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Abstract

isoformant is an analytical toolkit for isoform characterization of Oxford Nanopore
Technologies (ONT) long-transcript sequencing data (i.e. direct RNA and cDNA).
Deployment of these tools using Jupyter Notebook enables interactive analysis of user-
defined region-of-interest (ROI), typically a gene. The core module of isoformant clus-
ters sequencing reads by k-mer density to generate isoform consensus sequences without
the requirement for a reference genome or prior annotations. The inclusion of differential
isoform usage hypothesis testing based on read distribution among clusters enables com-
parison across multiple samples. Here, as proof-of-principle, we demonstrate the utility of
isoformant for analyzing isoform diversity of commercially-available isoform standard
mixtures. isoformant is available here: https://github.com/danledinh/isoformant.

Introduction

To capture the full potential of nanopore-based transcriptome analysis, novel computational
approaches are needed to extract information beyond gene identity, such as RNA base modifi-
cations and isoform usage.1 Conceptually, long-read sequencing enables direct observation of
exon/intron arrangement along an isoform. However, in practice, relatively high sequencing
error rate and truncations (e.g. non-processive reverse transcription, RNA degradation) cause
alignment artifacts that complicate isoform characterization. Authors of FLAIR2 attempt
to address these challenges by correcting splice junction sequences using prior splice site
annotations. StringTie23 is another approach based on an assembly process, which does not
require supplemental annotations to correct splice junction sequences. Benchmarking by the
authors of StringTie2 suggests that their approach is comparable to or outperforms FLAIR
across several sample types. Here, we present isoformant as an alternative approach that
derives isoforms by generating consensus sequences from long reads clustered on k-mer density
without the requirement for a reference genome or prior annotations. In principle, sequence
homology based on k-mer spectra of noisy long reads is tolerant of errors4, especially when

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.457386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.457386
http://creativecommons.org/licenses/by-nc/4.0/


compared to base-resolution alignment strategies, which makes it suitable for nanopore-based
isoform analysis. This analytical toolkit allows users to interactively and visually explore
isoform data at the granularity of individual reads.

isoformant was developed based on the concept that an individual long-read isoform can be
uniquely identified by its constituent k-mer composition. Namely, for an appropriate length k,
each unique read in a mixture can be represented by a correspondingly unique k-mer frequency
vector. Thus, a mixture of m long reads can be represented by a m x n matrix, where n
= 4k . The process by which isoformant extracts isoform information from such matrices
was inspired by the analytical pipeline outlined by the single-cell transcriptomics package
SCANPY.,56 Beyond convenient implementation of analytical tools, SCANPY provides a scalable
framework for handling large matrices and associated metadata. Moreover, isoformant
provides tools for visualizing isoform sequence variation and performing differential isoform
usage hypothesis testing. The toolkit is intended for interactive analysis using Jupyter
Notebook.

Methods

isoformant toolkit

Detailed documentation can be found here: https://isoformant.readthedocs.io/en/latest/isoformant.html.
Briefly, the isoformant toolkit is composed of the following core modules:

0. Read alignment (prior to isoformant usage)

Minimap27 (version 2.21) with -ax splice flag is recommended to align reads.

1. Preprocessing reads

One or more coordinate-sorted and indexed .bam alignment file paths (.bai index file
must be in same directory) can be specified for processing. Reads are restricted to
a user-defined ROI, typically a gene. Then reads are filtered by mean base quality
(default = 10) and length (default = 300). If more than one .bam file, post-filter read
depth is balanced by random downsampling to the .bam file with fewest filtered reads.
In addition, the user can specify the maximum number of passing reads per .bam file
(default = 1000).

2. k-merization and clustering

For each passing read, the k-mer density (k-mer frequency, computed using the khmer
software8, divided by total number of observed k-mers; default k = 7) is computed
and appended to a matrix M. This matrix along with collated metadata are combined
in an Anndata object. All subsequent transformations are performed on this object.
First, dimensionality reduction was performed using Principal Component Analysis
(PCA) of the k-mer density matrix M, which yields a Principal Component (PC)
matrix M* (default = 100 PCs). Second, the connectivity among reads is computed
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for a k-nearest neighbor (KNN) graph based on M*. The resultant KNN graph is the
basis for visualization via Uniform Manifold And Projection (UMAP)9 and for Leiden
clustering10 to identify putative isoforms.

