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suggesting that the effect of mutated 7P53 on TERT-T is only present in cluster 2.

We investigated connections of TERT-T in other networks to identify possible sources of its
upregulation in remaining clusters (Fig 6B). There is an incoming edge from ALB-M in G;
however, it is negatively correlated with TERT-T expression, so mutations in ALB-M do not
seem to contribute to TERT-T overexpression. In addition, there is a G3-specific incoming edge
from the phosphorylation site RB1_S37, which is overexpressed in cluster 2 and cluster 3, but
not in cluster 1. Network G5 suggests that RB1_S37 is associated with overexpression of
TERT-T and hence might also contribute to carcinogenesis. In G, there is an incoming edge to
RB1_S37 from CTNNBI-M and the corresponding correlation is positive. This suggests that
CTNNBI-M contributes to RB1_S37 overexpression and via RB1_S37 may affect TERT-T as
well. However, this dependency is not direct and weaker than the edge from TP53-M to
TERT-T in cluster 2, suggesting that the direction of the effect of mutations in CTNNBI and
TP53 on the expression of TERT is the same, but the effect size is different. This finding aligns
with the associations between mutations in CTNNBI and TP53 and survival. Both mutated genes
are drivers of HCC however, TP53 results in a poorer prognosis than CTNNB].

Other RB1 phosphorylation sites, namely S249 and T356, are highly phosphorylated across
all clusters. Moreover, we observe several incoming edges from M nodes in all RB1
phosphorylation sites (Fig 6C:E). The mutation statuses of parent nodes of RB1 (FAT4-M in
cluster 2, TERT-M in cluster 3, TP53-M in cluster 1) are positively correlated with increased
phosphorylation of the respective sites, suggesting that they all may contribute to RB1

Fig 6. Neighborhoods of individual nodes in the networks learned by bnClustOmics.
Direct neighbors of nodes (A) GLUL-T (B) TERT-T (C) RB1-S37 (D) RB1_T356 (E)
RB1-5249 (F) MAPK1_T185 in multi-omics networks discovered by bnClustOmics.
Interactions are only shown between the central node and all of its direct neighbors with
exception of (A) where we also show the connection between CTNNBI-M and AXIN2_S70.
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hyperphosphorylation. In previous studies, RB1 has been shown to play an important but
complex role in cell cycle regulation and apoptosis [48]]. It can act both as a tumor suppressor
and oncogene depending on its phosphorylation status. All three phosphorylation sites included
in our network can be found in the PhosphoSitePlus database [49]]. The role of S249 and T356
phosphorylation is well studied and known to affect the cell cycle and apoptosis. The role of S37
phosphorylation is less well known, and there are no studies about its role in HCC. As previously
noted, our analysis suggests that phosphorylation of this site may also play a role in HCC. We
note that RBI-T is also overexpressed. However, there are no edges between RBI-T and RB1
phosphorylation sites (S3 FigB), suggesting that overexpression of RBI-T is not the main source
of RB1 hyperphosphorylation. In addition, since unphosphorylated RB1 acts as a tumor
suppressor, knocking it down does not seem wise. Many efforts rather target inhibiting its
phosphorylation and activating its tumor-suppressive properties [48/|50]. Furthermore, Indovina
et al. [48] mention Cdk inhibitors as possible therapies which can prevent RB1 phosphorylation.
Indeed, Ng et al. [26] found an association of overactive CDK1/CDK2/CDKS kinases and the
phenotype associated with mutations in 7P53. The central role of phosphorylation of RB1 in all
networks suggests that inhibition of Cdk can be beneficial for patients in all clusters.

Many of the edges in discovered networks are absent in the public PPI databases. The edge
from TP53-M to LECT2-T is present in G, and TP53-M is negatively correlated with
LECT2-T in this cluster (it is also negatively correlated with LECT2-T in G,, but this edge has a
low posterior probability). We note that LECT2-T is also downregulated in cluster 2 and
cluster 3, but not in cluster 1. The downregulation of LECT2-T has been previously associated
with a poor prognosis in HCC and mutations in 7P53 [51]]. Thus, the discovered link between
mutations in TP53-M and downregulation of LECT2-T is plausible, despite being absent in the
STRING database. We further noted that LECT2-M has an incoming edge from TCHH-M in
both G, and G5, while TCHH mutations are absent in cluster 1. Both M nodes are negatively
correlated with LECT2-T suggesting that TCHH-M contributes in a similar way to the
molecular phenotype as TP53-M . Heterogeneity is a known issue in identifying cancer subtypes.
One implication of shared connections of different mutated genes in the discovered networks is
that they affect similar downstream genes and may be targeted by similar therapies.

At the same time, some M nodes have opposite effects on the same interaction partners,
indicating opposite effects of these corresponding mutated genes on the phenotype. TP53-M
and CTNNBI-M share two common connections: HDAC4_S246 and KMT2D-T . In both cases,
the mutation status of CTNNBI and TP53 are oppositely correlated with their shared interaction
partners. The correlation between TP53-M and KMT2D-T is positive, while the correlation
between KMT2D-T and other M nodes (shown in[S3 FiglA) including CTNNBI is negative. In
pancreatic cancer, low expression of KMT2D has been associated with a better prognosis [52].
Moreover, knock-out of KMT2D has been shown to attenuate cell proliferation and was
suggested as a therapeutic target [53]]. Opposite effects of TP53-M and CTNNBI-M on
KMT2D-T in cluster 3 suggest that co-occurrence of these mutations may diverge the phenotype
from phenotypes where TP53 and CTNNBI do not co-occur. Mutations in CTNNBI and TP53
have been considered mutually exclusive in many studies [54]]. However, they co-occur in 10%
of all samples in the analyzed dataset. The mutual exclusivity was also challenged by a study
presenting a detailed case of TP53/CTNNBI co-occurrence in the same tumor [55]. In addition,
we observe an interesting pattern of co-occurrence of 7P53 and CTNNBI across discovered
clusters as four out of five co-occurrence cases fall outside of the 7P53-dominated cluster 2,
which can also hint at possible opposite effects of mutations in 7P53 and CTNNBI on the
phenotype. Our findings align with another HCC classification based on morphological features
of the tumor and gene expression [[56]]. The analysis by Trobenson et al. [56] indicated that
CTNNBI and TP53 were associated with opposite effects on the presence of pseudoglands (a
histopathologic feature used for HCC characterization in clinics). In addition, the majority of
samples with co-occurring CTNNBI/TP53 mutations ended up in the CTNNBI cluster based on
the gene expression data. However, CTNNB1/TP53 mutated tumors were associated with clonal
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progression, in contrast to tumors harboring only CTNNBI.

