrained deconvolution (CD) signal were computed in each 

iteration. The reference signal of the next iteration was selected from the average signal or CD of the 

previous iteration. When the iteration was completed, the CD signal of the final iteration was output 

as the inferred signal of the target neuron (right). (b) Correlation-based ROI detection to obtain the set 

of pixels that maximizes the correlation coefficient between the average signal of the detected pixels 

and the reference signal. (c) The optimal number of detected pixels (N) of the ROI was determined to 

maximize the correlation coefficient between the reference signal and the averaged ROI signal. 
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information difference between the average calcium 

signal of the previous and current iterations. The 

information difference was one minus the 

correlation coefficient between the average signal 

of the ROI detected in the current ( 𝑅𝑎𝑤𝑐 ) and 

previous iterations (𝑅𝑎𝑤𝑝) (Equation 1).  

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑅𝑎𝑤𝑝, 𝑅𝑎𝑤𝑐)

= 1 −
∑ (𝑅𝑎𝑤𝑝𝑖 − 𝑅𝑎𝑤𝑝̅̅ ̅̅ ̅̅ ̅̅ )𝑛

𝑖 (𝑅𝑎𝑤𝑐𝑖 − 𝑅𝑎𝑤𝑐̅̅ ̅̅ ̅̅ ̅)

√∑ (𝑅𝑎𝑤𝑝𝑖 − 𝑅𝑎𝑤𝑝̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑖 √∑ (𝑅𝑎𝑤𝑐𝑖 − 𝑅𝑎𝑤𝑐̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖

 . 

(1) 

The information difference in each iteration was 

used to select a reference signal to avoid significant 

bias in the initial CD result. A detailed algorithm 

flowchart of ICoRD is presented in Figure S2. 

ICoRD eventually provided the CD result 

reconstructed from the average signal of the ROI 

with the maximum correlation coefficient using the 

estimated ground-truth calcium signal from the last 

iteration.  

 

2.4. Correlation-based ROI detection 

Figure 1(b)–(c) show the correlation-based ROI 

detection method. This method effectively extracts 

the calcium signal of a target neuron, even in 

extremely noisy environments. The ROI detection 

technique proposed in this study aims to detect a 

neuron signal closer to the ground-truth calcium 

signal. ICoRD was assumed to acquire a reference 

signal close to the ground-truth calcium signal upon 

iteration, and an ROI detection method that 

maximized the correlation coefficient with the 

ground-truth calcium signal was first derived.  