3. Consensus calling

For each cluster, a random sample of reads (default = 10) is selected for consensus
calling using the Partially-Ordered Alignment (POA) algorithm.11 POA was designed
to handle gapped multiple alignments, which is necessary to determine alternative splice
variants.

4. Hypothesis testing

In cases where multiple samples are simultaneously analyzed, a chi-squared test can
be used to determine differential isoform usage among the samples. The test assumes
balanced read depth among samples (see “1. Preprocessing reads”); therefore, the null
hypothesis assumes uniform sample representation in each cluster (i.e. putative isoform).
For example, given sample A and sample B, it is expected that an isoform cluster
is comprised of an equal number of reads from both samples. For any given cluster,
rejection of the null hypothesis indicates significant imbalance in sample representation.
In such cases, differential isoform usage among samples is determined at the level of
individual clusters. Because the test is performed on all clusters, Bonferroni multiple-
comparison correction is applied, yielding adjusted P values.

SIRV cDNA sequencing

The SIRV cDNA library for nanopore sequencing was generated according to the 10X
Genomics based single cell cDNA library preparation from Lebrigand et al. 2020 which
depletes cDNA that lacks poly(A)/poly(T) sequences.12 Briefly, ~5 ng SIRV Set 4 (Lexogen)
was reverse transcribed (10X Genomics Gel Bead Primer - polydT) with template switching
(10X Genomics Template Switch Oligo). Following RT, PCR (5 cycles) was performed
with a 5’ biotinylated forward primer and non-biotinylated reverse primer. After 0.6X
SPRIselect purification to remove excess biotinylated primers, biotinylated cDNA was bound
to Dynabeads M-270 Streptavidin beads (Thermo Fisher Scientific). After washing, on-bead
PCR was performed (7 cycles) with non-biotinylated forward and reverse primers with
identical sequences as those used in the initial biotinylated amplification step. 110 ng of
amplified SIRV cDNA was input for library preparation for nanopore sequencing using the
direct cDNA kit (SQK-DC109) proceeding directly from end-prep. Nanopore sequencing
produced ~14 M reads with median read length and PHRED quality score of 1170 bases and
12.3, respectively.
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Results

To demonstrate the features of isoformant, we analyzed publicly-available direct RNA
sequencing data of Spike-In RNA Variant (SIRV) control mixes, generated from an ONT
Minion device.13 Specifically, two SIRV-Set 1 isoform mixes were considered: 1) The E0 mix
contains equimolar amounts of each isoform (NCBI accession: SRX3204588), and 2) The E2
mix contains variable known amounts of each isoform, which allows for differential usage
analysis (NCBI accession: SRX3204589). Here, we report the results for an ROI spanning
the SIRV1 reference sequence, composed of 8 annotated isoforms.14 Minimap2 was used
for aligning reads to the SIRV reference sequences.15 The SIRV E0 and E2 .bam files were
preprocessed by isoformant (max_reads = 5000, qual_cutoff = 10, len_cutoff = 300),
yielding 31,024 and 10,494 passing reads, respectively. By default, read depth is balanced
among samples and limited to the max_read number of reads; therefore, the resultant merged
dataset was composed of 5,000 passing reads from each of the two samples. Then, k-merization
(ksize = 7) and clustering (n_pcs = 50, n_neighbors = 15, min_dist = 0.1, resolution
= 1) were performed, yielding the UMAP in Figure 1.
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Figure 1: UMAP of reads aligned to SIRV1. (top panel) color-coding by sample. (bottom
panel) color-coding by Leiden cluster.

Next, randomly-sampled reads (bam_n = 20) from each Leiden cluster in Figure 1 were
used for consensus calling. The resultant sequences were aligned to the SIRV reference
sequences15, which yielded the cluster-specific alignment tracks in Figure 2. Some cluster-
specific consensus alignment tracks were matched to reference tracks14 based on sequence
similarity in terms of shortest Levenshtein distance between pairs, yielding the following
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cluster:reference assignments: (010:SIRV101), (012:SIRV102), (005:SIRV103), (000:SIRV105),
(004:SIRV106), (001:SIRV107), (002:SIRV108), and (003:SIRV109). Together with the UMAP
representation of reads sequence homology, it was possible to infer relatedness among read
clusters. For example, the cluster 000 (i.e. SIRV105) is fused with unassigned cluster 009,
which contains reads that lack aligned 5’ exons. Thus, cluster 009 reads are likely truncation
products or are misaligned due to relatively high base calling error rate.
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Figure 2: Cluster-specific consensus alignment tracks. (color code) substitution:blue, N-
ambiguous:yellow, insertion:red, deletion:green, clipping:cyan.

