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 2 

Abstract 21 
 22 
Identification of somatic mutations with high precision is one of the major challenges in 23 

prediction of high-risk liver-cancer patients.  In the past, number of mutation calling 24 

techniques have been developed that include MuTect2, MuSE, Varscan2, and SomaticSniper. 25 

In this study, an attempt has been made to benchmark potential of these techniques in 26 

predicting prognostic biomarkers for liver cancer. Initially, we extracted somatic mutations in 27 

liver-cancer patients using VCF and MAF files from the cancer genome atlas. In terms of 28 

size, the MAF files are 42 times smaller than VCF files and containing only high-quality 29 

somatic mutations. Further, machine learning based models have been developed for 30 

predicting high-risk cancer patients using mutations obtain from different techniques. The 31 

performance of different techniques and data files have been compared based on their 32 

potential to discriminate high and low risk liver-cancer patients. Finally, univariate survival 33 

analysis revealed the prognostic role of highly mutated genes. Based on correlation analysis, 34 

we selected 80 genes negatively associated with the overall survival of the liver cancer 35 

patients. Single-gene based analysis showed that MuTect2 technique based MAF file has 36 

achieved maximum HRLAMC3 9.25 with p-value 1.78E-06. Further, we developed various 37 

prediction models using selected genes for each technique, and the results indicate that 38 

MuTect2 technique based VCF files outperform all other methods with maximum AUROC 39 

of 0.72 and HR 4.50 (p-value 3.83E-15). Eventually, VCF file generated using MuTect2 40 

technique performs better among other mutation calling techniques to explore the prognostic 41 

potential of mutations in liver cancer. We hope that our findings will provide a useful and 42 

comprehensive comparison of various mutation calling techniques for the prognostic analysis 43 

of cancer patients. 44 

 45 

Keywords: Mutation calling techniques; Prognosis; Liver cancer; Survival analysis; Machine 46 

learning; Regression 47 
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 3 

Introduction  49 

According to the world health organization, cancer is a life-threatening disease and the first 50 

leading cause of death worldwide in 2019. Global cancer statistics estimate that in 2020, 19.3 51 

million new cases and 10 million deaths have been occurred due to cancer [1]. Cancer is 52 

extremely heterogeneous; therefore, the same treatment strategy is not effective for 53 

individuals with similar types of cancer. Till now, there is no universal treatment available 54 

for all types of malignancies. Currently, several targeted therapies are available for cancer 55 

treatment, which majorly focus on the detection of mutations at the genetic level [2]. In the 56 

last few years, several therapies have been designed based on the mutated genes for the 57 

cancer treatment. For instance, B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF) 58 

inhibitors (Sorafenib) is identified to treat melanoma patients with V600E mutation in the 59 

BRAF gene [3, 4]. However, drugs like afatinib and erlotinib are used to target the mutation 60 

in the EGFR in non-small-cell lung cancer [5, 6]. Moreover, BRCA1/BRCA2 gene mutations 61 

in ovarian cancer patients have been treated by poly (ADP-ribose) polymerase (PARP) 62 

inhibitor, i.e., olaparib [7]. Of note, research on the mutations associated with the genes in 63 

cancer patients is essential for identifying the correct mechanism of the disease. Due to the 64 

advancements in next-generation sequencing, such as whole-genome, whole-exome, and 65 

mutation calling techniques, the detection of more than 98% mutations associated with the 66 

disease using sequencing data is possible [8, 9]. The easy availability and low cost of next-67 

generation sequencing techniques enable researchers to perform experiments on large cohorts 68 

of cancer patients [10].  69 

The genetic variants are mainly categorised into single nucleotide variant (SNV), 70 

insertion/deletion (indel), and structural variants (SV, which incorporates copy number 71 

alterations, duplications, and translocations). In recent years, a huge number of somatic 72 

mutation calling algorithms (for example, Mutect2, Varscan2, SomaticSniper, MuSE, 73 

Strelka2, etc.) have been developed to identify mutations at the genetic level using 74 

sequencing data [11-17]. Mutect2 calls somatic mutation such as single nucleotide alterations 75 

and indels using the local assembly of haplotypes. SomaticSniper pipeline detects somatic 76 

SNVs using Bayesian algorithm to compare the genotype likelihoods in the tumor and normal 77 

samples. However, Varscan2 mutation calling algorithm uses exomes, whole-genome 78 

sequencing data to capture germline variants, somatic mutations and copy number variants in 79 

tumor-normal data. Moreover, MuSE is a Markov Substitution model for Evolution, to 80 

identify novel mutations in the large-scale tumor sequencing data.  81 
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Liver cancer is one of the deadliest disease which is the seventh most common cancer among 82 

the 36 cancers reported by Global Cancer Statistics 2020 [1]. Ample treatment methods were 83 

developed in the past, but still the survival rate of liver cancer patients is very low, leading to 84 

high-mortality rate [18]. Being the most comprehensive resource for the cancer related 85 

research, TCGA provides two types of file formats for mutation data such as Variant Call 86 

