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Abstract 12 

 13 

Immune checkpoint inhibitors (ICI) targeting PD-1/PD-L1 or CTLA-4 are emerging and 14 

effective immunotherapy strategies. However, ICI treated patients present heterogeneous 15 

responses and adverse events, thus demanding effective ways to assess benefit over risk before 16 

treatment. Here, by integrating pan-cancer clinical and molecular data, we tried to predict 17 

immune-related adverse events (irAEs, risk) and objective response rates (ORRs, benefit) 18 

based on enhancer RNAs (eRNAs) expression among patients receiving anti-PD-1/PD-L1 19 

therapy. We built two effective regression models, explaining 71% variance (R=0.84) of irAEs 20 

with three eRNAs and 79% (R=0.89) of ORRs with five eRNAs. Interestingly, target genes of 21 

irAE-related enhancers, including upstream regulators of MYC, were involved in metabolism, 22 

inflammation, and immune activation, while ORR-related enhancers target PAK2 and DLG1 23 

which directly participate in T cell activation. Our study provides references for the 24 
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 2 

identification of immunotherapy-related biomarkers and potential therapeutic targets during 25 

immunotherapy. 26 

 27 

Introduction 28 

 29 

Immune checkpoints (ICs) generally refer to key inhibitory factors of the immune system, 30 

including programmed cell death 1 (PD-1 or CD279) and its ligand programmed cell death 1 31 

ligand 1 (PD-L1 or CD274) that control the T cell response and fate during tumor immunity 32 

[1]. In tumor samples, PD-1 and PD-L1 mainly expressed in T cells and tumor cells, 33 

respectively, and tumors exploit their interaction to escape the immune system by 34 

counteracting the stimulatory signals from the interaction between T cell receptor (TCR) and 35 

major histocompatibility complex (MHC) and other costimulatory signals [2-4]. 36 

 37 

PD-1/PD-L1 has been translated to the clinical practice, and ICI treatment targeting PD-1/PD-38 

L1 proved to offer significant clinical benefits in many cancers, with an ORR from 20% to 50% 39 

in multiple clinical trials and for various types of cancer [5]. However, only a small subset of 40 

patients showed long-lasting remission, despite remarkable benefits of ICI therapies. Patients 41 

of some cancers were completely refractory to checkpoint blockade, occasionally leading to 42 

considerable side effects. To predict treatment benefit, PD-L1 expression was proposed as the 43 

first biomarker of anti–PD-1/PD-L1 therapy effectiveness [6], followed by tumor mutational 44 

burden (TMB) [7]. Later, microsatellite instability (MSI) [8], CD8+ T-cell abundance [9, 10], 45 

cytolytic activity [11], and intestinal microbial composition[12] were proposed to prioritize 46 

patients with potentially more treatment gains. 47 

 48 
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On the other hand, irAEs result from excessive immunity against normal organs. Most studies 49 

show that the incidence of irAEs caused by anti-PD-1/PD-L1 treatment is about 60% [13, 14]. 50 

Although nearly all organs can be affected, irAEs mostly involved the gastrointestinal tract, 51 

endocrine glands, skin, and liver [15]. In some cases, irAE can be lethal. For example, 52 

pneumonitis is the most common fatal irAE with a 10% death rate, accounting for 35% of anti-53 

PD-1/PD-L1-related fatalities [16]. The mortality of myocarditis, the most lethal irAE, could 54 

even reach about 50% [17]. Therefore, it is important and urgent to select patients with 55 

potentially significant benefit over risk of ICI treatments based on individual molecular data.  56 

Although people have discovered several predictors of irAEs using expression of protein-57 

coding genes [18], studying irAE-related non-coding elements would probably provide a better 58 

mechanistic understanding of why PD-1/PD-L1 pathway modulation leads to significant 59 

clinical benefit in some patients but temporary, partial, or no clinical benefit in other patients. 60 

 61 

Recent studies found that eRNAs (non-coding RNAs) were usually transcribed from active 62 

enhancers and eRNA levels portended enhancer activities across tissues [19]. Numerous 63 

cancer-associated eRNAs have been identified and eRNAs were proposed as potential 64 

therapeutic targets [20]. Here, we comprehensively investigate the adverse events and the 65 

response rates in patients receiving anti-PD-1/PD-L1 therapies across cancer types. By 66 

integrating clinical data and molecular data, we identify predictors based on three eRNAs for 67 

predicting irAE and five eRNAs for ORR. Further exploring enhancer-target interaction 68 

identified functional genes that may help explain the overall risk or benefit of anti-PD-1/PD-69 