To determine differential isoform usage between the E0 and E2 isoform mixes, a chi-squared
test was performed for each read cluster. Because sample read depth was balanced, the
null hypothesis assumes equal probability of observing reads originating from either E0 or
E2 libraries. For clusters representing isoforms, rejection of the null hypothesis indicates
differential isoform usage. For the remaining clusters originating from truncation or sequencing
error, among other sources of variation, the chi-squared test identifies differential abundance
between E0 and E2 libraries. Of the clusters identified as SIRV sequences, cluster 003
(i.e. SIRV109) showed the most significant (adj. P value = 5.52684e-169; see Table 1)
differential isoform usage between the E0 and E2 mixes. This is consistent with the fact that
SIRV109 abundance in E0 mix is 32-fold higher than in E2 mix, the highest disparity among
the SIRV1 isoforms, according to product specifications. The observed relative abundance
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of SIRV109 in cluster 003 between E0 and E2 mixes is approximately 42-fold (or about
31% over-estimated), shown in Figure 3. Extension of this analysis to all assigned clusters,
displayed in Figure 4, reveals strong correlation between observed and expected SIRV1
isoform proportions (Pearson’s r2 = 0.97). Moreover, differential isoform usage analysis was
performed on a biological sample: the Universal Human Reference (UHR) transcriptome.16

Genome-wide differential isoform usage analysis of direct mRNA sequencing reads from
UHR (NCBI accession: SRR12010483) was performed using a recently developed tool called
LIQA.17 Among the genes with deepest coverage that exhibited differential isoform usage was
SNRPB. LIQA estimated 36% and 63% relative abundance of two transcript isoforms: Gencode
ENST00000438552.6 (short 3’-exon) and ENST00000381342.7 (long 3’-exon), respectively.
Whereas, isoformant estimated the relative abundances to be 43% and 57% (excluding an
observed truncation population; see Figure 5) a discrepancy relative to LIQA of approximately
6-7%. Taken together, these results demonstrate that isoformant accurately quantifies
isoform abundances; thus, enabling the detection of differential isoform usage both within
and across samples.

Table 1: Chi-squared hypothesis test results comparing
read frequency in each cluster between E0 and E2 li-
braries. Bonferroni correction was used to adjust P value
for multiple comparisons.

leiden P value adj. P value

003 4.25142e-170 5.52684e-169
001 4.66971e-156 6.07063e-155
002 2.3521e-96 3.05773e-95
000 2.29408e-74 2.9823e-73
012 2.58124e-37 3.35561e-36
008 9.61311e-22 1.2497e-20
009 3.15417e-16 4.10042e-15
006 1.09875e-14 1.42838e-13
004 1.92015e-14 2.49619e-13
007 3.67724e-08 4.78041e-07
005 7.89757e-08 1.02668e-06
011 0.000344158 0.00447405
010 0.215613 1
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Figure 3: Relative read abundance between E0 and E2 libraries among clusters.
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Figure 5: SNRPB isoform alignment tracks and relative abundances from analysis of the
Universal Human Reference. (color code) substitution:blue, N-ambiguous:yellow, insertion:red,
deletion:green, clipping:cyan.

