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Abstract

Electrical waves that rotate in the heart organize dangerous cardiac arrhythmias.
Finding the region around which such rotation occurs is one of the most important
practical questions for arrhythmia management. For many years, the main method for
finding such regions was so-called phase mapping, in which a continuous phase was
assigned to points in the heart based on their excitation status and defining the rotation
region as a point of phase singularity. Recent analysis, however, showed that in many
rotation regimes there exist phase discontinuities and the region of rotation must be
defined not as a point of phase singularity, but as a phase defect line. In this paper we
use this novel methodology and perform comparative study of three different phase
definitions applied to in-silico data and to experimental data obtained from optical
voltage mapping experiments on monolayers of human atrial myocytes. We introduce
new phase defect detection algorithms and compare them with those that appeared in
literature already. We find that the phase definition is more important than the
algorithm to identify sudden spatial phase variations. Sharp phase defect lines can be
obtained from a phase derived from local activation times observed during one cycle of
arrhythmia. Alternatively, similar quality can be obtained from a reparameterization of
the classical phase obtained from observation of a single timeframe of transmembrane
potential. We found that the phase defect line length was (35.9± 6.2)mm in the
Fenton-Karma model and (4.01± 0.55)mm in cardiac human atrial myocyte monolayers.
As local activation times are obtained during standard clinical cardiac mapping, the
methods are also suitable to be applied to clinical datasets. All studied methods are
publicly available and can be downloaded from an institutional web-server.
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1 Introduction

The heart is a self-organizing dynamical system for which the mechanical contraction is
regulated by waves of electrical activation travelling through the cardiac wall. During
cardiac arrhythmia complex electrical patterns emerge that often result into a rotating
pattern, either circling around an obstacle or around its own wave back [1, 2]. These
vortices are also known as rotors, or spiral waves in two dimensions (2D), or scroll waves
in three dimensions (3D).

After the experimental observation of such structures in animal hearts during
ventricular tachycardia [3], it was conjectured that rotors can sustain several heart
rhythm disorders. However, the precise dynamics of rotors, the structure of the rotor
core and the most efficient manner to remove them from the heart remain incompletely
understood.

A quantitative description of spiral wave motion requires to localize it in space. In first
approximation, the region around which the rotor revolves is called the spiral wave core.
The location of a spiral wave at a given time can be further narrowed down to a single
point, usually called the spiral wave tip. Different methods exist to define the tip, e.g.
as the point where wave front and wave back merge [4], as the point on a line of
constant voltage that does not change instantaneously, as an intersection between two
isolines of different variables [5] or as a point singularity of the activation phase [2, 6].

By following the tip position of a single spiral wave over time, a disc-like or star-like
shape emerges, known as the spiral wave core. Different types of cores have been
observed [7], and the non-circular cores are referred to as meandering cores. Among the
meandering cores, simulations of detailed ionic models for cardiac tissue typically show
so-called linear cores, as depicted in Fig 1.

The linear-core regime arises in systems with long action potential duration (APD): If
the tip is next to a region of refractory tissue, it will follow this interface until meeting a
point where the tissue has recovered. As a result, the tip moves along an almost straight
line, interleaved with turning points. These dynamics have not only been observed in
simulations, but were also reported in experiments [8] and clinical observations [9] in the
form of a line of conduction block. For this reason it is important to elucidate the
spatial distribution of the core of the rotor.

In 3D, a spiral wave or rotor becomes a structure called a scroll wave. Within the scroll
wave, the collection of spiral wave tips forms a filament curve [10]. In numerical
simulations with linear cores and a few experimental observations [8], the straight
segment in the linear core extends to a ribbon-like filament [8]. However, these spatially
extended filaments have not been substantially included in theory development, as was
done for circular-core filaments [11].

Recent works [12,13] have proposed to treat linear cores fundamentally different from
circular cores. Specifically, classical phase analysis [2, 6] of cardiac activation patterns
assumes that there is a phase singularity (PS) located near the spiral wave tip. However,
when the wave front reaches a part of tissue that is for instance not fully recovered yet,
a so-called conduction block will form. On both sides of this conduction block line,
there is a different phase, such that the authors of [12,13] argue that the phase
representation resembles more a branch cut or phase defect line (PDL) than a point
singularity. To make the distinction between phase defects and point singularities could
have potential clinical use, as current analysis methods in simulation, experiment and of
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Fig 1. Qualitatively different tip trajectories of spiral waves in simulated
cardiac tissue.
Rows show different reaction kinetics (AP, FK, BOCM) and an optical voltage mapping
experiment on the last row. The first 3 columns show different snapshots in time and
are colored according to local transmembrane voltage. Corresponding spiral wave tip
trajectories are shown in the last column.

clinical data are only aiming to localize point singularities of phase.

The aim of this paper is to provide and compare several methods to numerically
calculate the phase and the corresponding phase defects. We include a quantitative
analysis of the results and the performance of the algorithms.

A summary of our workflow is presented in Fig 2: An image (e.g. of the transmembrane
potential u) is in the first step converted into a phase ϕ. Where jumps in phase are
detected, the phase defect density ρ (see below) will be much larger than zero. If
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desired, the field ρ(r⃗, t) can be further processed to yield localised phase defect lines.

Fig 2. An example of the steps done in the process of constructing the
phase defect field ρ.
(A) We start from the first phase state variable u, often the normalized transmembrane
potential V . (B) Next, from this u and possibly other state variables, the phase, here
ϕarr, is calculated. (C) Finally from the phase, the phase defect field is produced based
on one of the PDL detection algorithms; here, the phase coherence (PC) method was
used. These quantities are plotted over a 2D square domain of myocardial tissue in
physical space. Colour is used to represent the values of the quantities mentioned in the
top left corner. The same colouring will be used throughout this manuscript.