In calcium imaging, denoising techniques for 

individual neurons are evaluated based on the 

correlation coefficient of the denoised result and the 

ground-truth calcium signal. However, most 

existing calcium imaging analysis methods extract 

neural signals through post-processing after 

selecting an ROI based on neuron shape. The 

proposed correlation-based ROI detection method 

detects the ROI in which the correlation coefficient 

between the reference signal and the average signal 

of the ROI is the maximum. In a noise-free 

environment, the ROI detection method that 

maximizes the correlation coefficient is used to 

detect a single pixel as an ROI that maximizes the 

correlation coefficient of the ground-truth 

signal.However, in an environment with noise, the 

ROI detection method that maximizes the 

correlation coefficient with the ground-truth 

calcium signal should consider the white Gaussian 

noise reduction effect by averaging the signals of 

the pixels detected as the ROI. Therefore, only 

pixels of an optimal number, at which the 

correlation coefficient between the average signal 

of the ROI and the ground-truth signal was 

maximized, were detected. The correlation 

coefficient trend between the ground-truth signal 

and the average signal of the detected ROI as 

increases of the number of pixels had a concave 

shape near the maximum correlation coefficient, as 

shown in Figure 1(c). The concave shape represents 

the trade-off relationship between the reduction in 

noise power owing to the averaging effect and the 

increase in signal power owing to the detection of a 

highly correlated signal. Figure 1(c) shows the 

optimal number of pixels (𝑁), which determines the 

ROI that has the maximum correlation coefficient 

with the ideal reference signal (𝑥1 ) of the target 

neuron. The temporal signal (𝑦) of each pixel (𝑖) is 

composed of a signal (𝑥) and noise (𝑛). Pixel order 

( 𝑖 ) is sorted in descending order based on the 

Pearson correlation coefficient of each pixel's signal 

(𝑦𝑖) and ground-truth signal (𝑥1). The correlation-

based ROI detection method maximizes the 

correlation coefficient between the average signal 

of the ROI and ground-truth calcium signal by 

detecting pixels with an optimal number (𝑁).  
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3. Results 

3.1. Performance of ICoRD in simulated 

calcium imaging datasets 

Having established a new signal-extraction 

algorithm, its performance at various noise levels 

was investigated. For a fair measurement of the 

signal extraction performance of ICoRD, a ground-

truth calcium signal and various modeled noise 

levels were required. Therefore, a realistic model 

that simulates calcium imaging data with a 

designated noise level was developed. All 

simulations and analyses were performed using 

MATLAB R2020b (MathWorks, Natick, MA, 

USA). The simulated calcium imaging data were 

generated by modeling and multiplying the spatial 

and temporal components of calcium dynamics. 

The spatial component was modeled as a Gaussian 

shape of light propagation owing to the calcium 

indicator at the central location (75,75) in 150 

horizontal and 150 vertical spaces (Figure 2(a)). 

The temporal component for single activation was 

modeled as a 10-Hz sampling rate based on the 

rising tau (𝜏𝑟 = 550 ± 52 ms) and decaying tau 

(𝜏𝑑 = 179 ± 23 ms) values of pGP-CMV-GCaMP6s 

(GCaMP6s) (Figure 2(b), Equation 2) [22]. 

 
ℎ(𝑡) = {

𝑒−𝑡/𝜏𝑑 − 𝑒−𝑡/𝜏𝑟 , 𝑡 > 0
0, 𝑡 ≤ 0

 . 
(2) 

The resulting signal and noise of the central pixel’s 

simulated calcium trace from the neuron with an 

SNR of -30 dB are illustrated in Figure 2(c). The 

ratio of the neuron signal power to the white 

Gaussian noise power was calculated as the SNR to 

generate a simulated calcium movie with various 

SNRs (Equation 3).  

𝑆𝑁𝑅𝑑𝐵 = 10 log10 (
𝑃𝑆

𝑃𝑁
) , 

(3) 

where 𝑃𝑆  denotes the signal power, and 𝑃𝑁  is the 

noise power. The modeled temporal dynamics were 

generated as simulation data for 50 s based on a 10-

 

Figure 2. Simulated calcium dynamics at a severe noise level (-30 dB). (a) The spatial component of 

the calcium dynamics model. (b) The temporal component of the calcium dynamics model derived 

from the kinetics of GCaMP6s. (c) An example of the simulated calcium trace of the center pixel with 

an SNR of -30 dB. (d) An example of the mean and correlation images of the simulation data with an 

SNR of -30 dB. 
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Hz sampling rate by convoluting the calcium events 

at various intervals. If selective ROI detection using 

ICoRD increases the sensitivity of event detection, 

the events could be resolved in severely noisy 

images, and closely interleaved events could be 

resolved better than with the conventional CNMF 

method. To build a testing platform, two or more 

events occurring within 5 s with various intervals 

and noise levels between -30 and 0 dB SNRs were 

modeled. Figure 2(d) shows the mean and 

correlation images of the simulated calcium movie 

with an SNR of -30 dB. In general, the mean image 

provides an estimate of the location and shape of the 

neuron because the average pixel value of the 

neuron signal tends to be higher than the 

background signal. In the correlation image, the 

more frequent the activation of neurons or the 

stronger the signal intensity versus noise, the clearer 

the appearance of the neuron. 