1.5 Hub phosphorylation sites

In studies devoted to PPI network characterization, the number of neighbors (degree) of a node
in the network is often used to characterize its biological importance [57,58]. Following this
logic, we defined two lists of the most connected nodes in the networks discovered by
bnClustOmics. In the first list, we included the top twenty nodes with the largest number of
connections that are present with non-zero posterior probabilities in two or all networks (ST File].
Such nodes and their direct neighbors represent the most similar parts between the networks. In
fhe second list, we included all nodes with the largest number of cluster-specific connections
. Interestingly, the nodes in the first list turned out to be P nodes (9 out of 20), M nodes (9
out of 20) nodes and T-nodes (2 out of 20) while the top nodes of the second list were
dominated by P P nodes (17 out of 20). Hence, of all omics types, phosphorylation sites appear
to have the most different neighborhoods between the clusters. While for CN, T', and M nodes,
this can be explained by model structural restrictions, for P and P P nodes, this finding suggests
that differences in the interactome between clusters are more substantial at the phosphoproteome
level than at the proteome level.

The list of most differentially connected phosphorylation sites includes MAPK1_T185,
CTNND1_S252, and GRB14_S372, which are known to play a role in HCC signaling and affect
the regulation of cell cycle, apoptosis, and carcinogenesis (S3 Table). Some of these
hub-phosphorylation sites have been found to be important in other cancers than HCC, e.g.,
ANKRD28_S1011, PRKAA2_S491, and TBXA2R_S331. Our networks suggest that they might
also play a role in HCC and are thus candidates for further experiments.

MAPKI1 is known to be essential for MAP kinase signaling, which is one of the targets of
Sorafenib [[59-61]], a standard-of-care treatment for advanced HCC. The phosphorylation site
MAPK1_T185 is increased in cluster 2 and cluster 3 and has a considerable amount of
cluster-specific connections in G, (Fig[6E). The phosphorylation of another MAPKI site,
namely Y187, is significantly increased in cluster 3 only. Both phosphorylation sites have many
references in the PhosphoSitePlus database, and are known to induce carcinogenesis and alter
apoptosis, and are known drug targets. However, MAPKI1 is known to be active if both sites are
phosphorylated [[62]]. The increased phosphorylation of both sites is observed only in cluster 3.
At the same time, the role of mono-phosphorylated MAPK1 is not fully understood [[63]].
Sorafenib which inhibits upstream regulators of MAPK1 [64] was given to six patients from the
analyzed cohort, three of which were assigned to cluster 2 and three to cluster 3. Five out of six
patients had to discontinue treatment due to side-effects, but patients from cluster 3 on average
tolerated the therapy longer and survived longer than patients who were treated with Sorafenib in
cluster 2 (S9 Appendix)). This separation aligns well with our clustering, although it is not
possible to make stronger conclusions due to a limited number of biopsies and the short duration
of treatment.

One of the MAPK1_T185 interaction partners in G, is another hub phosphorylation site,
PTPN1_S352, whose phosphorylation is increased in cluster 2 only. PTPNI is known to play an
important role in many liver diseases; however, it can act both as a tumor suppressor, and
oncogene in HCC [65]]. Most studies suggest its tumor-suppressive role. However, our analysis
indicates that increased phosphorylation of PTPN1_S352 is associated with a poor prognosis
and increased phosphorylation of MAPK1_T185 in cluster 2. This connection is confirmed
in [|66[], where PTPNI was identified as an oncogene, and its knockdown resulted in attenuated
Ras activity and MAPK signaling. We found several inhibitors of PTPN1 in The International
Union of Basic and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS)
Guide to PHARMACOLOGY [67]]. All of them have hypoglycaemic and other anti-diabetic
effects. Previous studies already pointed out the anti-tumor properties of diabetes drugs on
HCC [68]]. We believe that investigating strong individual dependencies in cluster-specific
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networks coupled with DGE might suggest drug candidates and highlight interactions that are
important in the context of different subtypes of HCC.

1.6 Discussion

Learning biological networks and cancer subtyping based on multi-omics molecular data are
challenging problems, which are traditionally addressed by separate computational methods. In
this work, we present bnClustOmics, a tool that tackles both problems simultaneously. Our
approach can integrate and cluster multi-omics datasets and learn networks consisting of
different types of omics variables, each of which characterizes a patient cluster. In simulation
studies, we have shown that bnClustOmics outperforms other clustering approaches due to its

ability to detect differences in network structures, while other algorithms mostly lack this ability.

A major limitation of our method is the necessity to perform feature selection, which is not
straightforward in an unsupervised setting. We suggest using a combination of MOFA and DGE
analysis based on our simulation studies, but other ways can also be explored in the future. The
package bnClustOmics can be applied to any combination of omics types and is not limited to
the five omics types analyzed in this HCC cohort. In the current implementation, there is no
possibility to learn the edges between discrete nodes. This feature can further refine clustering,
but it makes sense only for larger datasets due to the extreme sparsity of the mutation data.

We applied bnClustOmics to an HCC dataset comprising five different omics types. Similar
to previous studies [[264/40}/56], the three discovered clusters are associated with mutations in
CTNNBI and TP53, and the BCLC stage. Our patient clustering is significantly associated with
survival with and without adjustment for the BCLC stage. Cluster 2 is dominated by samples
with mutated 7P53 and is associated with a poor prognosis. Samples in which CTNNBI and
TP53 co-occur are mostly found in cluster 1 and cluster 3. Moreover, we find that CTNNB1 and
TP53 have opposite effects on the expression of the transcript KMT2D and the phosphorylation
site HDAC4_S246 in the learned networks. These findings might explain why CTNNBI and
TP53 show mutual exclusivity patterns [69L[70] and are associated with opposite effects of the
phenotype [56] in some cohorts.