This manuscript is organized as follows: First, we briefly review the concepts of phase,
phase singularities and phase defects (section 2). In the methods section 3, we outline
our simulation methods and introduce several methods to trace phase defects in
excitation patterns. Results of these methods and their performance are presented in
section 4. We conclude this paper with a discussion and outlook (sections 5 and 6).

2 Theoretical background

2.1 The concept of phase

As remarked long ago by Winfree [14], many biological processes take values within a
cycle rather than on the line of real numbers. Cardiac excitation is such an example,
since during an action potential, the cell membranes depolarize and repolarize in normal
circumstances along a predefined sequence, tracing out a closed loop in state space. To
keep track of the relative state of cells along this cycle, the concept of phase can be used.
In addition to the classical phase definition, called activation phase ϕact below, an
alternative phase based on local activation times (LAT) was defined by Arno et al. [13].
In this paper, a third phase ϕskew will be defined below as an approximation of ϕact

when LAT are not available (Eq (7)).

Next, we will briefly review the previously defined phases ϕact and ϕarr.

The activation phase ϕact is the phase as seen in a space spanned by two observables
V (x⃗, t) and R(x⃗, t) in the system [2, 6, 10]. We henceforth assume that V is representing
the activation or depolarization of the medium, i.e. in cardiac context, we take V to be
the normalized transmembrane potential.

Even if there is only one variable V observed, its time-delayed version [3], time
derivative [5], or Hilbert transform [6] can be used as a linearly independent variable R.
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In numerical simulations, all state variables of the system can be observed, and any pair
can be chosen as (V,R). Then, one usually defines the activation phase as the polar
angle of a state in the (V,R)-plane, relative to a reference point (V∗, R∗) that lies within
the cycle:

ϕact = arctan2(R−R∗, V − V∗) + c (1)

Here, the polar angle is returned by the two-argument inverse tangent:
arctan2(y, x) = arctan(y/x) if x ≥ 0 and arctan(y/x) + πmod 2π if x < 0. A constant c
can furthermore be added to make ϕact = 0 correspond to the resting state. The left
column of Fig 3 visualises ϕact for the four data sets introduced in Fig 1.

We recently proposed a second definition of phase that is based on the local activation
time of tissue [15]. The LAT, which is commonly used clinically, is defined as the time
tarrival when the tissue locally depolarizes, i.e. when the transmembrane voltage V at
that point exceeds a value V∗. The LAT relative to the current time is the elapsed time:

telapsed = t− tarrival (2)

On other words, it is the time since the start of the last local activation. The arrival
time phase ϕarr is just a mapping of telapsed onto the interval [0, 2π) by applying a
sigmoidal function:

ϕarr = 2π tanh(telapsed/τ) (3)

where τ is the characteristic time of the cyclic process. Here we take τ equal to half of
the action potential duration (APD) in the medium. Note that another sigmoid
function instead of tanh could also have been chosen in Eq (3). The right column of
Fig 3 visualises ϕarr for the same four data sets.

An asset of ϕarr is that the curves of equal ϕarr are precisely the isochrones that
cardiologists work with during endocardial catheter mapping. Also, if τ is chosen large
enough, repolarized (recovered) tissue will have ϕarr ≈ 2π, such that this phase is not
changing abruptly at the wave front and wave back, in contrast to ϕact. A disadvantage
of ϕarr is that it requires a dense temporal sampling (either in simulation or
experiment), since otherwise staircase artefacts emerge. As a last remark, care should
be taken when initializing ϕarr at the start of the observation window: If the previous
LAT are unknown, so is ϕarr until a propagating wave has swept through the medium.

2.2 Phase singularities and phase defects

The analysis of spatial distributions of phase makes use of several concepts of complex
numbers and complex analysis [16], such as contours, phase singularities and branch
cuts. We now briefly review these concepts in the the context of cardiac excitation.

The detection of rotor cores from a spatial map of phase can be performed by
calculating the total phase difference along a closed loop (contour) C in the medium,
usually taken on the cardiac surface:

∆ϕ =

∮
C

dϕ (4)

Since the first and last point have the same phase, the resulting phase difference ∆ϕ
will return an integer multiple of 2π. Hence, one defines the topological charge
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Fig 3. Illustration of the three different phases for one frame of four data
sets.
The colour code represents the phase in modelled myocardial tissue in a 2D square
domain in the same scale as in Fig 2B.

circumscribed by the contour as:

Q =
∆ϕ

2π
=

∮
C

dϕ

2π
. (5)

Now, in the classical theory [3], one assumes that the phase function ϕ(x⃗) at a given
time t is continuous nearly everywhere, except in a few points where the phase is
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undefined. When using ϕact, it can be seen that these points will correspond to
V = V∗, R = R∗. In the immediate vicinity of such points, all phases are present (both
in the (V,R) plane and in the spatial phase map), hence this point is called a phase
singularity (PS). Note that the existence of a phase singularity, where all different
phases touch, within the contour region C is implied by the assumption of the original
theory that the phase is a continuous function except at the PS.

In the generalized theory [12,15], however, the phase is allowed to be discontinuous near
a conduction block line, which also happens in the core of a linear-core spiral. Then, the
contour C cannot be shrunk to surround a single point, without having the contour
cross an interface where ϕ changes abruptly. We call such transition zones phase defects
(PD): phase defect lines (PDL) in 2D and phase defect surfaces (PDS) in 3D. The
discontinuous behaviour of phase is more easily noted with ϕarr than with ϕact, since
ϕact also shows strong gradients near the wave front and wave back [15]. As a result, we
are convinced that PS detection algorithms that assume a continuous phase distribution
are behaving non-robustly near such spatial phase transition, which motivates this work.
Here, we will provide PD detection methods that are explicitly discriminating the PD
structures, either as a sharp line, or in a probabilistic manner using PD density.