The performance of the proposed ICoRD 

algorithm was compared with that of CNMF using 

the above-mentioned simulated calcium imaging 

data. A comparison was conducted between the 

extracted traces of the ROIs set by the two methods 

 

Figure 3. Results of the proposed ICoRD method and CNMF in simulated calcium imaging datasets. 

(a) The pixels included in the ROIs from the simulated calcium images (yellow) with an SNR of -30 

dB using ICoRD (upper) and CNMF (lower). The red dotted line indicates the range in which the 

neuron's signal exists in a Gaussian shape. (b) The extracted calcium traces from the selected pixels of 

the simulated calcium images with an SNR of -30 dB using ICoRD (upper) and CNMF (lower). (c) 

Detected ROIs using ICoRD (upper) and CNMF (lower) from the simulated calcium imaging data with 

SNRs of -30 to 0 dB. The red dotted lines are as in (a). (d) Mean (solid line) and standard deviation 

(shading) of the correlation coefficient between the ground-truth and extracted signals using ICoRD 

(yellow) and CNMF (blue). 
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from the simulated calcium images with an SNR of 

-30 to 0 dB (Figure 3). In the CNMF method, if the 

selected ROI candidate was determined as 

unsuitable, it was automatically removed. Using the 

calcium images with severe noise (-30 dB), CNMF 

automatically determined and rejected all the pixels 

in the image with an SNR of -30 dB as noise. 

Therefore, we restored the ROIs by recovering the 

candidate ROIs that were originally rejected by 

CNMF for comparison with ICoRD. Conversely, 

ICoRD detected most pixels inside a neuron, 

although a substantial number of background pixels 

were included within the ROIs (Figure 3(a)). 

Furthermore, the extracted signal from the ICoRD-

selected ROI correlated significantly better with the 

ground-truth than the detected ROI from CNMF 

(Figure 3(b); the correlation coefficients with the 

ground-truth from CNMF and ICoRD were 0.8267 

and 0.9834, respectively). Subsequently, the 

performance of ICoRD at various noise levels was 

tested. At all noise levels, signals extracted from 

ROIs detected by ICoRD were closer to the ground-

truth calcium signal than those extracted by CNMF 

(Figure 3(c)–(d)), demonstrating that ICoRD-based 

ROI detection is more robust and suitable for noisy 

signals, as in many in vivo calcium images. As the 

neuron's SNR decreased, ICoRD lowered the noise 

level by detecting not only the pixel corresponding 

to the neuron, but also the surrounding pixels to 

maximize the correlation coefficient with the 

reference signal. In the case of CNMF, all ROIs in 

the data with SNRs of -30 dB and -25 dB were 

automatically determined as noise and rejected; 

therefore, the rejected ROIs were restored. CNMF 

detected a smaller number of pixels as the SNR 

decreased. Figure 3(d) shows the correlation 

coefficient of the ground-truth signal and the signal 

extracted by the two methods from 20 datasets (140 

total) with white Gaussian noise added to each SNR 

(-30 to 0 dB). At all noise levels, the ICoRD result 

had a higher correlation coefficient with the ground-

truth signal than the CNMF result. As shown in 

Figure 3(d), the difference in performance between 

the two methods was particularly large in the SNR 

range of -30 dB to -20 dB. Because the proposed 

method is a correlation-based ROI detection 

method that aims at true calcium signal extraction, 

it shows excellent performance at severe noise 

levels (SNRs of -30 to -20 dB).  

 

3.2. Parameters that change during 

iteration in ICoRD 

Figure 4 shows the trend of the estimated and 

ground-truth correlation coefficients and the 

information difference during the iteration of the 

proposed method in simulated calcium imaging 

data with an SNR of -30 dB. The estimated 

correlation coefficient at each iteration represents 

the correlation coefficient between the constrained 

deconvolution (CD) result of the last iteration and 

the CD result of each iteration. The ground-truth 

correlation coefficient of each iteration is the 

correlation coefficient between the ground-truth 

signal and the CD result of each iteration. ICoRD 

uses the average signal (Avg) of the ROI or CD 

result as a reference signal for the next iteration. 

