1 Enhancer RNA-based modeling of adverse events and objective responses of 2 immunotherapy 3 4 Mengbiao Guo^{1,*}, Zhiya Lu^{1,*}, Yuanyan Xiong^{1,#} 5 6 ¹Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging 7 Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China. 8 * These authors contributed equally to this work. 9 [#] Corresponding author: xyyan@mail.sysu.edu.cn, Tel: +86-20-39943531, Fax: +86-20-39943778 10 11 Abstract 12 13

Immune checkpoint inhibitors (ICI) targeting PD-1/PD-L1 or CTLA-4 are emerging and 14 15 effective immunotherapy strategies. However, ICI treated patients present heterogeneous responses and adverse events, thus demanding effective ways to assess benefit over risk before 16 17 treatment. Here, by integrating pan-cancer clinical and molecular data, we tried to predict 18 immune-related adverse events (irAEs, risk) and objective response rates (ORRs, benefit) based on enhancer RNAs (eRNAs) expression among patients receiving anti-PD-1/PD-L1 19 therapy. We built two effective regression models, explaining 71% variance (R=0.84) of irAEs 20 21 with three eRNAs and 79% (R=0.89) of ORRs with five eRNAs. Interestingly, target genes of 22 irAE-related enhancers, including upstream regulators of MYC, were involved in metabolism, inflammation, and immune activation, while ORR-related enhancers target PAK2 and DLG1 23 which directly participate in T cell activation. Our study provides references for the 24

- identification of immunotherapy-related biomarkers and potential therapeutic targets duringimmunotherapy.
- 27

28 Introduction

29

Immune checkpoints (ICs) generally refer to key inhibitory factors of the immune system, including programmed cell death 1 (PD-1 or CD279) and its ligand programmed cell death 1 ligand 1 (PD-L1 or CD274) that control the T cell response and fate during tumor immunity [1]. In tumor samples, PD-1 and PD-L1 mainly expressed in T cells and tumor cells, respectively, and tumors exploit their interaction to escape the immune system by counteracting the stimulatory signals from the interaction between T cell receptor (TCR) and major histocompatibility complex (MHC) and other costimulatory signals [2-4].

37

PD-1/PD-L1 has been translated to the clinical practice, and ICI treatment targeting PD-1/PD-38 39 L1 proved to offer significant clinical benefits in many cancers, with an ORR from 20% to 50% 40 in multiple clinical trials and for various types of cancer [5]. However, only a small subset of patients showed long-lasting remission, despite remarkable benefits of ICI therapies. Patients 41 42 of some cancers were completely refractory to checkpoint blockade, occasionally leading to 43 considerable side effects. To predict treatment benefit, PD-L1 expression was proposed as the first biomarker of anti–PD-1/PD-L1 therapy effectiveness [6], followed by tumor mutational 44 45 burden (TMB) [7]. Later, microsatellite instability (MSI) [8], CD8+ T-cell abundance [9, 10], cytolytic activity [11], and intestinal microbial composition [12] were proposed to prioritize 46 47 patients with potentially more treatment gains.

49 On the other hand, irAEs result from excessive immunity against normal organs. Most studies 50 show that the incidence of irAEs caused by anti-PD-1/PD-L1 treatment is about 60% [13, 14]. 51 Although nearly all organs can be affected, irAEs mostly involved the gastrointestinal tract, 52 endocrine glands, skin, and liver [15]. In some cases, irAE can be lethal. For example, pneumonitis is the most common fatal irAE with a 10% death rate, accounting for 35% of anti-53 54 PD-1/PD-L1-related fatalities [16]. The mortality of myocarditis, the most lethal irAE, could 55 even reach about 50% [17]. Therefore, it is important and urgent to select patients with potentially significant benefit over risk of ICI treatments based on individual molecular data. 56 57 Although people have discovered several predictors of irAEs using expression of proteincoding genes [18], studying irAE-related non-coding elements would probably provide a better 58 mechanistic understanding of why PD-1/PD-L1 pathway modulation leads to significant 59 60 clinical benefit in some patients but temporary, partial, or no clinical benefit in other patients.