On a more general level, our analysis suggests that the discovered clusters are associated with
changes in signaling networks as identified by substantial differences in the neighborhoods of
phosphorylation sites. The differences between interactions partners are the largest on the
phosphoproteome level, suggesting that this omics type brings a major contribution to the result
of the network-based clustering highlighting the importance of phosphoproteome data for further
studies.

Cluster-specific networks suggest that hyperphosphorylation of RB1 is associated with
mutations in TP53, CTNNBI, and FAT4 but not with overexpression of RBI at the transcriptome
level. This finding aligns with previous studies suggesting that unphosphorylated RB1 acts as a
tumor suppressor, while hyperphosphorylation of RB1 contributes to carcinogenesis [48]]. Hence
therapies that inhibit phosphorylation of RB1 such as Cdk inhibitors may be a promising
treatment strategy.

Overall, our analysis has shown that including associations between different omics types in
the clustering model is an important step towards defining cancer subtypes and their molecular
makeup comprehensively. These novel associations may improve the selection of effective
personalized therapies.

2 Methods

2.1 Data

We applied bnClustOmics to the HCC data analyzed in [26] (SI Text). The full dataset
comprises 51 biopsies from 49 patients with HCC diagnosis. For each patient, DNA, RNA,
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proteome, and phosphoproteome data are available. For two patients, two sets of biopsies were
available from two genetically different HCC tumors. In addition, we obtained data from 15
biopsies from healthy livers for transcriptome analysis and 11 biopsies for proteome and 10 for
phosphoproteome analysis from the same study. A detailed description of sequencing, library
preparation, transcript quantification, and SWATH analysis can be found in [26]]. We obtained
the normalized data from Ng et al. [26]] and performed data imputation and batch-correction
where applicable (S7 Appendix] [ST Text). One sample was hypermutated with over 9000
mutated genes and was excluded from the analysis. Consequently, we included 50 biopsies from
48 patients in the study.

2.2 Bayesian network mixture model

We assume that the data D consisting of N observations is generated from a mixture of K
components with weights ;.. Each component is a Bayesian network B;, a directed probabilistic
graphical model representing a factorization of the joint distribution of the random variables
X1, ..., X,. The random variables are used to model omics features in the analyzed dataset (M,
CN,T, P and PP). Each patient sample D; represents a vector of n values (one for each X;)
and is generated from a model ), depending on the value of a hidden variable Z; [14],

D; | (Z,=k) ~ B, =(Gy,0)), (1)

where G, is a DAG and 6, are the parameters of the local probability distributions (LPD).

A Bayesian network mixture model was first suggested in [14] for (single-omics) binary
mutation data. In our model, each network consists of binary (mutations), ordinal (CNA), and
continuous variables (transcriptome, proteome, and phosphoproteome). We denote the set of
indices of all binary, ordinal, and continuous nodes by Q, ®, and W, respectively. The quantities
ny, n,, and n, are the numbers of binary, ordinal, and continuous random variables, respectively,
in the network. We model the LPD for each continuous node X, w € ¥, of each mixture
component by linear regression on its parents in graph G,

yk>

P(Xyi | Pay, 0, G) = N Xy | my + 2 ﬁf,kxék’ "ik ’ @)

Xer€Pay

where Pa, is the set of parents of node X, in graph G,. The set of parameters of the LPDs of
continuous nodes includes a vector of regression intercepts m,, a vector of standard deviations
oy, and a vector of regression coefficients B, defined for all nodes with non-empty parent set.
Given a graph G, the Gaussian Bayesian network model above can be equivalently
parameterized using a vector of unconditional means 4, and a covariance matrix X, (S4 ]
[Appendix)). We use both parametrizations interchangeably. Binary and ordinal nodes are not
allowed to have parents by assumption. For binary nodes X, we assume that the LPDs are
defined by the parameters

Aok = PX =1 3)

and for ordinal nodes X 4, we use the Gaussian approximation
PXgi 1 0)) = N Xgie | mys 05,). 4)

We denote the set of all parameters of a mixture component k by 6, = (4, py, Zp).

2.3 EM algorithm

Following [14] we use an EM algorithm for learning Bayesian network mixture models. We
denote by D; the i-th observation in the dataset, representing a vector of omics measurements of
one patient (or one biopsy in case of multiple biopsies per one patient). The algorithm proceeds
as follows:
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1. Initialize cluster membership probabilities y;, of patient i being in cluster k (Section
2. Given y;;, perform MAP structure search and estimate DAGs G, (Section 2.5)

3. Given estimated DAGs G, iterate g times:

e (M-step) Compute MAP parameters 6, (S5 Appendix)

e (E-step) Update membership weights
o P(D; | Gy, 0))
ZkK)zl 710 P(D; | GAk)sékl)

Vik =

and cluster weights
N
Z[:] Yik
Ty = ——
N

(Section 2.6)

4. Iterate steps 2 and 3 until convergence

The internal cycle with g iterations is added for computational efficiency because parameter
updates are computationally less expensive than structure search. Hence, for each update of the
structures, we perform g updates of the parameters. We learn cluster membership assignments
for all patients D; and MAP networks G, . Once the EM algorithm has converged, bnClustOmics
can optionally perform sampling from the posterior distribution and the output includes the
matrices of estimated probabilities of all edges (Section [2.5).

The main differences to the procedure in [14]] are a different set of parameters 8, and
network structural constraints due to the multi-omics extension and differences in data types.

2.4 Network score

For assessing how well the network structure fits the data, we use the BGe score [71}/72]. In
addition to the model assumption specified in Eq[2] the BGe score requires technical
assumptions on likelihood and parameter prior [[71]. The network score R(G, | D) then
decomposes over continuous nodes as

P(Gy | D) x R(G, | D)= [ S(X,1.Pa,, | D). 5)
wev¥

By our model design, nodes X, and X, corresponding to mutations and copy number changes,
are not allowed to have any parents. Hence, the terms S(X gy, Pay, | D) = S(Xy | D) and
S(X k- Pagy | D) = S(X,y | D) are constant for all possible graphs. For this reason, we
exclude these terms when performing structure search and the product in Eq 5| runs only over
nodes X,,,. However, nodes X 4, and X, may enter the equation as parents of X ;.

