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Graphical Abstract

Abstract

SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory

pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including

the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evo-

lution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our

results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that

of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a de -

crease in both the codon adaptation index and the effective number of codons, was observed. All together,

these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous

codon usage, to become less pathogenic.
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Introduction

Coronaviruses (CoVs) are members of the  Coronaviridae, a highly diverse family of enveloped positive-

sense single-stranded RNA viruses, further divided in the Orthocoronavirinae subfamily, which consists of

four genera: alphacoronavirus, betacoronavirus, gammacoronavirus and deltacoronavirus. Of these, alpha-

coronavirus and betacoronavirus only infect mammalian species, producing respiratory and enteric diseases.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the seventh coronavirus known to infect

humans; HKU1, NL63, OC43 and 229E viruses cause seasonal respiratory tract infections with usually mild

clinical symptoms (common cold), while  Severe  Acute  Respiratory  Syndrome coronavirus (SARS-CoV),

Middle  East  Respiratory  Syndrome  coronavirus  (MERS-CoV)  and  SARS-CoV-2  can  cause  severe  life-

threatening respiratory pathologies and lung injuries [1–3]. Further, SARS-CoV-2 can present several extra-

pulmonary  manifestations  that  may  affect  the  urinary,  cardiovascular,  gastrointestinal,  hematological,

hematopoietic, neurological, or reproductive systems [4–9].

All seven CoVs have similar genomes consisting of a single-stranded RNA molecule of around 27-32 Kb,

encoding for a polyprotein, pp1ab (ORF1ab), which is further cleaved into 16 non-structural proteins that are

involved in genome transcription and replication; four structural proteins, including spike (S), nucleocapsid

(N), envelope (E), and membrane (M) proteins; and a variable number of species-specific accessory proteins.

In particular, SARS-CoV-2 reference genome (NCBI Accession NC_045512.2, WHCV) was annotated to

possess at least 14 ORFs predicted on the basis of those of known coronaviruses  [10, 11], including OR-

F1ab, spike (S), envelope (E), membrane (M), nucleocapsid (N) and several accessory proteins (3a, 6, 7a, 7b,

8, and 10). S, the spike glycoprotein, is involved in the attachment to the cell membrane by interacting with

the host receptor Angiotensin Converting Enzyme 2 (ACE2), and mediates the internalization of the virus

into endosomes (UNIPROT, SPIKE_SARS2) [1].  N, the nucleocapsid phosphoprotein, physically links the

+RNA genome to the envelope, interacts with the membrane protein M, and is involved in the RNA packag-

ing and encapsidation [12]. M,  is the central organizer of coronavirus assembly, interacting with all other

major coronaviral structural proteins, including N, S and E (InterPro, IPR002574). E is an integral membrane

protein which forms a Ca2+ permeable channel in the endoplasmic reticulum / Golgi apparatus, and is in-

volved in assembly, budding, envelope formation, and pathogenesis. ORF3a, is a pro-apoptosis-inducing pro-

tein that localizes to the endoplasmic reticulum (ER)-Golgi compartment and forms homotetrameric potas-

sium, sodium or calcium sensitive ion channels (viroporin) that causes ER-stress in host cells and may modu-

late virus release (PFAM, PF11289). ORF6 is located in the endoplasmic reticulum, and it has been reported

to increase the cellular gene synthesis, induce apoptosis, and to modulate host antiviral responses (InterPro,

IPR022736). ORF7a is a viral structural protein involved in the induction of apoptosis that may participate in

virus-host interactions (InterPro, IPR014888). ORF7b is a membrane protein necessary for the localization

into the Golgi  complex  (InterPro,  IPR021532).  ORF8 is  a  potential  pathogenicity  factor  which  evolves

rapidly to evade the immune response and facilitate the transmission between hosts (InterPro, IPR022722).

Orf10 appears to have no homologous proteins in SARS-CoV and other coronaviruses, and it has been sug-
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gested that it may not have a protein coding function (InterPro, IPR044342). Further, a high-confidence pro-

tein-coding gene set was verified by ribosome-profiling experiments [13] and comparative genomics [14].

Biological beings share a set of  20 amino acids, eighteen of which can be encoded by more than one synony-

mous codon. The codon usage frequency is usually not random, and has been related to translation efficiency

and accuracy, mutational drift, and other selection pressures [15–22]. In general, viruses only show a slight

codon usage bias (CUB), mainly explained by uneven base composition and, hence, by mutation pressure

[23]. It has been proposed that a low and non-optimal codon usage allows viruses to adapt to a wider range

of hosts with various codon usage preferences  [24–26]. In addition, a deficiency in CpG and UpA dinu-

cleotides was observed in most single-stranded RNA and small DNA viruses, probably related to the im-

munostimulatory properties of unmethylated CpGs [23, 27–30], and to a marked cytosine deamination [31].
In RNA viruses such as SARS-CoV and Ebola Zaire (ZEBOV), mutational pressure was proposed as the

most important cause of patterns of codon usage [24, 32–34]. However, it is not completely clear whether

this could be generalized, since for Zika virus [25] and MERS-CoV, only a small fraction of the CUB (< 

16%) could be explained by mutational pressure [35]. Further, for SARS-CoV-2, different results were re-

ported, indicating from a main role of mutational pressure, to a strict selection pressure [33, 36–38]. In the

case of human coronaviruses, including SARS-CoV, MERS-CoV and SARS-CoV-2, several CUB analyses

were carried out [26, 33, 43–49, 35–42]. As a result, some general conclusions could be made: first, all of

them possessed high AU content and low GC content, with the CpG dinucleotide markedly under-repre-

sented, and in the case of SARS-CoV-2, a preferred use of U-ending codons; codon usage bias and codon

pair usage were found to be quite different from that of the human host, even when particular tissues such as

lung and kidneys were analyzed [50]; high Effective Number of Codons (ENC) [51] values were found (al-

though lower than those of other coronaviruses), suggesting a slight codon usage bias; in comparison to other

coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2 presented the highest values of the Codon Adap-

tation Index (CAI) [52] calculated using human proteins as the reference set, suggesting that these viruses

are more adapted to the human host than other coronaviruses that present milder clinical symptoms; a rela-

tively high average CAI value was found for SARS-CoV-2 (approximately 0.7),  however, its  value was

smaller than the average for human genes (approximately 0.8) [44]. Moreover, MERS-CoV and SARS-CoV

clustered closer to human genes in correspondence analyses of Relative Synonymous Codon Usage (RSCU),

and presented higher CAI values than SARS-CoV-2, indicating a relatively lower adaptation of SARS-CoV-2

to human cellular systems [37].

The Codon Usage Bias (CUB) of individual proteins from SARS-CoV-2 was also analyzed, and compared

with that from other coronaviruses. In the case of Spike (S) protein, the CUB was found to be similar to that

of other coronaviruses, with preferential use of A/U ending codons, and partly governed through the muta-

tional pressure (27.35%) and majorly through natural selection and other factors (72.65%). In addition, CAI

values for the S-gene indicated a relatively better adaptability in humans, when compared to other mammals

[53].  The same bias was observed for ORF1ab, and it was reported that it was more pronounced in SARS-
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CoV-2 than in SARS-CoV [54]. The mutational status of genes N, S, M, RdRP and S revealed that N, RdRP

and S evolve faster than N and M, accumulating amino acid substitution more rapidly and presenting lower

ENC values [39, 41].