L1 therapy, including MLXIPL, RAF1, MPL, PAK2, DLG1. In summary, our study reveals 70 

potential mechanisms underlying ICI therapy based on enhancer activity. 71 

Results 72 

 73 
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Three eRNAs effectively predict irAE of immunotherapy 74 

 75 

To identify factors to predict irAEs, we first examined correlations between 7 045 eRNAs and 76 

irAE RORs across 25 cancer types and found 178 eRNAs positively correlated with irAEs with 77 

nominal significance (P<0.05). Among these eRNAs, ENSR00000041252 showed the highest 78 

correlation (correlation R=0.68, P=1.6e-4; Fig. S1A), stronger than immune factors, including 79 

naive B cells, CD8+ T cells, macrophages M1, and T cell receptor diversity [18]. 80 

 81 

Then, we selected the top ten eRNAs (Table S1) to build prediction models. Multicollinearity 82 

analysis resulted in six roughly independent eRNAs, ENSR00000041252, ENSR00000326714, 83 

ENSR00000148786, X14.65054944.65060944, ENSR00000118775, and ENSR00000242410 84 

(Fig. 1A and Fig. 1B). Next, we obtained 15 significant bivariate regression models using the 85 

irAE-correlated enhancers. Correlation between the observed and predicted irAE ROR values 86 

showed that the combination ENSR00000148786 + ENSR00000005553 achieved the best 87 

predictive performance (R=0.79, P=3.1e-6; Fig. S1B). Further increasing model factors 88 

resulted in the optimal tri-variate model, ENSR00000041252 + ENSR00000148786 + 89 

ENSR00000005553, with the strongest correlation (R=0.84, P=2.1e-6; Fig. 1C). Of note, no 90 

improvement was observed after adding the two protein-coding genes (LCP1 and ADPGK) 91 

from a model reported previously [18], suggesting the independence of our model. Although 92 

showing slightly lower performance than the previous protein-coding gene model 93 

(LCP1+ADPGK), our enhancer-based model, explaining 71% (R-squared, R=0.84) of irAE 94 

variance, demonstrated that eRNAs alone can effectively predict irAEs. 95 

 96 

Five eRNAs effectively predict immunotherapy benefit 97 

 98 
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Similarly, to identify factors to predict ORRs, we identified 28 out of 7 045 eRNAs positively 99 

correlated with ORR (P<0.05; the best one ENSR00000187665 shown in Fig. S1C). Based on 100 

the top ten eRNAs (Table S2), after multicollinearity analysis (Fig. 1D and Fig. 1E), two 101 

bivariate models achieved better predictive performance than single-eRNA models (one shown 102 

in Fig. S1D; R=0.82, P=2.0e-5). Further adding model factors resulted in four equally-efficient 103 

optimal trivariate models (involving five key eRNAs, Table S3) for ORR prediction were able 104 

to effectively predict the efficacy of anti–PD-1/PD-L1 treatments. One example, 105 

ENSR00000164478 + ENSR00000035913+ ENSR00000167231, was shown in Fig. 1F 106 

(R=0.89, P=3.3e-7). 107 

 108 

Enhancer-target networks of irAE and ORR-associated enhancers 109 

 110 

Enhancers were assumed to affect irAEs or ORRs by activating target genes through long-111 

range interactions. We downloaded enhancer-target interaction data[21] and obtained putative 112 

targets of our enhancers. Two eRNAs (ENSR00000262415 and ENSRO0000167231) were 113 

excluded from downstream analysis due to lack of any annotated target gene. eRNA-target 114 

networks showed that these enhancers independently regulated a specific groups of targets (Fig. 115 

2A and Fig. 2B, note that ENSR00000164478 and ENSR00000164479 located to the same 116 

genomic region), indicating that each irAE-related enhancer was involved in different 117 

regulatory modules. Similarly, protein-protein interaction (PPI) analysis revealed that an 118 

independent network was controlled by each enhancer (Fig. 1C and Fig. 1D). In these PPI 119 

networks, genes located in the center (such as BCL7B, TBL2, and NAP1L4) might be vital 120 

regulators of irAEs or ORRs. 121 

 122 

Enhancer targets reveal metabolic and inflammatory genes involved in irAEs 123 
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 124 