2.5 Structure search

At each step of structure search, we use the iterative order MCMC scheme introduced in [30] and
implemented in the R-package BiDAG [31]], which proved to be superior to many other methods
for MAP structure search in simulation studies [30]]. An optional step after the MAP graph has
been found is to sample graphs from the posterior distribution using the order MCMC

scheme [30]. This step allows us to estimate consensus models by averaging over a sample of L
graphs from the posterior distribution. In particular, the posterior probability of an edge e,
between nodes X and X, in the graph G is estimated as:

L
1
Plegy | D)~ 1 X Megyi € Gy, ©)
=1
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where 1{e;,, € Gll(} = 1 if the edge e, is present in structure Gi and O otherwise. Edges
whose posterior probabilities are lower than a defined posterior threshold are excluded from the

resulting consensus structure [30]].
We use the iterative MAP search at the second step of the EM algorithm and perform

sampling once after the EM has converged to compute posterior probabilities of single edges and

identify consensus graphs.

To construct graphs for the downstream analysis, we made a list of edges whose posterior
P(egyy | D) is higher than 0.9 for at least one cluster k (the threshold was chosen based on our
simulation studies). In addition, we selected all edges whose sum of posteriors in all clusters

Z,’; | P(egy | D) > 1.2, while the threshold for individual networks is lower:

P(egyy | D) > 0.5 for at least one cluster k. Finally, we constructed the graphs G by including

edges from the selected list if their posterior P(es,, | D) > 0.4. The reason behind this
selection process is finding high-confidence cluster-specific interactions while not dismis
similarities at lower (but non-zero) posterior levels.

2.6 Cluster membership weights

sing

Updating the membership weights y;, requires assessment of the likelihoods P(D; | Gy, 8,).
The decomposition provided by the Bayesian network model allows us to integrate discrete and

continuous data types in measuring how well an observation D; (a vector consisting of ,
continuous, n, ordinal, and n, binary components) fits a DAG G, and
parameters 6, = (A, fig, Zp):

[ P@i, 1Pay. 0. 20 [] P | 1. 20 [] PO 1 A) (D

ye¥ Ped weQ

The detailed formulas for computing the likelihoods are given in[S6 Appendix] We have
extended the R-package BiDAG, such that the function scoreagainstDAG is able to
accommodate mixed data.

2.7 Starting membership weights

In general, the EM algorithm does not guarantee finding the global maximum, and the local
maximum it finds will depend on the starting point. For this reason, we use a non-random
starting point in order to start in a parameter region of high likelihood and help mitigate the local
optima issue. By default (and for the HCC data), the starting cluster membership of patients is
defined via running mclust on the first K + 2 principal components after applying PCA to the
original data. Our simulation studies have shown that dimension reduction via PCA as a starting

point improves the results of mclust. The initial membership weights are then defined as

3 .
_Jxz k=8
Yik = 1 .
X33 otherwise,

®)

where g; denotes the cluster assignment of the i observation by mclust. PCA is applied only to

define the initial membership weights, but the EM algorithm is then applied to original

non-reduced data. With a non-random starting point, by default, bnClustOmics runs the EM
only once (the results of simulation studies are shown for one run). However, for the HCC
dataset, we restarted the EM five times and selected the model with the highest likelihood for

each value of K.
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2.8 Allowed edges

By design, bnClustOmics only prohibits incoming edges to discrete nodes. In the HCC data
analysis, we added more constraints to obtain more biologically relevant networks. The general
flow of the information is directed from the DNA to RNA and (pshospho)protein nodes (S4 |
[Table).

Naturally, we allow all possible edges between P and P P nodes. We do not allow edges
between transcripts because the transcripts do not interact directly. When proteome data is not
available, it makes sense to approximate protein-protein interactions with transcript-transcript
interactions. However, since we have (phospho)proteome data available, we prefer to explain
dependencies with more relevant and interpretable edges between (phospho)proteins and
between transcripts and proteins.

2.9 Edge penalization matrix

When performing structure search, we use the prior information about interactions between the
genes included in the networks, following the methodology described by Kuipers et al. [[14]]. To
do this, we modify the default prior distribution over structures P(G,) and replace it with

1

Hwe‘lf H.g Xep€Pay Key

P'(G,)

i

where k,, defines the penalization factor of the edge Xz — X, . Note that k;,, > 1 and these
factors do not depend on k since prior knowledge does not include cluster assignments. The
change of prior leads to replacing of the score terms S(X,, ., Pa, . | D) with the terms

S'(X vk Pay | D) in quor all nodes X, with non-empty parent sets:

S(Xv/k’Pay/k | D)

S'(X

y/k’Pay/k | D)=

H§:X§kePav,k Key

We use the STRING v.11.0 [35] and Omnipath [39]] databases to define penalization factors.
We penalize the edges by a factor of 2 if they are not found in the databases. The edges
corresponding to interactions from the Omnipath database are not penalized. The edges
corresponding to the interactions from the STRING database are not penalized if the interaction
score is equal to or bigger than 0.5. Otherwise the penalization factor is defined as
2 — 2 x interaction_score. In addition, we do not penalize the edges between the same genes of
different omics types, e.g., the edges TP53-T — TP53-P and TP53-C N — TP53-T are not
penalized.

2.10 Feature selection

The structure search is the most computationally expensive step of the learning procedure. The
complexity of the structure search scheme depends only on the number n,. of continuous nodes
in the network (since the product in Eq[5| goes only over continuous nodes) and equals

O(ng log n,.) [30]]. Hence, for the feasibility of bnClustOmics, we must pre-select the features
which we include in the Bayesian networks. Another beneficial point of sensible feature
selection is better interpretability since the qualitative analysis is hardly possible for networks
with thousands of nodes.