Further,  it  has  been reported that  introducing rare  codons within highly expressed genes  can affect  the

translation of other genes, even in a proteome-wide manner, by reducing the availability of the corresponding

t-RNAs [55]. The same reasoning is valid in the case of the introduction of highly expressed foreign genes,

which can deplete  the  host  cell’s  t-RNA pools  affecting translation and producing deleterious  collateral

effects, whether rare or optimized codons are used. Such is the case of viruses, for which a higher similarity

of  codon  usage  frequencies  was  observed  for  symptomatic  compared  to  asymptomatic  hosts  [35,  56].
Besides, it has been reported that during SARS-CoV-2 infection, the translation of highly expressed human

genes sharing the codon usage of the virus ORFeome appears to be down-regulated [57]. A similar approach

was used to identify human genes that could be potentially deregulated due to the codon usage similarities

between the host and the viral genes [58]. 

Although the codon usage pattern of SARS-CoV-2 has been thoroughly described, there are only a few

works assessing the adaptation of SARS-CoV-2 codon usage since its transfer to human hosts  [40, 43]. It
was  reported  that  during  the  first  six  months  of  the  COVID-19 pandemic,  SARS-CoV-2 average  ENC

decreased, principally due to C to U mutations (i.e. 47% of all the mutations) that occurred on the 2nd and

3rd codon positions, resulting in a more biased codon usage. Furthermore, the codon usage profile of SARS-

CoV-2 seems to have moved away from the human optimal. Interestingly, the CpG and UpA dinucleotides,

which are markedly suppressed in many RNA and small DNA viruses, appear to be increasing in the SARS-

CoV-2 genome over time, and could result in virus attenuation and decreased pathogenicity [40]. CAI values

for most of SARS-CoV-2 coding sequences have also decreased, further suggesting that pathogenicity in

humans could be decreasing [43]. In this work we provide an updated analysis of the evolution of the pattern

of  codon  usage  of  SARS-CoV-2,  using  a  time-series  of  complete  genome  sequences  collected  since

December-2019, including the more relevant variants of concern.

Material and Methods

Retrieval of genomic sequences

The betacoronavirus (taxid=694002) genome and coding sequences used on this work were downloaded

from NCBI  Virus  Variation  Resource  [59] (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/),  filtering  for

complete genomes (nucleotide completeness = complete) with no ambiguous characters. In the case of refer-

ence genomes, a Refseq genome completeness filter was added. SARS-CoV-2 sequences were downloaded

using taxid 2697049, and in addition to the previously used filters, sequences were manually selected to be

representative of different geographic locations, PANGOLIN [60] lineage classification, and different collec-

tion dates (with at least month and year information) from December 2019 to July 2021. Both complete

genomes and coding sequences (CDS) were downloaded and grouped every two weeks. In the case of com-
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plete  SARS-CoV-2  genomes,  2834  sequences  were  downloaded.  CD-HIT server  [61] (http://weizhong-

lab.ucsd.edu/cdhit-web-server/) was used to remove identical sequences, a total of 2725 sequences remained.

All the Coding Sequences (CDS) from a total of 209,436 SARS-CoV-2 genomes were downloaded for the

time-series correspondence analysis of codon usage frequencies. For the analysis of individual proteins, a

homemade script was used to separate the sequences by ORF, using the annotation in the Fasta file headers.

For the analysis of variants of concern, a set of sequences was downloaded from NCBI Virus Variation Re-

source using taxid 2697049, and in addition to the previous filters, the PANGOLIN lineage prediction filter

was used to  select  for variants:  Alpha – B.1.1.7,  Beta – B.1.351,  Gamma – P.1 and Delta  –  B.1.617.2

(https://www.cdc.gov/coronavirus/2019-ncov/variants/variant.html).  

The transcripts for all the human genes were downloaded from Gencode release 38 (https://www.gencode-

genes.org/human/). Highly expressed proteins sets from different human tissues were obtained from the Hu-

man protein atlas (https://www.proteinatlas.org/;  [62]) and their coding sequences were extracted from the

human transcript files using homemade scripts. The horseshoe bat (Rhinolophus ferrumequinum) and chinese

pangolin (Manis pentadactyla) genome coding sequences were downloaded from NCBI genomes (Assembly

accessions GCF_004115265.1 and GCF_014570555.1 respectively). The complete list of SARS-CoV-2 se-

quences used is on Table S1.

Phylogenetic analysis

To construct a phylogenetic tree, a Multiple Sequence Alignment (MSA) of the complete genomes of refer-

ence beta-coronavirus (Beta-CoVs) and SARS-CoV-2 was obtained using MAFFT [63] (https://mafft.cbr-

c.jp/alignment/software/closelyrelatedviralgenomes.html; MAFFT v7). First a MSA of all the reference se-

quences was obtained using the Iterative refinement method E-INS-i and default parameters. In a second step

all the SARS-CoV-2 genome sequences were added to the previous MSA following the recommended in-

structions  for  full-length  MSA of  closely-related  viral  genomes  (https://mafft.cbrc.jp/alignment/server/

add_fragments.html?frommanualnov6; Default parameters were used).  

A maximum likelihood phylogenetic tree was constructed for the first MSA using IQtree [64] (Galaxy Aus-

tralia, Version 2.1.2). The Best-fit model according to BIC (GTR+F+I+G4) and ultrafast bootstrap were used

as evolutionary model and branch support (1000 bootstrap), respectively. For the second alignment, contain-

ing all 2725 SARS-CoV-2 sequences, a maximum likelihood phylogenetic tree was constructed with Fasttree

[65] (v2.1.10, at Galaxy Australia) using the GTR model with four gamma rate categories.

Synonymous codon usage analysis

The codon usage analysis was done using homemade Bash and R scripts. First, codon counts, synonymous

codon usage frequencies, and average codon usage frequencies for each set of genes were calculated using

either Gary Olsen codon usage scripts (https://www.life.illinois.edu/gary/programs/codon_usage.html), or the

coRdon R package [66]. Relative synonymous codon usage frequencies calculated with G. Olsen codon us-

age scripts are similar to the commonly used RSCU, but normalized to 1 (i.e. the maximum value for each

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.472912doi: bioRxiv preprint 

https://www.life.illinois.edu/gary/programs/codon_usage.html
https://mafft.cbrc.jp/alignment/server/add_fragments.html?frommanualnov6
https://mafft.cbrc.jp/alignment/server/add_fragments.html?frommanualnov6
https://mafft.cbrc.jp/alignment/software/closelyrelatedviralgenomes.html
https://mafft.cbrc.jp/alignment/software/closelyrelatedviralgenomes.html
https://www.proteinatlas.org/
https://www.gencodegenes.org/human/
https://www.gencodegenes.org/human/
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant.html
https://doi.org/10.1101/2021.12.17.472912
http://creativecommons.org/licenses/by/4.0/


codon is 1). Averaged codon usage frequencies were calculated from the summed codon counts of all the

genes in a multifasta sequence file. Codon counts for ENC, and CAI determination were calculated with

coRdon [66], using the concatenated ORFs (or equivalently, the codon count for each ORF were summed)

for each SARS-CoV-2 genome. CAI was calculated using a homemade R script following Sharp’s CAI equa-

tions  [52].  Highly  expressed  proteins  in  different  human  tissues  were  used  as  reference  sets  (https://

www.proteinatlas.org/; [62]). For W determination, all the CDSs in the reference set were concatenated (or

equivalently, the codon counts for each CDS were summed) and pseudo-sums of 0,01 were added to 0 fre-

quency codons (Wconcat). Alternativelly, a Wi was calculated for each gene, and the average W (Wavg) was

used for CAI calculation. In the case of SARS-CoV-2 genomes, all the CDS were concatenated except OR-

F1a, which overlaps with ORF1ab.