Next, we downloaded gene sets from COSMIC[22] and oncoKB[23] and examined our eRNA 125 

targets in known oncogenic signaling pathways using cBioPortal[24, 25]. We found that some 126 

eRNA targets were known cancer genes relevant to tumor immunity, including MLXIPL, MPL, 127 

RAF1, and XPC. RAF1 was annotated as an oncogene and participated in the RTK-RAS 128 

signaling pathway (Fig. S2A) and MLXIPL was involved in MYC signaling pathway (Fig. 129 

S2B). A previous work[26] shows RAF1 can activate MAPK1 and NF-κB pathways to regulate 130 

genes involved in inflammation. Therefore, RAF1 may enhance immunoreaction and 131 

subsequently cause irAEs via Natural Killer cell-mediated cytotoxicity, T cell receptor 132 

signaling pathway, and B cell receptor signaling pathway. 133 

 134 

Interestingly, we found that ENSR00000326714 targets were enriched in a large number of 135 

metabolic and biosynthesis processes (Fig. 2E). This was reminiscent of some types of adverse 136 

events, such as diabetes[16], due to metabolic disturbances or metabolic disorders. Specifically, 137 

the core network of ENSR00000326714 targets consists of seven metabolic and inflammatory 138 

genes, namely, BAZ1B, BCL7B, TBL2, MLXIPL, NSUN, STX1A, and VPS37D. Among 139 

them, BAZ1B, BCL7B, TBL2 and MLXIPL are pleiotropic genes for lipids and inflammatory 140 

markers in the liver[27]. Of note, MLXIPL encodes the carbohydrate-responsive element-141 

binding protein (ChREBP), which mediates glucose homeostasis and liver lipid metabolism. 142 

ChREBP was also associated with up-regulation of several cytokines (TNF-α, IL-1β, and IL-143 

6) in patients with type 2 diabetes mellitus, promoting the inflammatory responses and 144 

apoptosis of mesangial cells[28]. STX1A encodes a member of the syntaxin superfamily, 145 

syntaxin 1A. It contributes to neural function in the central nervous system by regulating 146 

transmitter release[29]. As a kind of target-SNAP receptor (t-SNAREs), it is involved in insulin 147 

exocytosis[30]. Severely reduced islet syntaxin 1A level was reported to contribute to insulin 148 
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secretory deficiency[31]. Given that diabetes and hepatitis account for ~30% of immune-149 

related adverse events[16], we speculate that ENSR00000326714 augmented the expression of 150 

the these genes, subsequently triggering inflammation and other toxic effects on these patients. 151 

 152 

ORR enhancers reveal immune activation genes for immunotherapy benefit 153 

 154 

We also analyzed target genes of ORR-predictable eRNAs (Fig. 2B), which included three 155 

types of genes. PAK2, LMLN, DLG1, ASCL2, SENP5, IQCG, and BRSK2 are related to cell 156 

cycle, cell division, and differentiation. PIGZ, PIGX, PCYT1A, CARS, and BDH1 are 157 

metabolic genes; TRPM5, KCNQ1, and FYTTD1 are responsible for cellular transport and 158 

signal transduction. In particular, target genes of ORR-related ENSR00000164478 were 159 

enriched in glycosylphosphatidylinositol (GPI)-anchor biosynthesis (FDR=4.73×10-3) (Fig. 2F) 160 

and T-cell receptor signaling (FDR=3.78×10-2), among other enriched pathways (Fig. 2G). 161 

 162 

Furthermore, PAK2 and DLG1 directly took part in the T cell activation pathway, which 163 

explains their connection with ORR. P21 (RAC1) activated kinase 2 (PAK2) has been reported 164 

as a key signaling molecule in the differentiation of T cells. PAK2 is essential in T cell 165 

development and differentiation[32], indicating its potential function in T cell-initiated 166 

autoimmunity. DLG1 encodes a multi-domain scaffolding protein from the membrane-167 

associated guanylate kinase family, which has been shown to regulate the antigen receptor 168 

signaling and cell polarity in lymphocytes, involved in activation and proliferation of T cells[33, 169 

34]. Our results provide more support for the T cells as the regulators in immune responses 170 

during immune checkpoint blockade therapy. 171 

Lastly, PIGZ encodes a protein that is previously identified as an immune-associated prognosis 172 

signature[35]. However, knowledge of the relationship between PIGZ and the immune system 173 
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is still poorly established. The association between PIGZ expression and immune benefits 174 

during anti-PD1/PDL1 immunotherapy needs further elucidation. 175 

 176 

Discussions 177 

 178 

In this work, we presented a preliminary evaluation of the different enhancer-target interactions 179 

associated with anti–PD-1/PD-L1 immunotherapy across tumor types, and successfully 180 

identify potential enhancer-based biomarkers of risk and beneficial response. We suggest that, 181 

during immunotherapy, enhanced expression of inflammatory factors including MLXIPL, 182 