These two reference sources determine the calcium 

signal extraction performance of ICoRD. Figure 4 

shows the estimation performance of the ground-

truth calcium signal based on reference signal 

selection. The Avg-based update has a white 

background, and the CD-based update of the 

reference has a pink background. Figure 4(a) shows 

the trend of the estimated and ground-truth 

correlation coefficients when the reference signal 

was selected using ICoRD. The trends of the 

estimated and ground-truth correlation coefficients 

were similar, and the ground-truth correlation 

coefficient generally increased with iterations 

(Figure 4(a)). This trend of the ground-truth 

correlation coefficient reveals that ICoRD has been 

effectively designed to estimate the ground-truth 
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calcium signal of the target neuron during the 

iterations. The maximum ground-truth correlation 

coefficient was 0.9889 at the 17th iteration. The 

bottom of Figure 4(a) shows the vibration trend of 

the information difference, which is the criterion for 

selecting the Avg or CD as the reference signal 

(Equation 1, Figure S2). The information difference 

is used for avoiding significant bias in the calcium 

model estimated by only CD during the initial 

iteration. If the information difference is less than a 

certain threshold (for example, 0.02), the algorithm 

determines that there is no more information to be 

obtained from the previous reference source and 

updates it with another data source (Raw→CD, 

CD→Raw). In the process of information 

difference oscillation, ICoRD estimates closer to 

the ground-truth calcium signal. An Avg-based 

update could estimate the ground-truth signal with 

a moderately high correlation coefficient (0.9597 at 

the 17th iteration); however, the estimation 

performance was relatively low compared to 

ICoRD owing to the lack of the noise removal effect 

in CD (Figure 4(b)). In addition, in the case of Avg-

based update, the improvement of the ground-truth 

correlation coefficient by iteration was hardly 

observed after 6th iteration. Although CD has a 

noise-removing effect, there is a risk of 

continuously estimating the calcium model at the 

initial iterations in CD-based updates (Figure 4(c)). 

In the CD-based update, the speed of finding the 

ground-truth calcium signal as increases of the 

iteration was relatively slow, and the maximum 

ground-truth correlation coefficient was 0.8087 in 

the 14th iteration, which was not sufficient to 

analyze neural activity. The information difference 

of the CD-based updates was saturated to zero 

overall with iterations. This saturated information 

difference indicates that the calcium model 

incorrectly estimated in the initial iteration has been 

maintained continuously from the initial iteration. 

 

Figure 4. Trend of estimated correlation coefficient, ground-truth correlation coefficient, and 

information difference during iterations in the simulation data with an SNR of -30 dB. (a) Comparison 

of estimated and ground-truth correlation coefficients during iterative reference updates in ICoRD. (b) 

Comparison of estimated and ground-truth correlation coefficients during iterative reference updates 

based on the average (avg) signal of the detected ROI. (c) Comparison of estimated and ground-truth 

correlation coefficients during iterative references updates based on CD results. 
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The results in Figure 4 show that appropriate 

conversion of the reference source allows ICoRD to 

estimate the ground-truth signal with a high 

correlation coefficient.  

 

3.3. Application of the ICoRD algorithm to 

in vivo two-photon calcium imaging data 

It was verified that the proposed method has a 

powerful advantage in terms of the SNR in the 

simulation data. In this section, the practicality of 

the proposed method is examined using two-photon 

calcium imaging data measured in a mouse brain.  