We selected 778 omics features in total (Table[3]in[S3 Appendix): 24 M,292 CN, 188 T,
116 P and 158 PP. The main idea behind our feature selection approach was to combine
methods that proved to work best in simulation studies with prior knowledge
about genes and interactions that are known to be important in HCC signaling (S3 Appendix). In
addition to listed criteria we used reasonable filters for selected features: we included only those
M nodes which are present in at least two samples and C N nodes with non-zero variance.
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2.11 Survival analysis

To study the association of clusters with clinical outcomes, we used the Cox proportional
hazards model with and without adjustment for clinical stage BCLC. Time was measured in days
from the date of diagnosis. In the adjusted model, we excluded BCLC group “0” consisting of
one sample, which did not include death events. If two or more biopsies were available for one
patient, one of them was included in the analysis if the cluster assignments for all of them were
the same. Otherwise, all samples from the patient were excluded. Two samples of patients who
were lost-to-followup were considered censored. We used a likelihood ratio test based on the 2
distribution to assess the model fit.

2.12 Enrichment analysis

Pathway enrichment analysis was performed using the R package ReactomePA [73]. For each
omics type, a list of differentially expressed/phosphorylated genes (proteins, phosphoproteins)
with FDR adjusted p-value smaller than 0.05 was used as input. Pathways enriched with
FDR-adjusted p-value smaller than 0.05 were selected for visualization.

2.13 Differential gene and protein expression analysis

For DGE analysis, we used the R package edgeR [74] for transcriptome data, and limma [75]] for
proteome and phosphoproteome data. Genes were considered differentially expressed if the
FDR-adjusted p-value was smaller than 0.05. For variable selection, we compared tumor to
healthy samples for all omics types. For the heatmap in Fig[dD, we compared samples in a
specific cluster to samples in all other clusters. In the downstream analysis, we have also
performed DGE analysis between tumor samples in individual clusters and healthy samples.
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Supporting information

S1 Appendix. Generating Bayesian network mixtures and data in simulations studies.
The steps of generating a Bayesian network mixture and the dataset from this mixture include:

1. Generating DAGs G, k = 1, ..., K, consisting of n variables each, n, binary and n,
continuous.

e First, we generate a random DAG G consisting of n, continuous nodes with the

function randomDAG from the R-package pcalg [[76]. The parameter prob is set to
nl and corresponds to each continuous node X, having one continuous parent on

a\c/erage. Then, the remaining K — 1 DAGs in the mixture are generated such that the
SHD between each of them and the first structure equals #| E|, where | E| is the
number of edges in the first randomly generated structure. We use # values in the
range 0.1 — 0.4, hence graphs representing different mixture components have a lot
of edges in common. From a biological point of view, this makes sense: While some
interactions may be altered in a particular cancer subtype, most of them will stay the
same (e.g. housekeeping pathways).

At the next step, we add random edges from binary to continuous nodes, such that
each binary node has 0.5 continuous children on average. These edges model the
effects of mutations on other nodes (e.g. transcripts, proteins) and are generated
randomly for each mixture component.

2. Generating parameters of local probability distributions (LPDs) for each structure.

wk»> frequencies A, are sampled from beta distribution
with parameters @ = 0.1, f = 7, modeling sparse and heterogeneous mutation data.
For 1% of binary variables (minimum one variable) frequencies 4, are sampled
from a beta distribution with parameters @ = 0.5 and f = 1, modeling rare genes, for
which higher frequencies are observed in known cancer subtypes.

For continuous nodes: regression coefficients g, for nodes with non-empty parent
sets are chosen in the range [0.5, 1.5]. Conditional standard deviations Oy are
sampled from a normal distribution with mean 0.3 and standard deviation 0.2; to
prevent negative values, we use the absolute values of generated numbers.

Regression intercepts m,,, = 0, by default, apart v = 6n, nodes G. For these v
nodes, we first sample the sign (“4+” or “-”’) with equal probability and then sample
randomly in the range [0.5, 1.5] or [—1.5, —0.5]. The parameter 6 directly impacts
how far the centers of distributions g, are from each other.

3. Generating data for each mixture component Z,, k = 1, ..., K using graphs and
parameters generated in the previous steps.

e Generate Nz _observations of each binary node X, from a Bernoulli distribution,

using parameters A

e Generate N, observations of each continuous node X, according to the Eq@,

using parameters G, my, By, oy.

We varied two parameters of generated Bayesian network mixtures to see how different
algorithms performed depending on the signal strength, defined as L2 norm between centers of
distributions of mixture components. The first parameter # is responsible for the structural
difference between networks representing mixture components. The second parameter 6 was
responsible for differences between vectors of regression intercepts my, k = 1, ..., K. The tables
below represent the correspondence between x — axis labels used in Fig[JA:D, #, 6 and average
L, norm of differences between vectors of unconditional means y; and y;, i # j.
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Table 1. Distances between cluster centers, n» = 120. Correspondence between parameters #,
6 and labels used to define the distances between cluster centers Fig :C (n =120, n, = 20,
n, = 100). The fourth column represents average L, norm between pairs of y; and y, i # j for
all generated mixtures; the range is given in brackets.

Distance 7 o average L,

no 01 0 0.27 (0.03, 0.85)
small 02 0.1 5.78(4.24,6.86)
medium 03 0.2 9.44(7.89, 10.73)
large 04 04 14.28(12.89,17.37)

Table 2. Distances between cluster centers, n = 1100. Correspondence between parameters 7,
6 and labels used to define the strength of the signal in Fig[2D (n = 1100, n, = 100, n, = 1000).
The fourth column represents average L, norm computed pairwise for all y; and p;, i # j for all
generated mixtures; the range is given in brackets.

Distance 7 1) average L,

small 0.1 0.02 7.71(7.08, 8.6)
medium 0.2 0.04 11.39(10.12, 12.63)
large 0.3 0.06 14.69 (13.84,15.73)

S2 Appendix. Feature selection simulation. This simulation study illustrates clustering
accuracy of bnClustOmics depending on the selection of relevant features. For simulations we
use n, = 1000 (similarly to the feature selection benchmarking study [77]) and n, = 100. For
clustering, we choose only binary features which equal to 1 in at least one generated sample. In
addition we try several approaches to select the continuous features:

1. random selection: 150 continuous features

2. moCluster: 150 continuous features with non-zero loadings defined by sparse consensus
PCA

3. MOFA: top 150 features sorted by total absolute weight in all latent factors

4. ranking by the absolute value of normalized mean: top 150 features sorted by %

k]

where XW is sample mean and s,, is sample standard deviation of X,

5. hybrid of 3. and 4.: mix of MOFA (75 features) and ranking by the absolute value of
(75 features).