3 Methods

3.1 Data generation and collection

3.1.1 Numerical methods for pattern generation

The methods for PD detection developed here are designed to operate on excitation
patterns, regardless of their generation. However, we here test the methods on
numerical simulations in a cardiac monodomain setting. That is, in a rectangular
Cartesian grid, we modeled forward evolution of a column matrix of state variables
u(x⃗, t) according to a reaction-diffusion equation [17]:

∂tu = P∆u+ F(u). (6)

Here, the first component u1 equals the normalized transmembrane potential V , and
P = diag(1, 0, ..., 0) in order to enable wave propagation by diffusion of V . The number
of state variables in u varies between the different mathematical models of cardiac
myocytes, which are encoded in non-linear reaction functions F(u). To assess the
reliability of our methods, we tried several reaction kinetics: Linear cores are known to
occur with the Bueno-Orovio-Cherry-Fenton (BOCF) model for human ventricles [18]
with parameter set ‘PB’ mimicking Priebe and Beuckelmann kinetics [19], the
Fenton-Karma (FK) model [5] with either guinea pig (GP) or modified Luo-Rudy I
(MLR-I) parameters. In addition, we investigated how the methods perform when
operating on a circular spiral wave core by applying them to the Aliev-Panfilov (AP)
model [20].

All simulations were executed on a 2D isotropic square domain of myocardial tissue
using Neumann boundary conditions and a 5-point stencil for the Laplacian. Integrating
in time is done using forward Euler stepping, with values per model given in Table 1.

The spiral wave was generated by applying a S1S2 protocol: One side of the square is
initially excited to generate a plane wave; if the central point of the medium has
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Table 1. Overview of the performed simulations with relevant parameters.

AP model [20] BOCF model [18] FK model [5]
grid size 400× 400 1200× 1200 450× 450
∆x 1 0.25mm 0.262mm
∆t in ms 0.01 0.009ms 0.163ms
parameter set default PB MLR-I
duration 437.9 1250.01ms 815.31ms
APD 10.0 400.0ms 128.0ms
u for ϕact u s u
v for ϕact v w 1− v
uiso 0.5 0.3 0.65
viso 1.0 0.6 0.8
ϕ0/(2π) 0.15 0.0 0.35
ϕ1/(2π) 0.7 0.4 0.55

finished repolarization, one quarter of the domain behind the traveling wave is
stimulated, such that a spiral wave (cardiac rotor) is formed.

Three frames of the first model variable u for each of the three chosen models resulting
from numerical simulation were displayed in Fig 1A-C.

3.1.2 Optical voltage mapping experiments

To test our methods on actual measurements, we used optical voltage mapping data
derived from 10 cm2 monolayers of conditionally immortalized human atrial myocytes
(hiAMs) following cardiomyogenic differentiation of these cells [21].

A voltage-sensitive dye is added to the culture after which a real-time recording can be
made of the intensity of emitted light, which is a measure of the local transmembrane
potential. For the used recordings, pixel size was 0.25mm and the sampling time
between frames was 6ms. Gaussian smoothing with a kernel size of three grid points
has been applied to each frame. The data have been rescaled such that each grid point
has unit variance in time. Then, arbitrary units have been defined such that the resting
state corresponds to optical activity u equal to zero, and the excited state to u = 1.
Three frames of one of these recordings can be seen in Fig 1D.

3.2 A third phase definition

The aforementioned phase definitions ϕact and ϕarr have each their downsides:
Gradients in ϕact not only show PD but also wave fronts, and ϕarr requires intense
sampling over time of the medium. We propose to combine the advantages of ϕact and
ϕarr in a new phase, ϕskew. This phase is designed as a computationally cheap
approximation of the elapsed time phase ϕarr that can be calculated using ϕact. By
construction, it does not require the whole history of V , but can instead be calculated
using (V,R) at one point in time. In essence, ϕskew is a re-parameterization of ϕact:

ϕskew = h(ϕact), h(0) = 0, h(2π) = 2π (7)

where h is furthermore monotonically rising. Essentially, the cycle visited by cells
during the action potential is now labeled in a more free manner than the classical polar
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coordinates in the (V,R)-plane. As can be seen in Fig 4) by plotting ϕact vs. ϕarr, ϕarr

is also a re-parameterization of ϕskew.

Fig 4. Correlation between the different phases, with data taken from the
snapshot of the Fenton-Karma simulation in Fig 3.
Darker shading corresponds to higher logarithmic probability density.

In principle, one could fit a function h to a plot of ϕarr vs. ϕact, but we opt for a
different approach different approach here and define a piece-wise linear function h:

h(ϕ) =


0 ϕ ∈ [0, ϕ0],

2π ϕ−ϕ0

ϕ1−ϕ0
ϕ ∈ (ϕ0, ϕ1)

2π ϕ ∈ [ϕ1, 2π].

(8)

Values for ϕ0 and ϕ1 were manually chosen for the different reaction kinetics models
used, see section 2.1 and Table 1.

Below, we will apply different phase defect detection methods on the three phases ϕact,
ϕarr and ϕskew, to see which performs best in visualizing phase defect structures.

3.3 Phase defect detection algorithms

3.3.1 Requirements for phase defect detection algorithms

The aim of this paper is to provide and evaluate numerical methods that can be used as
a successor of classical PS detection algorithms, but directed towards the detection of
PDs instead. The following factors are taken into account when proposing the methods.