Format (VCF) and Mutation Annotation Format (MAF). VCF files are the raw mutation files 87 

that store and report the genomic sequence variations that directly came out of the various 88 

automated variant calling pipelines. On the other hand, MAF files are the processed version 89 

of the VCF files, which are curated by removing the false positives or by recovering the 90 

known calls that the automated pipelines may have missed. VCF files report mutations 91 

irrespective of their importance, but MAF files describe only the most affected ones by 92 

removing the low-quality mutations. In GDC portal, both type of files are available generated 93 

using the four major mutation calling techniques named as MuTect2, MuSE, Varscan2, and 94 

SomaticSniper. Despite number of techniques are available, it is difficult to understand which 95 

method and file is better to explore the role of mutations in cancer. 96 

In the current study, we have systematically evaluated the four mutation calling tools which 97 

are widely used in TCGA, to identify highly mutated genes associated with high-risk liver 98 

cancer patients. For this, we have collected VCF and MAF files of 418 liver cancer patients 99 

for all the mutation calling techniques. The gene-based annotations were identified using 100 

highly accurate and widely used methods ANNOVAR [19] and Maftools [20]. Correlation 101 

and survival analysis is performed to identify mutated genes that can impact the survival of 102 

liver cancer patients. Finally, several prediction algorithms have been developed for the top 103 

genes. The inferences of our study can give a valuable reference and guidance to the 104 

researchers to choose a reliable somatic mutation algorithm to determine the mutation-105 

associated genes having a significant impact on the survival of the cancer patients. 106 

 107 

Material and Methods 108 

 109 

Dataset Collection 110 

We obtained liver cancer (TCGA-LICH and TCGA-CHOL) mutation data from Genome 111 

Data Commons (GDC) data portal. Precisely, we collected the controlled access VCF of liver 112 

cancer patients under the approval of dbGap (Project No. 17674) according to the GDC 113 

protocols [21]. In addition to that, we have also downloaded the MAF files of TCGA liver 114 

cancer patients. In TCGA, four different techniques are used for mutation calling, i.e., MuSE, 115 
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Mutect2, Varscan2, and SomaticSniper. In this study, we have utilized VCF and MAF files of 116 

418 liver cancer samples generated from four different mutation calling methods. Moreover, 117 

the clinical data like age, gender, tumor stage, overall survival (OS) time, and vital status 118 

were collected using TCGA assembler 2 [22]. 119 

 120 

Mutation Annotations 121 

We used the ANNOVAR software package 122 

(https://annovar.openbioinformatics.org/en/latest/) for functional annotations of genetic 123 

variant mutations. First, we convert VCF files into ANNOVAR genetic variants file; using 124 

“convert2annovar.pl” script; the processed file contains five major columns such as 125 

chromosome number, start position, end position, reference nucleotide, and altered 126 

nucleotides. It provides three major type of annotations (i.e., gene-based, region-based, and 127 

filter-based annotations). In this work, we used gene-based annotations, in which we obtained 128 

mutations/gene/samples. In this way, we get per-gene mutations for each sample for the four 129 

different mutation calling techniques. After that, we count number of mutations per gene for 130 

each liver cancer patient with the help of in-house python script (gene_to_matrix.py). 131 

Similarly, for MAF files we counted the number of mutations/gene/samples. Finally, we 132 

generated matrices for each mutation calling technique from VCF and MAF files, in which 133 

number of mutations per gene per sample were reported. 134 

 135 

Correlation Analysis 136 

To understand the impact of number of genetic mutations on overall survival (OS) of liver 137 

cancer patients, we have implemented correlation test. After that, we removed the genes with 138 

the non-significant p-value i.e., >0.05, and ranked the remaining genes on the bases of 139 

correlation coefficients. We choose top-10 negatively correlated genes from each technique 140 

for VCF and MAF files for further analysis. 141 

 142 

Survival Analysis 143 

In this study, we have performed survival analysis by the ‘survival’ package in R (V.3.5.1) 144 

using cox proportional hazard (Cox PH) model. We perform univariate survival, in order to 145 

understand the impact of per gene mutations on the survival of liver cancer patients. The log-146 

rank test was used to estimate the significant survival distributions between high-risk and 147 

low-risk groups in terms of the p-value. Kaplan-Meier (KM) survival curves were used for 148 

the graphical representation of high-risk and low-risk groups [23]. 149 
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 150 

Machine learning Techniques   151 

Classification Models  152 

In this study, we have implemented various machine learning techniques for the classification 153 

of high-risk and low-risk samples based on the number of mutations in the chosen genes. 154 

Classification algorithms includes Decision tree (DT), Support Vector Classifier (SVC), 155 