. X,
normalized mean | —%*

Sy
By simulation study design, the default values for all continuous nodes are 0. Hence a
ranking by the normalized mean S—‘” is similar to a ranking by the one-sample #-fest statistics

and defines the variables which mous/t extremely deviate from 0. Feature selection using
normalized mean can be seen as a proxy to performing the DGE analysis in the real expression
data and selecting genes whose expression mostly deviates from non-tumor samples.

The method moCluster performed best with regard to feature selection in the benchmarking
study [77]. However, in that study, the authors generated all variables independently and did not
include any interactions in the model. In our simulation, this approach did not perform well.
Ranking by normalized mean has shown the best performance. However, MOFA preserves more
edges from the original network in subnetworks consisting of selected nodes only. For this
reason, when comparing the accuracy of bnClustOmics to other methods in Fig[2D, we show the
accuracy of bnClustOmics when the hybrid approach is used for feature selection.
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Fig 7. (A) Accuracy of bnClustOmics with different feature selection approaches. (B) The total
number of edges from all generated networks which are also present in subnetworks consisting
of selected nodes.

A 1.00- —m A B
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z = MOFA 3 = \
2lpe i B
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| e
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0.00- ====EE==% =
. ‘. OA |
small medium large small medium large
distance between cluster centers distance between cluster centers

S3 Appendix. Feature selection for the HCC analysis.

To select M nodes, we included all mutated genes found significant by MutSigCV tool (¢ <
0.1). In addition, we have added the genes which were found significantly mutated in the TCGA
HCC cohort, and the genes identified by HCC studies [36-38] as potential cancer drivers if they
were mutated in at least two samples in the HCC dataset.

For nodes of continuous types, we first identified latent factors using MOFA on a subset of
features passing standard deviation thresholds (1 for proteome and 2 for transcriptome and
phosphoproteome). Five latent factors have been identified by MOFA. Consequently, we
selected the top 50 features for each omics type by the total absolute weight of features in all
latent factors.

We extended the selected P and P P features by performing the DGE analysis and picking
the differentially expressed features (¢ <0.05), which are also present in the kinase-substrate
database Omnipath. Their crucial role in cancer development explains our interest in kinases.
Most protein kinases promote cell proliferation, survival, and migration. Furthermore, their
aberrant activity is often associated with cancer development [[78]]. The standard-of-care HCC
treatment, Sorafenib, is also a multi-kinase inhibitor.

For P nodes, we also selected differentially expressed features present in the transcription
factor (TF) database Omnipath, confidence level B.

We have also extended each omics feature set with genes present in selected features of other
omics sets for consistency and interpretability of networks. For example, for the possibility of
discovering an edge TP53-M — TP53-P, we have included TP53 at the protein level. The same
reasoning stands behind our choice of C N nodes, which were selected as a union of gene
features selected from transcriptome, proteome, and phosphoproteome. In addition, we included
C N nodes identified as potential drivers in [26]]. We excluded C N nodes that had O variance in
the HCC dataset.

December 20, 2021

28/40]


https://doi.org/10.1101/2021.12.16.473083
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.16.473083; this version posted December 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 3. Summary of feature selection for each omics type. The features are selected as a
union of features satisfying the listed criteria. n, denotes the number of selected features per
each omics type.

omics type  criteria no
MutSigCV (¢<0.1)

M Identified in [36.38] 24
M, T, P and PP features

N Identified in [26] 292
MOFA top 50 by absolute weight,

T P features 188
Targets of P features chosen as TF
MOFA top 50 by absolute weight

p M, T features 116
DE (¢<0.05) + present in Omnipath TF database
DE (¢<0.05) + present in Omnipath KS database

pp MOFA top 50 by absolute weight 158
DE (g<0.05) + present in Omnipath KS database

all 778

S4 Appendix. Two ways to parametrize a Gaussian Bayesian network. In this section, we

drop indices k, so the equations are valid for all mixture components. There are two ways to

parametrize a Gaussian Bayesian network. One way is via a vector of regression intercepts m, a
noise vector ¢, and regression coefficients B = {f,, } as in Eq The second way is via a vector
of unconditional means y and a covariance matrix X. Given the DAG G, the parameters {u, X}
can be transformed into equivalent parameters {m, B, o} [71]], where regression coefficients ﬁw
are computed only for those nodes, which have non-empty parent sets in a DAG G. Let 2y, be
the block of the covariance matrix consisting only of rows with indices V' and columns with

indices W. And let W be the parents of node V' in the graph G, then

-1
my = py —ZywZ
-1
ﬁV = z“WWZVW
2 -1
oy = Zyy —ZywIypIwy-

For convenience, we use both parametrizations interchangeably. For example, in defining
parameters of simulation studies it is more convenient to use {m, B, ¢}, while in the description 10
of the EM algorithm we use {u, X}.

S5 Appendix. MAP parameters estimation. Let N, = Zfi | ik For binary (mutation)

nodes, we follow [14] and parametrize local probability distributions as P(X,, = 1) = 4

wk>

with a beta prior on 4,, with hyperparameters « = f = 1 The posterior of A follows a beta
distribution as well, so we compute the MAP parameters for all binary nodes X, in the M step
of the EM algorithm as follows:

For continuous and ordinal nodes we use the BGe score and assume a

1 N
N 4 + zi:l ya)kDia)
App = ————————

1
§+Nk

normal-inverse-Wishart prior on the parameters x4 and X [[71]]:

u~NWv,a,x)
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T ~Wla,, U).

The posterior is then also normal-inverse-Wishart and the MAP parameters are computed as

follows:

U+SNk+
ik=

) NkBNk+an
K = — ">

a”+Nk

N

a, Ny — — ’
aM+Nk (V - DNk)(V — DNk)

N
—_ N yuD;
where Dy, = Ziz iDi
1 k

hyperparameters a
as follows [79]:

e

a,+N-n-1

a, =1

a,=n+a,+1

v=0
aﬂ(aw—n—
U=1
a,+1

1y

=7

where 1 is the identity matrix, and 0is a vector consisting of zeros.
When MAP graphs G, and parameters /1, 2, are estimated, the estimates (71, B, 6;) are

computed according to

s

and Sy, = Zl]il Yix(D; = Dy )(D; — D). The values of the
a,,, the prior mean vector v and the parametric matrix U by default are set 1004

S6 Appendix. Local likelihoods formulas. For binary nodes, we compute likelihoods as

N D,
P(Dy,, | Ay) =, 2(1 -

for all binary nodes.