Results

Phylogeny of SARS-CoV-2

In order to analyze the divergence of SARS-CoV-2 since its onset in 2019, a maximum likelihood phyloge-

netic analysis of complete genomes was made. In a first instance, IQTree was used to construct a phyloge-

netic tree including reference Beta-CoVs from the  Merbecovirus, Nobecovirus, Embecovirus, and Sarbe-

covirus  subgenuses.  As previously reported,  SARS-CoV-2 clustered together  with SARS-CoV and other

SARS-related coronaviruses found mainly in bats, within the  Sarbecovirus subgenus (Fig. 1)  [11, 29, 43,

67, 68]. Then, a maximum likelihood phylogenetic tree including a subset of NCBI public SARS-CoV-2 se-

quences representing the most relevant SARS-CoV-2 variants sampled by date and geographic region, was

constructed using FastTree (Fig. 2). It can be seen that most SARS-CoV-2 sequences clustered by variant

rather than by geographic location, although some variants also clustered by region. In addition, in accor-

dance to previous reports [69, 70], newly sequenced isolates presented more divergence with respect to the

Wuhan-2019 reference sequence (i.e. 1  × 10-3 substitutions per site, or about 30 substitutions per genome.

Fig. 2), suggesting that they could be used to monitor the evolution of SARS-CoV-2 codon usage pattern in

humans over time. However, since most of the registered single nucleotide polymorphisms (SNPs) produced

non-synonymous mutations (i.e. a ratio of non-synonymous to synonymous substitutions of 1.88, and an

80% of the recurrent mutations) [69], we expected to observe only a small variation in the codon usage pro-

file. Similar results were observed using the Nextstrain web portal, with selected data from GISAID and col-

oring by emerging lineage and date respectively (Fig. S1, https://nextstrain.org/ncov/gisaid/global, accessed

2021-09-22) [71].

Codon usage analysis

In order to evaluate the relative synonymous codon usage frequencies either belonging to beta-CoVs or hu-

mans we performed a Correspondence Analysis (CA), using as input the Average Codon Usage Frequencies
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Figure 1. Maximum Likelihood Phylogenetic tree of Betacoronavirus. Maximum Likelihood phylogenetic tree constructed using

full genomes of betacoronaviruses belonging to the subgenuses  Sarbecovirus,  Nobecovirus,  Merbecovirus and  Embecovirus. Ge-

nomic sequences were downloaded from NCBI Virus database, aligned with MAFFT and a ML phylogenetic tree was constructed

with IQTree. The most relevant Beta-CoV isolates are highlighted with different colors. Blue: human SARS-CoV-2 Wuhan 2019 iso-

late. Purple: Pangolin-CoVs and Bat RaTG13, SL-CoVZC45 and SL-CoVZXC21 isolates. Red: human SARS-CoV Tor2 isolate.

Teal: human MERS-CoV isolates. Orange: Human CoVs from the Embecovirus subgenus. Numbers represent the bootstrap support

for each node.

(ACUF) for different gene sets. We included human tissues that can be infected by SARS-CoV-2 including

lungs, heart, kidneys, and brain among others. Human transcripts were extracted from Gencode R38, and

highly expressed gene sets were created for each organ using tissue specific proteomes from the human pro -

tein atlas [62]. As it can be seen on the CA shown in Figure 3, SARS-CoV-2 isolates clustered together with

SARS-related coronaviruses including Bat and Pangolin CoVs, and are quite far from the human tissues, and

also from the genomes of Bat and Pangolin. The phylogenetic and codon usage analysis results support that

SARS-CoV-Bat-RatG13 is the most closely related to SARS-CoV-2 reference strain. Besides, SARS-CoV-2
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Figure 2. SARS-CoV-2 Maximum Likelihood phylogenetic tree constructed with Fasttree using full genomes of isolates with

different collection dates and geographic origins. Genomic sequences were downloaded from NCBI virus database, selecting iso-

lates  from different  geographic  regions,  SARS-CoV-2  variants  and  collection  dates.   Nucleotide  sequences  were  aligned  with

MAFFT and a ML phylogenetic tree was constructed with Fasttree. A) Leaves colored by time. Different colors from red (Dic-2020)

to green (Jun-2021). Reference sequences correspond to SARS-CoV-2 isolated from human (Wuhan isolate 2019) and different ani-

mals. B). Leaves colored by geographic region. C) Leaves colored by SARS-CoV-2 variant. Only Alpha, Beta Gamma, Delta, Mu,

Iota and Kappa are shown.

is more distant from human tissues that SARS-CoVs or human MERS-CoVs. It is also clear that the main

axis (C1) of the CA, accumulating 73% of the variation, corresponds to the difference in the frequency of A-

T or C-G terminated codons, while the secondary axis (C2, 15% of the variation) is mainly defined by the

differences in the Tyr (TAT vs TAC), Leu (TTG vs TTA), Arg (CGT, CGA, CGC, and CGG vs AGA), Asp

(GAT vs GAC), Ser (TCG, AGC and AGT vs TCA), Glu (GAG vs GAA), Phe (TTT vs TTC), Lys (AAG vs
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Figure 3. Correspondence Analysis of Average Codon Usage Frequencies (ACUF) for Betacoronavirus and their hosts: Hu-

man, Bat, and Pangolin. Coding sequences for SARS-CoV-2, Human, Bat, and Pangolin genes were downloaded from NCBI and

ACUFs were calculated and used in a Correspondence Analysis as described in the Material and Methods section. The first two com -

ponents representing 89 % of the total inertia are shown. The inner plot (light gray shading) corresponds to the column variables

(codons). Red: Codons with C or G in the third position. Black: Codons with A or T in the third position.