Random Forest (RF), XGBoost (XGB), Gaussian Naive Bayes (GNB), Logistic Regression 156 

(LR), k-nearest neighbors (KNNs) and ExtraTree (ET) using Scikit learn [24]. 157 

 158 

Regression Models  159 

Further, we implemented several regressors to develop regression models for overall survival 160 

time prediction in liver cancer patients. These techniques were developed using python-161 

library scikit-learn and includes Random Forest (RF), Ridge, Lasso, Decision Tree (DT), 162 

Elastic Net (ENR), Logistic Regression (LR), and Support Vector Regression (SVR)[24]. 163 

 164 

Performance Evaluation  165 

 166 

Cross-Validation Technique 167 

To avoid over-optimization in the machine learning models, we have used standard five-fold 168 

cross-validation technique [25, 26]. In case of classification, the complete dataset was divided 169 

into 80:20 ratio, the five-fold cross-validation was performed on the 80% training dataset. In 170 

this method, the training dataset split-up into five equal sets. However, four sets used for 171 

training and remaining set used for the testing purpose. The similar task was repeated for at 172 

least five times, so that every set can be used in training and testing. Finally, the performance 173 

or outcome computed by taking the mean of all five sets. The similar process was repeated 174 

for the cross validation of regression models. In this the complete dataset was used for the 175 

five-fold cross validation. 176 

 177 

Performance Measure Parameters 178 

To evaluate the performance of classification models, we have used standard parameters. We 179 

have calculated threshold-dependent such as sensitivity (Sens), specificity (Spec), accuracy 180 

(Acc), F1-score, and MCC, and independent parameters like Area Under the Receiver 181 

Operating Characteristic (AUROC). These parameters were calculated using the following 182 

equations (1-5).  183 
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 185 

PT =True Positive, PF =False Positive, NT =True Negative, NF =False Negative 186 

 187 

Similarly, to evaluate the regression models, we have used parameters such as mean absolute 188 

error (MAE), root mean-square error (RMSE), correlation coefficient (R), and p-value, to 189 

evaluate the performance of regression models as previously used in different studies [27-29].  190 

 191 

Results 192 

In this study, we have used 418 TCGA liver cancer patients somatic mutation data (VCF files 193 

and MAF files) and OS data. The mutation data were taken from four different mutation 194 

calling techniques i.e., MuSE, Mutect2, Varscan2 and SomaticSniper. ANNOVAR software 195 

and in-house scripts were used to extract the number of mutations/gene/samples from the 196 

VCF and MAF files. The total number of genes and mutations extracted from different 197 

techniques is shown in Table 1. Where, in VCF files Mutect2 and SomaticSniper reported the 198 

highest number of genes and mutation counts i.e., more than 25000 genes and 5 million 199 

mutations. On the other hand, in MAF files the reported number of genes and mutations is 200 

comparatively less for each technique. 201 

 202 

Table 1: Total number of genes and mutations for each gene extracted from VCF and 203 

MAF files using different mutation calling technique 204 

File Type Technique Number of Genes Number of Mutations 

VCF 

MuTect2 25366 5237093 

MuSE 19425 379368 

Varscan2 19422 576231 

SomaticSniper 25785 5003969 

MAF MuTect2 16474 59741 
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MuSE 15712 51184 

Varscan2 15950 54877 

SomaticSniper 14979 44102 

 205 

Further, in order to understand the distribution of genes in each technique, we developed 206 

upset plot as shown in Figure 1. For the visualization of intersecting genes set we have 207 

created UpSet plot [30]. According to the plots, in VCF file 18758 genes were common in all 208 

the four techniques, whereas 182, 5, 2, and 630 genes are uniquely reported by MuTect2, 209 

MuSE, Varscan2, and SomaticSniper technique, respectively. Similarly, in case of MAF files 210 

14585 genes were shared by all the techniques, while 461 genes are unique in file by 211 

MuTect2 technique, 73 by MuSE, 115 by Varscan2, and 41 unique genes were reported by 212 

SomaticSniper technique. 213 

 214 

 215 
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 216 
Figure 1: Upset-plot for distribution of genes in four techniques. a) From VCF files b) From MAF 217 

files 218 

 219 

Comparison of Different MAF files 220 

To compare different mutation calling techniques, we have taken processed and annotated 221 

MAF files from TCGA. We utilized the Maftools package to comprehensively analyse the 222 

somatic variants extracted from MuSE, Mutect2, Varscan2, and SomaticSniper mutation 223 

calling technique. From the analysis, we observed few changes in the mutation calling 224 

techniques for the same cohort of samples. For example, MuSE and SomaticSniper MAF 225 

files (Figure 2A, 2B) only report SNPs on the other side Varscan2, and MuTect2 (Figure 2C, 226 