Zero or finite thickness. Due to the formation of a physical boundary layer (either by
electrotonic effects or numerical smoothing, see [15]), a PD has a finite width in
practice. Therefore we see two options. A first option is to see the PD as an idealized
structure with zero thickness, situated near the steepest spatial variation of phase or a
spatial discontinuity in the local activation time. A second option is to accommodate
for the finite transition width, and describe the PD in a probabilistic manner, e.g. by
regarding the phase gradient as a kind of PD density, below denoted as ρ. If desired,
the PDL extent can then be determined by putting a threshold on ρ, a process which
becomes easier if this density is normalized between 0 and 1.

Vertex-based or edge-based detection. Since the algorithms work on data sets consisting
out of phase values on a set of points, methods can be discriminated on whether they
work on the nodes, edges or faces of the mesh. Since the PDs have co-dimension one, it
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is natural to consider them as being situated on edges of the computational grid, either
in 2D or 3D. However, the result of an edge-based method is not located on the original
grid, such that methods that return values on the vertices of the grid (i.e. collocated
with local phase data) can also be useful. Both edge-based and vertex-based methods
are in contrast with PS detection: since PS have co-dimension 2, they are naturally
calculated on the faces of the grid [5, 22]. Below we provide for most PD detection
methods an edge-based and vertex-based variant. We currently test our methods on a
2D Cartesian grid only and leave the extension to 3D and irregular meshes to future
work.

Taking phase differences. Since phase is a cyclic variable, phase differences should be
taken with care. Spatial derivatives are implemented in such a manner that an integer
multiple of 2π is added in order to bring the result as closest as possible to zero. Also
trigonometric functions are adjusted such that they are indifferent to 2π differences. In
some methods, the complex number z = eiϕ is calculated and the absolute value ||z|| is
taken afterwards to obtain the phase instead of just using ϕ. This will make sure that a
large jump in phase is not just attributed to the phase being cyclic.

Performance. In the results section (section 4), the different algorithms are compared in
computational speed and relative performance. Note that there is no ground truth in
the detection of PDs, since the PD is effectively located where an algorithm finds it.
Notwithstanding, to make a comparison between methods possible, we calculate the
pixel-wise correlation between PDL points or densities returned by the different
methods. If A and B are lists of the PDL densities returned by methods A and B in all
N points of the space-time grid, then we calculate from their means µA, µB and
standard deviations σA, σB the covariance:

Cov(A,B) =
1

N

∑N
k=1(Ak − µA)(Bk − µB)

σAσB
. (9)

In the remainder of this section, nine different PD localization methods will be briefly
discussed and/or introduced. For the vertex-based algorithms, the output is a
discretized scalar field: a non-negative phase defect density ρ(x⃗, t) at time t that is
defined in the points where phase is available to calculate the defect from (here either
ϕact, ϕarr or ϕskew). For the edge-based algorithms, the output is a number σab

computed from the pair of phases ϕa = ϕ(x⃗a), ϕb = ϕ(x⃗b) found at the vertices
connected by that edge, which could be regarded as making up a vector field.

3.3.2 Interpolation between vertex-based and edge-based methods

In what follows, x⃗a, x⃗b, ... are positions of vertices a and b, ρa = ρ(x⃗a), ϕa = ϕ(x⃗a) and
σab is a quantity defined on the edge of the mesh between x⃗a and x⃗b. The set of vertices
connected to vertex a is N (a), containing Na elements. In a 3D Cartesian grid, Na = 4
inside the medium, but on the boundary of the domain or near obstacles, this value will
be lower, but the following formulas can still be applied. See Fig 5 for graphical
depiction of ρa and σab on a portion of a Cartesian grid.

If a quantity arises naturally along an edge (e.g. a gradient), it can be interpolated onto
the vertex grid using

ρa =
1

Na

∑
b∈N (a)

σab. (10)
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~xa

ρa

~xb

ρbσab

Fig 5. Overview of vertex- and edge-centered quantities.
For vertices a and b at positions x⃗a and x⃗b, for which the phase ϕ has been calculated,
we denote by ρa the vertex-centered phase defect density, and ρb, respectively. For the
edge a ↔ b between the two vertices a and b, we denote the edge-centered phase defect
density by σab. The vertices that a is connected to are a’s neighbourhood N (a).

Conversely, if a quantity is found at vertices, it can be allocated to the edges using
linear interpolation:

σab =
1

2
(ρa + ρb). (11)

To distinguish between methods, the name of the method will be added in superscript,
e.g. σCM, ρPC, etc.

3.3.3 Overview of PD detection algorithms

In the following, we will introduce several different methods to detect phase defects. A
tabular overview of all the methods is given in Table 2.

Table 2. Overview of existing and proposed algorithms for PD detection.

abbr. name rationale on vertices on edges calc. time
CM Cosine Method Jumps in phase mod 2π are ok, inbe-

tween: PDL.
✓ 3.74 s

GLAT Gradient of Local Activa-
tion Time

LAT jumps at PDL and wave front. ✓ 2.13 s

RPG Real Phase Gradient Phase jumps at PDL. ✓ 4.90 s
CPG Complex Phase Gradient Phase jumps at PDL. ✓ 13.31 s
PC Phase Coherence Phase is not coherent at PDL. ✓ 10.03 s
DM Dipole Moment Points on opposite side of PDL have

opposite “charge”.
✓ 13.74 s

SVF Spatial Vector Field Rotation of gradient is close to zero, ex-
cept at PDL.

✓ 8.37 s

AM Angular Momentum Use the classical topological charge also
known as angular momentum.