AAA), Gln (CAG vs CAA), Asn (AAT vs AAC), Ile (ATT, ATA vs ATC), Thr (ACG, ACC and ACT vs

ACA) and Pro (CCG, CCC vs CCA, CCT) codon choice (Fig. 3. Inner light gray shaded plot). Next, in order

to analyze the time variation of ACUF in SARS-CoV-2, sequences were clustered by date in bins of 15 days,

and a correspondence analysis was done (Fig. 4). The first conclusion that can be drawn from these analyses

is that in the time that SARS-CoV-2 has been infecting human hosts, only a slight variation in the average

codon usage has taken place. It also appears, that opposite to what it would be required for a higher expres -

sion of SARS-CoV-2 proteins, the codon usage tends to be slightly more distant (C1) from that of the human

host in the most recently collected samples. Since new SARS-CoV-2 variants appeared over time and gained

importance, correspondence analysis of sequence sets clustered by variant (i.e. as determined by PANGOLIN

on NCBI Virus Variation Resource,  [59]), or by variant and date, were made, including the new sequence

sets to the previous analysis (i.e. all the previous sequences plus the new ones were used in the CA. Fig. 5).

Remarkably, Delta (D) and Gamma (G) variants could be clearly separated based on the CA of ACUF, while

Beta (B) and Alpha (A) were overlapped with the sequence sets corresponding to the time-series. However,

no clear time dependence was observed (Fig. S2), possibly as an effect of the brief time since the appearance

of these variants. To try to elucidate which codons presented more variation over time for the selected vari -

ants, the difference of ACUF with that of the month of January 2020 was calculated for each codon and time
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Figure  4.   Correspondence  Analysis  of  Average  Codon

Usage Frequencies (ACUF) for SARS-CoV-2 time-series

and human tissues. Coding sequences for SARS-CoV-2 and

human genes were downloaded from NCBI and ACUFs were

calculated  and  used  in  a  Correspondence  Analysis  as  de-

scribed in the Material and Methods section. On this figure,

only  the  points  corresponding  to  the  concatenated  SARS-

CoV-2 coding sequences binned by date, and human genes

with elevated expression in different tissues are shown. The

Inner plot shows an amplification of the SARS-CoV-2 region

of the graph. Colors represent the collection date, from Jan-

2020 to Jun-2021.

Figure 5. Correspondence Analysis of Average Codon Us-

age Frequencies (ACUF) for SARS-CoV-2 time-series and

selected variants of interest.  Coding sequences for SARS-

CoV-2 time-series,  and for  a  manual  selection of  genomes

representing Alpha (A), Beta (B), Gamma (G), and Delta (D)

variants  were  downloaded,  their  ACUFs  calculated,  and  a

correspondence analysis was performed as described in the

Material and Methods section. The first two components rep-

resenting 91 % of the total inertia are shown. 

(Figures 6, S3 and S4). As it was previously reported [37], an overall antagonistic codon usage pattern to hu-

man t-RNA isoacceptors was found (Table S2), with a total of 11 amino acids encoded by antagonistic

codons, including all the amino acids encoded by two codons. During the COVID-19 pandemic, most of the

U ending codons increased their frequency (AAT, ATT, ACT, CAT, CCT, CGT, CTT, GGT, GTT, TTT, TCT,

TGT) including some of the antagonistic codons preferred by SARS-CoV-2 (AAT, GGT, CAT, GTT, TTT,

TGT). Only a few of the SARS-CoV-2 antagonistic codons (CAA, TAT) got closer to human frequencies.

Also, the results show that several codons presented a higher variation, being AAT, AAC (Asn); ACT, ACC

(Thr); AGA, AGG, CGA, CGT (Arg); ATA, ATC, ATT (Ile); CAA, CAG (Gln); CAT, CAC (His); CCT, CCA

(Pro); CTT, TTA, TTG (Leu); GAC, GAT (Glu); GAT, GAC (Asp); GCT (Ala); GGA, GGC, GGT (Gly);

GTT (Val); TAT, TAC (Tyr); TCC, TCT (Ser); TGC, TGT (Cys); and TTT, TTC (Phe) the most representa -

tive. In addition, some codons presented more variation between the new variants (i.e. AAA/AAG-Lys,

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.472912doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.472912
http://creativecommons.org/licenses/by/4.0/


Figure 6. Evolution of the Average Codon Usage Frequency (ACUF) for each codon over time. ACUFs were calculated for con-

catenated SARS-CoV-2 genes grouped by fortnight, and normalized by subtracting the values registered for the first half of January

2020. Black points represent the ACUF for SARS-CoV-2 isolates from the time series dataset. Color points correspond to selected

SARS-CoV-2 variants of interest: A (Alpha) orange, B (Beta) dark red, D (Delta) light green, and G (Gamma) blue.

AAC/AAT-Asn, AGG/CGA/CGT-Arg, ATA/ATC/ATT-Ile, CAT/CAT-His, CCA/CCC/CCG-Pro, GAC/GAC-

Asp,  GCT-Ala,  TAC/TAT-Tyr,   TGC/TGT-Cys,  TTT/TTC-Phe),  while others presented a steady increase

(AAG, CCT, CGA, GCG, GCC, GTT, GAA, TAC, TTG) or decrease (AAA, AGA, GCT, GTC, TAT, TTC)

on their ACUF (Fig. S4). The main codons contributing to differences in SARS-CoV-2 variants were AAA-

Lys (A<D/G<B), AAG-Lys (B<G/D<A), ACA-Thr (D<A/B/<G), ACC (B/G < A/D), ACG (A/B < D/G),

AGG (G<D<A<B), CCA (G<D<B<A), CCC (A<B<D<G), CCG (A<B/D<G), CGA (D/B<A<G), CGG (B/

G/A<D), CTG (D<G/B/A), GAA (ABGD < average), GAG (ABDG > average), GCA (BDG < A), GTG

(ABD < G), TAC (G<D/B<A), TAT (A<B/D<G), TCC (A<G<B/D), TGC (A/D < G/B), TGT (G/D<A/B),

and TTG (ABGD < average). Interestingly, some of the codons which presented an increase in the ACUF (al-

though slight) contained CG or TA dinucleotides (ATA, ATT, CAT, GCG, and CGA), and it was speculated

that an increase of CpG and UpA dinucleotides could reduce SARS-CoV-2 pathogenicity [40]. 

Next, SARS-CoV-2 coding sequences were clustered by open reading frame (ORF), averaged by date, and a

CA of their ACUF was performed, which showed a clear separation by ORF (Fig. 7). Remarkably, S, N, M,

ORF3a, ORF7a and ORF8 ORFs were located nearest to the human genes in the CA, suggesting that they

could be more adapted for high expression. 
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Figure 7. Correspondence Analysis of ACUF for each SARS-CoV-2 ORF from the time-series dataset averaged by month. The

coding sequences corresponding to ORF1ab, S, M, N, E, ORF3a, ORF6, ORF7a , ORF7b, ORF8, and ORF10 were extracted from

the SARS-CoV-2 time-series dataset, their ACUF were calculated, averaged by month and a CA was performed. Shapes indicate the

different ORFs. Dark to light blue colors indicate dates from Jan-2020 to Jun-2021. Human: colors indicate the ACUF for genes with

elevated expression in different tissues.