2D) represent  SNPs, INS, and DEL under the variant type. 227 

 228 
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 229 
Figure 2: Visualization of mutation summary (variants classification, type and SNVs) for MuTect2, 230 

MuSE, Varscan2 and SomaticSniper MAF files 231 

 232 

In Varscan2 and MuTect2, the variant classification distribution represents nine types of 233 

mutations such as Missense_Mutation, Nonsense_Mutation, Splice_Site, 234 

Translational_Start_Site, Frame_Shift_Ins, Frame_Shift_Del, In_Frame_Ins, In_Frame_Del,  235 

and Nonstop_Mutations, while MuSE and SomaticSniper MAF files consist 236 

Missense_Mutation, Nonsense_Mutation, Splice_Site, Translational_Start_Site, 237 

Nonstop_Mutations. The SNV class visualizes the single-nucleotide variants in the TCGA 238 

cohort, we observed that all the methods present diverse distribution of SNV as shown in 239 

(Figure 2). Oncoplots generated by the Maftools visualization module illustrating the somatic 240 

landscape of the cancer patients for Varscan2, MuTect2, MuSE and SomaticSniper MAF 241 

files. In Figure 3, we display the topmost mutated genes with their mutation percentage 242 

(>=5%) in total number of samples. From the results we observed that, TP53 is highly 243 

mutated gene and have almost 20% or >20% mutations among different techniques. 244 

 245 
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 246 
Figure 3: Oncoplot visualization of mutation frequency of top-most mutated genes. The rows 247 

represented the genes with % mutations, and columns display the samples. (a) Illustrates 248 

the oncoplot of  MuTect2 technique and indicates that 89.18% of samples having mutated 249 

genes (b) Illustrates the oncoplot of  MuSE technique and shows that 80.29% of samples 250 

having mutated genes (c) Presents the oncoplot of  Varscan2 approach and shows that 251 

88.43% of samples having mutated genes (d) Illustrates the oncoplot of  SomaticSniper 252 

technique and indicates that 75.73% of samples having alerted/mutated genes 253 

 254 

Correlation Analysis  255 

By implementing the correlation test we ranked the genes and choose top-10 genes having 256 

significant negative-correlation coefficients. The procedure is repeated for all the four 257 

techniques from MAF and VCF files of liver cancer patients, which lead to 80 genes in total. 258 

The complete correlation analysis is provided in Supplementary Table S1. 259 

 260 

Prognostic Biomarkers for High-Risk Prediction 261 

Single gene 262 
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Univariate survival analysis was performed using cox-proportional hazard model. We have 263 

calculated the HR and p-value for ten genes from each technique for VCF files. 264 

SomaticSniper technique has achieved the maximum HR value in single gene based analysis 265 

with HRCLDN20 = 7.06 and p-value 6.62E-07, followed by Varscan2 with HRFAM160A2 = 6.81 266 

and p-value 4.01E-05, followed by MuTect2 based VCF file with HRSNHG10 = 5.49 and p-267 

value 3.94E-06, and Muse technique has achieved the HRCLMP of 3.01 with p-value 1.67E-05 268 

as shown in Table 2. 269 

 270 

Table 2: Hazards ratio for top-10 genes from VCF files derived using MuTect2, MuSE, 271 

Varscan2, and SomaticSniper technique 272 

MuTect2 MuSE 

Gene HR P-value 95% CI C-index Gene HR P-value 95% CI C-index 

SNHG10 5.49 3.94E-06 2.66 - 11.31 0.53 CLMP 3.01 1.67E-05 1.82 - 4.97 0.54 

WIZ 2.69 9.71E-07 1.81 - 4.00 0.56 BIRC6 2.80 4.46E-04 1.58 - 4.99 0.54 

MGAT4EP 2.49 4.46E-04 1.50 - 4.15 0.54 
LINC02210-
CRHR1 

2.03 6.42E-03 1.22 - 3.39 0.53 

LINC00304 2.39 7.40E-05 1.55 - 3.67 0.55 DHX8 2.00 2.90E-02 1.07 - 3.74 0.52 

CACNG7 1.93 5.72E-04 1.33 -  2.81 0.56 LINC00972 1.91 9.31E-03 1.17 - 3.10 0.54 

OR52B6 1.83 1.12E-03 1.27 - 2.63 0.56 PAX7 1.90 8.29E-04 1.30 - 2.76 0.56 

TYK2 1.80 2.21E-03 1.24 - 2.63 0.56 TAS1R2 1.61 2.63E-02 1.06 - 2.44 0.53 

PIGO 1.79 1.66E-02 1.11 - 2.88 0.52 SNTG1 1.53 3.37E-02 1.03 - 2.27 0.54 

S100A12 1.71 1.10E-02 1.13 - 2.59 0.54 CNTN5 1.34 2.25E-01 0.83 - 2.16 0.51 

DNAJC9-AS1 1.08 6.51E-01 0.77 - 1.51 0.52 ZNF521 1.26 2.63E-01 0.84 - 1.91 0.52 

  