✓ 1.47 s

IPM Inflection Point Method Change of sign of the phase Hessian. ✓ 10.62 s
Calculation times are for 500 frames in a medium of 450× 450 pixels on a Intel Core i7-10875H processor in a Numpy
implementation without specific optimization for speed.
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Cosine method (CM). Tomii et al. [12] introduced the following quantity to visualize
phase defects along an edge:

σ̃CM
ab = cos(ϕa − ϕb). (12)

This method returns a value in [−1, 1], where low values indicate the presence of a
phase defect.

To derive a normalized PD density with values in [0, 1], we modify this to:

σCM
ab =

1

2
[1− cos(ϕa − ϕb)], (13)

and define ρCM
a via Eq (15).

Gradient of local activation time (GLAT). It is expected that around a phase
defect, the LAT does not vary smoothly but instead jumps across this line. This implies
that the gradient in the neighbourhood of the PDL should be much larger than further
away where neighbouring vertices are activated subsequently.

This relation is easily expressed using edges:

σGLAT
ab = tarrival(x⃗a)− tarrival(x⃗b) (14)

Note that we are using a second condition here: If the elapsed time since excitation of
either vertices is exactly zero, we still set σGLAT

ab to zero. The rationale here is that the
jump is due to the wave front passing instead of pointing to a phase defect.

A vertex-based variant is found by averaging over all edges leaving the same vertex, see
Eq (10), applied to the absolute value of the LAT difference:

ρGLAT
a =

1

Na

∑
b∈N (a)

|σGLAT
ab |. (15)

Real phase gradient (RPG). In previous work [13], we considered phase gradients,
disregarding 2π phase differences:

σRPG
ab = |mod(ϕa − ϕb + π, 2π)− π|, (16)

returning values in [−π, π]. The normalized cosine method (Eq (13)) can be seen as a
mapping of this interval to a PD density taking values in [0, 1].

Complex phase gradient (CPG). The next method works in a similar fashion, but
to avoid the modulo operation, we look for gradients in the complex number z = eiϕ:

σCPG
ab = |eiϕa − eiϕb |. (17)

From this a vertex-based density can be computed using Eq (10).

Phase coherence (PC). Inspired by the literature of phase oscillators [23], we define
the phase coherence of a vertex a with neighbours b as:

pa =
1

Na

∣∣∣∣∣∣
∑

b∈N (a)

eiϕb

∣∣∣∣∣∣ . (18)
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The phase defect density is then defined as

ρPC
a = 1− pa, (19)

such that ρ is large when the coherence is low, since a low phase coherence is expected
near a PDL. This index is normalized in [0, 1] with large values indicating high PD
probability.

Note that applying the PC method to only two vertices connected via an edge delivers

σPC
ab =

1

2
|eiϕa + eiϕb | (20)

returning
√
1 + σ̃CM

ab .

Dipole moment (DM). Along a phase defect, the phase values that surround a given
point are expected to be divided into two groups, one on either side of the PDL. We
could perhaps detect this splitting by using the concept of the dipole moment of a
charge distribution, where the complex number z = eiϕ takes the role of charge:

p⃗(x⃗a) =
∑

x⃗b∈N (a)

[x⃗b − x⃗a]e
iϕb . (21)

The point-based phase defect field is then found by taking the norm of this complex
vector:

ρDM = ||p⃗|| =
√
p⃗∗ · p⃗. (22)

where ∗ denotes complex conjugation.

When two vertices are connected by one edge, the edge-based implementation will
recreate the CPG method. For this reason, no direct implementation of the latter was
done. Still, edge-based values can be computed via interpolation, see Eq (11).

Spatial vector field (SVF). When Stokes’ law is applied to the expression of
topological charge, one finds

Q =

∫
C

∇⃗ϕ · d⃗ℓ =
∫∫

S

∇⃗ × ∇⃗ϕ · d⃗S (23)

where C is the boundary curve to the region S. Since for a continuous field ϕ, the
rotation of the gradient ∇⃗ × ∇⃗ϕ vanishes everywhere, a continuous phase field cannot
bear non-zero topological charge. Nevertheless, computing Q for all faces of the grid has
been used to find PSs [3].

Inspired by the right-hand side of Eq (23), and replacing ϕ by eiϕ to get easier
differentiation, we propose:

ρSVF = ||∇⃗ × ∇⃗z||. (24)

The motivation for this method is that a phase defect is essentially a discontinuity in the
field ϕ. At such a discontinuity the rotation of the gradient may be different from zero.
In our current implementation, we calculate the gradient in a vertex-based manner, e.g.
∂xu(x, y) = [u(x+ dx, y)− u(x− dx, y)]/(2dx), such that the result is also vertex-based.
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Angular momentum (AM). A classical method to detect the central region in a
spiral wave is using the pseudo-vector: [24]

L⃗ = ∇⃗u× ∇⃗v. (25)

Far away from the spiral core, the activation resembles a plane wave, making ∇⃗u nearly
parallel to ∇⃗v, such that L⃗ ≈ 0⃗ except near the core of the spiral. Since PS can be seen
as a limit of a PDL with vanishing length, we will visualize

ρAM = ||L⃗||. (26)

An edge-based method can be derived by taking:

σAM
ab = (ρAM

a + ρAM
b )/2. (27)

Inflection point method (IPM). Given that a PDL in practice connects two regions
of different phase in an abrupt but continuous manner, it is interesting to look where
the phase transition is the steepest, and localize the phase defect there.