Further, the ACUF for some proteins presented slight or no time dependence at all (i.e. S, M, ORF1ab, OR-

F3a, ORF7a and ORF8), while other presented considerable variation (i.e. ORF10, ORF6, E and N) with

ORF7b presenting the higher variation (Fig. 7 and Fig. S5). In particular, N, ORF3a and ORF8 appear to be

getting closer to the human genes, while ORF1ab is getting apart (Fig. S5). Finally, a CA of Codon Usage

Frequencies (CUF) calculated for sequence sets clustered by ORF, and chosen to represent different dates,

geographic regions and variants (Fig. 8 and Fig. S6), was made. In this case, only a slight variation in CUF

was observed, with most ORFs clustering together, and only showing an apparent separation by SARS-CoV-

2 variant in the case of ORF 8, N, ORF1ab and S (Fig. 8 and Fig. S6). Also for some isolates of the Alpha

and Delta variants a greater variation in the CUF for ORFs ORF6, ORF7b, ORF8 and ORF10 was observed. 

Effective number of codons and Codon adaptation index

The variation of the Effective Number of Codons (ENC) with time was analyzed. ENC is a measure of the

degree of codon usage bias in a gene, its values are between 20 and 61, with values near 20 indicating an ex -

treme bias, and higher values, approaching 61, indicating that the codons are randomly used. It has been pre -

viously reported that during the first four months of evolution of SARS-CoV-2 in humans, the ENC value
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Figure 8. Correspondence Analysis of Codon Usage Frequencies for each SARS-CoV-2 ORF from Alpha, Beta, Gamma and

Delta variants. The coding sequences corresponding to ORF1ab, S, M, N, E, ORF3a, ORF6, ORF7a , ORF7b, ORF8, and ORF10

were extracted from the genomes of SARS-CoV-2 Alpha (A), Beta (B), Gamma (G), and Delta (D) variants, their codon usage fre -

quencies were calculated and a CA was performed. Shapes indicate the different ORFs. Human: colors indicate the ACUF for genes

with elevated expression in different tissues.

was decreasing (i.e. more biased codon usage) with time [43], so an analysis of the variation of ENC with

time for concatenated SARS-CoV-2 coding sequences collected from January 2020 to July 2021 was made.

First, we evaluated the ENC values for different human tissues, all of which presented almost no codon bias

(i.e. high ENC values, above 50, both for values calculated with the concatenated sequences, or for the aver -

age of all genes in a determined tissue, Fig. S7 A and B respectively), with Eye, Kidney and Skin presenting

the lower values. In contrast, concatenated SARS-CoV-2 genes presented ENC values close to 45.45, indicat-

ing a slight codon usage bias. As shown in figure S8, during the 2020 and the first months of 2021, ENC

only presented a slight variation (i.e. less than 0.05 units). In the first two months, an apparent increase of

ENC was observed, however, these months presented the smaller number of analyzed genomes (approxi-

mately 180 each), while thereafter at least 2,000 genomes per month were included. A comparison of the cal -

culated ENC values with those of February 2020 revealed significantly slower values, and a steady decrease

until December 2020. However during 2021, ENC increased again, reaching values close to those at the be-

ginning of the COVID-19 pandemic. This was not expected, since an adaptation to the host generally implies

a decrease in ENC, and a more biased codon usage. The observed results could be related to the emergence

and propagation of novel SARS-CoV-2 variants presenting higher average ENC values. To further test that

hypothesis, the ENC values for the concatenated genes were calculated for Alpha, Beta, Delta and Gamma

SARS-CoV-2 variants (Fig. S9). Alpha and Beta variants have shown slightly decreased ENC, while Gamma

presented a significantly higher ENC when compared to those of February 2020 isolates. The observed varia -

tion of ENC over time (Fig. S8) could be related to the higher relative abundances of Alpha, Gamma and
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Delta variants (i.e. the proportion of those variants in the analyzed genomes, for each time sampled), which

present the lowest and higher ENC values respectively (Fig. S9).

ENC values were also analyzed for every SARS-CoV-2 ORF (Fig. S10), and compared between variants. In

that case, a statistically significant difference in the ENC values calculated for each ORF between the ana-

lyzed variants was observed. The Alpha variant, presented a significantly smaller ENC for ORF1ab and a

higher one for S, N, and ORF8. Beta, Gamma and Delta presented a higher ENC for ORF3a. In the case of

the Delta variant, a higher ENC was observed for S, while a smaller value was observed for N and M. For

the Beta variant, a remarkably higher ENC value was observed for the E protein. Finally, in the case of the

Gamma variant smaller ENC values for S and N proteins, and a higher ENC value for ORF8 were observed. 

In relation to the Codon Adaptation Index (CAI), Huang et al. [43] also reported a decrease over time during

the first four months of the COVID-19 pandemic. Here we extended that analysis to 18 months, and used

highly expressed human proteins in different tissues as reference sets for CAI calculation. The reference sets

were extracted from transcripts annotated in Gencode R38 (https://www.gencodegenes.org/human/) using

human protein atlas expression profiles  (https://www.proteinatlas.org/)  [62] to select for highly expressed

proteins in lungs, spleen, stomach, kidney, skin, heart, brain, eye, intestine, urinary bladder, thyroid, adrenal

and pituitary glands, and different immunity cells like B, T, natural killer, dendritic cells, monocytes, and

granulocytes. The relative adaptiveness (W) for the reference sets was obtained in two different ways, either

by calculating and averaging Wi for every gene in the reference set (Wavg), or directly by calculating W for

the concatenated genes (Wconcat). In addition, W for human ribosomal proteins was extracted from Lei et al.

[72] (WLei). Next, average CAI values were calculated for SARS-CoV-2 isolates collected on the first half

of February 2020 (2020/02/01-14). As can be seen in figure S11, depending on the method used for W calcu-

lation the results varied (mainly in their magnitude) with CAIs calculated with Wconcat  presenting higher

values (Fig. S11.B1).  In both cases, granulocytes, kidneys, heart and the pituitary and thyroid glands pre -

sented the higher CAI values, which might indicate a higher expression of SARS-CoV-2 proteins in those tis -

sues. In contrast, skin, stomach, intestine, dendritic cells, monocytes and eyes presented the lowest CAI val-

ues. Also, SARS-CoV-2 average CAI values were in general smaller than the average CAI for human genes,

presenting the smaller difference in the granulocytes, kidneys, heart, and the pituitary and thyroid glands

(Fig. S11.A2. And B2.). Moreover, when CAI was calculated using  Wconcat,  SARS-CoV-2 presented the

highest CAI values in the heart and pituitary gland. The biggest difference was found on skin, eye, intestine,

dendritic cells, and monocytes, which could indicate a lower expression of SARS-CoV-2 proteins in those

tissues.

Then, CAI was calculated for time-series of SARS-CoV-2 isolates and averaged by date. Using pairwise

Wilcoxon rank-sum test to compare each time with the first half of February 2020, significant differences

could be found that support a variation in the average CAI for SARS-CoV-2 over time (Fig. 9 and Fig. S12).

In general the behavior of CAI was similar for all tissues, presenting an increase in February, a steady de -

crease until July-2020, and another small increase followed by a decrease presenting spikes of higher CAI.