All procedures involving mice were approved by 

the Korea Brain Research Institute, Institutional 

Animal Care and Use Committee (approval number: 

IACUC-19-00041). Adult (older than P60) 

transgenic mice expressing GCaMP6s (C57BL/6J-

Tg [Thy1-GCaMP6s] GP4.12Dkim/J, The Jackson 

Laboratory) underwent surgery to implant a cranial 

window and headplate. A 3-mm craniotomy was 

performed over the posterior parietal cortex (PPC) 

area centered 2 mm posterior and 1.7 mm lateral to 

the bregma. The window covering the craniotomy 

area was constructed by bonding 3-mm and 5-mm 

diameter No. 0 coverslips (Warner Instruments). 

The titanium headplate was attached to the skull 

over the window using opaque dental cement 

(Super-Bond, Sun Medical) and covered all 

exposed tissue. 

Images were acquired with a Nikon 16X (0.8 NA 

with 3.0 mm working distance) objective lens 

attached to a microscope (HyperScope, Scientifica) 

running ScanImage (2019a). A Ti-Sapphire LASER 

(Chameleon Vision II, Coherent) operated at 910 

nm was used as the light source for the imaging 

microscope. The head-fixed mouse was awake 

during the imaging procedure of the PPC and kept 

warm with a custom-made body restrainer. The 

imaging area was approximately 200 μm deep and 

centered at the PPC; it was adjusted to avoid thick 

blood vessels appearing in the ROI. The resolution 

of the images was 512 × 512 pixels, and the FOV 

was a 700 μm square. The frame rate of the 

microscope was set to 30-Hz.  

The proposed ICoRD algorithm was applied to 

raw in vivo calcium imaging data using the same 

algorithmic process as the simulation-based 

validation. The spatial and temporal results of the 

selected neurons using ICoRD and CNMF in vivo 

calcium imaging data were compared (Figure 5). To 

compare ICoRD with CNMF, a neuron with high 

and frequent calcium activity (neuron 1) and a 

neuron with relatively sparse activity (neuron 2) 

were selected among the neurons clearly detected 

by CNMF (Figure 5(a)). A neuron with a low SNR 

and sparse activation (neuron 3) was detected by 

ICoRD but not CNMF. Figure 5(b) shows the 

zoomed images (mean, correlation) around the three 

target neurons in the in vivo calcium imaging movie 

and the ROIs detected by ICoRD and CNMF. The 

location of the target neuron is marked in the mean 

and correlation images by a red dotted line. The 

SNR of neuron 1 was sufficiently high to be 

identified in both the mean and correlation images. 

The ROI of neuron 1 detected by ICoRD and 

CNMF were similar. The results of the two methods 

for high-SNR neurons in vivo were similar to the 

detection trends observed in the simulation 

environment. Neuron 2 only exhibited the blurry 

shape of the target neuron in the mean image. 

ICoRD detected clustered pixels and several 

surrounding pixels outside the target neuron, 

whereas CNMF detected only the clustered pixels 

of neuron 2. Neuron 3 only showed a blurry neuron 

morphology in the mean image and its ROI was 

only detected by ICoRD. ICoRD extracted signals 

from neuron 3 despite this neuron being sparsely 

activated at high noise levels. ICoRD detected the 

ROI of neuron 3 with clusters and surrounding 

pixels, similar to the ROI of neuron 2. These ROI 
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detection results with the pixels surrounding 

neurons 2 and 3 were similar to the ROI detection 

results in the simulation verification with low SNRs. 

Because ICoRD detects the ROI that maximizes the 

correlation coefficient with the estimated reference 

by detecting pixels that have a high correlation with 

the estimated reference signal, it detects 

surrounding pixels in the case of very low SNR 

neurons and takes advantage of the noise reduction 

effect.  