Next, isoformant was used to compare reads originating from either direct RNA or cDNA
sequencing. Given the reported differences in error rate and type (i.e. k-mer frequency
distribution biases) between these sequencing modalities,18,19,20 we aimed to characterize how
these disparities manifest when using isoformant for isoform analysis. Direct RNA reads (as
described above) and cDNA reads (see Methods) from the E0 isoform mix were used as inputs
to isoformant. The analysis was performed using nearly identical parameters as listed above.
The only exception was the resolution parameter (i.e. clustering resolution) was reduced to
0.20, which decreased oversegmentation of read groups. From the UMAP embedding of reads
aligned to SIRV1, we observed complete segregation of reads based on sequencing modality
(see Figure 6). For the cDNA library, reads were clustered into 8 distinct groups correspond-
ing to annotated isoforms (see Figure 7): (011:SIRV101), (002:SIRV102), (003:SIRV103),
(006:SIRV105), (007:SIRV106), (009:SIRV107), (013:SIRV108), and (012:SIRV109). Whereas,
the direct RNA library exhibited only 4 distinct annotated isoform groups : (008:SIRV105),
(010:SIRV107), (005:SIRV108), and (004:SIRV109). In addition, there was 1 fused group
consisting of clusters 000 and 001

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.457386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.457386
http://creativecommons.org/licenses/by-nc/4.0/


UMAP1

UM
AP

2
sample_id

cDNA
dirRNA

UMAP1

UM
AP

2

leiden
000
001
002
003
004
005
006
007
008
009
010
011
012
013

Figure 6: UMAP of direct RNA and cDNA reads aligned to SIRV1. (top panel) color-coding
by sample. (bottom panel) color-coding by Leiden cluster.
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Figure 7: Cluster-specific consensus alignment tracks from direct RNA and cDNA li-
braries. (color code) substitution:blue, N-ambiguous:yellow, insertion:red, deletion:green,
clipping:cyan.

Repeating the pipeline (res = 0.35) using only reads from the fused group resulted in a
UMAP embedding focused on the sequence variation among this subset of reads (see Figure 8).
Leiden clustering yielded 7 discrete read groups, corresponding to the remaining 4 annotated
isoforms not discovered in the initial analysis (see Figure 9): (004:SIRV101), (003:SIRV102),
(002:SIRV103), and (001:SIRV106). The 3 unassigned clusters were composed of putative
artifacts (e.g. truncation, sequencing error, etc.).
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Figure 8: UMAP of direct RNA reads from fused group. Color-coding by Leiden cluster.
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Figure 9: Cluster-specific consensus alignment tracks from fused group reclustering. (color
code) substitution:blue, N-ambiguous:yellow, insertion:red, deletion:green, clipping:cyan.
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Discussion

isoformant was designed to focus on ROIs; thus, it is not suitable for multi-loci or genome-
wide applications. In those cases, isoformant may be a useful complement that enables
detailed isoform analysis of high-priority loci. It is also worth reiterating the bias associated
with sequencing modality (e.g. direct RNA versus cDNA) on k-mer distribution and error rate
that may explain some variation in read clustering. In addition, it is plausible that differences
in flowcell or basecaller technology may also introduce bias. Another potential limitation of
isoformant is high memory usage in generating k-mer frequency tables when k size is large;
however, there are several alternate approaches with more efficient memory utilization based on
benchmarking.21,22 Moreover, rather than precisely counting k-mers, scalable and performant
approaches such as minhashing with locality sensitive hashing (LSH) approximate sequence
similarity among reads.23,24 Lastly, isoformant currently lacks an isoform classification
feature, which limits streamlined comparison to prior annotations. In future versions of
isoformant, we plan to improve consensus calling by implementing options for polishing
using Racon25 and for transcript assembly using StringTie2.3 In addition, normalization or
weighting procedures may be implemented to improve sequence variation resolution. For
example, Term Frequency-Inverse Document Frequency (TF-IDF) transformation26 can be
used to prioritize rare k-mers that may better explain the sequence variation among reads.

In this manuscript, we demonstrated the capabilities of the isoformant toolkit to aid in
long-read isoform characterization. Unlike other tools that output genome-wide isoform
annotations, isoformant was designed to enable exploration of a ROI in detail. This visual
toolkit allows users to inspect individual reads in relation to others, which provides a broader
understanding of the isoform diversity landscape. Through the analysis of SIRV control mixes,
we demonstrated the ability of isoformant to aggregate reads by isoform identity, without
the need for splice-junction annotations, and to estimate differential isoform usage. Moreover,
we explored how sequencing modality can influence isoform identity determination. Namely,
we observed more discrete reads groups matching annotated isoforms in a cDNA library
compared to a sample-matched direct RNA library, which exhibited poor segregation among
related reads due to basecalling errors. To resolve such ambiguity, we showed that iterative
clustering can be successfully employed to resolve the subtle sequence variation among read
cluster subpopulations. Taken together, isoformant empowers users with fundamental
analytical tools to interactively explore long-read isoform data.