61

62 Recent studies found that eRNAs (non-coding RNAs) were usually transcribed from active 63 enhancers and eRNA levels portended enhancer activities across tissues [19]. Numerous cancer-associated eRNAs have been identified and eRNAs were proposed as potential 64 therapeutic targets [20]. Here, we comprehensively investigate the adverse events and the 65 response rates in patients receiving anti-PD-1/PD-L1 therapies across cancer types. By 66 integrating clinical data and molecular data, we identify predictors based on three eRNAs for 67 68 predicting irAE and five eRNAs for ORR. Further exploring enhancer-target interaction 69 identified functional genes that may help explain the overall risk or benefit of anti-PD-1/PD-70 L1 therapy, including MLXIPL, RAF1, MPL, PAK2, DLG1. In summary, our study reveals potential mechanisms underlying ICI therapy based on enhancer activity. 71

72 Results

74 Three eRNAs effectively predict irAE of immunotherapy

75

76	To identify factors to predict irAEs, we first examined correlations between 7 045 eRNAs and
77	irAE RORs across 25 cancer types and found 178 eRNAs positively correlated with irAEs with
78	nominal significance (P <0.05). Among these eRNAs, ENSR00000041252 showed the highest
79	correlation (correlation R=0.68, P=1.6e-4; Fig. S1A), stronger than immune factors, including
80	naive B cells, CD8+ T cells, macrophages M1, and T cell receptor diversity [18].

81

82 Then, we selected the top ten eRNAs (Table S1) to build prediction models. Multicollinearity analysis resulted in six roughly independent eRNAs, ENSR00000041252, ENSR00000326714, 83 ENSR00000148786, X14.65054944.65060944, ENSR00000118775, and ENSR00000242410 84 (Fig. 1A and Fig. 1B). Next, we obtained 15 significant bivariate regression models using the 85 irAE-correlated enhancers. Correlation between the observed and predicted irAE ROR values 86 87 showed that the combination ENSR00000148786 + ENSR00000005553 achieved the best predictive performance (R=0.79, P=3.1e-6; Fig. S1B). Further increasing model factors 88 resulted in the optimal tri-variate model, ENSR00000041252 + ENSR00000148786 + 89 ENSR00000005553, with the strongest correlation (R=0.84, P=2.1e-6; Fig. 1C). Of note, no 90 91 improvement was observed after adding the two protein-coding genes (LCP1 and ADPGK) 92 from a model reported previously [18], suggesting the independence of our model. Although 93 showing slightly lower performance than the previous protein-coding gene model (LCP1+ADPGK), our enhancer-based model, explaining 71% (R-squared, R=0.84) of irAE 94 variance, demonstrated that eRNAs alone can effectively predict irAEs. 95

96

97 Five eRNAs effectively predict immunotherapy benefit

99 Similarly, to identify factors to predict ORRs, we identified 28 out of 7 045 eRNAs positively 100 correlated with ORR (P<0.05; the best one ENSR00000187665 shown in Fig. S1C). Based on 101 the top ten eRNAs (Table S2), after multicollinearity analysis (Fig. 1D and Fig. 1E), two bivariate models achieved better predictive performance than single-eRNA models (one shown 102 in Fig. S1D; R=0.82, P=2.0e-5). Further adding model factors resulted in four equally-efficient 103 104 optimal trivariate models (involving five key eRNAs, Table S3) for ORR prediction were able 105 to effectively predict the efficacy of anti-PD-1/PD-L1 treatments. One example, 106 ENSR00000164478 + ENSR00000035913+ ENSR00000167231, was shown in Fig. 1F 107 (R=0.89, P=3.3e-7).

108

109 Enhancer-target networks of irAE and ORR-associated enhancers

110

Enhancers were assumed to affect irAEs or ORRs by activating target genes through long-111 range interactions. We downloaded enhancer-target interaction data[21] and obtained putative 112 targets of our enhancers. Two eRNAs (ENSR00000262415 and ENSR00000167231) were 113 excluded from downstream analysis due to lack of any annotated target gene. eRNA-target 114 networks showed that these enhancers independently regulated a specific groups of targets (Fig. 115 116 2A and Fig. 2B, note that ENSR00000164478 and ENSR00000164479 located to the same genomic region), indicating that each irAE-related enhancer was involved in different 117 118 regulatory modules. Similarly, protein-protein interaction (PPI) analysis revealed that an 119 independent network was controlled by each enhancer (Fig. 1C and Fig. 1D). In these PPI networks, genes located in the center (such as BCL7B, TBL2, and NAP1L4) might be vital 120 121 regulators of irAEs or ORRs.