For continuous nodes X,,, we compute Gaussian likelihoods according to the model

specified in Eq[2}

1

—m 58
Dy, — iy Z§:X¢kepawkﬂl,,kl)ij

2%

k)l_Diw

P(D,, | Pa,;. i, 5) =
2n6

A2

exp

wk

~2
20’Wk

For copy number nodes X, we use a similar Gaussian likelihood, but the sum over parents is

dropped due to structural assumptions:

P(Dy | fiy. ) =

D[¢ - }'f’l¢k

1
[r._A2
27[6¢k

exp

)
20—¢k
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S7 Appendix. Data pre-processing.
For transcriptome data, the pre-processing steps included:

e Like in [26] gene-level expected counts were upper-quartile-normalized to 1000.
e log, transformation.

For proteome data, the pre-processing steps included:

log, transformation.

Normalization by median substraction.

Filtering out proteins which were detected in less than 50% of samples.

For clustering only: imputation of missing values using the R package impute [80]]. For
differential expression analysis, we used unimputed values.

For phosphoproteome data, the pre-processing steps included:

log, transformation.

e Normalization by median substraction.

Filtering out proteins which were detected in less than 50% of samples.

Batch correction with the R package edgeR.

For clustering only: imputation of missing values using the R package impute [80]]. For
differential expression analysis, we used unimputed values.

The CNA data was obtained at the gene level from the study by Ng et al. [26]. The copy
number status was derived from the log-ratio and takes values from 2 to —2, which denote [81]]:

e 2: amplification
e 1: copy gain indicates a low-level gain

e 0: copy number neutral

-1: shallow deletion indicates a shallow loss, possibly a heterozygous deletion

-2: deep deletion indicates a deep loss, possibly a homozygous deletion

This way, despite the ordinal nature of the CNA data, the range of the values justifies the
normal approximation.
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S8 Appendix.

High-confidence connections of TP53-M in G,. We investigated the edges

outgoing from TP53-M whose posterior probabilities in G, is higher than 0.9 (p_cI2> 0.9,
Table[d). All four identified edges are specific to G,, as their posteriors in other networks are
lower than 0.4. We further considered only gene products that were differentially expressed in
cluster 2 (p_DE2< 0.05). Three edges satisfied these criteria. Eventually, we focussed on the
edge connecting 7TP53-M and TERT-T, since it was also found in the STRING database.

Table 4. Connections of TP53-M node whose posterior probability is larger than 0.9 in network
G, representing cluster 2. p_cl columns report posterior probabilities for corresponding clusters;
p_DE columns report adjusted p-values of nodes in column "to" from the DGE analysis.

from to typel type2 genel gene2 database p_cll p_cl2 p_cl3 p_DEl p_DE2 p_DE3
TP53 ENSG00000164362 M T TP53 TERT TRUE 039 092 018 <001 <001 <o0.01
TP53 Q9BWDI M P TP53 ACAT2 FALSE 0.00 095 0.00 031 <0.01 <0.01
TP53 Q13435_S436 M PP TP53 SF3B2 TRUE 039 093 0.17 0.76 0.95 0.77
TP53 Q9BW71_S160 M PP TP53 HIRIP3 FALSE 0.00 098 021 <0.01 0.01 0.02

Fig 8. TP53-M node and its neighbors in networks representing three clusters identified by

bnClustOmics.
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Fig 9. Log2-fold changes between expression of TERT-T in three HCC clusters and mean

expression of TERT-T in 15 healthy livers.

S9 Appendix.

hepatic decompensation within several days after the start of treatment and had to stop it.

10.0-

P =0.0061

P =0.024

2
cluster

Responses to treatment with Sorafenib. Six out of all 48 patients in the
analyzed cohort were treated with Sorafenib. All of these patients were assigned to either
cluster 2 or cluster 3 and none to cluster 1. Edmondson grade, survival, and side-effects to
Sorafenib were mostly similar within clusters. Two of three patients in cluster 2 experienced

Patients from cluster 3 could, on average, tolerate the side effects longer. All patients in cluster 3
survived longer than patients in cluster 2 even within the same clinical stage.

Table 5. Clinical information about patients who received treatment with Sorafenib and ware
assigned to cluster 2 in the clustering by bnClustOmics. Survival time and length of treatment
are reported in days.

sample ID Edmondson age_diagnosis death survival time BCLC treatment length reason to stop

Cl177c 3 18 1 45 C 8 Hepatic Decompensation
C383b 3 48 1 94 B 6 Hepatic Decompensation
B763b 4 60 1 385 A 123

Table 6. Clinical information about patients who received treatment with Sorafenib and were
assigned to cluster 3 in the clustering by bnClustOmics. Survival time and length of treatment
are reported in days.

sample ID Edmondson age_diagnosis death survivaltime BCLC treatmentlength reason to stop

C795 2 53 1 625 A 58 Intolerant to side-effects
C346b 2 72 0 1663 A 118 Intolerant to side-effects
B983b 2 74 1 485 B 57 Intolerant to side-effects
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S1 Fig. SHD between estimated graphs and the ground truth. 50 BN mixtures were
generated with unequal mixture weights: N, =150, N, =100, N, =50, Nz =20
(cluster 1, cluster 2, cluster 3 and cluster 4). Distance between cluster centers is set to medium.
bnClustOmics was used for clustering. The output MAP and consensus structures were
compared to the ground truth CPDAG.
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S2 Fig. Hazard ratios. Hazard ratios of discovered clusters with (B) and without (A) 1054
adjustment for the BCLC stage. 1055
A Hazard ratio
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S3 Fig. Connections of KMT2D and RBI transcripts in networks discovered by 1086
bnClustOmics. 1087
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S1 Table. Cox model fit. Summary of the likelihood ratio test for Cox proportional hazards

models based on assignments obtained by clustering algorithms. The number of clusters K = 3
in all cases. For all algorithms apart from bnClustOmics and MOFA, all available omics features
were used as input. For MOFA, standard deviations filters (1 for P features, 2 for T’ and PP, 0.5

for CN features ) were applied as recommended by the authors of the method.