For 1D functions, an inflection point is found where f ′(x) changes sign. This can be
translated to the condition f ′′(x) = 0. To find the same region for a 2D function, we
express that we want an inflection point when stepping in the direction of the local
phase gradient. With e⃗g as the normalized gradient vector:

∇⃗ϕ = g⃗ = ge⃗g, (28)

the spatial derivative in the gradient direction is ∂g = e⃗g · ∇⃗. With this, ∂gϕ = g, and
the concavity in the direction of the gradient becomes:

F (x⃗) =
∑
i,j

gigj∂2
ijϕ =

∑
i,j

gigjHij , (29)

where the Hessian of the phase is Hij = ∂2
ijϕ. Hence, the PD can be found as the set of

points where F (x⃗) = 0. This method is unlike the mentioned algorithms above, since it
immediately returns a line, i.e. PDL of zero thickness. Note that in practice, one needs
to impose a minimal value of ||ρGLAT || such that the background region with low PDL
density is filtered out.

To compare this method to the other algorithms, we color the edges where F (x⃗) changes
sign with the phase gradient along that edge, i.e.

σab = σRPG
ab H[−F (x⃗a)F (x⃗b)] (30)

with the Heaviside function H.

3.4 Visual representation of the methods

For the methods that return a vertex-based PD density ρ, we simply color the pixels in
the rectangular grid according to ρ. For the methods that return an edge-based PD
indicator σ, we color the dual grid, i.e. we color every point in the plane according to its
nearest edge. This results in a coloring of the plane using pixels that are 45◦ tilted and
centered around the midpoint of edges in the original grid. In this way, interpolation
between edges and vertices does not affect the presented results.
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3.5 Post-processing of phase defects

Having obtained a PD density ρ(x⃗) using one of the methods, we keep only points above
a threshold value ρc to obtain a set of points on the PDL, and connect it using the
minimal spanning tree graph algorithm. Thereafter, the smallest branches of each tree
are cut to gain a discrete representation of a phase defect line, centered at the vertices
of the image grid.

To measure PDL length L, the PDL points are connected by line segments; the sum of
their lengths is taken as an estimate to the PDL length.

To measure PDL precession speed, we first selected a spatial region where only one PDL
was seen during the timespan of interest. Then, we performed principal component
analysis (PCA) to the point cloud of the PDL at all time instances to obtain the main
vector of alignment e⃗1. The angle between this vector and the positive X-axis is taken
to be β, after which linear regression of β(t) = β(0) + ωt yields an estimate for the
precession frequency ω and the precession period T = 2π

ω .

4 Results

We here apply the different proposed detection methods for the three phases ϕact, ϕarr,
and ϕskew. We do this in three cardiac monodomain models and compare performance
of the methods (section 3.1.1). Finally, we apply a selection of methods to an
experimental dataset obtained by optical voltage mapping of a monolayer culture of
cardiac cells (section 3.1.2).

4.1 Comparison of different phase definitions

Fig 3 shows the three phase definitions applied to a snapshot of the three monodomain
models and an optical voltage mapping experiment.

The AP model shown in the first row of Fig 3 produces a rigidly rotating spiral. With
ϕact and ϕskew, a PS is seen. However, due to the thresholding on V used to determine
LAT, the inner part of the core region is never excited, such that ϕarr shows an abrupt
change at the trajectory of the classical PS, which will be picked up as a PD below.

In the simulations with linear core (FK and BOCF models), ϕact shows sudden
transitions at the rotor core and the wave front, while ϕskew and ϕarr only show a
distinct phase gradient near the conduction block line.

The optical voltage mapping experiment in Fig 3J-L shows apparent PSs for ϕact and
ϕskew, but an extended phase defect for ϕarr. Hence, at first sight, it resembles the AP
spiral, but this relation will be further investigated below using the PD detection
techniques outlined above.

Fig 4 shows a scatter plot between the different phases for the FK frame shown in Fig 3.
We took the convention that the phase at the resting state is 0. The skewed phase ϕskew

with parameters tuned as outlined above resembles the elapsed time phase ϕarr much
closer than the state space phase ϕact. In short, ϕskew is an approximation to ϕarr that
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does not require observation of the system during the previous excitation sequence.

4.2 Comparison of phase defect detection methods in
simulations

4.2.1 Spatial maps of PD density

We have applied all phase defect detection methods (section 3.3) to all simulations, for
all phases. For definiteness, we only show the result for the FK model in Fig 6 and 7,
but the others can be found in the Supplementary Materials (section 6, 6, 6, and 6).

In the following, we will present a selection of the results exhibiting the common
features and our main observations regarding the different methods.

In general, all methods return low densities away from the wave front and PDL and
higher values near the region of interest, although the precise PD density distribution is
different between the methods.

In Fig 6B, the GLAT method clearly shows the conduction block line at the rotor core.
Since LAT is discontinuous there, the set of points is thin such that small gaps can be
seen. At the rightmost part, the PDL doubles, since the process of reaching and leaving
the rightmost turning point both leave a discontinuity in LAT. Moreover, the PDL’s
precise location depends on the chosen threshold V∗.

The AM method (Fig 6C) locates only the site where the wave front ends on the PDL,
and slightly stresses the wave front. This is consistent with this method traditionally
being used for PS detection.

The other methods in Fig 6-7 are phase-based. In each case, the wave front is most
clearly seen as an artefact using ϕact, less visible using ϕskew and absent in ϕarr.

The CM, RPG and CPG methods (Fig 6D-L) and PC and DM methods (Fig 7A-F) give
all qualitatively similar results: With ϕact and ϕarr, not only the PDL but also the end
point of the wave front (tip) is stressed. The ϕarr-variant distinctly shows the PDL, as
the wave front is filtered out by the definition of ϕarr.

The IPM method shows a line that is only one pixel wide, as it was designed to localize
the PD at the site of steepest phase variation.

Finally, the SVF method yields many points in the region of interest, but the result is
noisy even in this idealized simulation.