Varscan2 SomaticSniper 

Gene HR P-value 95% CI  C-index Gene HR P-value 95% CI C-index 

FAM160A2 6.81 4.01E-05 2.73 - 17.02  0.52 CLDN20 7.06 6.62E-07 3.27 - 15.2 0.53 

LOC100420587 5.45 1.31E-07 2.90 - 10.22 0.54 NR2C2AP 5.17 3.16E-05 2.38 - 11.2 0.52 

SPDYA 3.08 7.70E-04 1.60 - 5.94 0.53 ATG9B 3.34 2.59E-04 1.75 - 6.37 0.53 

BRSK2 2.55 1.01E-03 1.46 - 4.46 0.54 HAUS5 2.79 2.22E-05 1.74 - 4.48 0.55 

ADGRF4 2.21 1.23E-02 1.19 - 4.10 0.53 LOC100287329 2.58 8.23E-04 1.48 - 4.49 0.53 

LINC00972 2.11 2.18E-03 1.31 - 3.41 0.55 P4HTM 2.18 2.43E-02 1.11 - 4.31 0.52 

TM4SF18 2.07 1.40E-02 1.16 - 3.70 0.53 OR6C76 2.12 1.18E-03 1.35 - 3.35 0.54 

OR5AS1 1.86 1.43E-02 1.13 - 3.06 0.54 CLK2 1.94 3.58E-02 1.05 - 3.61 0.52 

PDE11A 1.72 2.74E-03 1.21 - 2.46 0.55 FAM187B 1.64 1.51E-02 1.10 - 2.43 0.55 

LOC101929073 1.29 2.98E-01 0.80 - 2.11 0.52 NOMO3 1.34 1.45E-01 0.90 - 1.98 0.52 

HR: Hazard ratio; 95% CI: 95% Confidence Interval; C-index: Concordance index 273 

 274 

Similar analysis was done for MAF files from each technique and HR values were calculated. 275 

As exhibited in Table 3, Mutect2 technique based MAF file has achieved the maximum 276 
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HRLAMC3 = 9.25 with p-value 1.78E-06, followed by Varscan2 with HRSYDE1  8.46 and 3.71E-277 

05, followed by MuSE technique with HRITGB8 8.30 and p-value 5.69E-07, then followed by 278 

SomaticSniper with HRCAD 5.56 and p-value 8.10E-04. 279 

 280 

Table 3: Hazards ratio for top-10 genes from MAF files derived using MuTect2, MuSE, 281 

Varscan2, and SomaticSniper technique 282 

MuTect2 MuSE 

Gene HR P-value 95% CI C-index Gene HR P-value 95% CI C-index 

LAMC3 9.25 1.78E-06 3.71 - 23.05 0.52 ITGB8 8.37 5.69E-07 3.64 - 19.24 0.52 

EVC2 4.30 8.66E-05 2.08 - 8.91 0.53 TBX3 8.10 6.06E-05 2.91 - 22.53 0.52 

NYNRIN 3.94 1.22E-03 1.72 - 9.05 0.52 SIPA1L3 4.90 5.54E-05 2.26 - 10.61 0.52 

KIAA2026 3.85 1.49E-03 1.68 - 8.86 0.52 CAD 4.45 3.58E-03 1.63 - 12.14 0.52 

SUPT20H 3.41 7.53E-03 1.39 - 8.40 0.51 EVC2 4.16 2.97E-04 1.92 - 9.01  0.52 

BRINP2 2.83 2.43E-02 1.14 - 6.98 0.52 ARHGEF11 3.17 2.37E-02 1.17 - 8.64 0.51 

LRP1B 1.93 7.81E-03 1.19 - 3.14 0.54 BRINP2 2.80 2.56E-02 1.13 - 6.92  0.52 

TP53 1.48 3.60E-02 1.03 - 2.14 0.55 PCDH15 1.72 1.20E-01 0.87 - 3.39 0.51 

TG 1.46 4.53E-01 0.54 - 3.97 0.51 TG 1.46 4.55E-01 0.54 - 3.97 0.51 

PCDH15 1.43 3.30E-01 0.70 - 2.93 0.51 CSMD3 1.24 4.54E-01 0.71 - 2.15 0.51 

  