STX1A, and RAF1 may lead to a higher risk of irAEs, while strengthening immune activation 183 

factors including PAK2 and DLG1 may improve anti-tumor immunity. Besides, we discovered 184 

many other cancer-related, metabolic, signaling or regulatory genes possess predictive 185 

potential, which warrants further investigation. 186 

 187 

Several limitations remain for future work and our results need to be carefully interpreted. First, 188 

the majority of data are collected from previous individual studies[21], introducing inherent 189 

limitations of their work. Second, there are inevitable flaws of modeling as well, due to the low 190 

expression level of eRNA and small sample size. The overall quality of predictive models of 191 

ORR is inferior to those of irAEs, probably due to a smaller sample size as well as larger 192 

sparsity of ORR data. Finally, since results in this project are mainly based on computational 193 

predictions and the support of existing literature, our findings need further experimental 194 

validation. A larger dataset is required to comprehensively model side effects or immune 195 

response as well. 196 

 197 
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Methods 198 

 199 

Data collection 200 

To quantify the risk of immune-related adverse events (irAEs), reporting odds ratio (ROR) was 201 

calculated as previously described [36]. The anti-PD1/PD-L1 irAE ROR and ORR values 202 

across different cancer types were collected from previous studies [10, 18]. RNA-seq 203 

expression data (RSEM normalized counts, log2-transformed) across 25 TCGA cancers were 204 

downloaded from the UCSC Xena platform (http://xena.ucsc.edu/).  Expression levels of 205 

selected genes were extracted for downstream analysis, and the average value was calculated 206 

for each TCGA cohort. We downloaded eRNA expression levels and enhancer-target 207 

associations for 7 045 enhancer RNAs in ~7,300 samples from the eRic database [21] 208 

(https://hanlab.uth.edu/eRic/). Mean eRNA expression (log2-transformed RPM values) were 209 

used. Similar to gene expression, we averaged the expression level of each eRNA for each 210 

cancer. 211 

 212 

Prediction model construction 213 

First, the top ten eRNAs were selected based on correlation between eRNA and irAE or ORR. 214 

Before constructing bivariate models, the variance inflation factor[37] (VIF) of these ten 215 

eRNAs was calculated to evaluate the multicollinearity. Generally, we set the threshold of VIF 216 

value to 4 (a VIF value greater than 10 will be considered serious multicollinearity). The 217 

optimal prediction model was obtained by step-wise addition of model factors (eRNA) and 218 

evaluate the correlation between  predicted and observed patient risk or benefits. 219 

 220 

Bioinformatics tools 221 
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We used the protein-protein interaction (PPI) database STRING[38] (v11, https://string-db.org) 222 

to investigate selected eRNA target genes. Basic GO and KEGG term enrichment and 223 

visualization were conducted with the R package clusterProfiler[39] (v3.14.3). Extensive 224 

functional annotation of eRNA target genes were performed with DAVID [40] (v6.8) 225 

(https://david.ncifcrf.gov/). To verify cancer-related function for genes of interest, a credible 226 

set of 723 cancer genes was downloaded from the Cancer Gene Census (CGC) project of the 227 

COSMIC[22] repository (https://cancer.sanger.ac.uk/cosmic/). Another database oncoKB[23] 228 

(https://oncokb.org/), which has a list of 1,064 cancer genes, was added as a supplement to 229 

COSMIC CGC genes. Oncogenic signaling pathways were provided by the cBioPortal 230 

database[24] (http://www.cbioportal.org/). Statistical analysis and visualization were 231 

performed in R (v3.6.3) using packages ggplot2 (v3.3.2), networkD3 (v0.4). For novel 232 

candidates, we used three types of biological interpretation (Gene Oncology, Pathways, and 233 

Protein-Protein Interaction) to obtain biological knowledge. 234 

 235 

Statistical methods 236 

We employed an approach as described previously [10, 18] to evaluate the correlation between 237 

eRNAs and irAE RORs or ORRs. Linear-regression models for predicting irAE ROR or ORR 238 

across cancer types, was constructed by the R function lm, and the performance of the 239 

prediction was estimated based on Spearman rank correlation, using the R package psych 240 