Figure 5(c) shows the raw signal of the selected 

pixel as a ‘Raw’ (grey line) of the three neurons in 

the ICoRD algorithm and each CD result of the ROI 

detected by ICoRD (orange line) and CNMF (blue 

line). We present the first reference source (Raw) 

and the result of the last iteration of ICoRD to 

 

Figure 5. Application to in vivo two-photon calcium imaging data. (a) Mean image of the in vivo 

calcium imaging movie and three target neurons. (b) The zoomed mean and correlation images around 

the target neurons (1,2,3) and the ROIs detected by ICoRD and CNMF. (c) The first reference (average 

signal of 9 pixels adjacent of the selected pixel) of the target neurons (1,2,3) and extracted temporal 

result using ICoRD and CNMF. The estimated SNR of neuron 1, neuron 2, and neuron 3 were -1.05 

dB, -17.86 dB, and -21.87 dB, respectively. 
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explain how the estimated reference changes with 

iteration. Each signal was normalized by 

subtracting the mean and dividing it by the standard 

deviation. A CD-based SNR estimation method was 

used to evaluate the neurons in an in vivo 

environment (Figure S3). The estimated SNR of 

individual neurons in the Raw signal was -1.05 dB 

in neuron 1, -17.86 dB in neuron 2, and -21.87 dB 

in neuron 3. The signals extracted by ICoRD and 

CNMF in neuron 1, with a high SNR and frequent 

calcium activity, exhibited similar trends 

(correlation coefficient: 0.9608). However, for 

neuron 2, with a relatively infrequent and low-

amplitude calcium activation signal, the signal 

trends detected by the two methods were relatively 

different (correlation coefficient: 0.7241). 

Furthermore, only ICoRD, not CNMF, detected 

neuron 3 as an ROI. This result is similar to that of 

CNMF, indicating low signal extraction 

performance for an SNR below -20 dB in a 

simulation environment. Although the calcium 

signal of neuron 3 was highly sparse at high noise 

levels, ICoRD effectively extracted the calcium 

trace after iteration. Although ICoRD and CNMF 

apply the same CD method, the signal obtained 

from ICoRD appeared to have a higher SNR. This 

is because ICoRD provides a better input signal for 

the CD method by detecting the ROI that 

maximizes the correlation coefficient with the 

predicted ground-truth signal of the target neuron. 

ICoRD was confirmed to effectively denoise 

signals from neurons with a low SNR in in vivo 

calcium imaging data. 

 

4. Discussion  

In the field of neuroscience, the calcium imaging 

technique is actively used because the activities of 

neurons can be assessed simultaneously in a target 

region. When attempting to observe neurons, those 

with low SNRs are inevitably observed; however, 

analyzing these low-SNR neurons remains a 

challenging task. Existing ROI detection methods 

for calcium imaging data are aimed at the automatic 

detection of many neurons; hence, the extraction of 

signals from neurons with low SNRs often fails. If 

the calcium signals of neurons with sparse and weak 

activity can be extracted, the results of various 

calcium imaging experiments can be analyzed more 

reliably using the signals of more neurons. 

Therefore, we developed ICoRD to reliably 

estimate ground-truth calcium activity, even in 

neurons with a low SNR. 

The proposed ICoRD method effectively extracts 

calcium signals, even from calcium imaging data 

with a low SNR. ICoRD performed reliable signal 

extraction (correlation coefficient with ground-truth 

calcium signal > 0.98) of the target neuron from 

simulated calcium imaging data with an SNR of -30 

dB to 0 dB, which was difficult to analyze using the 

conventional method. Because ICoRD successfully 

estimated the ground-truth calcium signal as the 

number of iterations increases, it was possible to 

detect the ROI that enhanced the ground-truth 

correlation coefficient based on the estimated 

reference. ICoRD was confirmed to robustly extract 

activation signals, even from neurons with sparse 

activity in an in vivo environment with severe noise 

levels.  

Because the proposed algorithm aims to extract 

temporal calcium activity, the focus of this study 

was not on detecting the shape of the spatial 

component. The proposed method clearly estimated 

the signal of a neuron with a low SNR, which was 

difficult to achieve using the conventional method. 