Varscan2 SomaticSniper 

Gene HR P-value 95% CI C-index Gene HR P-value 95% CI C-index 

SYDE1 8.46 3.71E-05 3.07 - 23.35 0.52 CAD 5.56 8.10E-04 2.04 - 15.17 0.52 

ALPP 4.33 1.44E-03 1.76 - 10.66 0.52 TOP2A 4.63 2.73E-03 1.70 - 12.62 0.52 

KIAA2026 3.85 1.49E-03 1.68 - 8.86 0.52 KIAA2026 4.01 2.62E-03 1.62 - 9.93 0.52 

CAD 3.32 1.91E-02 1.22 - 9.04 0.51 EVC2 4.00 1.04E-03 1.75 - 9.17 0.52 

BRINP2 2.83 2.43E-02 1.14 - 6.98 0.52 KTN1 2.56 1.09E-01 0.81 - 8.10 0.51 

TP53 1.60 9.85E-03 1.12 - 2.30 0.56 EPHA3 2.25 1.67E-01 0.71 - 7.13 0.51 

PCDH15 1.48 2.81E-01 0.72 - 3.05 0.51 KIF26B 2.03 1.66E-01 0.74 - 5.55 0.51 

TG 1.46 4.53E-01 0.54 - 3.97 0.51 PCDH15 1.76 1.78E-01 0.77 - 4.02 0.51 

PLCB1 1.25 7.00E-01 0.40 - 3.96 0.50 TP53 1.63 1.20E-02 1.11 - 2.38 0.55 

XIRP2 1.11 7.55E-01 0.58 - 2.12 0.51 TG 1.18 8.17E-01 0.29 - 4.79 0.50 

HR: Hazard ratio; 95% CI: 95% Confidence Interval; C-index: Concordance index 283 

 284 

Multiple Gene 285 

In order to explore the effect of mutations in all the selected genes altogether, we have 286 

predicted the survival time to estimate the high-risk group in liver cancer patients. Using the 287 

predicted OS time, HR and p-value was computed with cox proportional hazard models for 288 

each technique corresponds to each file type. We achieved highest HR 4.50 with highly 289 

significant p-value 3.83E-15 for the VCF files generated using the MuTect2 technique 290 
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(Figure 4A). However, in case of MAF files, MuSE technique performed best among other 291 

techniques with HR 2.47 and p-value 9.64E-07 (Figure 4B). Additionally, KM survival plots 292 

clearly represents the segregation of high- and low-risk groups; the comparison of different 293 

mutation calling techniques based on two file formats is shown in Figure 4.  294 

 295 

 296 
Figure 4: Kaplan Meier survival curves for the risk estimation of liver cancer patients based on the 297 

combined effect of mutation (A) survival plots for the VCF files (B) survival plots for the 298 

MAF files 299 

 300 

Prediction of Overall Survival of Patients 301 

To predict the overall survival for liver cancer patients, we have used number of mutations in 302 

the top-10 genes as the input feature and developed regression models for VCF and MAF 303 

files for each technique, using seven different regressors such as, Linear (LR), Lasso (LAS), 304 

Ridge (RID), Elastic Net (ENT), Decision Tree (DTR), Random Forest (RFR), and Support 305 

Vector (SVR). Table 4 exhibits the performance of best performing regressor in each file 306 

type. Performance of all the regressors for each file type and technique is reported in 307 

Supplementary Table S2. In case of MuTect2 technique, the OS predicted using VCF files 308 

have MAE 12.52 and significant correlation of 0.57 between the true and predicted OS; 309 

whereas in MAF file the MAE is 16.47 with R 0.37. Whereas, MuSE technique has achieved 310 

the minimum MAE of 13.88 and 16.89 along with R of 0.51 and 0.34, for VCF and MAF file 311 

respectively. In files generated using Varscan2 technique, for VCF file the minimum MAE is 312 

14.57 with R 0.48, whereas for MAF file it is 16.53 with R 0.36. VCF and MAF file 313 

generated using SomaticSniper technique reported minimum MAE of 15.76 (R=0.40) and 314 
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16.72 (R=0.33), respectively. As shown in Table 4, for VCF as well as MAF files, MuTect2 315 

technique outperformed the other techniques in terms of MAE, RMSE and R-value. 316 

 317 

Table 4: Performance of best regressors on top-10 genes from VCF and MAF files 318 

extracted using all techniques 319 

Technique File Type MAE RMSE R p-value 

MuTect2 
VCF 12.52 19.58 0.57 7.00E-37 
MAF 16.47 22.16 0.37 1.31E-14 

MuSE 
VCF 13.88 20.38 0.51 1.38E-29 
MAF 16.89 22.48 0.34 1.68E-12 

Varscan2 
VCF 14.57 20.78 0.48 4.77E-26 
MAF 16.53 22.26 0.36 9.11E-14 

SomaticSniper 
VCF 15.76 21.82 0.40 3.31E-17 
MAF 16.72 22.26 0.33 8.46E-12 

MAE: Mean Absolute Error; RMSE: Root Mean Square Error; HR: Hazard Ratio; R: Correlation Coefficient 320 