(v2.0.12). To compare the goodness of fit between different models, a log-likelihood ratio test 241 

was performed using the R package lmtest (v0.9). We compute variance inflation factor (VIF) 242 

to assess multicollinearity using the vif function from the R package car (v3.0) to exclude 243 

combinations containing highly correlated factors. 244 

 245 
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Figure Legends 413 

 414 

 Fig.1, Construction of eRNA-based prediction models for irAE ROR (risk) and ORR 415 

(benefit) of immunotherapy. (A) Multicollinearity (VIF) analysis for top ten eRNA 416 

expression in predicting irAEs. Six eRNAs showed no multicollinearity, while 4 eRNAs 417 
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showed strong multicollinearity. (B) Spearman correlation between irAE-correlated eRNAs. 418 

Pairwise Spearman correlation (Rs) of expression level between candidate eRNAs. The shade 419 

of the square indicates the Rs, and the size indicates P-value (* indicates statistical significance 420 

P < 0.05). (C) Combined effect of ENSR00000326714, ENSR00000148786 and ENSR00-421 

000005553 trivariate model of predicting irAEs (R=0.84, P=2.1e-6). The equation of the best 422 

trivariate model is 0.1912*ENSR00000005553+0.4097*ENSR000-423 

00326714+0.1953*ENSR00000148786+0.2942. (D) Multicollinearity analysis for top ten 424 

eRNA expression in predicting ORR. Two eRNAs showed no multicollinearity, while 8 425 

eRNAs showed strong multicollinearity. (E) Spearman correlation between ORR-correlated 426 

eRNAs. Spearman correlation (Rs) of expression level was calculated between two candidate 427 

eRNAs. The shade of the square indicates the Rs, and the size indicates P-value (* indicates 428 

statistical significance P< 0.05). (F) Combined effect of ENSR00000164478, 429 

ENSR00000035913 and ENSR000-00167231 trivariate model of predicting ORR (R=0.89, 430 

P=3.3e-7). The equation of the best trivariate model is 0.0953+0.0649* 431 

ENSR00000164478+0.0032* ENSR00000035913+0.1687* ENSR00000167231. irAE, 432 

immune-related adverse events; ROR, reporting odds ratio; ORR, objective response rates; 433 

LUAD, lung adenocarcinoma; SKCM, skin cutaneous melanoma; LUSC, lung squamous cell 434 

carcinoma; KIRC, kidney renal clear cell carcinoma; PRAD, prostate adenocarcinoma; BLCA, 435 

bladder urothelial carcinoma; MESO, mesothelioma; BRCA, breast invasive carcinoma; CESC, 436 

cervical squamous cell carcinoma and endocervical adenocarcinoma; UCEC, uterine corpus 437 

endometrial carcinoma; SARC, sarcoma; ESCA, esophageal carcinoma; PAAD, pancreatic 438 

adenocarcinoma; OV, ovarian serous cystadenocarcinoma; HNSC, head and neck squamous 439 

cell carcinoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; CHOL, 440 

cholangiocarcinoma; ACC, adrenocortical carcinoma; READ, rectum adenocarcinoma; COAD, 441 
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colon adenocarcinoma; LIHC, liver hepatocellular carcinoma; LGG, brain lower-grade glioma; 442 

GBM, glioblastoma multiforme; UVM, uveal melanoma; UCS, uterine carcinosarcoma. 443 

 444 
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 445 

Fig. 2. Visualization of enhancer-target interaction network and functional enrichment. (A) 446 

target genes of irAE-related enhancers ENSR00000005553, ENSR00000326714, and 447 

ENSR00000148786. (B) target genes of ORR-related enhancers ENSR00000164478, 448 

ENSR00000164479, and ENSR00000035913. (C) Protein-Protein Interaction (PPI) network 449 

for target genes of irAE-related enhancer ENSR00000326714, ENSR00000148786, 450 

ENSR00000005553; and their corresponding PPI of targets in irAE ROR model. (D) PPI 451 

network for targets of ORR-related enhancers ENSR00000035913, ENSR000-00164478. (E) 452 

GO enrichment of genes regulated by irAE-correlated enhancer ENSR00000326714. (F) GO 453 

enrichment of genes regulated by ORR-correlated enhancer ENSR00000164478. (G) KEGG 454 

pathway enrichment of genes regulated by ORR-correlated enhancer ENSR00000164478. 455 

 456 
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