References

1. Byrne, A., Cole, C., Volden, R. & Vollmers, C. Realizing the potential of full-length
transcriptome sequencing. Philos Trans R Soc Lond B Biol Sci 374, 20190097 (2019).

2. Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic
lymphocytic leukemia reveals downregulation of retained introns. Nat Commun 11,
1438 (2020).

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.457386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.457386
http://creativecommons.org/licenses/by-nc/4.0/


3. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with
StringTie2. Genome Biol 20, 278 (2019).

4. Carvalho, A. B., Dupim, E. G. & Goldstein, G. Improved assembly of noisy long reads
by k-mer validation. Genome Res 26, 1710–1720 (2016).

5. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction
of single-cell gene expression data. Nat Biotechnol 33, 495–502 (2015).

6. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression
data analysis. Genome Biol 19, 15 (2018).

7. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34,
3094–3100 (2018).

8. Crusoe, M. R. et al. The khmer software package: enabling efficient nucleotide
sequence analysis. F1000Res 4, 900 (2015).

9. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform manifold approximation and
projection for dimension reduction. (2020).

10. Traag, V. A., Waltman, L. & Eck, N. J. van. From louvain to leiden: Guaranteeing
well-connected communities. Scientific Reports 9, (2019).

11. Lee, C. Generating consensus sequences from partial order multiple sequence alignment
graphs. Bioinformatics 19, 999–1008 (2003).

12. Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. High throughput error
corrected Nanopore single cell transcriptome sequencing. Nat Commun 11, 4025
(2020).

13. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores.
Nat Methods 15, 201–206 (2018).

14. https://www.lexogen.com/wp-content/uploads/2021/07/025UG063V0200_SIRVs
_Set-1_2021-07-06.pdf.

15. https://www.lexogen.com/wp-content/uploads/2021/06/SIRV_Set1_Norm_Seque
nces_20210507.zip.

16. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and
intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24,
1151–1161 (2006).

17. Hu, Y. et al. LIQA: long-read isoform quantification and analysis. Genome Biol 22,
182 (2021).

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.457386doi: bioRxiv preprint 

https://www.lexogen.com/wp-content/uploads/2021/07/025UG063V0200_SIRVs_Set-1_2021-07-06.pdf
https://www.lexogen.com/wp-content/uploads/2021/07/025UG063V0200_SIRVs_Set-1_2021-07-06.pdf
https://www.lexogen.com/wp-content/uploads/2021/06/SIRV_Set1_Norm_Sequences_20210507.zip
https://www.lexogen.com/wp-content/uploads/2021/06/SIRV_Set1_Norm_Sequences_20210507.zip
https://doi.org/10.1101/2021.12.17.457386
http://creativecommons.org/licenses/by-nc/4.0/


18. Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat
Methods 12, 351–356 (2015).

19. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long
reads. Nat Biotechnol 36, 338–345 (2018).

20. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) tran-
scriptome. Nat Methods 16, 1297–1305 (2019).

21. Zhang, Q., Pell, J., Canino-Koning, R., Howe, A. C. & Brown, C. T. These are not
the k-mers you are looking for: efficient online k-mer counting using a probabilistic
data structure. PLoS One 9, e101271 (2014).

22. Manekar, S. C. & Sathe, S. R. A benchmark study of k-mer counting methods for
high-throughput sequencing. GigaScience 7, (2018).

23. Mullen, L. Textreuse: Detect text reuse and document similarity. (2020).

24. Leskovec, J., Rajaraman, A. & Ullman, J. D. Mining of massive datasets. (Cambridge
University Press, 2020). doi:10.1017/9781108684163.

25. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome
assembly from long uncorrected reads. Genome Res 27, 737–746 (2017).

26. Cusanovich, D. A. et al. A Single-Cell Atlas of In Vivo Mammalian Chromatin
Accessibility. Cell 174, 1309–1324 (2018).

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.457386doi: bioRxiv preprint 

https://doi.org/10.1017/9781108684163
https://doi.org/10.1101/2021.12.17.457386
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Methods
	isoformant toolkit
	SIRV cDNA sequencing

	Results
	Discussion
	References