122

123 Enhancer targets reveal metabolic and inflammatory genes involved in irAEs

124

Next, we downloaded gene sets from COSMIC[22] and oncoKB[23] and examined our eRNA 125 126 targets in known oncogenic signaling pathways using cBioPortal[24, 25]. We found that some 127 eRNA targets were known cancer genes relevant to tumor immunity, including MLXIPL, MPL, RAF1, and XPC. RAF1 was annotated as an oncogene and participated in the RTK-RAS 128 signaling pathway (Fig. S2A) and MLXIPL was involved in MYC signaling pathway (Fig. 129 130 S2B). A previous work[26] shows RAF1 can activate MAPK1 and NF-κB pathways to regulate 131 genes involved in inflammation. Therefore, RAF1 may enhance immunoreaction and 132 subsequently cause irAEs via Natural Killer cell-mediated cytotoxicity, T cell receptor 133 signaling pathway, and B cell receptor signaling pathway.

134

135 Interestingly, we found that ENSR00000326714 targets were enriched in a large number of 136 metabolic and biosynthesis processes (Fig. 2E). This was reminiscent of some types of adverse 137 events, such as diabetes [16], due to metabolic disturbances or metabolic disorders. Specifically, the core network of ENSR00000326714 targets consists of seven metabolic and inflammatory 138 genes, namely, BAZ1B, BCL7B, TBL2, MLXIPL, NSUN, STX1A, and VPS37D. Among 139 them, BAZ1B, BCL7B, TBL2 and MLXIPL are pleiotropic genes for lipids and inflammatory 140 markers in the liver[27]. Of note, MLXIPL encodes the carbohydrate-responsive element-141 binding protein (ChREBP), which mediates glucose homeostasis and liver lipid metabolism. 142 143 ChREBP was also associated with up-regulation of several cytokines (TNF- α , IL-1 β , and IL-6) in patients with type 2 diabetes mellitus, promoting the inflammatory responses and 144 apoptosis of mesangial cells[28]. STX1A encodes a member of the syntaxin superfamily, 145 146 syntaxin 1A. It contributes to neural function in the central nervous system by regulating transmitter release[29]. As a kind of target-SNAP receptor (t-SNAREs), it is involved in insulin 147 exocytosis[30]. Severely reduced islet syntaxin 1A level was reported to contribute to insulin 148

149	secretory deficiency[31]. Given that diabetes and hepatitis account for ~30% of immune-
150	related adverse events[16], we speculate that ENSR00000326714 augmented the expression of
151	the these genes, subsequently triggering inflammation and other toxic effects on these patients.
152	
153	ORR enhancers reveal immune activation genes for immunotherapy benefit
154	
155	We also analyzed target genes of ORR-predictable eRNAs (Fig. 2B), which included three
156	types of genes. PAK2, LMLN, DLG1, ASCL2, SENP5, IQCG, and BRSK2 are related to cell
157	cycle, cell division, and differentiation. PIGZ, PIGX, PCYT1A, CARS, and BDH1 are
158	metabolic genes; TRPM5, KCNQ1, and FYTTD1 are responsible for cellular transport and
159	signal transduction. In particular, target genes of ORR-related ENSR00000164478 were
160	enriched in glycosylphosphatidylinositol (GPI)-anchor biosynthesis (FDR=4.73×10 ⁻³) (Fig. 2F)
161	and T-cell receptor signaling (FDR= 3.78×10^{-2}), among other enriched pathways (Fig. 2G).
162	

Furthermore, PAK2 and DLG1 directly took part in the T cell activation pathway, which 163 explains their connection with ORR. P21 (RAC1) activated kinase 2 (PAK2) has been reported 164 as a key signaling molecule in the differentiation of T cells. PAK2 is essential in T cell 165 development and differentiation[32], indicating its potential function in T cell-initiated 166 167 autoimmunity. DLG1 encodes a multi-domain scaffolding protein from the membrane-168 associated guanylate kinase family, which has been shown to regulate the antigen receptor signaling and cell polarity in lymphocytes, involved in activation and proliferation of T cells[33, 169 34]. Our results provide more support for the T cells as the regulators in immune responses 170 171 during immune checkpoint blockade therapy.