4.2.2 Correlation between the methods

After interpolation to the same vertex-based grid, we computed the mutual correlation
of the different methods using Eq (9), see Table 3. The methods CM and RPG are most
strongly correlated, and AM is uncorrelated to the other methods, which can be
expected as it highlights PSs rather than PDLs. The correlation information is
graphically depicted in Fig 8, where more similar methods are plotted closer to each
other [25].
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Fig 6. Overview of phase defect detection methods for one snapshot of the
FK data set.
The phase defect on vertices ρ or edges σ is measured in arbitrary units. The same
colouring as in Fig 2C is used here. As the phase defect line has a width of only a few
grid points, we zoom in around the turning point to get a better view of the structure
on the grid. For reference, we also show the corresponding frame of the transmembrane
voltage V = u in panel a1.

4.3 Comparison of phase defect detection methods in an optical
voltage mapping experiment

We also applied the different phase definitions and detection methods to the excitation
sequence observed in a hiAM monolayer, as detailed in section 3.1.2. Fig 10A shows the
optical intensity at a given time in a multiple-spiral state. The non-phase methods
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Fig 7. Overview of more phase defect detection methods for one snapshot of
the FK data set as in Fig 6.
Each row shows a detection algorithm, applied to 3 different phase definitions.

GLAT and AM in Fig 10B-C show non-zero densities at several positions that are
similar in both methods. The four most intense points, at which either a PS or PDL
could be present, are confirmed by the other methods (CM, RPG, CPG, PC, DM, IPM)
using ϕact and ϕskew. When using ϕarr, the same 4 points are prominent, but they
extend to a line (PDL) since the LAT and ϕarr keep track of the recent history of
excitation. Compared to the simulation data, more background structures are seen in
the optical voltage mapping data, such as borders of excited regions and a staircase
effect in LAT due to the time sampling.

Also for this data, we present the correlation in Table 4 and graphically in Fig 12.
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Table 3. Correlations of vertex-based phase defects ρ based on ϕarr for the
FK simulation.

Method AM CM CPG DM GLAT IPM PC RPG SVF
AM 0.001 0.0023 0.00037 -0.0026 -0.0040 0.0013 -0.0018 0.0077
CM 0.001 0.40 0.63 0.51 0.63 0.89 0.85 0.68
CPG 0.0023 0.40 0.76 0.27 0.79 0.53 0.48 0.51
DM 0.00037 0.63 0.76 0.39 0.87 0.71 0.80 0.61
GLAT -0.0026 0.51 0.27 0.39 0.42 0.44 0.49 0.39
IPM -0.0040 0.63 0.79 0.87 0.42 0.67 0.8 0.54
PC 0.0013 0.89 0.53 0.71 0.44 0.67 0.77 0.83
RPG -0.0018 0.85 0.48 0.80 0.49 0.8 0.77 0.61
SVF 0.0077 0.68 0.51 0.61 0.39 0.54 0.83 0.61

Fig 8. Correlations in Table 3 displayed as a weighted graph.
Visualisation using Networkx [25]. Colour of edges represents the correlation between
the two connected methods. Distance between nodes roughly represents how similar
they are.

4.4 Properties of PDLs in simulation and experiment

The presented methods allow to characterize the observed PDLs in terms of length L
and orientation angle β, which is a further step in the quantitative analysis of excitation
patterns.

Fig 13 shows the length over time of one PDL, in simulations and experiment. The PDL
is detected using the arrival time phase ϕarr as input for the phase coherence method
(PC). We observe that the PDL length varies over time. Its time-averaged value is
summarized in Table 5.

In both simulations and experiment, we also estimated the precession period T of the
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Fig 9. Correlations for all methods displayed as a weighted graph.
Data are visualised in the same way as in Fig 8. We note that the different methods fall
apart in clusters of the phase definition rather than the precise PD algorithm used.

Table 4. Correlations of vertex-based phase defects ρ based on ϕarr for the
OM data.

Method AM CM CPG DM GLAT IPM PC RPG SVF
AM 0.13 0.19 0.27 0.13 0.15 0.23 0.15 0.19
CM 0.13 0.31 0.58 0.039 0.58 0.7 0.94 0.20
CPG 0.19 0.31 0.7 0.013 0.65 0.62 0.3 0.24
DM 0.27 0.58 0.7 0.026 0.78 0.81 0.65 0.30
GLAT 0.13 0.039 0.013 0.026 -0.027 0.078 0.019 0.039
IPM 0.15 0.58 0.65 0.78 -0.027 0.67 0.65 0.26
PC 0.23 0.7 0.62 0.81 0.078 0.67 0.64 0.39
RPG 0.15 0.94 0.3 0.65 0.019 0.65 0.64 0.19
SVF 0.19 0.20 0.24 0.30 0.039 0.26 0.39 0.19

PDL, see Table 5 and Fig 14. The orientation of the PDL changes almost linearly in all
cases, hence we observe quite low variance along the fit linear functions. On the one
hand, in the FK and BOCF simulations, we see that β almost stays constant, but
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Fig 10. Overview of phase defect detection methods for one snapshot of the
optical voltage mapping data.
The data are presented in the same way as in Fig 6.

Table 5. Statistics of one PDL’s length and precession over time.

model / experiment average length L precession period T
AP simulation (15.07± 0.67) (33.123± 0.011)
FK simulation (35.9± 6.2)mm (1223± 29)ms
BOCF simulation (76.1± 7.8)mm (57 508± 87)ms
hiAM optical voltage mapping (4.01± 0.55)mm (169.2± 9.3)ms

We observe similar values for other PDLs in the data.

slightly precesses in one direction. On the other hand, in the AP model and optical
voltage mapping data, the precession takes place in a much shorter period of time: T is
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Fig 11. Overview of more phase defect detection methods for one snapshot
of the optical voltage mapping data as in Fig 10.

just 1.5 to 3 times longer than the APD in both of those cases.