ICoRD detected neurons with very sparse activity, 

which were blurry in the mean image and not visible 

in the correlation image. The robust extraction 

performance of ICoRD may have been possible 

because the proposed algorithm does not require the 

ROI to be clustered, like a neuron. The ROI 

detection method that maximizes the correlation 
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coefficient with the reference signal, regardless of 

the shape of the ROI, is very effective when 

extracting the calcium signal from a single neuron. 

ICoRD provides calcium signals with a high SNR 

from the target neuron; however, the user must 

determine the location of the target neuron for the 

first reference signal. If the target neuron 

significantly overlaps with other neurons, the user 

must choose a range of pixels to reject. These initial 

parameters of ICoRD can be laborious if thousands 

of neurons must be detected. Therefore, ICoRD is 

recommended when users need to extract signals 

from hundreds or fewer individual neurons with low 

SNRs. If the user identifies the target neuron in two-

photon calcium imaging data but the conventional 

method fails to detect neurons with low SNRs, 

ICoRD provides a calcium trace with high 

reliability.  

 

5. Conclusion 

ICoRD repeatedly estimates a reference close to 

the ground-truth calcium signal and obtains a pixel 

group that maximizes the correlation coefficient 

with the reference signal. Because ICoRD aims to 

extract the calcium signal that maximizes the 

correlation coefficient with the ground-truth 

calcium signal of the target neuron, regardless of the 

shape of the ROIs, it extracts calcium signals from 

neurons with a low SNR with a high level of 

reliability compared with the existing technique. 

The signal extraction performance of ICoRD in 

simulated neurons with various SNR was verified, 

and its applicability was tested in vivo. The ROI 

detection idea that maximizes the correlation of 

ICoRD provides a better calcium signal than 

existing calcium signal-based spike deconvolution 

studies. By analyzing neurons with a low SNR via 

ICoRD, we expect to better understand the circuit-

wide neural dynamics relevant to the function of the 

brain. 
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Supporting Information for 

ICoRD: Iterative correlation-based ROI detection method for the 

extraction of neural signals in calcium imaging 

 

Demixing of overlapped neurons using iterative correlation-based region of 

interest (ROI) detection (ICoRD) 

When the target neuron overlaps other neurons, ICoRD executes the algorithm after 

excluding the overlapping pixels. If the user can identify two overlapping neurons, ICoRD can 

distinguish their signals. Figure S1A shows that the rejection range was determined when 

overlapping neurons (neuron A: left neuron, neuron B: right neuron) were found in the 

compressed image (mean, max). Figure S1B shows the result of selecting the ROI of neuron A 

among the pixels, excluding the rejection range. Figure S1C shows the 100-s ground-truth 

signals of the two simulated neurons. Figure S1D shows the result of detecting neuron A 

through ICoRD and the ground truth. ICoRD was able to extract the signal of the desired neuron 

between the two overlapping neurons in a noisy environment (-10 dB) with high accuracy 

(correlation coefficient with ground truth: 0.9884). 

 

 Details of the ICoRD algorithm 

For each iteration, the reference signal was updated with the average signal (Avg) of the 

detected ROI or the constrained deconvolution (CD) result in the previous iteration (Figure S2). 

For the initial iteration, the Avg signal of the ROI was updated with the reference signal 

because the estimation accuracy of CD in the first iteration tended to be low. However, 

repetitive updates to only the Avg signal can easily reach a local optimum because it does not 

utilize the noise-reducing effect or estimating function of CD. Iterative reference updates based 

only on the CD result can repeatedly find the ROI biased toward the initially estimated calcium 

dynamics model. Thus, starting from the second iteration, the Avg signal or CD result was 

selectively updated as a reference signal according to the information difference between each 

temporal Avg result of the current and previous iterations (Equation 1).  