Lastly, PIGZ encodes a protein that is previously identified as an immune-associated prognosissignature[35]. However, knowledge of the relationship between PIGZ and the immune system

is still poorly established. The association between PIGZ expression and immune benefitsduring anti-PD1/PDL1 immunotherapy needs further elucidation.

176

177 Discussions

178

In this work, we presented a preliminary evaluation of the different enhancer-target interactions 179 180 associated with anti-PD-1/PD-L1 immunotherapy across tumor types, and successfully identify potential enhancer-based biomarkers of risk and beneficial response. We suggest that, 181 182 during immunotherapy, enhanced expression of inflammatory factors including MLXIPL, 183 STX1A, and RAF1 may lead to a higher risk of irAEs, while strengthening immune activation 184 factors including PAK2 and DLG1 may improve anti-tumor immunity. Besides, we discovered many other cancer-related, metabolic, signaling or regulatory genes possess predictive 185 186 potential, which warrants further investigation.

187

Several limitations remain for future work and our results need to be carefully interpreted. First, 188 the majority of data are collected from previous individual studies[21], introducing inherent 189 190 limitations of their work. Second, there are inevitable flaws of modeling as well, due to the low 191 expression level of eRNA and small sample size. The overall quality of predictive models of ORR is inferior to those of irAEs, probably due to a smaller sample size as well as larger 192 sparsity of ORR data. Finally, since results in this project are mainly based on computational 193 194 predictions and the support of existing literature, our findings need further experimental 195 validation. A larger dataset is required to comprehensively model side effects or immune 196 response as well.

198 Methods

199

200 Data collection

To quantify the risk of immune-related adverse events (irAEs), reporting odds ratio (ROR) was 201 202 calculated as previously described [36]. The anti-PD1/PD-L1 irAE ROR and ORR values across different cancer types were collected from previous studies [10, 18]. RNA-seq 203 204 expression data (RSEM normalized counts, log2-transformed) across 25 TCGA cancers were 205 downloaded from the UCSC Xena platform (http://xena.ucsc.edu/). Expression levels of 206 selected genes were extracted for downstream analysis, and the average value was calculated for each TCGA cohort. We downloaded eRNA expression levels and enhancer-target 207 associations for 7 045 enhancer RNAs in ~7,300 samples from the eRic database [21] 208 (https://hanlab.uth.edu/eRic/). Mean eRNA expression (log2-transformed RPM values) were 209 210 used. Similar to gene expression, we averaged the expression level of each eRNA for each 211 cancer.

212

213 Prediction model construction

First, the top ten eRNAs were selected based on correlation between eRNA and irAE or ORR. Before constructing bivariate models, the variance inflation factor[37] (VIF) of these ten eRNAs was calculated to evaluate the multicollinearity. Generally, we set the threshold of VIF value to 4 (a VIF value greater than 10 will be considered serious multicollinearity). The optimal prediction model was obtained by step-wise addition of model factors (eRNA) and evaluate the correlation between predicted and observed patient risk or benefits.

220

221 **Bioinformatics tools**

222 We used the protein-protein interaction (PPI) database STRING[38] (v11, https://string-db.org) 223 to investigate selected eRNA target genes. Basic GO and KEGG term enrichment and 224 visualization were conducted with the R package clusterProfiler[39] (v3.14.3). Extensive 225 functional annotation of eRNA target genes were performed with DAVID [40] (v6.8) 226 (https://david.ncifcrf.gov/). To verify cancer-related function for genes of interest, a credible set of 723 cancer genes was downloaded from the Cancer Gene Census (CGC) project of the 227 228 COSMIC[22] repository (<u>https://cancer.sanger.ac.uk/cosmic/</u>). Another database oncoKB[23] (https://oncokb.org/), which has a list of 1,064 cancer genes, was added as a supplement to 229 230 COSMIC CGC genes. Oncogenic signaling pathways were provided by the cBioPortal database[24] (http://www.cbioportal.org/). Statistical analysis and visualization were 231 performed in R (v3.6.3) using packages ggplot2 (v3.3.2), networkD3 (v0.4). For novel 232 233 candidates, we used three types of biological interpretation (Gene Oncology, Pathways, and 234 Protein-Protein Interaction) to obtain biological knowledge.