The major difference between tissues was observed between July-2020 and March-2021. In the case of CAI
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Figure 9. Evolution of the Codon Adaptation Index (CAI) over time for SARS-CoV-2 calculated in reference to different hu-

man tissues. CAI was calculated for the concatenated SARS-CoV-2 genes using elevated proteins on each human tissue as reference

set, and averaged by month. The figure shows the difference of CAI for each month with the values calculated for Jan-2020 (ΔCAI).

Human highly expressed proteins for each tissue were obtained from the human protein atlas. A) CAI values obtained using Wavg. B)

CAI values obtained using Wconcat. The black line corresponds to CAI values calculated using WLei. 

values calculated using Wconcat (Fig. 9.B.) the difference was bigger, with some tissues presenting higher

(e.g., pituitary gland and urinary bladder) or smaller (e.g., eye and skin) CAI values. In the first half of 2021,

CAI values for eye and skin presented a more pronounced increase than the rest of the analyzed tissues. In

addition, CAI values calculated for SARS-CoV-2 with WLei presented a constant and more pronounced de-

crease over time. 

In order to determine if this behavior was related to the spread of new SARS-Cov-2 variants,  CAI was deter-

mined for the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) variants (Fig 10.A.). In

this case, WLei was used. The results show that all the variants presented lower CAI values than the SARS-

CoV-2 isolates collected in the first half of February 2020, with Delta having the lowest CAI. Finally, an

analysis of CAI for every ORF and variant was made (Fig. 10.B.). In accordance with the results of the cor -

respondence analysis, the proteins with the higher CAI values were N, S, ORF7a, ORF3a, ORF1ab, M, and

ORF8. For most ORFs the variation in CAI values was very small (between 0,001 and 0,005) but statistically
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Figure 10. Differences in CAI be-

tween SARS-CoV-2 variants and

their ORFs. CAI values calculated

for  concatenated  SARS-CoV-2

genes using WLei for a selection of

genomes  representing  different

dates,  variants and geographic lo-

cations. A) Box plot of CAI values

grouped by variant. B) Box plots of

CAI values calculated for the indi-

cated ORFs and grouped by vari-

ant. Horizontal lines represent me-

dians.  Bigger dots represent mean

values. Asterisks represent signifi-

cant  differences.  Alpha  (A),  Beta

(B),  Gamma  (G),  and  Delta  (D)

variants.  P values were calculated

using Wilcoxon rank sum test (*  <

0.05, ** < 0.01, *** < 0.001, ****

< 0.0001) 

significant differences were found. In the case of ORF1ab, a clear decrease in CAI was observed in all vari -

ants, being more pronounced in Delta and Gamma. The Delta variant presented the most different CAI pro -

file, with low CAI values for most of the ORFs, except for N and ORF7b for which an increase was ob-

served. Beta was characterized by presenting the highest CAI for S, high CAI for N, and the lowest CAI val -

ues for E and ORF3a. Alpha presented the lowest CAI for N and ORF8, and high CAI values for ORF3a and

ORF1a. In this case, for most of the available genomes ORF8 was not annotated, or only a truncated version

was available  (On NCBI Virus resource,  of  193,493 only 55 genomes presented a  protein annotated as

ORF8.  Accessed 17-11-2021),  thus  the  observed difference might  be  artificial,  representing only  a  few

shorter sequences. Finally, Gamma presented the highest CAI for ORF3a, and low CAI values for N and OR-

F1a.
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Analysis of SARS-CoV-2 divergence in California, USA

Based on the previous results, the question of whether the variation of CAI and ENC values over time was

determined only by the most abundant of the circulating variants, and not by a general trend of SARS-CoV-2

evolution, was raised. To try to answer this question, an analysis of the variation of ENC and CAI over time,

considering the relative abundance of all the circulating SARS-CoV-2 variants in a determined geographic

region, was made. First, we looked for the geographic region with more SARS-CoV-2 complete genomic se-

quences, which turned out to be California (CA) USA, with a total of 15,468 complete genomes over a total

of 154,837 sequences (Date accessed, 10/05/2021). It has to be noticed that, since only complete genomic se-

quences were used, the results shown below do not accurately represent the real proportion of the circulating

strains, which since September 2021 has been reported to be mainly Delta (https://covid.cdc.gov/covid-  data-  

tracker/#variant-  proportions  ; https://nextstrain.org/ncov/open/north-america. Accessed 15/10/2021). Overall,

it can be seen that the ENC values for the circulating SARS-CoV-2 isolates in California show a similar pro-

file to that of the global analysis, although with slightly higher values (Fig. S13). In the case of CAI (calcu-

lated using WLei ) the obtained values mimic the global behavior, presenting the higher CAI on February and

decreasing steadily thereon (Fig. 9, and Fig. 11.A. black curve). 

Figure 11. Evolution of CAI over time for

the California dataset.  CAI was calculated

for  concatenated  SARS-CoV-2  genes  using

WLei and averaged by month. A) CAI calcu-

lated  for  the  complete  dataset.  Black  line,

Evolution of average CAI values over time.

Red line,  total  number of coding sequences

(CDS) analyzed for each month. B) Left, CAI

values for selected variants of interest. Right,

percentage of coding sequences belonging to

each variant.

The CAI spikes on February and April 2020 corresponded to the A.1 variant (according to Pangolin lineage

classification) which presents the highest CAI value (Fig. S14, Table 1S, CA-USA-Variants). Further, the de-

crease in CAI over time since December 2020 correlates with the most abundant variants having lower aver-

age CAI than the strains circulating on February 2020, with the Alpha (B.1.1.7), Gamma (P.1) and Delta

(B.1.617.2 and AY.35) variants being the most abundant (Fig 11, Fig. S14, Table S1 – CA-USA-Variants).

However, a general decrease in CAI values for each variant could not be observed, with most of them pre-
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senting nearly constant average values (Fig. 11.B, left, and Table S1 California-USA-Variants). In addition,

figure S15 shows a monthly comparison between the most (Proportion > 5 %) and the less (Proportion < 1

%) abundant variants, and it can be observed that during 2021, although the most abundant variants pre -

sented lower CAI values, the difference with the less abundant variants is not significant. 

Next, an analysis of CAI for all SARS-CoV-2 ORFs from the California dataset was made (Fig. 12, Fig.

S16). Most of the variation in average CAI values was in the range of 0,001 units, with ORF8, N, ORF3a,

ORF7a and S showing the biggest difference with time. In the case of ORF8, a particular behavior was ob-

served because it was not annotated in the Alpha variant genomes, which were the most abundant between

January and July 2021. In the case of N, most of the variation in average CAI values corresponded to the rise

and fall of the A variant, which presented the lowest CAI value for N (Fig. 12 and Fig. S16). The Delta vari -

ant presented the lowest CAI values for ORF3a, ORF7a and S, and the general decrease observed for CAI

since July 2021 (Fig. 11) corresponded to its onset. Remarkably, a steady increase in CAI for the S protein of

the Delta variant was observed (Fig. S16), which could suggest that an adaptation of S for better expression

is taking place. 

Figure  12. Evolution  of

CAI  over  time  for  each

SARS-CoV-2  ORF of  the

California  dataset. CAI

values  were  calculated  for

each SARS-CoV-2 ORF us-

ing WLei,  and averaged by

month. In the figure, the dif-

ference of CAI with respect

to  Jan-2020  is  represented

(ΔCAI). Lines for the ORFs

with  greater  variation  over

time are thicker (N, S, OR-

F3a, ORF7a, and ORF8).  