The information difference was used for avoiding significant bias in the calcium model 

estimated by CD during the initial iteration. When the information difference is less than a 

certain threshold (for example 0.02), the algorithm determines that no more information is 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2022. ; https://doi.org/10.1101/2021.12.16.473055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.16.473055
http://creativecommons.org/licenses/by-nc-nd/4.0/


S2 

 

available from the Avg-based iteration and updates the CD result in the next iteration. The CD-

based update also changes to an Avg-based update in the next iteration when the information 

difference falls below a threshold. The estimated correlation coefficient at each iteration 

represents the correlation coefficient between the CD result of the last iteration and that of each 

iteration. The algorithm stops at a predetermined maximum number of iterations. At this point, 

the CD result is output owing to the algorithm.  

 

 

Signal-to-noise power ratio (SNR) estimation of calcium imaging data 

To estimate the SNR of calcium activity (Raw), the result of CD was defined as a signal, and 

the data of the lower 25% of the temporal raw data subtracted by CD were defined as noise. 

We referred to a previous study using the lower 25% amplitude to estimate the noise level when 

the signal remained in the raw calcium data [1]. Equation S1 represents the proposed SNR 

estimation equation. 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑁𝑅 (𝑑𝐵) = 10 log
(𝐶𝐷)2

(𝑏𝑜𝑡𝑡𝑜𝑚 25% 𝑜𝑓(𝑅𝑎𝑤 − 𝐶𝐷))
2 . 

(S1) 

The SNR estimation performance was verified by generating simulation data every 0.2 dB 

from -30 to 10 dB. All the simulation data generation conditions were the same as those shown 

in Figure 2. In Figure S3, defining the bottom 25% of Raw-CD as noise revealed a better SNR 

estimation performance than when defining Raw-CD as noise. The total estimation error of the 

proposed method at -30 dB to 10 dB was 1.3493 ± 2.2625 dB. Because CD cannot perfectly 

estimate the signal, the signal may remain after subtracting CD. Therefore, the noise power 

was greater because part of the signal was determined as noise, and the larger noise power 

resulted in a lower estimation of the SNR. Using the SNR estimation method, we compared 

the relative SNRs of the calcium signals of target neurons within the in vivo calcium imaging 

data. 

 

Constrained non-negative matrix factorization (CNMF) parameters 

The CNMF algorithm was applied in this study using the CAIMAN open-source calcium 

imaging toolbox. The parameters required for the CNMF algorithm were selected according to 

the guidelines and verified the researchers [2] . The main CNMF parameters used in this study 

are as follows: 
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[Table S1] CNMF parameters 

Sampling frequency (Hz) 10 (for in silico), 30 (for in vivo) 

Rising & decaying tau (ms) 0.179, 0.550 

Order of the autoregressive model 2 

Patch size (pixel, pixel) (32, 32) 

Merging threshold 0.8 

Neuron size 5 

 

The sampling frequency was based on the values obtained during the simulation and in vivo d

ata measurement, and the time constants refer to the results of the GCaMP 6s rodent experime

nts [3]. To perform deconvolution, the order of the autoregressive model was set to two. The 

patch size, merging threshold, and neuron size were defined by researchers through parameter 

optimization to be appropriate for the data. 
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Figure S1. Demixing of two overlapped neurons (Neuron A, Neuron B) in simulation 

data using ICoRD 

(a) Mean and max images of two overlapped neurons with an SNR of –10 dB. (b) Detected 

ROI of neuron A using the ICoRD method. (c) Simulated temporal calcium dynamics of the 

two neurons (Neuron A, Neuron B). (d) Temporal result of the detected ROI of neuron A using 

the ICoRD algorithm. 
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Figure S2. Detailed flowchart of the proposed ICoRD algorithm 
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Figure S3. Comparison of estimated SNR with different SNR estimation methods and 

the ground-truth SNR 

The blue line indicates the ground-truth SNR of the simulated calcium traces. The red circles 

represent the SNR estimation results when the Raw-CD is defined as the noise for each 

simulated calcium trace. The yellow circles show the SNR estimation results when the lower 

25% of the Raw-CD is defined as noise for each simulated calcium trace. 
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