 321 

Discrimination of Low- and High-Risk patients 322 

Initially, the dataset was divided into two groups, i.e., the high-risk and low-risk group based 323 

on the median OS. Samples with OS time less than the median OS time were designated to 324 

the high-risk group, whereas the remaining were assigned to the low-risk group. To assess the 325 

ability of the number of mutations/gene/samples to classify the patients into the high and 326 

low-risk groups, classification models were developed on top 10 genes for each technique 327 

and file type, using eight different classifiers such as RF, LR, XGB, DT, KNN, GNB, ET and 328 

SVC. The performance of all the classifiers for every model generated on each technique for 329 

both the files are reported in Supplementary Table S3.   330 

Number of mutations reported through each technique were used to develop models to 331 

predict the high- and low-risk group. In case of VCF file derived using Mutect2, SVC-based 332 

model achieved AUROC of 0.72 and 0.69 in training and validation data, respectively as 333 

shown in Table 5. Similarly, ET-based model developed on genes from MAF files extracted 334 

using MuTect2 technique performed with AUROC of 0.57 and 0.67 on training and 335 

validation dataset, respectively. For MuSE technique, GNB-based model developed on genes 336 

from VCF files achieved AUROC of 0.66 and 0.68 on training and validation data whereas, 337 

ET-based model developed on genes from MAF files achieved 0.60 and 0.51 AUROC on 338 

training and validation dataset, respectively. For the genes obtained from the Varscan2 339 

technique, SVC-based model with genes from VCF file performed best with AUROC 0.68 340 

and 0.64 on the training and validation dataset, with the minimum difference in sensitivity 341 

and specificity, whereas for MAF files, LR-based model achieved AUROC of 0.63 and 0.63 342 
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on training and validation dataset. For SomaticSniper technique, LR-based model developed 343 

on genes from VCF files achieved AUROC of 0.63 and 0.65 on training and validation data 344 

whereas, LR-based model developed on genes from MAF files achieved 0.60 and 0.64 345 

AUROC on training and validation dataset, respectively. For VCF as well as MAF files, 346 

MuTect2 technique performed best among other techniques in terms of difference between 347 

sensitivity and specificity as well as AUROC. 348 

 349 

Table 5: Performance of best classifiers on top-10 genes from VCF and MAF files 350 

extracted using all techniques 351 

Technique File Type Dataset MLT Sensitivity Specificity Accuracy AUROC F1 Kappa MCC 

MuTect2 

VCF 
Training 

SVC 
70.06 71.86 71.26 0.72 0.71 0.41 0.42 

Validation 69.05 66.67 67.86 0.69 0.68 0.36 0.36 

MAF 
Training 

ET 
58.03 52.76 55.39 0.57 0.57 0.11 0.11 

Validation 60.98 63.42 62.20 0.67 0.62 0.24 0.24 

MuSE 

VCF 
Training 

GNB 
63.47 64.07 63.77 0.66 0.64 0.28 0.28 

Validation 71.43 52.38 61.91 0.68 0.65 0.24 0.24 

MAF 
Training 

ET 
58.03 53.42 55.73 0.60 0.57 0.11 0.12 

Validation 30.00 75.61 53.09 0.51 0.39 0.06 0.06 

Varscan2 

VCF 
Training 

SVC 
62.28 70.66 66.47 0.68 0.65 0.33 0.33 

Validation 71.43 61.91 66.67 0.64 0.68 0.33 0.34 

MAF 
Training 

LR 
57.41 63.80 60.62 0.63 0.59 0.21 0.21 

Validation 48.78 78.05 63.42 0.63 0.57 0.27 0.28 

SomaticSniper 

VCF 
Training 

LR 
60.48 61.08 60.78 0.63 0.61 0.22 0.22 

Validation 52.38 76.19 64.29 0.65 0.60 0.29 0.29 

MAF 
Training 

LR 
54.94 61.49 58.20 0.60 0.57 0.16 0.17 

Validation 45.00 80.49 62.96 0.64 0.55 0.26 0.27 

MLT: Machine Learning Technique; LR: Logistic Regression; ET: ExtraTree; DT: Decision Tree; XGB: eXtreme Gradient Boosting; RF: 352 
Random Forest 353 

 354 

Discussion  355 

Liver cancer is a global problem and occurs after severe liver diseases [31]. Chronic liver 356 

diseases are associated with cancer development and prompt progressive mutations at the 357 

genomic level [32, 33]. Previous studies report that liver cancer is associated with poor 358 

prognosis and a high mortality rate amongst the most frequent cancer types [34, 35]. 359 

Nowadays, several mutation calling techniques are available to identify the mutation 360 

landscape in tumor/normal patients. Hitherto, there is not an appropriate comparison of 361 

mutation detection methods for the predictive and prognostic analysis. In this study, we 362 

examine the performance of four widely used mutation calling techniques such as MuTect2, 363 
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MuSE, Varscan2, and SomaticSniper using TCGA liver cancer cohort. We have applied 364 

various techniques in order to compare all the methods for predicting and analysing 365 

prognostic biomarkers in liver cancer patients. First, we have used VCF and MAF files 366 

generated by the different mutation calling methods. We have used the most popular methods 367 