Omicron variant

On 26 November 2021, WHO designated the variant B.1.1.529 a variant of concern, named Omicron [73].

This variant presents a large number of mutations, some of which are concerning [74], and the apparent ca-

pacity to infect people who recovered from COVID-19 caused by Delta and other variants  [75]. Whether

Omicron causes milder or more severe disease is still unknown, although most of the reports, which had oc-

curred in the younger population, presented mild symptoms. Here, we downloaded the complete genome of

the Omicron variant from NCBI Virus (Accession number: OL672836) and calculated the ENC and CAI

(calculated using WLei) values as a measure of codon adaptation. Our results (Table S2, Omicron ENC and

CAI) show that Omicron presents an ENC value greater than the average for other SARS-CoV-2 isolates
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(ENC, 45.51), although not the highest registered in our study. It also has a higher CAI, compared to the

other variants of concern (CAI, 0.675), but lower than the CAI values for SARS-CoV-2 isolates from the first

half  of  February 2020.  The ENCs for the individual  ORFs were also calculated,  showing that  Omicron

presents a different profile, with higher ENCs for ORF1ab and S, and lower ENCs for E and ORF3a. Particu-

larly low ENC values were found for M and ORF7b proteins. In the case of CAI, S and M presented some of

the higher values, while E, N and ORF7b some of the lower, when compared to other SARS-CoV-2 isolates. 

Discussion

The COVID-19 pandemic provided an unprecedented dataset of complete genomic sequences, with complete

metadata including the sample collection date, which made possible the study of codon usage bias and its

adaptation to the human host in short periods of time. First, using both maximum likelihood phylogeny and

Correspondence Analysis (CA) of Average Codon Usage Frequencies (ACUF), we corroborated that SARS-

CoV-2 is highly related to the SARS-related coronavirus RatG13 isolated from Bats, and to Pangolin CoV

[45, 47],  being more distantly related to SARS-CoV and MERS-CoV. In addition, the CA showed that

SARS-CoV-2 was farther from the human tissues than SARS-CoV and MERS-CoV, suggesting that it is less

adapted than the latter for protein expression in the human host. Previous reports indicated that coronaviruses

show low substitution rates over time, normally in the range of 1 × 10−4  to 1 × 10−3 substitutions per site per

year [69], with a total of around 5 to 14 nucleotide differences between independent SARS-CoV-2 isolates in

the first half of 2020 [69, 70]. Here approximately 1 × 10-3 substitutions per site (i.e. approximately 30 SNPs

per genome) were observed for the most distant SARS-CoV-2 2021 isolates. This indicated that it should be

possible to analyze the time dependence of codon usage frequencies for SARS-CoV-2 ORFs, although only a

small variation was expected, as it was previously observed by Hussain et al.  [40] and Huang et al. [43].
These authors conducted similar time-series analysis, principally of averaged ENC and CAI values, showing

that in the first months of COVID-19 pandemic both indices were slowly decreasing. In the analysis pre-

sented here, a dataset of sequences representing different geographic locations and SARS-CoV-2 variants,

and moving along to July 2021, was analyzed. A trend in codon usage bias variation over time was observed

in the CA of ACUF, which shows that the distance between SARS-CoV-2 and the highly expressed genes in

different human tissues is slightly increasing on the principal axis (C1) and decreasing on the secondary axis

(C2). C1 is mostly defined by U/A and C/G terminated codons and accounts for 73% of the total inertia.

These results are in accordance with previous reports that showed that +ssRNA viruses possess A rich and C

poor genomes, with a depletion of CpG and UpA dinucleotides, and third codon positions enriched in U [40,

76]. Such an increase in U ending codons could be caused both by selection or mutational biases, which are

considered as the main forces of RNA virus evolution, due to their large population sizes and high mutation

rates. Also, it has been shown that mutation is universally biased toward A and T in several species [77, 78]
In the particular case of +ssRNA viruses, including SARS-CoV-2, a mutational bias towards U, which in

CoVs was produced mainly by C→U mutations, was observed [77, 78]. This bias is remarkable in SARS-

CoV-2, which was shown to present a high proportion of C→U changes relative to other types of SNP [69],
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with approximately a 4-fold excess of C→U substitutions [70]. However, mutations have to be fixed in the

population, a process that takes time, and may be incomplete in SARS-CoV-2 circulating variants. Using the

notion of incomplete purifying selection, it was proposed that in the longer term, selection towards A and

against U takes place [76]. Whether the mutations appearing in SARS-CoV-2 circulating variants have been

fixed is difficult to determine. Neutrality plots results suggested a minor effect of mutation bias and major ef -

fect of natural selection [40]. Here, using the California dataset, a linear dependence of GC12 (i.e., GC per-

centages of codon positions 1 and 2) with GC3 (i.e., GC percentages of codon position 3) (R 2:  0.2455, p-

value: < 2.2e-16) with a slope of 0.12370 was observed, suggesting that only 12% of the codon usage bias

could be attributed to mutational bias.  Moreover, a neutrality plot was made for sequences clustered by

month (Table S2, Neutrality plots vs Date), indicating in average less than 20% of mutation bias contribution

to the codon usage bias. An overall dependence with time was not found, however, spikes of lower slope

(major contribution of selection) were observed on Sep-2020; Jan-2021 and May-2021. In those months the

prevalent circulating variants were B.1 and B.1.243; B.1.2, B.1.427 and B.1.429; and B.1.1.7 (Alpha), re-

spectively (Table S1, California-USA-Variants), which could indicate that in those variants a more

complete selection may have taken place.

The obtained results are also compatible with previous codon usage analyses in SARS-CoV-2, where an an-

tagonistic codon usage pattern with the human host was observed  [37], and it has been suggested that it

could play a role during the initial phase of the infection, reducing translation speed, but increasing its preci-

sion, and yielding accurate and correctly folded viral proteins [79]. Also, a slow viral translation and replica-

tion, may help the virus to avoid detection by the host immune system [40].

SARS-CoV-2 has a high average ENC value of around 45, indicating a low to moderate codon usage bias,

which is lower than the average ENC values of human tissues (approximately 55, Fig. S7). It has been sug -

gested that a weak codon usage bias might be an adaptive trait enabling viruses to replicate, without compet-

ing for the limited t-RNA resources, in a broader range of hosts presenting different codon usage patterns

[37, 39, 40]. Recent reports have shown that SARS-CoV-2 ENC values have decreased over time in the first

half of 2020, here this tendency was reinforced and extended to July 2021. A smaller ENC indicates that

SARS-CoV-2 codon preference has increased, however, it doesn’t mean that it is adapting to the human

codon usage pattern. In fact, the CA results and the analysis of the variation of ACUF over time indicate a

greater polarization.