5 Discussion

In this paper, we provide and compare several numerical methods to detect a phase
defect line, a recently proposed structure present at the core of a rotor as an alternative
for the classical phase singularities [12,13]. Here, we attempt to improve the simple
PDL detection methods from these works (CM & RPG) and tested them on simulations
and experimental data.
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Fig 12. Correlations in Table 4 displayed as a weighted graph.
Data are visualised in the same way as in Fig 8.
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Fig 13. Length of detected PDLs over time.
For one of the PDLs detected by the PC method for ϕarr, we show how its length changes
over time. This length fluctuates around an average value.
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Fig 14. PDL orientation over time.
For these figures, we use the same PDLs as in Fig 13 and Table 5.
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Several phase-based algorithms were applied, not only the ‘classical phase’ ϕact but also
the recently introduced LAT-based phase ϕarr [13], since the LAT better keeps the
spatio-temporal activation and therefore more clearly shows extended phase defects. In
addition to a systematic comparison between detection methods, we also introduce a
third phase, the ‘skewed phase’ ϕskew in this work. ϕskew was designed as a way to
estimate ϕarr from a single snapshot. This is useful in the post-processing of data from
experiments or simulations, where a sparse time-sampling was used. Although ϕskew

filters the wave front and back better than ϕact, we still find that direct measurements
of LAT and ϕarr produce better-resolved PDLs (cf. Fig 6).

When comparing the different methods to convert phase into a phase defect, we find a
good performance and strong correlation between the previously coined cosine
method [12] and the real phase gradient method [13]. Both methods are based on the
same idea (measuring angular differences along a circle) and therefore the correlation
comes as no surprise. Qualitatively similar performance is found by related methods
(CPG, CM, PC). The IPM method also works well. Some advanced methods such as
DM, and SVF actually performed worse in terms of contrast and noise suppression. Of
special interest are the classical AM method (AM) [24], which consistently finds the end
point of the wave front, even if lying on a PDL, and the GLAT method. The gradient of
LAT correctly identifies the PDL and locates it very sharply (by construction); however,
its precise location depends on the chosen threshold (V∗) to classify tissue as excited or
not. Regarding the calculation time, we find that the CM, AM and GLAT are the
fastest and therefore recommended to use for processing larger datasets, e.g. extended
in time or in three spatial dimensions.

To show the power of these methods, we applied them to a simulation and an OM
experiment to find the length and orientation of PDLs over time. Here we conclude that
using a method sensitive to PDLs allows to also identify linear rotor cores in experiment.
However, having identified linear cores (PDLs) in optical voltage mapping of intact
rabbit hearts [13] and human immortalized atrial myocyte cultures (in this work) does
not allow to draw general conclusions. Therefore, we propose to use the suggested
methods also on other datasets, starting with existing optical voltage mapping results.
Then, the presented methods can be used to characterize PDL size and rotation. Such
measurement would give another handle to judge the degree to which mathematical
models of the heart resemble reality, in addition to e.g. reproducing restitution curves
and observing basic spiral dynamics in terms of meander and stability.

The methods used here are available as python scripts from our online repositories, see
the data availability statement. Please cite this paper when using the implementation.
Note that some methods were originally introduced elsewhere: The AM method [24],
the CM method [12] and RPG method [13]. The algorithms have currently been tested
on dense Cartesian grids in 2D, but can in a natural way be extended to 3D and time,
and unstructured grids (meshes), where the distinction between vertex-based densities ρ
and edge-based densities σ will play a more prominent role. Further work can also be
directed to see how the methods perform under noisy conditions and lower spatial
and/or temporal sampling.

6 Conclusion

In this work, we demonstrate that in order to visualize phase defects in dense 2D data,
it is recommended to use LAT-based methods or to use the skewed-phase to derive it
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from snapshots. Several algorithms were proposed to highlight the phase defects
visually, for which the simple methods (CM, RPG, CPG, PC) were most effective.

We applied the methods to simulations and an optical voltage mapping experiment; in
the latter case we found that in a hiAM cell-culture, the average PDL length in a
multi-spiral state was (4.01± 0.55)mm and precession period T was (169.2± 9.3)ms.
We made our detection methods publicly available on our institutional repository and
hope it can serve to further help understanding the building blocks of cardiac excitation
patterns.

Supporting information

In the supplementary material, we provide figures of phase defect densities ρ, σ for the
different methods for AP and BOCF reaction kinetics, to enable a full comparison
between methods.

The numerical methods implemented for this paper are available as a Python module at
https://gitlab.com/heartkor/py_ithildin. The Python scripts used to generate
the figures in this paper are available at
https://gitlab.com/heartkor/scripts-pdl-detection. Finally, we have archived
the simulation output and pre-processed optical voltage mapping data on which the
scripts were applied on Zenodo (DOI: 10.5281/zenodo.5785785). This archive also
contains the Python module and scripts.

Please cite this paper when using the implementation and/or the data.
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S1 Fig.

Overview of phase defect detection methods for one snapshot of the AP
data set. The data are presented in the same way as in Fig 6.

January 7, 2022 26/31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2021.12.16.473086doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.16.473086
http://creativecommons.org/licenses/by/4.0/


S2 Fig.

Overview of more phase defect detection methods for one snapshot of the
AP data set as in S1 Fig.
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S3 Fig.

Overview of phase defect detection methods for one snapshot of the BOCF
data set. The data are presented in the same way as in Fig 6.
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S4 Fig.

Overview of more phase defect detection methods for one snapshot of the
BOCF data set as in S3 Fig.
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