235

236 Statistical methods

237 We employed an approach as described previously [10, 18] to evaluate the correlation between eRNAs and irAE RORs or ORRs. Linear-regression models for predicting irAE ROR or ORR 238 239 across cancer types, was constructed by the R function lm, and the performance of the 240 prediction was estimated based on Spearman rank correlation, using the R package psych 241 (v2.0.12). To compare the goodness of fit between different models, a log-likelihood ratio test 242 was performed using the R package lmtest (v0.9). We compute variance inflation factor (VIF) to assess multicollinearity using the vif function from the R package car (v3.0) to exclude 243 244 combinations containing highly correlated factors.

246 Acknowledgements

- 247 The research has been supported by National Natural Science Foundation of China (NSFC)
- 248 (Grant 31571350, U1611265, and 31871323). The results shown here are in whole or part
- 249 based upon data generated by the TCGA or CPTAC Research Network.

250

251 Conflict of Interests

252 The authors declare no competing interests.

253

254 Author contributions

YYX and MBG conceived and supervised the study. ZYL, YYX, and MBG performed the
analysis. MBG drafted the manuscript with assistance from ZYL. YYX reviewed the
manuscript. All authors approved the final manuscript.

258

259 References

260

261	1	Boussiotis VA. Molecular and Biochemical Aspects of the PD-1 Checkpoint
262		Pathway. N Engl J Med 2016; 375: 1767-1778.
263		
264	2	Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. Tumor-
265		associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune
266		evasion. Nat Med 2002; 8: 793-800.

268	3	Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat
269		<i>Rev Immunol</i> 2018; 18: 153-167.
270		
271	4	Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and
272		immunity. Annu Rev Immunol 2008; 26: 677-704.
273		
274	5	Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al.
275		Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. $N Engl J$
276		Med 2012; 366: 2443-2454.
277		
278	6	Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer
279		Immunotherapy. Mol Cancer Ther 2015; 14: 847-856.
280		
281	7	Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to
282		PD-1 Inhibition. N Engl J Med 2017; 377: 2500-2501.
283		
284	8	Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al. Mismatch
285		repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;
286		357: 409-413.
287		
288	9	Yu X, Zhang Z, Wang Z, Wu P, Qiu F, Huang J. Prognostic and predictive value of
289		tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-
290		analysis. Clin Transl Oncol 2016; 18: 497-506.
291		

292	10	Lee JS, Ruppin E. Multiomics Prediction of Response Rates to Therapies to Inhibit
293		Programmed Cell Death 1 and Programmed Cell Death 1 Ligand 1. JAMA Oncol
294		2019.
295		
296	11	Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic
297		properties of tumors associated with local immune cytolytic activity. Cell 2015; 160:
298		48-61.
299		
300	12	Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B et al. Resistance
301		Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -
302		Extrinsic Factors. Immunity 2016; 44: 1255-1269.
303		
304	13	Chow LQM, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M et al. Antitumor
305		Activity of Pembrolizumab in Biomarker-Unselected Patients With Recurrent and/or
306		Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib
307		KEYNOTE-012 Expansion Cohort. J Clin Oncol 2016; 34: 3838-3845.
308		
309	14	Zandberg DP, Algazi AP, Jimeno A, Good JS, Fayette J, Bouganim N et al.
310		Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma:
311		Results from a single-arm, phase II study in patients with >/=25% tumour cell PD-L1
312		expression who have progressed on platinum-based chemotherapy. Eur J Cancer
313		2019; 107: 142-152.
314		