To test whether this small but significant variation in the codon usage bias could enhance the expression of

SARS-CoV-2 proteins in humans, CAI was calculated using as reference the highly expressed proteins in dif-

ferent human tissues. CAI is accepted as an effective index of the degree of viral adaptation to a host’s cellu -

lar  environment  [80].  That  SARS-CoV-2 presents  lower  CAI  values  in  comparison to  MERS-CoV and

SARS-CoV, has been interpreted as a lower fitness and adaptation to human cellular systems, which is also

in agreement with its milder clinical picture [37]. Moreover, our results indicate that SARS-CoV-2 proteins

should present a higher expression in granulocytes, kidneys, heart, and the pituitary and thyroid glands; and
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lower expression in the skin, stomach, intestine, dendritic cells, monocytes and eyes. These results are par-

tially in agreement with previous reports showing SARS-CoV-2 tropism for lungs, trachea, kidneys, heart,

pancreas, brain and small intestine, but not for the large intestine, renal proximal tubules, and liver [81, 82];
and also with the prediction of vulnerable cells types based on the ACE2, TMPRSS2 and Furin expression

profiles (i.e.  lung AT2 cells,  macrophages,  cardiomyocytes,  adrenal  gland stromal cells,  stromal cells  in

testis, ovary and thyroid cells) [83, 84]. Further, different types of immune cells can be infected, including

granulocytes [85] which have been reported to be key modulators in SARS-CoV-2 immune response [84];
and also new evidence suggests that SARS-CoV-2 might have a great impact on the hypothalamus-pituitary-

thyroid endocrine axis [87]. It should be noted that the alteration of the target cell (or tissue) normal func-

tions will depend, not only on its susceptibility to SARS-CoV-2 infection, but also on the expression level of

all SARS-CoV-2 proteins. 

It has been observed, both here and in a previous report by Huang et al. [43], that CAI values for SARS-

CoV-2 in humans have decreased over time, and it was hypothesized that it was likely that the efficiency of

gene expression of SARS-CoV-2 in the human host could be decreasing. That SARS-CoV-2 CAI values are

decreasing raises the question of whether MERS-CoV and SARS-CoV higher CAI values are a consequence

of a larger adaptation time in the human host, or if their CAI values were higher since the beginning, and

they are actually evolving towards a lower CAI.  

An analysis of the variants Alpha, Beta, Gamma and Delta, revealed a difference of ACUF with the early

2020 isolates, and a differential codon usage bias between Gamma, Delta, and Alpha and Beta isolates which

were somewhat overlapped. Particularly Delta and Gamma isolates, presented a higher ENC, which may ex-

plain the increase in the average ENC observed in the last months of analysis. With respect to CAI, all the

analyzed variants presented lower CAI values when compared to February 2020 isolates, with Delta and

Gamma presenting the lower values.

Finally, an analysis of each SARS-CoV-2 gene was made. It was previously reported that ORF1ab, S and N

are the proteins accumulating most of the mutations [49], however, of these proteins only N presented con-

siderable variation on its codon usage bias according to the CA results. In the case of M and E, which have

been reported to evolve more slowly [39], only E presented some variation in its codon usage bias. Other

proteins that showed some variation in the CA were ORF6, ORF7b, and ORF10. However this variation was

not always reflected on the ENC and CAI values. 

As a common trend, the variation of ENC and CAI over time was minimal, which was expected due to the

small divergence time, and the fact that a ratio of non-synonymous to synonymous substitutions of 1.88 had

been previously reported  [69]. Nevertheless, significant differences were found, especially when Alpha or

Delta variants became predominant. In particular, N, M, ORF7a and ORF3a presented high CAI and ENC

values, with values similar to those registered for human proteins, and which indicated that these proteins

may be required in higher amounts. A very good accordance of their CAI values with the ribosome profiling

experiments reported by Finkel et al. [13] was found, being the most actively translated proteins N, M, OR-
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F7a, ORF3a, ORF8, ORF6, ORF7b, S and E in descendant order. The nucleocapsid phosphoprotein (N), was

among the proteins which presented more variation in the codon usage bias between SARS-CoV-2 isolates,

and also the higher average CAI value. These facts could suggest a particular role of N in the evolution and

adaptation of beta-CoVs to their mammal hosts. 

In contrast, S, ORF8, ORF7b, and ORF6 presented relatively high CAI but lower ENC values. Proteins with

a lower ENC use a more restricted set of codons, and if those codons are common with those used by highly

expressed  host  proteins  (i.e.  viral  proteins  with  higher  CAI),  a  more  effective  competition  for  the

aminoacilated t-RNA will take place. In accordance, Alonso and Diambra [57] observed a reduced transla-

tion rate of highly expressed host proteins which shared the codon usage bias of the virus, and the same ap-

proach was used by Maldonado et al. [58] to identify human genes that could be potentially deregulated due

to the codon usage similarities between the host and the viral genes. Thus, a reduction of CAI over time, as

was observed for S and ORF7a,  may be compatible with a milder pathogenicity. ORF7b has the lowest ENC

value of about 30, a relatively high CAI of 0.654, and protein levels similar to S [13]. The particular profile

presented by ORF7b in the Delta variant, might explain some of the clinical differences presented by this

variant. It was demonstrated that N mutations, as the N:R203M contained in the Delta variant, can produce

an enhanced RNA packaging and replication,  an improved fitness,  and could also explain the increased

spread of variants [88]. That N presented the most optimized codon usage profile in Delta could contribute

to its increased fitness. E presented the lowest CAI, and its value remained nearly constant over time, with

the observation that the Beta variant presented differentially lower CAI and higher ENC values. Also, the

Beta variant presented high CAI for N and S. A recent report has informed that people infected with the Beta

SARS-CoV-2 variant were more likely to need critical care and to die than are people infected with other

variants, and it also seems to be more resistant to immunity generated by vaccines or previous infections

[89]. The particular CAI/ENC profile uniquely shown by the Beta variant, probably involved in different ex-

pression levels of E protein, could be related with this variant severity. The Omicron variant appears to be

more transmissible, and less pathogenic. These features could be related to the higher CAI for S, and the

lower CAI for ORF7b respectively. ORF7b also presents the lowest ENC in the Omicron variant, suggesting

a more antagonistic, yet restricted, codon usage, which might be related to this strain ability to avoid the im-

mune response [90].

Finally, it has been proposed that the low adaptation of SARS-CoV-2 to the human codon usage could be a

consequence of its recent transit from a well-adapted host, or an evolutionary strategy to avoid host defense

[40]. However, most of the results seem to indicate that SARS-CoV-2 codon usage is getting further apart,

instead of adapting for a higher and faster protein expression. Deoptimization of codons and codon pairs has

been used as an attenuation strategy for viral vaccine development [37]. That SARS-CoV-2 codon usage pat-

tern is getting away from that of the human host, and the decreasing CAI and ENC values observed since the

onset of the pandemic, could indicate that the virus is evolving to be less pathogenic [40], and might end,

with time, being similar to other CoVs causing common cold. It must be considered however, that this con -

clusion is only based on the evolutionary trends observed in the codon usage profile, and although they could
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exert a significant effect in SARS-CoV-2 pathogenicity, the occurrence of novel non-synonymous substitu-

tions as the observed in the recent Omicron variant [74], will present a more direct effect.
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