(ANNOVAR and Maftools) to identify the gene-associated mutations in liver cancer samples. 368 

Further, we observed that the VCF files of Mutect2 and SomaticSniper report highest number 369 

of mutated genes and cover over 5 million mutations. Whereas, MAF files reports 370 

comparatively less mutated genes for each technique as shown in Table 1.  371 

Then, we performed correlation analysis in order to understand the impact of mutations on 372 

the survival of liver cancer patients. On performing the univariate survival analysis on VCF 373 

files, we observed that LncRNA SNGH10, CLMP, FAM160A2 and CLDN20 achieved the 374 

highest HR value in MuTect2, MuSE, Varscan2 and SomaticSniper technique respectively. 375 

As shown by Lan et al. LncRNA SNGH10 is an oncogenic lncRNA in liver cancer patients 376 

and reduces the survival of the patients [36]. It’s down-regulation is also associated with the 377 

poor survival non-small cell lung cancer with HR 2.09 with p-value 0.02 [37]. Our study also 378 

corresponds with the previous studies and exhibits that the mutations in SNGH10 gene is 379 

associated with poor outcome in liver cancer patients with HR 5.49 and p-value 3.94E-06. 380 

Whereas, the differential expression of CLMP gene is associated with the progression of 381 

cancers of the breast cancer [38]. Yang et al. also reported the significance of CLDN20 gene 382 

in the survival of breast cancer patients with HR 1.38 and p-value 0.047  [39]. However, our 383 

analysis reveal the role of CLMP and CLDN20 gene in the survival of liver cancer patients. 384 

Further, in case of MAF files, the univariate survival analysis reveals that SYDE1, LAMC3, 385 

ITGB8, CAD, EVC2, NYNRIN, BRSK2, TP53 genes significantly reduces the overall 386 

survival. As shown by the recent study that SYDE1 act as an oncogene and overexpressed in 387 

glioma patients makes it an important diagnostic and prognostic biomarker [40]. Moreover, 388 

the down-regulation of LAMC3 is correlated with the poor prognosis and metastasis in the 389 

ovarian cancer patients [41]. A study also reveals that mutations associated with LAMC3 390 

genes may cause PNH (a rare disorder of clonal stem cell in foetus), which may leads high 391 

mortality rate infection and premature birth [42, 43]. We also observed that mutations 392 

associated with LAMC3 significantly reduces the survival of patients with HR = 9.25 and p-393 

value 1.78E-06. In addition, ITGB8 is shown to be highly upregulated in high-grade ovarian 394 

cancer patients, which leads to shorter OS with significant HR 1.42 [44]. Paul et.al, also 395 

reveals that EVC2 gene is highly mutated in breast cancer patients and dysregulates pathways 396 

like (mTOR, CDK/RB, cAMP/PKA, WNT, etc) [45]. Our study show that mutations 397 
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associated with EVC2 genes reduces the overall survival of patients with HR = 4.3 and p-398 

value 8.66E-05. Researchers have shown that the overexpression of BRSK2 gene correlated 399 

with the patients survival and prognosis in pancreatic cancer [46]. Of Note, several studies 400 

reports that TP53 is the highly mutated gene among most of the human cancers and affects 401 

the survival of cancer patients [47-51]. In current study, we also found that TP53 is the highly 402 

mutated gene among the liver cancer patients and covers almost 20% mutations. Correlation 403 

and survival analysis shown that mutation associated with TP53 significantly reduces the 404 

overall survival with HR = 1.63 and p-value 1.20E-02 among liver cancer patients. While 405 

considering the combined effect of selected genes in each file, MuTect2 technique 406 

outperformed all the other techniques in VCF file with HR 4.50 (p-value 3.83E-15), whereas 407 

MuSE technique outperformed other mutation calling methods with HR 2.47 (p-value 9.64E-408 

07) in case of MAF files (Figure 4).   409 

Furthermore, to compare the different mutation calling techniques we develop various 410 

survival prediction and classification models using the top-10 genes respective to each file 411 

type (Table 4 and 5). The predicted survival time employed for the stratification of high-risk 412 

and low-risk groups. Models based on ten selected genes from VCF file of MuTect2 413 

technique performed best among the other techniques in stratification of patients in high- and 414 

low- risk group, as well as in OS time prediction. Our findings suggest that the VCF file 415 

generated using MuTect2 mutation calling technique provides the comprehensive information 416 

which can be used for the risk-estimation of liver cancer cohort. Furthermore, this needs to be 417 

confirmed on the other cancer cohorts to explore the prognostic potential of mutations. 418 
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