315	15	Weber JS, Hodi FS, Wolchok JD, Topalian SL, Schadendorf D, Larkin J et al. Safety
316		Profile of Nivolumab Monotherapy: A Pooled Analysis of Patients With Advanced
317		Melanoma. J Clin Oncol 2017; 35: 785-792.
318		
319	16	Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F et al. Fatal Toxic
320		Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and
321		Meta-analysis. JAMA Oncol 2018; 4: 1721-1728.
322		
323	17	Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente A et
324		al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an
325		observational, retrospective, pharmacovigilance study. Lancet Oncol 2018; 19: 1579-
326		1589.
327		
328	18	Jing Y, Liu J, Ye Y, Pan L, Deng H, Wang Y et al. Multi-omics prediction of
329		immune-related adverse events during checkpoint immunotherapy. Nat Commun
330		2020; 11: 4946.
331		
332	19	Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M et al. An
333		atlas of active enhancers across human cell types and tissues. Nature 2014; 507: 455-
334		461.
335		
336	20	Leveille N, Melo CA, Agami R. Enhancer-associated RNAs as therapeutic targets.
337		Expert Opin Biol Ther 2015; 15: 723-734.
338		

339	21	Zhang Z, Lee JH, Ruan H, Ye Y, Krakowiak J, Hu Q et al. Transcriptional landscape
340		and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer. Nat
341		Commun 2019; 10: 4562.
342		
343	22	Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N et al. COSMIC: the
344		Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019; 47: D941-D947.
345		
346	23	Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J et al. OncoKB: A
347		Precision Oncology Knowledge Base. JCO Precis Oncol 2017; 2017.
348		
349	24	Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio
350		cancer genomics portal: an open platform for exploring multidimensional cancer
351		genomics data. Cancer Discov 2012; 2: 401-404.
352		
353	25	Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative
354		analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci
355		<i>Signal</i> 2013; 6: pl1.
356		
357	26	Lappas M. RAF1 is increased in labouring myometrium and modulates inflammation-
358		induced pro-labour mediators. Reproduction 2016; 151: 411-420.
359		
360	27	Kraja AT, Chasman DI, North KE, Reiner AP, Yanek LR, Kilpelainen TO et al.
361		Pleiotropic genes for metabolic syndrome and inflammation. Mol Genet Metab 2014;
362		112: 317-338.
363		

364	28	Chen Y, Wang YJ, Zhao Y, Wang JC. Carbohydrate response element binding protein
365		(ChREBP) modulates the inflammatory response of mesangial cells in response to
366		glucose. Biosci Rep 2018; 38.
367		
368	29	Fujiwara T, Kofuji T, Akagawa K. Dysfunction of the hypothalamic-pituitary-adrenal
369		axis in STX1A knockout mice. J Neuroendocrinol 2011; 23: 1222-1230.
370		
371	30	Bagge A, Dahmcke CM, Dalgaard LT. Syntaxin-1a is a direct target of miR-29a in
372		insulin-producing beta-cells. Horm Metab Res 2013; 45: 463-466.
373		
374	31	Liang T, Qin T, Xie L, Dolai S, Zhu D, Prentice KJ et al. New Roles of Syntaxin-1A
375		in Insulin Granule Exocytosis and Replenishment. J Biol Chem 2017; 292: 2203-
376		2216.
377		
378	32	Phee H, Au-Yeung BB, Pryshchep O, O'Hagan KL, Fairbairn SG, Radu M et al. Pak2
379		is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte
380		development and maturation. Elife 2014; 3: e02270.
381		
382	33	Gmyrek GB, Graham DB, Sandoval GJ, Blaufuss GS, Akilesh HM, Fujikawa K et al.
383		Polarity gene discs large homolog 1 regulates the generation of memory T cells. Eur J
384		Immunol 2013; 43: 1185-1194.
385		
386	34	Dong X, Li X, Liu C, Xu K, Shi Y, Liu W. Discs large homolog 1 regulates B-cell
387		proliferation and antibody production. Int Immunol 2019; 31: 759-770.
388		

389	35	Hu B, Yang XB, Sang XT. Development and Verification of the Hypoxia-Related and
390		Immune-Associated Prognosis Signature for Hepatocellular Carcinoma. J Hepatocell
391		<i>Carcinoma</i> 2020; 7: 315-330.
392		
393	36	Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting.
394		Pharmacoepidemiol Drug Saf 2009; 18: 427-436.
395		
396	37	Oshima Y, Tanimoto T, Yuji K, Tojo A. EGFR-TKI-Associated Interstitial
397		Pneumonitis in Nivolumab-Treated Patients With Non-Small Cell Lung Cancer.
398		JAMA Oncol 2018; 4: 1112-1115.
399		
400	38	Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al. STRING
401		v11: protein-protein association networks with increased coverage, supporting
402		functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;
403		47: D607-D613.
404		
405	39	Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
406		biological themes among gene clusters. OMICS 2012; 16: 284-287.
407		
408	40	Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large
409		gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44-57.
410		
411		
412		