algorithm p-value p-value (BCLC-adjusted)
mclust 0.17 0.32

hclust 0.0018 0.137

kmeans 0.024 0.77

iClusterPlus 0.06 0.67

CIMLR 0.94 0.39

CIMLR (T,P,PP) 0.017 0.20

MOFA 0.13 0.21

bnClustOmics 0.038 0.043
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S2 Table. Signaling pathways enriched with direct interactors of M nodes in networks
discovered by bnClustOmics. FDR values reflect the enrichment of KEGG signaling pathways 1oea

with children of M nodes in cluster-specific networks. FDR values below 0.05 suggest

significant enrichment.

pathway G, G, G;
Hepatocellular carcinoma 0.0007 <0.0001 <0.0001
Proteoglycans in cancer 0.0015  0.0007 <0.0001
PI3K-Akt signaling 0.0002  0.0024 <0.0001
Cellular senescence 0.0185 0.0039 0.00051
whnt signaling 0.0033  >0.05 0.00058
p53 signaling 0.0219 0.0108 0.0079
Insulin signaling >0.05 0.0109 <0.0001
mTOR signaling >0.05 0.0157 0.0031
Cell Cycle 0.0095 0.0387 0.0071
AMPK signaling >0.05 0.0387 0.0071
HIF-1 signaling >0.05 >0.05 0.00062
MAPK signaling >0.05 >0.05 0.0358
JAK-STAT signaling >0.05 >0.05 0.0166
Rap-1 signaling >0.05 >0.05 0.0358
Hippo signaling 0.0033  >0.05 >0.05
PD-L1expression and PD-1 5 o5 516 50,05
checkpoint pathway in cancer

Erbb signaling >0.05 >0.05 <0.0001
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S3 Table. Known functions of most connected phosphorylation sites. A list of 1067
phosphorylation sites with more than 15 cluster-specific interaction partners and their known  ioes
functions in HCC and other cancers according to the PhosphoSitePlus database.

D Gene_ID DB In liyer In HCC Downstream Upstream  Known
studies  studies  effects regulators  treatments

Q96T23_S1345 RSF1 yes yes - - - yes

015084_S1011 ANKRD28 yes - - intracellular - yeop
localization

Q9UJM3_S273  ERRFI1 yes  yes - - EGFR -

Q9Y2T1_S70 AXIN2 yes - - - - -

B1AKS3_S642  ESPN - - - - - -
activates

P00533_S1166  EGFR yes yes yes signalling CAMK2A yes
cascades
altered

P28482_T185 MAPK1 yes yes yes apoptosis - yes
cell growth

P05556_5785  ITGBI yes - yes cytoskeletal —— pp ) yes
reorganization

P21333_S1734 FLNA yes - - - - -

014828_S76 SCAMP3 yes - yes - - yes
carcinogenesis

060716_S252 CTNND1 yes  yes yes induce dg - yes

P18031_S352 PTPN1 yes - - - - -

P19878_S312 NCF2 yes - - - - -
signalling

P21731_S331 TBXA2R yes - - pathway PKACA yes
regulation

P54646_S491 ~ PRKAA2  yes - . altered - yes
autophagy

P62753_S244  RPS6 yes - yes ; ?STCOZR yes

QI13557_T287 CAMK2D yes yes yes - - yes
cell cycle

Q14449_S372  GRBI14 yes - yes regulzﬁon - yes

Q8IXS6_S228  PALM2 yes - - - - -

1069
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S4 Table. Allowed edges between features in the HCC analysis. Allowed edges (i.e., not
blacklisted) between and within omics types in the HCC analysis. Let X and Y denote gene
names. Then, all edges from CN nodes to P nodes of the same genes are encoded as from
X-CN to X-P. Edges between any two genes are encoded as edges between X-C N and Y-P
(this includes the case when X equals Y).

from to example of biological interpretation

X-M Y-T,Y-P,Y-PP functional interaction

X-CN X-T,X-P,X-PP central dogma of molecular biology

X-T X-P,X-PP central dogma of molecular biology

X-P Y-T transcription factor and its target, functional interaction
X-PP Y-T transcription factor and its target, functional interaction

X-P,X-PP Y-P,Y-PP

physical interaction, functional interaction

The biological interpretation of most edges is straightforward, however, edges of type X-M
— Y-P/T /PP, for two genes X and Y, are rarely considered when learning the networks.
Mehnert et al. [21] have shown via experiments that a cancerous mutation in gene X can change
the interactome of its protein product X- P without affecting the expression of X- P itself. Say
Y- P is one of the interactors of X-P affected by a mutation in gene X. In this case, we can
observe a statistical dependency between a mutation node X-M and a protein node Y-P (but not
between X-P and Y-P). Such dependencies are particularly interesting because they help
understand the links between genotypes and phenotypes.

S1 Text. Data and code availability.

The sequencing datasets are available at European Genome-phenome Archive under
accessions EGAS00001005073 (whole-exome sequencing), EGAS00001005074
(RNA-sequencing). The mass spectrometry proteomics and phospho-proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE partner repository under
accessions PXD025705 and PXD025836.

The pre-processed reduced and non-reduced multi-omics datasets used for clustering by
bnClustOmics and other methods in this study as well as the code and results of simulation
studies and HCC clustering are available at the GitHub repository
https://github.com/cbg-ethz/HCC. Patient IDs were encrypted.

The R-package bnClustOmics is available at the GitHub repository
https://github.com/cbg-ethz/bnclustOmicsl

S1 File. Top twenty most similarly connected nodes and their interactions partners in
cluster-specific networks.

S2 File. Top twenty most differently connected nodes and their interactions partners in
cluster-specific networks.

December 20, 2021

40/40;

1070

1071

1072

1073

1074
1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098


https://github.com/cbg-ethz/HCC
https://github.com/cbg-ethz/bnclustOmics
https://doi.org/10.1101/2021.12.16.473083
http://creativecommons.org/licenses/by/4.0/