413 Figure Legends

Fig.1, Construction of eRNA-based prediction models for irAE ROR (risk) and ORR
(benefit) of immunotherapy. (A) Multicollinearity (VIF) analysis for top ten eRNA
expression in predicting irAEs. Six eRNAs showed no multicollinearity, while 4 eRNAs

showed strong multicollinearity. (B) Spearman correlation between irAE-correlated eRNAs. 418 Pairwise Spearman correlation (Rs) of expression level between candidate eRNAs. The shade 419 of the square indicates the Rs, and the size indicates P-value (* indicates statistical significance 420 $P \le 0.05$). (C) Combined effect of ENSR00000326714, ENSR00000148786 and ENSR00-421 000005553 trivariate model of predicting irAEs (R=0.84, P=2.1e-6). The equation of the best 422 423 trivariate model is 0.1912*ENSR0000005553+0.4097*ENSR000-424 00326714+0.1953*ENSR00000148786+0.2942. (D) Multicollinearity analysis for top ten eRNA expression in predicting ORR. Two eRNAs showed no multicollinearity, while 8 425 426 eRNAs showed strong multicollinearity. (E) Spearman correlation between ORR-correlated eRNAs. Spearman correlation (Rs) of expression level was calculated between two candidate 427 eRNAs. The shade of the square indicates the Rs, and the size indicates P-value (* indicates 428 429 statistical significance *P*<0.05). **(F)** Combined effect of ENSR00000164478, 430 ENSR00000035913 and ENSR000-00167231 trivariate model of predicting ORR (R=0.89, 431 *P*=3.3e-7). The equation of the best trivariate model is 0.0953 + 0.0649*ENSR00000164478+0.0032* ENSR0000035913+0.1687* ENSR00000167231. irAE. 432 433 immune-related adverse events; ROR, reporting odds ratio; ORR, objective response rates; LUAD, lung adenocarcinoma; SKCM, skin cutaneous melanoma; LUSC, lung squamous cell 434 carcinoma; KIRC, kidney renal clear cell carcinoma; PRAD, prostate adenocarcinoma; BLCA, 435 bladder urothelial carcinoma; MESO, mesothelioma; BRCA, breast invasive carcinoma; CESC, 436 437 cervical squamous cell carcinoma and endocervical adenocarcinoma; UCEC, uterine corpus endometrial carcinoma; SARC, sarcoma; ESCA, esophageal carcinoma; PAAD, pancreatic 438 adenocarcinoma; OV, ovarian serous cystadenocarcinoma; HNSC, head and neck squamous 439 cell carcinoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; CHOL, 440 441 cholangiocarcinoma; ACC, adrenocortical carcinoma; READ, rectum adenocarcinoma; COAD,

- 442 colon adenocarcinoma; LIHC, liver hepatocellular carcinoma; LGG, brain lower-grade glioma;
- 443 GBM, glioblastoma multiforme; UVM, uveal melanoma; UCS, uterine carcinosarcoma.

444

Fig. 2

446	Fig. 2. Visualization of enhancer-target interaction network and functional enrichment. (A)
447	target genes of irAE-related enhancers ENSR00000005553, ENSR00000326714, and
448	ENSR00000148786. (B) target genes of ORR-related enhancers ENSR00000164478,
449	ENSR00000164479, and ENSR00000035913. (C) Protein-Protein Interaction (PPI) network
450	for target genes of irAE-related enhancer ENSR00000326714, ENSR00000148786,
451	ENSR00000005553; and their corresponding PPI of targets in irAE ROR model. (D) PPI
452	network for targets of ORR-related enhancers ENSR00000035913, ENSR000-00164478. (E)
453	GO enrichment of genes regulated by irAE-correlated enhancer ENSR00000326714. (F) GO
454	enrichment of genes regulated by ORR-correlated enhancer ENSR00000164478. (G) KEGG
455	pathway enrichment of genes regulated by ORR-correlated enhancer ENSR00000164478.
456	